COMPACTNESS OF CONFORMALLY COMPACT EINSTEIN MANIFOLDS
IN DIMENSION 4

SUN-YUNG A. CHANG AND YUXIN GE

ABSTRACT. In this paper, we establish some compactness results of conformally compact Ein-
stein metrics on 4-dimensional manifolds. Our results were proved under assumptions on the
behavior of some local and non-local conformal invariants, on the compactness of the boundary
metrics at the conformal infinity, and on the topology of the manifolds.

1. INTRODUCTION

In this paper we study the compactness of a set of conformally compact Einstein metrics on
some manifold X of dimension four with three dimensional boundary d.X. We introduce a class
of conformally invariant quantities on X and on its boundary. We aim to establish a compactness
result that under suitable conditions on the size of these invariants, the compactness of a class of
metrics on the boundary would imply the compactness of the corresponding conformal structures
in the interior. To be more precise, we consider on X = X% a set of conformally compact Einstein
metrics g = p?g" where g7 is an asymptotically hyperbolic Einstein metric on X and p is a
smooth defining function of the boundary such that g extends to a smooth metric on the closure
of X. To state our results, we first introduce a class of 2-tensor S on the boundary which is
pointwisely conformally invariant. The definition of S is motivated by the Gauss-Bonnet formula
on 4-manifolds with boundary (X, 90X, g), with g defined on X and extended smoothly to 0.X.
On such a manifold (X, 09X, g), we consider the functional on (X, 0X, g)

g— / [W|2dvg + 8 7{ Weanpn L do,
X oX

where L is the second fundamental form and W the Weyl tensor, n is the outwards unit normal
vector on the boundary, the greek indices «, 3, --- represent the tangential indices letter and
i,7,k--- are the full indices. Both terms of the functional are conformally invariant, i.e., under
conformal change of metric § = e?*¢ for a smooth function w on the closure of X, the value of
the above functional stays the same. Critical metrics of the functional under variation of the
metric g satisfy in the interior the well-known condition B;; = 0 where B;; is the Bach tensor,
and on the boundary (more details in Section 2 below)

: . 4
Saﬁ = VZWiomB + vlwiﬁna - vananB + gHWna”ﬁ =0,

where H denotes the mean curvature. When the boundary is totally geodesic (i.e. L = 0), as
in the case of a conformally compact Einstein metric, it turns out

1 n 1 n
Saﬁ = §V Raﬁ - EV Rgaﬂa

where R, (or Ric) is the Ricci tensor and R is the scalar curvature. S is a non-local tensor for
conformally compact Einstein manifolds and is a conformal invariant in the sense of Lemma 2.1
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below, that is S(e?¥g) = e~“S(g).

For any four-dimensional Riemannian manifold (X4, ¢) with or without boundary, the Q-
curvature (4 is defined as:

1 1 1
1.1 = —— AR — Z|Ric|* + =R
(1.1) Q4 5 R 2|ch| + 6R

In the study of conformal geometry, () is naturally related to a 4th-order differential operator,
called the Paneitz ([42]) operator (which is a special case of some general class of GJMS[31]
operators) and is a 4-th order generalization of the conformal Laplacian operator defined as:

(1.2) P:=(A)? —div [(gRg — 2Ric)V]

Throughout this paper, we denote by [g] = {€?“g| w : X — R is a regular function} the class of
metrics conformal to g. Under the conformal change g,, := e*“g, the associate Q-curvature for
g metric, denote by Q4(gw), is related to Q4(g) by the PDE:

(1.3) P(g)w + Qa(g) = Qa(guw)e™.

The 4th order operator Paneitz operator P and its corresponding @) curvature have been exten-
sively studied in the recent literature, here we will just cite a few of them ([11], [17], [32], [25],
24], [34]).

There are two non-local curvature tensors of order three defined on the boundary 0.X; one
is the T' curvature defined on the boundary of any compact four manifolds (see [14], [15]), the
other is the conformally invariant (3 curvature defined on the boundary of confomally compact
asymptotically hyperbolic manifolds in ([25]). Without going into details of their respective
definitions, here we will just cite that the result that in the special case when the boundary is
totally geodesic, it turns out the curvatures 7' and Q3 agree (see [15], Lemma 2.2) and in this

case
_10R

T 120n
On a four manifold (X,0X,g) with boundary, the Q-curvature on X and the T-curvature on
the boundary 0X are related by the Chern-Gauss-Bonnet formula [14]

1 1
= W|? + 4Q)dvol + — L +T)d
)= s | (WP +4Qvol + 12§ (2 +7)io

where x(X) is the Euler characteristic number of X and .Zdo is a pointwise conformal invariant
on 0X.
As a consequence, [ Q@ +2 faX T is independent of the choice of metrics in the conformal

xX(X

class [g] since |W|2dvol is also a pointwise conformal invariant term on X.

Let us now recall briefly the Yamabe invariants on compact 4-manifolds (X, g) with boundary
0X. We consider the Yamabe energy functional

1
Y(g):= 6/ R, + Hg,
X 0X

where R, is the scalar curvature of the metric g and H, is the mean curvature on the boundary
0X. Note that when (X, g) is with totally geodesic boundary 0X (or more generally, the mean
curvature vanishes on the boundary) for a conformal metric g = U2g € [g], we can rewrite

— 1
Y(g):/ VUP + 2R, U
X 6
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We now denote the first Yamabe constant as

1
_ / \VU|* + ~R,U?
Y (X, M,[g]) := inf _ Y9 = inf X 61

gelgl vol (X, 9)Y/2  vect\{o} 3
()
X

and the second Yamabe constant as

1
_ VU]* + - R,U?
. Y . / | 6 7
Yy (X, M, [g]) := inf #2/3 = inf X 3 .
g€lg) vol (90X, g) UeCt\{0} ( 7{ U3>3
M

Here % denotes the integral on the boundary, and vol(X,q) (resp. vol(0X,q)) is the volume of
X (resp. 0X) under the metric g.

On (X,0X,g") a four-dimensional oriented manifold, we say the manifold is conformally
compact if there exists some defining function p > 0 on X so that p?¢T is a compact metric
defined on X =: XUOX. In the case when g+ is a Poincare Einstein metric which we normalized
so that Riccig+ = —3g™", we say that (X,0X,¢") is a conformally compact Einstein manifold
(abbreviated as CCE) and we say 0X the conformal infinity of X. Note that since the choice of
the defining functions are by no means unique but a multiple of each other, their corresponding
compactified metrics are conformal to each other and so are their restriction to dX. Thus the
boundary metric on X is unique up to a conformal class.

Throughout this paper, we will choose a special compactification of g*. This special compact-
ification was first introduced in the paper by Fefferman-Graham [25] ( to study the renormalized
volume of CCE manifolds with odd dimensional boundary). Here we will restrict our attention
to the special case when 0X is of dimension 3. To define this special compactification, given
any boundary metric h € [p?g"|5x], one solves the partial differential equation

(1.4) —Ag+w =3

We denote the metric g = €?“g™ with glspx = h and we name it as the Fefferman-Graham
(abbreviated FG) compactification with the boundary h. Later in this paper, we will further
derive other relevant properties (e.g. Lemma 2.4, Lemma 4.2) of this compactification; but
here we will point out one key property which leads us to think the metric is the most suitable
representative metric among the conformal compactification metrics of g*. The property, which
was pointed out and applied to derive a formula of the renormalized volume in the earlier
paper by Chang-Qing-Yang [15]; is that, for this choice of compactification, the Q-curvature
Q4(g) on X vanishes identically. To see this, we notice that for the Einstein metric g™, by our
normalization of it being Poincare Einstein, the Paneitz operator can be written as

(15) Py = 82, +20,,

so that applying equation (1.5), we find
Q4(g) = 6_4“’(Pg+w +6) = 0.

In this paper, we will always choose the Yamabe metric on the boundary as representative in
the conformal infinity [g|ras] and take the corresponding FG compactification.
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Through the whole paper, we assume X is 4-dimensional oriented CCE, and the boundary
M = 0X = S3 is 3-sphere and the boundary Yamabe metric ¢ in the conformal infinity is
non-negative type, that is, the scalar curvature of § is an non-negative constant; and we denote
denote the corresponding FG compactification.

Our main compactness results are as follows.

Theorem 1.1. Let {X,0X = S?’,gf} be a family of 4-dimensional oriented CCE on X with
boundary 0X. We assume the boundary Yamabe metric g; in conformal infinity is of non-
negative type and denote g; be the corresponding FG compactification. Assume

(1) The boundary Yamabe metrics §; form a compact family in C*+3 norm with k > 2;
(2) There is no concentration of S-tensor in L' norm for the g; metric on X in the following
sense,

lim sup supf |Si|=0
r—0 T B(z,r)
(3) Hi(X,Z) = Hy(X,Z) = 0.
(4) there exists some positive constant C1 > 0 such that the first Yamabe constant for the
compactified metric g; is bounded uniformly from below by C

Y(Xa M> [gl]) > Ol;

(5) there exists some positive constant Cy > 0 such that the second Yamabe constant for the
metric g; is bounded uniformly from below by Co

Then, the family of the Fefferman-Graham compactified metrics (X, g;) is compact in CF+2
norm for any o € (0,1) up to a diffeomorphism fizing the boundary.

As consequences of the main theorem, we can establish the following corollaries.

Corollary 1.2. Under the assumptions (1) and (3)-(5) as in Theorem 1.1, suppose {S;} is
a relatively weakly compact family in L', that is, the closure of {S;} is compact in the weak
topology generated by all linear continuous maps on L'. Then the family of the Fefferman-
Graham compactified metrics (X, g;) is compact in C*+2% norm for any a € (0,1), up to a
diffeomorphism fixing the boundary, provided k > 2.

Corollary 1.3. Under the assumptions (1) and (3)-(5) as in Theorem 1.1, suppose there is
some constant Cy > 0 such that for some +00 > q > 1 one has

f|si\q <c.

Then the family of the Fefferman-Graham compactified metrics (X, g;) is compact in Ck+2
norm for any o € (0,1), up to a diffeomorphism fizing the boundary, provided k > 2.

Corollary 1.4. Under the assumptions (1) and (3)-(5) as in Theorem 1.1,

(2°) there is some small constant €1 > 0 (possibly depending on C1,Co and C**+3 norm
bound of the boundary metric and also on the topology of X ) such that if moreover, for

all i one has
fw <e,
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then the family of the Fefferman-Graham compactified metrics (X, g;) is compact in C*2% norm
for any a € (0,1) up to a diffeomorphism firing the boundary, provided k > 2.

Remark 1.5. In the statement of Theorem 1.1, the conditions (4) and (5) are conformally
invariant conditions but condition (2) is not. A more natural conformally invariant condition
would be the uniform boundedness of the L' norm of the S tensor for the family of metrics, but the
authors are so far not able to establish Theorem 1.1 under this more natural assumption. Instead
we can establish the compactness result under the stronger assumption (2), which implies the
uniform bound of L' norm of the S tensor; or we can establish the compactness result under the
conformally invariant condition (2') . We remak that, by Dunford-Pettis Theorem, the condition
(2) in Theorem 1.1 is equivalent to the compactness of S-tensor under the weak topology in L*.

Remark 1.6. For the unit ball X = B* (more generally, when X is a homology sphere removed
a 4-ball), the topological conditions (3) in Theorem 1.1 are satisfied.

Another version of our main theorem is to replace condition on S tensor by the curvature
tensor T'.

Theorem 1.7. Under the assumptions (1) and (3)-(5) as in Theorem 1.1, suppose the T cur-

vature on the boundary T; = %%ﬁi satisfies the following condition

lim inf inf inf T, >0
r—0 i xeM B(z,r)
Then the family of the Fefferman-Graham compactified metrics (X, g;) is compact in Ck+2
norm for any o € (0,1) up to a diffeomorphism fizing the boundary, provided k > 5.

Remark 1.8. In Theorem 1.1 and Theorem 1.7, if the boundary Yamabe metric § in conformal
infinity is of positive type, we can drop the condition H1(X,Z) = 0 in the condition (3). To
see this, by a result due to Wittten and Yau [48], we know, under the assumptions that the
conformal infinity is of positive type and that the conformal infinity is simply connected, then
H\(X,Z)=0.

We remark we have assumed the stronger regularity on Theorem 1.7 for k£ > 5 than k > 2 due
to a technical reason that in the proof of the theorem we have taken a power series expansion
of the metric g; for up to order 7 (see (4.13) in the proof of Lemma 4.5 below).

Some parallel direct consequences of Theorem 1.7 can be stated as follows.

Corollary 1.9. Under the assumptions (1) and (3)-(5) as in Theorem 1.1, suppose {max(—T;,0)}
is a relatively weakly compact family in L'. Then, the family of the Fefferman-Graham com-
pactified metrics (X, g;) is compact in C*¥*2% norm for any a € (0,1) up to a diffeomorphism
fixing the boundary, provided k > 5.

Corollary 1.10. Under the assumptions (1) and (3)-(5) as in Theorem 1.1, suppose there is
some constant C5 > 0 and some +00 > q > 1 independent of © such that for all i one has

y{ (max(—17;,0))? < Cs
M

Then the family of the Fefferman-Graham compactified metrics (X, g;) is compact in Ck+2
norm for any o € (0,1), up to a diffeomorphism fizing the boundary, provided k > 5.

Corollary 1.11. Under the assumptions (1) and (3)-(5) as in Theorem 1.1, there is some small
constant €3 > 0 (possibly depending on C1,Co and C*T3 norm bound of the boundary metric and
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also on the topology of X ) such that if moreover for all i one has

j([ (max(—T;,0)) < &2,
M

then the family of the Fefferman-Graham compactified metrics (X, g;) is compact in C*2% norm
for any a € (0,1), up to a diffeomorphism fizing the boundary, provided k > 5.

Remark 1.12. Although the non-local terms S and T appears to be independent from each other
in their definitions, it turns out their behavior are coupled in the setting of conformally compact
Einstein manifolds. As we will show in section 4.2 of the paper, for the limiting metric of a
class of conformal compact Finstein manifolds, when the Yamabe invariant on the boundary is
non-negative, the limiting metric of the blow-up metrics T = 0 is equivalent to S = 0.

The paper is organized as follows: in section 2, we provide some background and some basic
calculations; in section 3, we prove a e-regularity result for our )4 flat metrics. In section
4, which is the main part of the paper, we do the blow-up analysis. First we rule out the
boundary blow up by our boundedness assumptions on the boundary metrics and the condition
on the S-tensors or 1" curvature in section 4.2, we then rule out the interior blow up based
on our assumption that the 0X is topologically S* and the condition (3) in the statement of
the theorems by some topological arguments in section 4.3. This permits us to establish the
uniform boundedness of the L? norm of the curvature tensor of the sequence of Fefferman-
Graham’s compactified metrics. From there, we apply the e-regularity argument to jerk up the
order of the regularity in section 4.4. Finally in section 5, We estimate some geometric quantity
including the diameter of the metrics and show they are uniformly bounded and establish the
desired compactness results claimed in section 1.

Acknowledgement. The authors were aware that in the paper [2] by M. Anderson, he had
asserted similar compactness results in the CCE setting under no assumptions on the (analogue
of the) nonlocal tensor S. We have difficulty understanding some key estimates in his arguments.

In both Theorem 1.1 and 1.7, the topological assumption conditions (3) are only used to
establish that there is no interior blow up. In the earlier version of this paper, the authors have
stated both these two theorems without the additional assumption that the boundary of the four
manifold X is 52 as is in the current version of the paper; in the proof we had quoted a result
of M. Anderson (the claim after Proposition 3.10 in [2], see also the result of M. Anderson in
another paper [3] Lemma 6.3) to establish the argument of no interior blow up. It was pointed
out to us by the referee that this result of Anderson was questioned in the recent work of
Akutagawa-Endo-Seshadri [1]. Inspired by the proof in the paper of Akutagawa-Endo-Seshadri,
we have in this version applied a result of Chrisp-Hillman [23] to establish the argument of no
interior blow up; under the additional assumption that the boundary is topologically S>.

The authors have worked on the paper over a long period of time, and over the period, they
have consulted with a number of colleagues on different parts of the paper. They are grateful
to all of them, in particular to the consultations with Olivier Biquard, Robin Graham, Jie Qing
and Paul Yang.

The authors are also grateful to the referee for pointing out the question raised in the paper
of Akutagawa-Endo-Seshadri [1]; for suggesting the elliptic iteration argument (used in section
4.4 of this paper) to improve the order of the regularity and also for making many other useful
comments concerning the presentation of the paper.
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2. SOME BASIC CALCULUS ON THE BOUNDARY
We use the greek indices «, 3,7 --- to represent the tangential indices, n is the unit normal
vector on the boundary and letter i, j, k- - are full indices. A = %(Ric — %g) is the Schouten

tensor in X and W is the Weyl tensor in X. Denote by V the connection on the boundary M
and by V the connection in X. Similarly, we denote by Ric, R the Ricci curvature and scalar

curvature on the boundary M = 90X, and A = Ric— %g is the Schouten tensor on the boundary
M. Recall the Cotten tensor in X (resp. on M) is defined by Cogy = Aag~y — Aoy, (resp.

Capy = Aagﬁ — Aa%g). Moreover, we denote by L the second fundamental form on M and H
the mean curvature of the boundary M.
Let Tj,..;, be a tensor defined on X. Then the Ricci identity

k

(21) Til---ik,jl = T’il---ik,l]’ - E Rmisljﬂl~~~i571mi5+1~~-ik
s=1

gives the formula for exchanging derivatives. The curvature tensor is decomposed as

Rijii = Wit + Aiegjt + Aagir — Aagjk — Ajrit-
Recall that Cjj, = Ayjr — Aik,j = —Wiijk,. The second Bianchi identity can be expressed as
(2:2) Wijktm +Wijmika +Wijim g+ Cikm3jt + Cjim ik + Cimigjk + Cimi it + Cikigim + CitkGjm = 0.

We now recall some facts about the Bach tensor and the Q-curvature in dimension 4. It is known
the Bach tensor (see [47])

1 1
B = Vkleikjl + iRleikjl = ANA;; — V’“VZ-Ajk + §Rklmkﬂ
1 1
= AAU — 6VZVJR + Rikijpk — Riijp + §Rleikﬂ
Thus, the Bach-flat equation is
(2.3) VAV Wi + AM Wi = 0

or equivalently

1
(2.4) Adij = GViViR+ RipjpAP* — Rip AP + AW =0
since Wy, = 0. Using (2.1), (2.2) and (2.3), we infer
(2.5) AWiig + ViCrji + ViCiij + ViCiig + ViCyp = W x Rm + g+ W x A
since

Wiimkd™ = Wijme,"; + W x Rm = Ciji i + W x Rm
Wijima™ = Wijim,™ . + W x Rm = Clj, + W x Rm
Citem, " gjt = V"V " Whimigit = g* W x A, Cjim,™gix = g+ W x A
Cim1,""gjk = gxWx A, Cipp"gi = g* W x A.
Now we recall the Q-curvature @ = £(—AR + R* — 3|Ric*) so that Q-flat metric can be
interpreted as
(2.6) AR = R? — 3|Ric|*.

The following two lemmas regard basic properties of the tensor S and the relation between S
and the behavior of the Weyl tensor on the boundary.
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Lemma 2.1. (1) S tensor Suap = ViWianﬁ + ViVana — V" Whang + %HWQW” s a sym-
metric 2-tensor;
(2) Tr(S)=0;
(3) S is a conformally invariant tensor in the sense that S(¢*g) = p~1S(g);
(4) We have

Sap = —Aans+ Apna+Aapn+ ALap — L, 55+ Loy Rynon
_HRom,Bn + L'yéRB'ya(S - A’yn,vgaﬁ + %HWomBn
(5) if the boundary is totally geodesic, then

1 R
iRaﬁ,n - T;gaﬂ;

Proof. (1) and (2) follow by definition: Tr(S) = 2V‘Wiana = 2ViWjiy = 0.
3) Let § = €2fg be a conformal change. Denote V (resp. V) the Levi-Civita connection with

Sap = Aapn =

respect to the metric g (resp. g). We write T' (resp. T) a tensor with respect to the metric g
(resp. g). Let I‘fj (resp. FZ) be the Christoffel symbols with respect to the metric g (resp. g).
We write

It =1k + Uk
Y\v}wre Ui]} =88 Vif + 6%V, f —gijVFfisa (2,1) tensor. Under the conformal change, we know
W =W as a (3,1) tensor and the Cotton tensor (recall n = 4)

@jk = Ciji + VifWiri'.

Moreover, the mean curvature can be changed as follows

H=e¢/(H-3V,f)

On the other hand, we know ViWijkl = —Cjjj so that
4
Soeﬁ = —Lang — Cﬁna - vananﬁ + gHWomﬁn

Gathering these relations, we deduce (recall the unit normal 72 (resp. n) for g (resp. g) satisfying
n=e7In)
§aﬂ = e_f(_éomﬁ - CN’Bna - 6_2fgni§i(62ananﬂ) + %HWanﬂn - 4vanomBn)
= eif(_cqm,b’ - Cﬁna - vz’f(WZmﬂ + WZ?na) - zvnfwnanﬂ - Vanom,B)
+eif(U;mWiomﬁ + Ufuaninﬁ + UZIBWnam' + U;mWnaiﬁ + %HWan,Bn - 4vanan,8n)

Together with
UrimWianB = 2vannom,B - vifWicmB
UrimWnaiﬁ = 2vann,8na - vifWiﬁna
Urrz;,aWninB = vannom,B
UTZL,BWTLCWZ' = anWnomﬁ

the desired result follows, that is, S is a pointwise conformal invariant.
(4) and (5). For the rest of lemma, we use the Fermi coordinates. The Christoffel symbols
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satisfy I'} 5 = Lag, rh, = —Lag, I'?, = 0 on the boundary ([21], P.8). Therefore,

chﬁwn,a = aozRozB'yn - FlaaRlﬁwn - FlaﬁRal’yn - Fla»yRozﬁln - FlomRa,B'yl
Ragm.a = DoaBagm — TagRanon — TonRapys
= Raﬂfyn,d + HR,Bn'yn - L,BaRom/yn + LaéRaﬁ'y(S
By the Codazzi equation,

Raﬁ'yn,a = L - ALBW + HRBnyn - LBaRom'yn + La6RaB'y§-

ay,Ba

Hence, by curvature decomposition and the above formula
Sep = V'Wiang + V' Wosna + %HWW,L
= (=Aanp + Aopn) + (V' Rygna — Aynygas + Apna) + gH Wangn
= —Aang + Apna + Aapn+ ALag — L 55 + Loy Rynan — HRangn + LysRgsas
*A’Yny’ygaﬂ + %HWaan'

When the boundary is totally geodesic, then L = 0 and R, = 0. It follows that S,z = Aag n-
This proves the lemma.

Remark 2.2. We remark that in the conformal compact Einstein setting (X, M,g"), with a
Poincare Einstein metric gt with Ric(gT) = —3gT and (M,§) as conformal infinity; if we
choose a special defining function r associated with § (c.f. [29]), with |Vgir| = 1 near the
boundary M and

gt =1g=ds®* + g, and gr = §+ ¢Pr? + g3 + O(r4)g£é45)
=0.

Recall tr(g(?’)) Thus a straight forward computation gives

V'Rag = —3¢%9, and V"R =0,

Thus in this case, applying properties of the S tensor as above, we get for any compactified
metric g on X with totally geodesic boundary,

3 3
o oo =243

Lemma 2.3. Suppose the boundary is totally geodesic and Wy = 0. Then on the boundary,
we have

(1) vnWaﬂ'y(S = _'S:a'ygﬂé - S,B&Qory + Saég,é"y + S,B'ygozé;'

(2) VnWag,m = _C'y,b’a = _C’y,Bou'

(3) vanom,B = Soz,B;

(4) VaVaWapgys = ﬁtjé'ya/ﬁ - @')/Aééa/j - @,\Camgﬁa - ﬁ)\éﬁ)ﬁga'y + @,\C'omsgﬁ»y + @Aéﬁmgaa;
(5) VaVaWagyn = QVABSEW — QVAQS?,Y;

(6) VoV s Woans = —V+Cagy — VoChan:

Proof. (1) Note that
(2‘8) Caﬁn = Aaﬂ,n - Aom,,@ = Aa,@,n = Sa,B-
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Now by (2.2),

vnWaﬁ'yé = _Waﬁnfy,é - Waﬁén,’y - (Ca'yng,b’é + Cﬁéngaﬁ + Comég,b”y + Cﬁnwgaé)
= _Ca'yn965 - CB(SnQa,B - Canégﬁ'y - Cﬂnwgaé
= _Sa'ygﬁci - ‘9659&7 + Saégb’v + Sﬁ'ygaéa
where in the second equality we use Wlpx = 0 and hence V,W|gx = 0, and the last equality is
by (2.8).

(2) We first prove that Cogy = Cyup,. By Gauss equation, R = R + 2R,,,. Therefore, R, =
R + 2Ry, . On the other hand, by curvature decomposition and the fact that V,W|ox =0,
we have Rongny = Wangny + Aapy + Annngas = Aapy + Annnygas- Using above information,
we obtain

1 R;}/ 1 7~ 1 R:’y
Aoy Sltasy = 5 908 = 5Baps + 5 Rangny — 5 as
1. 1 1 R,
= §Ra6,v + §Aa6n + §Ann,vgaﬁ = g Jas-
Hence,
1 1. 1 R,
5 Aasy SRapa + S Amnygas — 5 Jap
1. 1 1. R 1.
= 5Rags + 3Ry = Ry)gas = 5Raps = 5 9as = 54ass-

Therefore, CA‘QB,Y = Aag’:y — Aa%B = Augy — Aay,g = Capy-
Now, VnWa/gw = —C,yﬁa — V(;Wagmg = —C%ga.
(3) VaWhans = —Csra — Vo Whayg = —CBsna- Using (2.8), we get V,Whang = Sag-
(4) By (2.2),
vnvnWaﬂfycS = _(Waﬁn'y,cS + Waﬁén,y)n - (Ca’yngﬂﬁ + Cﬁéngory + Comégﬁ'y + Cﬁn'ygaé)n
= _Woa/o’n%né - Waﬁén,n'y - Ca'yn,ngﬁé - Cﬂ5n7nga’y - Com(S,nQ,B'y - C,Bn'y,nga(?
(2'9) = @50704[3 - @'yééaﬁ - Ca'yn,ngﬁd - C,Bén,ngow - Comé,ngﬁfy - CBn’y,nQada

where in the second quality, we use the Ricci identity (2.1) Wagny.6n = Wagny,ns by noting that
Wlsx = 0, and the last equality is by Lemma 2.1 (2).
Now by the Bach-flat equation V;V;Wj;; = 0 and Lemma 2.1 (2),

Canpn = Caipl = Coypy = =ViViWhais = Coypy = —Carpy = —Coayps-
Inserting the above formula into (2.9) gives (4).
(5) By (2.2),
annwaﬁ'yn = _(W'ynna,ﬁ + W’yn[o’n,a)n - (Cnﬁngva + Cnnag'yﬁ + C’yﬁag’rm)n

= _anna,nﬂ - W'ynﬂn,na - Cnﬂn,ng’ya - Cnna,ngwﬁ - C’y,@a,n
= VBSa'y - vaS,ny - Cnﬁn,ngva - Cnna,ng’yﬁ - C’yﬁa,na

where in the second quality, we use Ricci identity (2.1) Wynnagn = Wynnans and the last

equality is by Lemma 2.1 (3).

Using the Bach-flat equation gives Chnan = Chiag — Cnga,sg = —ViViWinia — Cngas =
—ChBa,3- Since the boundary is totally geodesic, Cpgag = (Ang,a — Ana,p)sg = 0. Therefore,
Chnnan = 0 and

VaVaWagyn = VgSay — VaSsy — Cygan-
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To compute C, g4, by Ricci identity (2.1)

= A'yﬁ,na - A'ya,nﬁ - Rl'ynaAlB - RlﬁnaAl'y + RlynﬁAla + RlanﬁAl'y

= Avﬁvna - Ava,nﬁ = (Avnvﬁ + O%Bn)a - (A'yn,a + Ovan)ﬁ = Cwﬁn,oc - C’yom,ﬁ,
where we use Apo = Ryapy = 0 because the boundary is totally geodesic. Finally, by (2.8)
(2.10) Cyan = Copna — Crans = VaSsy = VSar,

which finishes the proof of (5).
(6) By the Bach-flat equation,

VoaVaWangn = ViViWiag — Vo VsWarss — Vo VaWangy — V4V Wargn
= ~Wanpyny = Warypnny = _ﬁvéaﬁv - @Véﬂaw
where in the second equality we use the Ricci identity (2.1) and the last equality is by Lemma 2.1
(2). O
We now recall the following result.

Lemma 2.4. Under the Fefferman-Graham’s compactification with the Yamabe metric on the
boundary, we have R = 3R on M.

Proof. From Corollary 6.6 in [12], we have J;, = 2.J; where J, = £ (resp. J; = %) is the trace
of the Schouten tensor of the metric g (resp. §). Therefore we get the desired result. 0

The following result is well known (see [26]).

Lemma 2.5. Under any compactification, we have Wy =0 on M.

We split the tangent bunlde on the boundary T,X = Rv & T, M for all x € M, where U is
unit normal vector on the boundary. Given a tensor 1', we decompose tensor VET on X along
M that are related to the splitting 1T, X = R @ T, M: let us denote by V(()];)dT (resp. ng,)enT)
the normal component o appeared odd time (resp. even time) in the tensor vET.

Lemma 2.6. Suppose the boundary is totally geodesic and Wy = 0. We have on the boundary
M for any k <1
VDWW = (v s vk ()
where L is some linear function. As a consequence, we have on M for any k <1
vEDW = L(v® s vE ).
More precisely, we have
Vi W = L(v®s)
and o
Vi W = L(VPO)
Proof. The first part of Lemma comes from Lemma 2.3. Recall W =0 on M. Thus
VoW =0
Also it follows from the Ricci identity (2.1),
V.V, W = V,;V,IW

Thus the desired result follows from Lemma 2.3 again and the lemma is proved. g
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Lemma 2.7. Suppose the boundary is totally geodesic and Wy = 0 for some Q-flat and Bach-
flat metric. Then on the boundary M

(1) We have
Aupr = Aaprs Aapn = Sap Anas = Aanp = 0, Appn = éRm,
Appo = é@aR — Ay Anan = Aann = é%R — Aupp
(2) We have

~

Aaﬂ,w)\ = Aaﬁ,ﬂ/)n Aa,@,wn = Aaﬁ,n'y = ﬁ’ysa,@a

1. . .
Aapnn = EvavﬁR — Aapyy — |A’29af3 + 4A0pAg?

1
Ana,ﬁ'y = Aom,,B'y = 07 Ana,nn = Aom,nn = Ann,na = Ann,cm = gR,naa

1. - ~
Anans = Aannp = gVVall = Aoy,

1. - ~
Ana,ﬁn = Aom,,Bn = évﬁvaR - Aa'y,'yﬁ - (Ann)ngeﬁ + Aa’yAaA/
R

1o - . ) A
Ann,a'y = évav'yR - Aﬂﬁ,ay, nn — R2 - 3’RZC|2 — VoV R
Moreover, we have

1 1 1. -
Annnn = =3 R a0 + 6(R2 — 3|Ric|*) — AP A5 + 3(Ann)* + TOR
In particular, when R is constant on M, then
1 1
Apnn = =3 R a0 + 6(32 — 3|Ric|?) — A Ayp + 3(Ann)?

(3) We have

VAR = L(VV,R), VO, R = L(VOR) + Ax A,

VA= L(S.V,uR), V), A= L(VA VR),
VLA = L(VS,VV,R), V&, A= LVPAVOR) + Ax A
(4) There holds
X R
ACVB == AC\{B + (Ann + -

4 )gaﬁ

i
6
(5) Under the Fefferman-Graham’s compactification with the Yamabe metric on the bound-

ary, we have

Ann =

»P‘:U>

~

Aap = Aup
Proof. (1) The first two equalities are proved in the proof of Lemmas 2.1 and 2.3. Recall A,, =0
on M from the Codazzi equations so that the third one comes. From the relation tr(A) = %,
we have on the boundary

R
Aaa,n + Ann,n ==

6
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On the other hand, by Lemma 2.1
Apgan =1tr(S)=0

so that
R
Ann,n = ?,n
Similarly,
Agpo+ Anna = =5
so that

1. ~
Ann,a == EVQR - A/Bﬁ@.

since Agg o = flgﬁ,a. By the second Bianchi identity, we obtain

R
Aaﬁ,ﬂ + Aom,,n = éa

which implies

1.~
Ana,n = Aom,n = 6VQR - Aaﬁ,ﬁ

A~

since A is symmetric and A,g 3 = Aag g

(2) It follows from A, = Anp,y that Agg .\ = AQB,VA.

From the Ricci identity (2.1) and the codazzi equations Rugyn, = 0 on M, we get Aagyn = Aapny
so that Aqgyn = Aapny = V4Sas-

By the Bach flat equation (2.4) for A,3 and the decomposition of curvature tensor Rm =
W+ A®D g, we infer

~

Aapnn = DAap = Aapyy =

A

@QV5R — Aa/gﬂ,y — RakgpApk + RapAgp

1. - ~
- gvavﬁR - AaB,W - |A’29a/3 + 4AapABp

From the fact Aq, = Ana = 0, we have A, gy = Aan, gy = 0. There holds

1

Ana,nn = Aan,nn = A140[71 - Acm,,BB - A44001 = ER,na
since Aqn = Rapyn = 0 and Bach flat equation (2.4) for A,,. We have

1 1 1 A 1

Annan==Ran—A88an = =R an — Assna = =Ran — VaSss = =R.an
I 6 ’ 567 6 I 65) 6 I 56 6 )
since tr(S) = 0. It follows from (2) App, = ¢ R, there holds
1
Ann na = =R an
b 6 b

Using Anan = Aann = s VaR — Agy -, there holds
1.~ - o
Ana,nﬁ = Aan,nﬁ = gvﬂvaR - Aa'y,'yﬁ

With the Ricci identity (2.1), we deduce

Ana,ﬁn = A(}n,@n = Aaq,nﬁ - RmomﬁAmn - RmnnﬁAam
— IVaVaR ~ A — (Aunges + Aas Ao
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By Apn,a = %@QR — A, o, we infer

1. .
Ann,aﬁ = gvﬁvOéR - Ayy,aﬁ
By Q-flat condition (2.6), we have
Ryn = AR —V,VoR = R? - 3|Ric|> = VoVaR

From Bach flat condition (2.5), Q-flat condition (2.6) and from the decomposition of curvature
tensor Rm =W + A ® g, we calculate

Ann,nn = AA’él’rm - Ann,aa = AAnn - (% - Aﬁ,@),aa
1 1
= -Rnn — AaﬁAaﬁ + 3(Ann)2 — —Raa+ Aﬂﬁ,aa

¢ 6
1
= §(AR — Raa) — AP Aup 4+ 3(Ann)? — ¢ Raa + 4800
1
= S(R? = 3| Ricl") — A% Aag + 3(Ann)” = S Roa + Agp 00

On the other hand
1~ -

Agsaa = Apgoa = ~Raa = 108

AN

since tr(A) = %R This yields the desired result.

(3) It is just the result from (1) and (2).
(4)

. R R
2A04,3 = RZCOc,B - Egaﬁ = Rowﬁ’y + Romﬁn - Egaﬂ
By Gauss equation Ry,5, = Ravﬁv and the decomposition of curvature tensor Rm = W+ A@ g,

R R
2‘4045 - Aaﬁ + Aaﬂ + Anngaﬁ - ggaﬁ + Zgaﬁa

which implies the desired result. R
(5) From Gauss-Codazzi equation, we have R = R 4 2R,,,,. Together with Lemma 2.4, we infer

Run = R and A, = % Combining this with the result in (4), we infer 4,5 = Aaﬁ. Finally, we
prove the result. O

Lemma 2.8. Suppose the boundary is totally geodesic and Wy = 0 for some Q-flat and Bach-
flat metric. We have on the boundary M for any k > 2
A k—2
ViuR = LVEIV,R) + 3 VO Rm « V204
1=0
k—2
ViA=LV DS vEDY, R) + 3 VO Rm « w20 4
=0
k—2
vEW = L(vEDS VEDT,R) + ST VO Rm + VE2D R
1=0

where L is some linear function.
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Proof. We prove it by the induction. When k& = 1,2, it is clear for A and W from lemmas 2.6

and 2.7. Suppose it is true for k. For k+ 1, we consider first R. The terms VEJZ;FI)R are in three

cases.
a) V&R - v, v, VE VR,
In such case, by the Ricci identity (2.1)

VHUR = VoV, VEDR 4 R s VDR = VoV E R + R« v A

even
By the assumptions of the induction, we get the result.
b) V&R — v, v, v VR,
We write by the Ricci identity (2.1)

k—1
VIR = AV VRV, V Ve VR =V VAR -V, VY E VR VO Rm w204
1=0
By flat Q4 curvature condition (2.6) and using the assumption of the induction, we get the
resultk.: . .
o) VMU R - v,v* R,
This is an easier case. It follows from the assumptions of the induction.

Now we consider the terms V(()Z;FI)A . Similarly, we consider them in three cases.

a) V&A= v, v, vEo A,
In such case, by the Ricci identity (2.1)

VDA = VoV, VED A 4 R« VEDA = Vv A 4 Rimx v 4

Thus, we get the result.
k+1 k—1
b) V&A= v,v, v VA,
We write
v A= AvE VA v, v,V DA

From the Bach flat equation (2.4), we get

R k—1

AVEDA - V(k+1)g + 3 VORm « vE1DA = 0
1=0

which implies

k—1
(k+1) 4 _ gle+D) 12 (k=1) z k-1
Voad A =Voaa g = VaVaVyy A+ > VURm v
1=0
By the assumption of the induction and the above equation, we could write

k-1
VA= LYW 5, VET,R) 4+ VDT 1S9O Rm 4 90 4
1=0
which implies by the result for the scalar curvature

k—1
VA= L(VW S, VOV, R) + 3 VO Rm « v-1-0 4
=0

o) VD4 — v, v 4.
It follows from the assumptions of the induction.
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The proof for the Weyl tensor is quite similar as the schouten tensor A. We divide into 3 cases
as above

a) VW — v, v, VW = Vo v, VW + Rmsx VED A = v,V W 4 Rmx VDY
b) V&Y — v, v, v D — AavE Dy v, v, v D

From the Bach flat equation (2.5) and the Ricci identity (2.1), we get

k-1
VW = LV A) - Vo Vo VW 4 ST VO R« vE1D R,
=0

o) V& W — v, vH .

In the above 3 cases, we can prove the result by the assumptions of the induction and the results
for A. We therefore have established the proof of Lemma 2.8. U

Lemma 2.9. Suppose the boundary is totally geodesic and Wy = 0 for some Q-flat and Bach-
flat metric. For any k > 2, we have
k—2
vk, R=LVPR)+> VORm « v*2704

even
=0

k-2
vk A=LVPAVER) 4+ Z VO Rm « vk—2-0 4

even
=0

k—2
vk W =L(V®AVHR) 4+ Z VO Rm « VE2-D R

even
=0

where L is some linear function. In particular, when the restriction of R on M is constant, we
have

k—2
VL R=> VURm«vF2704
=0
k—2
vk, A =L VPA) 4> VORm « vE2704A
=0
—2
v W= L(V +Zv )Rm « V*=2"DRm
=0

Proof. We prove the result by induction. For k& = 1,2, the results follow from Lemmas 2.6 and
2.7. As before, we treat the three cases. First we consider the scalar curvature.
k k—
a) Vo R = v, v,V VR,
In such case, by the Ricci identity (2.1)

VAR =V, v,V YR+ Rm« VEDR =V, V) R+ Rm»vE-1A

Thus, we get the result by the assumptions of the induction.
b) Vivin R =V, YV, Visen R.
We write by the Ricci identity (2.1)
k—1
VIR = AVEDR-V Vo VE VR = VEVAR-VVoVE DR+ VO RMx V270 4

even even even even
=0
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By flat Q4 curvature condition (2.6), we get the result by the induction.
k+1 k

C) évz_n)R = Vavc(zvzzn .

It is clear by the induction argument.

(

Now we consider the terms Velf,—et% )A . Similarly, we consider them in three cases.
k+1 k—1
a) VoA =v,v,vi A,

In such case, by the Ricci identity (2.1)
VEDA =V, v, VDA 4 B x VEDA =V, V8 A+ Rm o« VE-DA

We get the result by the induction.
b) Vivin A =V, ¥V, Visen A.

We write
VA= AVELDA - VoVl Vi A
We get
k—1
VA= AVEDVA-V,V VE VA= VEDAA-V Vo VE DALY VO Rm V170 4
1=0
From the Bach flat equation (2.4), we could write
k—1
VA= lgting g v vy > VORmx V1704
even 6 even aV.aVeven
=0

It follows from the result for R and from the assumptions of the induction.
k+1 k
C) vgvjn)A = vavgv)enfL
It is clear in this case by the induction.
The proof for the Weyl tensor is quite similar as the schouten tensor A and the scalar curvature
R as in the proof of Lemma 2.8. We omit the details. Thus we have established the lemma.
O

3. e-REGULARITY

Theorem 3.1. Suppose the assumptions (4) and (5) in Theorem 1.1 are satisfied and assume
| Bm|| crvr(ary and ||SHL} (y are bounded, the metric is Q-flat and Bach-flat, the boundary M

is totally geodesic, W|pr = 0 and the restriction of the scalar curvature R|p is some positive
bounded constant. Assume further there exists some positive constant Cs > 0 such that for any
r <1 and for any p, we have

vol(B(p,r)) < Cyr?.

Then There exists constants € > 0 (independent of k) and C' > 0 (depending on k, HRmHCkH(M),
||S||Ll1 () and C1, Cy in the assumptions (4) and (5) in Theorem 1.1) such that if

[Rm|2Bpry) <€
then for all r <1

1/2
{/ \VkA\‘ldV;,} < % </ |A|2dV, +7§ S| +r4>
B(p,r/2) r B(p,r) B(p,r)nM

|VFHL A2V, < o |A]?dV, + S| +r
9 2k+2 9
B(p,r/2) r B(p,r) B(p,r)NM
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1/2
/ V¥ Rm|*dV, < % / |A|2dV, +f S|+ r?
B(p,r/2) r B(p,r) B(p,r)NM

C
/ |V Rm|2dV, < T / |A|2dvg+f S| 4 r?
B(pr/2) B(pr) B(pr)NM

Proof. We now begin the proof of the theorem by considering the case k = 0 first. Let 7 be
some cut-off function such that n = 1 on B(p, %) and n = 0 outsides B(p,r) and |Vn| < C/r.
Taking the test tensor n%A in (2.4), we have

/nQ\VAF = —/172<AA,A> —2/17<VA,V17®A>+?{772<V”A,A>

1
= —/772<AA— (VIR.A) —2/17(VA,V17®A) +7{n2<vnA, A)

1
5 [ PR

1
(3.1) < /|VA]|A|17|V7)\ + 36/772RAR + /772(AAij — *ViVjR)Aij
1
P (T0AA) = TR A+ |50 §PRYR
< C [ |VAlAlIVyl+C / 72| Rl | A2

1 1
+ 7{772(<VnA,A>—6<VR,A(n’.)> + 36 2RV R

Here we use the @ flat condition (2.6) and second Bianchi idendity A;;; = %R,i and also Bach
flat equation (2.4).

Now we want to estimate the boundary terms. From Lemmas 2.1 and 2.7, we have A,, = 0,
Apnn — %Rm =0and A,3 — flaﬁ = Agag, since we also have trS = 0, we obtain

(3.2) ‘}K VAA)—f(VRA ‘ ’74 SA‘ fnysum

On the other hand, since by our assumption on (M, g), A is bounded in C° norm, we obtain

fyfsufu < c;%?\sr-

Recall R = 3R is a bounded constant on the boundary by our assumption, R is uniformly
bounded on the boundary. Therefore, we could bound from @-flat condition (2.6)

1 2 R . 2
36% RV,.R /le VR‘
(3.3) / nVA|2+C/ . |A|2+C/|V77|2
<3 / WVAP + O / 2JAP + Suol(B(p. )

Claim. For any Lipschitz function f € C1%(X) and for any regular function 7 vanishing on
X\ B(p,r), we have

(3.4) Infls) < " [ IV@HP
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and
(3.5) Inf 125 < C /X VP,

provided ¢ is small.

To see the claim, we have from the assumption condition (4) on the Yamabe constants in
Theorem 1.1, we get

R
nflfe <y [ IV@OP+ Sins < G| 19GHE + I e IRl o)

< Ci( . V@) + [nfll7ae)

so that
Infl2s < 20y /X V()P

provided 2C1e < 1. Similarly, by the assumption condiiton (5) on the boundary type Yamabe
constants in Theorem 1.1 and (3.4), we infer

07 o) < Cal [ V@R +lnfliee) < 2021+ ) [ (V@nP <4Cs [ IV@nP

provided C’e < 1. This proves the claim.

Now we apply the Cauchy-Schwarz inequality and (3.4)

c / IV Al Al V| + C / 72| Rml| A2

1
<1 /X VAP + C'( /X 02AR + [0l Rl 2 (500

8
< g [ VAR -+ ITnPIAR + [V GIADIE Rz o)
Together with (3.1)-(3.3), we infer
VAP
3 [ PIVAR + €07+ [ (F & [P0P AR + IV IADIE N Bl 250 + € 1715
(3 + 2CRmlsam) [ P19AR +C §aPls]

Lo+ / (7 + V0P + 20 [Vall Al |22 | Rl 2 5pm)

IN

IN

Therefore, when 2Ce < i, we get

[Avapav, < S papav d o gspert
r B(p,r) B(p,r)NM

Here we use |V|A|| < |VA]|. Again from the Sobolev inequality (3.4), we deduce

12 &
{Jrarant ™ <Sof  papas f o gspen
r B(p,r) B(p,r)NM

Recall from the Bach flat equation for the Weyl tensor (2.5) and the Ricci identity (2.1)
AWijkl = Q(Vivajl — vilejk — VijAil + VleAik) +Ax A+ A«W +WxW
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As before, we take n2W as the test tensor to the above equation. We remark on the boundary
W = 0. Thus

/772|VW!2

c / (VW] + (VAN W]V + C / | Rl (W + |A)

IN

+2| [ (VA Wik — ViAjRViWiii — ViAagV Wi + ViAx YV jWijka)|

IA

c [(VW| + (VAN WInIVa| + / V| R (W2 + |A?) + / PIVW[V Al

1
< = / P IVW P +C / W2V + (InW 174 + InAll7) I Rm 22(ppr) + / n?|VAJ?

AN

2

With the similar arguments as above, we infer
2 2 C 2 4
[AvwE < S0 Ry,
™ JB(p,r)

Again from the Sobolev inequality (3.4), we get the desired inequalitiy

1
2 C
{Jamy} < 5[ im0
p7r

Now use the relation
IVORm® = [VOWP +|[vOA@ g

Therefore, we obtain the corresponding inequalities for Rm. Thus we have finished the part for
k = 0 of the theorem.

We now prove for the high k£ > 1 by induction. For each k, let 1, be some cut-off function
such that nx = 1 on B(p, 5 + 55z) and nx = 0 outsides B(p, 5 + 5r57) and [Vi| < C/r. But
for simplicity of the notation, we denote all such cut function as n and skip the index k. First
we treat the estimates for the Schouten tensor A. From the Bach flat equation (2.4), we obtain

k
AR 4 _ v@)v(‘f)% + 3 VORM« VEDA =g
=0
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As above, we take n?°V(*) A as the test tensor, integrate the equality of the Bach equation, we
obtain

/n2’v(k+l)A‘2

_ / 2(AVH) 4, 7)) — 2/ (VD 4 vn o v A) + fn2<vnv<k>,4, vk A)

1
C/IV’““AHV Al + | g [ AORTOLR)

IN

36

O Rm «+ VED A 4 v“f)A’

+C

(V. V® A, V(k)A>‘ +C ‘fn%v(’f“)}z, v A(n, .)>’
k—1
1
i ‘36 [ vnv<k>R>‘ oy 74 72V Rim| |9 +=1-0 4|94 )
l 0

C/‘V (k+1)

+C’j4 (Vo VR A v H) ‘+c‘f VEDR VW A(n, )>’
1

IN

29O Rm + VE-D A 5 vk )A‘

+ 367{772<v<’f>3, V.V )R)‘ + CanQW ) Rm||V*=1-0 4] v R R
1=0
Here we use the @ flat condition (2.6) and second Bianchi idendity A;;; = %RJ. We need just
to consider the boundary term
(VaV® A VHEAY (resp. (VEFDR V® A(n, ), or (VP R, V,VFR))
Our basic observation is that in all these products, one is an odd term and another one an even

term, where odd and even is defined as in the proof of the Lemmas 2.8 and 2.9; we also deduce
from these lemmas that

(Va VA, Vi A) = 0(1v®) A|+Z\v VAV R |V #-1-D 4])
=0

and

F (9,984,980

]{ (3 caVa VoA, VL A) + O(Z?{UQIV(’“)AI|V”)Rm||V(k_1_l)A|)
l
where ¢, is some constant. By the integration by parts, we infer

3 cart(Vav A, 9,0

- %77 Z caV 0477 k) A Vgf))en‘A) - % oddA Z caVa velf))enA
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Thus, we could estimate from Lemma 2.9

F 37 car?(Tav A v, ) = O(f AL+ 3 [TORm|[VE D))
l

Lo 75 (VO A1+ 3|90 R [9E-1-0 4])))
l

Our basic observation is that

fvf(\v(%r(l + 3 [V R 9170 )

I
< Cr¥nVWA| s + Z InVE A s VO R s 5 irnnn 10V ED A s
;

and
M 1o® Al 0 (h=2-1) 4
47w ai + S VO R [94 0 Ap)

1 o
< CTH??V(]C)A”L?’+Z;an(k)AHL?’||v(l)Rm||L3(B(p,m)ﬂM)”V(k DAl
l

where r; = r/2 + r/2!72. By the Sobolev trace inequality (3.5) and from the induction, we get
for any [ < k

C
l 2 2 4
HV( )Rm‘|L3(B(p,rl)ﬂM) < m (/B(p " |Rm] dVg + ﬁ(p M ’S| +r )

InV® Al

IN

C||77V(k+1)A”%2(X) +C|Vn® VUC)AH%’Z(X)

v ® D A2, 4 + [Rm[dV, + f 1]+ 1)
B(p,r) B(p,r)NM

IN

2k+2(
which implies from the Cauchy-Schwarz inequality

InV ™ A s |V ”RmHLsIInIV 1D Al s
1
;HW(’“ Allgs ++ (HV JRin|l s [0V E D Al s )?

IN

1 C 2 ‘f S +I
(k+1) g %
")/H ||L2(X) 2k+2 < B(p,r) ‘ | B(p,r)NM | |

IN

and

C
rllpV® Al s < Cr? + — ||nv<’f+1 Allf2x) + 3772 </B( )\le2dVg+7€3( )li5|+7’4>
p7’rl p?r

and also

1
;HW(’“)AHLs IV Riml| s ||V *=27D A s

1 i C 2 4
nv( +1 A 4 / Rm/|*dV, +% S|+
7|| ”L2(X) 72h12 B(w)‘ "dVy B(p,r)ﬂM| |

IN
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On the other hand, we have

1904w gyl

IN

1
Tt + € [ (9O AR T

1 C
Lt g2, Y / Rm/|*dV, +y{ S|+t
7||77 220x) + ar2 B(W)| vy B(pn")ﬁM| |

IN

and

k—1
Z/nQ\V(”Rm||V(’“_Z)AHV('“)A]
=1
k—1
< Y VY Rm| appn) InVED Al s InV® A 2
=1

1 C
< ZnVEDAIZ, 0+ / Rm/|?dV, +?{ S|+t
| 1 VL
Here the constant C depends also on the ~. It remains to treat / nQV(k) Rm + A V® A and

n?Rm * V® A% VH* A For the term anV(k)Rm x A V) A using the Sobolev inequality
(3.4), Holder’s inequality and Cauchy-Schwarz inequality

PIVE Rm « A« V) A)|

< an(k)RmHLQan(k)AHL4HA||L4(B(p,r1))

< Lpv® a2 CllnV® Rm)|2,|| A

< 7||TI IZ2x) + Clin m 22l Al L4 )
<

c k+1) 412 ¢ 2 !
5 | HLZ(X) r2k+2 B(pyr) | Vs B(p,r)nM 5

Similarly, we have

/772\Rm « VF 45 v 4|

< ||1RmHL4<BW>an<’“>A\|L4\|nv<’“>A||Lz
< ;an(k)A”%ﬁl+C||RmH%4(B(p,r1))an(k)AH%?
<

C k1) 412 ¢ 2 !
7H HL2(X) 2k+2 B(W)‘ "V, B(p,r)mM’ |

Gathering all these estimates together, we deduce

1 C
vV FHD 412 < |npvED A2, o + s / Rm|?adV, +% S|+
u 72 <51 IZ00 + o | f, Vet fy 1S

provided ~ is a sufficiently large constant. Therefore

C
nVED A2, < —— / Rm|?dV, +f S|+t
” 200 = Jawre B(Pﬂ“)‘ s B(p,r)ﬂM| |
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By the Sobolev inequality (3.4), we get

C
VS Al 745, —i7e / |Rm|*dV, +7{ IS|+ %] .
B(pr) B(pr)NM

It is similar for the Weyl tensor. From the Bach flat equation (2.5), we have
AVEW = 2(vkivmv(k>Aﬂ S VAAVAVACODZ P VAR v VAL PRRER v VAR ALY Py

(3.6) +Z(V(Z)W « VEDW 4 VOW 5 vED 4 £ vO 4 5 vk-D 4)

As before, we take n2V®) W as test tensor and integrate the equality. Thus, we have

/ PIVEDWE < / (IVED 4] 1 [V EDW ) T W vy

k
+CZ H/nQV(l)W*V(’“l)A*V(’“)W +

/n2v<’>w « VD 4 4 V(’“)A‘
‘/ 2V A 5« VD 4 5 vl k>A’ ’/ 2OW 5« VEDW vk )A‘
‘/n2v(l>w*v<’f Dw s« v W ‘/ B VIO IR vICaD) R v WH

+C }[ (V. VE W, V(k)W>‘ +C 7{ n <VnV(’“)A,V(’“)W>‘

+C }[ (V) 4, VnV(k)W>‘

Here we use the above two Bach flat equations (2.3) and (3.6) and Ricci identity (2.1). With
the similar arguments, we can bound the boundary terms as above

’f V. VEW, vEw ‘+C‘j4 vv<k>Av<’<>W‘+c‘7§ v A, v, vE W)

1
< Rm dv+f S|+ +/ vy |2
7'2’”2 </B<p, , 1 —— ) )7 |

And also from the induction and results for A and Hélder’s and Cauchy-Schwarz inequalities

c / (IVE+D 4] 1 [V EDW ) T O W Ty
1

4/n2|V(k+1)W|2+C/772|V(k+1)A|2+C/]Vn2|2|v(k)W|2

c / 2 ]{ A / 2 o (k1) 1172
— Rml|“dV, + Sl+r*] +- \% w
r2kt ( B(p,m‘ 4% B(za,mM| | i) |

IN

IN
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and
k
>3 H/ P VOW £ TE0 A V(’“)W‘ - ‘/ PVOW 5 vED A V(k)A'

+

/n2v<”A e UhD 4 v(k)A' N ‘/,ﬁv(nw « T EDYY 4 V("“)A‘
+|

k
O VY Rm| Ll lnV* ) Rml| s [V S R 2]

=1
+C|| Rl pa |V ® B | g2 (|nV S W | pa + gV ®) Al 1)

C / 9 j{ 4 1/ 2 o (k+1) 1172
< Rm|2dV, + S|+t )+ [ R vEDw
r2k+? ( B(p,m‘ s B(p,rmM' | i) |

/nQV(”W x* VEDW % V(k)W’ + ‘/ 2V A 5« vE-D A & v(’f>WH
—1

IN

Finally, we infer

C
27 (k+1) 11712 2 4
UBAY Wi* < / Rm|*dV -f-j{ S|+
/ | | r2k+2 ( B(p,'r)| v B(p,r)ﬁM’ |

which implies from the Sobolev inequality (3.4)

C
nV(k)W 2 < — / Rm/|?dV, +f S|+t
[ 174 2R 12 B(W)’ "V, B(p,r‘)ﬂM| |

We have thus finished the proof of Theorem 3.1. O

Theorem 3.2. Under the same assumptions as Theorem 3.1, we have the estimates for L
norm, that is, there exists constants € (independent of k) and C (depending on k) such that if

IRl 2Bpry) <€

then for any r < 1

1
2
(3.7) sup |V¥2Rm| < & (/ | Rm/2dV, +7§ S| +7~4>
B(p,r/2) r B(p,r) B(p,r)NM

We recall a technique result, which can be found in [46, 10, 38].

Lemma 3.3. Under the assumption (4) as in Theorem 1.1, there exists constants € and C' such
that if

B 2By <€
then for any Lipschitz function f with the compact support in B(p,r)

1/2
(33) ([ran)" <c [ wiray,

Moreover, we have

(3.9) 1 Flle < CNAIEA IV F I g
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1
where v = +212+. Here, when q > 4, we can let +00 > p > m > 2 and C’ is some constant

depending on m,p,q,C; when q = 4, we can let +00 > p > m > 2 and C' is some constant
depending on m,p,C.

Proof of Theorem 3.2. Recall a basic fact that for any tensor 7', we have
IVIT|| < |VT|

We will show first V¥~ Rm € L8(B(p,r/2)). Let n be some cut-off function such that supp(n) C
B(p,3r/4) and n =1 on B(p,r/2) and |Vn| < C/r. From Lemma 3.3

InIVE " Rml |25 < CllnIV* = Rml|| 14|V (V! R )| 4
Applying Theorem 3.1, we have

C 2
19l V* R 14 < —— / [Rm|2dV,, + 74 5] 44
" B(p,r) B(p,;r)NM

1 _
IV(n|VFLRm|)|| 2 < C’(;HV’“ 1Rm||L4(B(p,3r/4))+ankRmHL4)

o >
< Itk / |Rm[2dVg—|—y{ S|+
B(p’T) B(p,r)ﬁM

c
0| V5= R |2 / |\ Rim|2dV, +7{ 1S + r
B2 =20\ S N T

By the same argument,

_ C
V2Rl < e ([ RmPave f s
" B(p,r) B(p,r)NM

Again from Lemma 3.3

which yields

IA

N

V¥ 2 Rm|3 < ClnlV* Rl s]ln|V* 2 R s
C
< = / |Rm/|*dV, +74 S|+
,
B(p,r) B(p,r)NM
This gives the desired estimate (3.7), which establishes Theorem 3.2. O

We now derive a better regularity result in the interior of the manifold.

Theorem 3.4. Suppose the assumption (4) in Theorem 1.1 are satisfied and the metric is Q-flat
and Bach-flat. Assume for some r > 0 and for some p with B(p,r) C X \ M, then there exist
constants € (independent of k) and C' (depending on k) such that if

B 2B < €

1/2
C
VF A%V, g / Al2dV,
{/B(p,r/m‘ | g} r2ht2 B(p,r)’ Vs

c
|VFHLA12dY, < / |A|?dV,
/B(p,r/m ST !

then
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1/2
C
|V*Rm|*aV, < / |Rm|?dV,
{/B@,r/z) ! P2 B !

C
IVFH Rm|?dV, < / |Rm|?dV,
/Bw/z) T2 S !

Moreover, we have

1
2
sup |VF2Rm| < gk / |Rm?dV, | < C—:
B(p,r/2) " B(p,r) r

Proof. The proof is as same as the one of Theorems 3.1 and 3.2. We just remark that there is
no boundary term in the estimates of the corresponding inequalities now. ]

4. BLOW-UP ANALYSIS

4.1. Statement of the results.

In this section, we will do blow up analysis both on the boundary and in the interior. Recall the
Fefferman-Graham’s compactification g; = e gi+ =v; Qg;r where g;r is a conformally compact
Einstein metric and the defining function w; solves the equation (1.4). We aim to prove the
curvature tensor for the FG metric is uniformly bounded, namely,

Theorem 4.1. Under the same assumptions as in Theorem 1.1 (or Theorem 1.7), there exists
some positive constant C' > 0 such that for all index i, we have

(4.1) [Rimg, s < C
Moreover, we have

(4.2) |Rmg, o < C

Our strategy to prove Theorem 4.1 as follows: to get the uniform C! bound of the curvature
tensor of metrics g;, we will first prevent the boundary blow up in section 4.2. We then use this
fact to help us to rule out the interior blow-up in section 4.3. After that we apply Theorems
3.2 and 3.4 to get uniform C*~2 of the curvature tensor and in section 4.4 applying the Bach
flat and Q-flat equations to improve the regularity of the curvature tensor and get the uniform
boundedness of their C*+1 norm.

A property of Q-flat metrics g; in our setting is that, under the assumption that the scalar
curvature of their boundary metric §; is non-negative, the scalar curvature of g; is positive. This
fact was first proved in Chang-Case [12]. For the convenience of readers, here we present also
the proof of the result.

Lemma 4.2. [12] Let (X,0X,9") be a 4-dimensional conformal compact Einstein manifold
and g = €*gt be the Fefferman-Graham’s compactification, that is, —Dgrw = 3. Assume
the representative of conformal infinity h = glrax has non-negative scalar curvature. Then the
scalar curvature Rg > 0 is positive in X.

Proof. Let n = 3 be the dimension of the boundary of X. As in [32], for any s € C with
Re(s) > n/2 and s &€ n/2 4+ N/2 and for any given f € C°°(9X), we consider the following
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Poisson equations
—Ngrvs —s(n—s)vs =0 in X

vy = Fyr™ S + Ggr?, Fs,Gs € C®(X)

Fs=f on 0X
where r is some special defining function with respect to h some representative of the confor-
mal boundary. Thus the unique Poisson operators can be defined as P(s)f := v, provided

s(n —s) € opp(—A4+) the essential spectrum of —A 1. P(s) is meromorphic and could extend
holomorphically across s & n/2 + N/2 provided s(n — s) € opp(—A,+). Here we are interested
in f=1on0X. For s =n+ 1, the solution v, satisfies (see [40]):

1) v = 7=t + Rypr/4dn(n — 1) + O(r?) is positive;

2) v2, 1 — |Vy+vns1/? = Ry/n(n — 1) on 9X;

3) =Lyt (vp iy = [Vgrvni]?) = =2[V2 vng1 — vngag > < 0;
where Rj, = R is the scalar curvature of the metric h on the boundary. We call the compactified
metric gy, = v;ingr the Jack Lee’s metric. Moreover, by the observation in [16], we have

the scalar curvature Rgr = n(n + 1)(v; 1 — [Vg+vnt1]?). Assume Rj, > 0 on the boundary,
using the Maximum principle, Jack Lee [40] proved v2 11— Vgt vnt1]? > 0 and the first eigen-
value A\ (—=Agv) > %2, that is, the spectrum of —A + is bounded below by %2. Together with
the observation in [16], we have also RHZH > 0. As a consequence, using the result due to
Graham-Zworski [32], vs is holomorphic in Re(s) > n/2. Moreover, we have vs > 0 provided
s € (n/2,+00). For any s € (n/2,n)U(n,n+1], we consider the compactified metrics g* := y2g™
where y, := (v5)/ (=% For s = n + 1, g* is just Jack Lee’s metric. When s = n = 3, we define

gs = €2 gt where w := —d%vs| s=3. We note v3 = 1 in X. It follows from the Poisson equations
that
—Agrw=3in X
. . . . R«
Thus, g7 is an analytic family of metrics for s € (n/2,+00). Recall Jyx = —= the trace of

Schouten tensor in X and Jj = % the one on the boundary X. Set v = s — n/2. The direct
calculations lead to for any s € (n/2,n) U (n, o)
1—=2v

c= U (IVgzys|* = 1) and J;

2y —1
2(y-1)

Jg

ox = Jn

When s = 3, Jgr = ¢ (1 — |V +w|?) and Jg:|ox = 2J; (we set ys = €*). Moreover, we have
the expansion near the boundary 90X, w = logr + A + Br3 where A = —%JhTQ + O(r*) and
B = By + Bor? + O(r*) are even expansions. Here By is Q3 curvature on the boundary up to a
multiple (see [25]). That is, g3 is just Fefferman-Graham compactification. We set m = 3 — 2.
By the formula (6.6) in [12], we have the following equations for .J, := Jg: for s > n/2 and s # 3

(4.3) ys "div g (s "V Js) = —cl(s)\E@; + ¢o(s5)J2

2s—n—1 4s(n+1—s)

r ooz and a(s) := TrnE—nen-

R
where £ = Ricgx — —{* g3 is traceless Ricci tensor, ¢(s) :=

When s = 3, such equation can be read as

1 3
(4.4) Doz ds = =3Bl +5
Recall Q4(¢%) = 0 when s = 3. By the continuous method, Case-Chang [12] show Js; > 0 in
X provided J, > 0 when s > % For this purpose, we define the set I = {s € (%,4],Jt >
0in X Vt € [s,4]}. Using the Lee’s result ([40], see also Lemma 2.2[33]) Jy4 > 0 in X. Thus

4 € 1. As g} is an analytic family, we claim that I is open. Indeed, assume s € I, there exists

J2

2
g§+
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some € > 0 such that for any ¢ € (s —¢,s), J; > 0 in X. Otherwise, there exists a increasing
sequence {t,} C (5, 4] such that t, 1 s and a sequence of points {z,,} C X such that J;, (z,) < 0.
Since X is compact, up to a subsequence, we have x, — y € X. As g’ is an analytic family,
we have J,(y) < 0. Hence Js(y) =0 and y € X since Jg > 0 in X. Again from analyticity of
gs, we have some uniform Fermi coordinates (z,7) € 0X x [0,¢) for any metric g; around the
boundary 0X, that is dg: ((z,7),0X) = r. Moreover, such geodesic tube 9X x [0,¢) contains
a common neighborhood of X for any g; . Set V' = 0, the unitary vector field in X x [0,¢)
whose restriction on the boundary 0X is just insides normal vector field of the boundary. We
write x,, = (2n,Ty) so that (zy,0) is the orthogonal projection of z;,, on the boundary 0X. By the
relation Jy = %Jh, we have Jj,(y) = 0. Note when n = 3 and s € (2,4], we have ¢;(s) > 0
and ca(s) > 0. Using the equations (4.3) and strong maximum principle, we have VJs(y) > 0.
On the other hand, Jy, (z,) < 0 and J;, (2,,0) > 0 since J, > 0 on the boundary. Thus, there
exists 7, € (0,7,,) such that VJy, (2, tn) < 0. It is clear that (z,,t,) — y. By the analyticity
of Js in s and in space variables, we infer VJs(y) < 0 which contradicts the fact VJs(y) > 0.
Therefore, I is open.

We use the idea in [33] to prove I is also closed. Let s, € I — s € (2,4]. Again from the
fact g% is an analytic family, it follows that Js > 0 in X. Using the equations (4.3) and strong
maximum principle, we have Jg; > 0 in X or Js = 0 in X. The idea due to [33] can rule out
the latter case. More precisely, the latter case implies [Vg:ys| = 1 or equivalently, [V 1+ ys| = ys.

Hence the positive function ¢ := (y)® € L? satisfies
—Ngr¢p=s(n—s)¢p

which contradicts A(—=Ag+) > %2. As a consequence, I = (%,4]. Finally, we prove the desired

result. O
We call some basic facts for the conformal metrics g; = e?¥ g;' =v; Qgi‘" .

Corollary 4.3. We have

(4.5) Ricg;r = Ricg, + 2viv§¢ (Ui_l) + (vAgi (vi_l) - 31)@'2’v9i (vi_l)‘Q)gﬁ

(4.6) —12 = jo = U;Q(Rgi + 6vi Ay, (Ui_l) - 12U2’vgi (”;1)‘2)3

(4.7) Ry, = 6“1‘2(1 - |Vgi(vfl)|2)§

(4.8) Ricy, = —2vinh (v; ).

(4.9) —Ry, = QUiAgi(vi_l)'

Moreover, there holds

(4.10) 19, (o7l < 1.

Proof. The equalities (4.5) and (4.6) come from the conformal change. The equalities (4.7) and
(4.9) are the results of (1.4). In fact, (1.4) is equivalent to

(4.11) vl vt = (Vg ' = =3,
On the other hand, we have

-1 _ 2 -1 3 —112 _ 2 -1 ' 12
Dg;v; —Uz‘Angi +2Uz‘|vgi+vi | —Uz‘Ag;fvi + 2vi|Vgv; |

g
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Thus, we infer
(4.12) v Dt = =3+ 3|Vt
Going back to (4.6), we get (4.7) and (4.9).

From Lemma 4.2, we know Ry, > 0. Hence, by (4.7), we get (4.10) and finish the proof of
Corollary 4.3. O

We now outline the proof of Theorem 4.1. For the sequence of boundary Yamabe metric g;
which is C¥+3 compact, we will first establish the C*~1® compactness of the corresponding FG
metrics g; on the interior X; we will then apply a bootstrapping argument in section 4.4 to
establish the C¥+2% compactness of the metrics g;.

We now notice that by the € regularity result established in Theorem 3.2, to establish the
C*=1 compactness of the metrics g;, it suffices to prove the family is C' bounded. For this
purpose, we see that the uniform boundness of C! norm for the curvature || Rmy,||c1 induces the
uniform boundness of L? norm for the curvature Rmyg, on the ball B(p,r) and also the uniform
boundness of L' norm for the S-tensor S; on the boundary M N B(p,r). On the other hand,
thanks to Bishop-Gromov volume comparison Theorem, we have the estimate vol(B(p,7)) < Cr?
once the curvature is uniformly bounded for the metrics g;. We will now begin to establish this
assertion by a contradiction argument. Assume the family g; is not C! bounded, or equivalently,
the the C! norm of its curvature tends to infinity as i tends to infinity, that is,

|Rmyg,||cr — oo as i — 00

We rescale the metric
g = K2g;
where there exists some point p; € X such that

K} = max{sup [Fmy, |, sup |V Rimg, >/} = |Rmy,|(pi)( or [V Rmg,[*(p;))

We mark the point p; as 0 € X. Thus, we have
|ngi|(0) =1or |VRm£7¢|(O) =1

We denote the corresponding defining function v, L' — Kjei, that is, g; = v, ng.

We observe C! norm for the curvature ||[Rmg,||c1 is uniformly bounded. Applying e-regularity
(Theorems 3.2 and 3.4), we obtain C*~2 norm for the curvature |Rmg,||cx—2 is also uniformly
bounded.

On the other hand, we claim there is no collapse for the family of metrics {g;}. To see this,
we observe first the Sobolev inequality (3.4) implies Bg,(z,r) > cr* for all x € X and r < 1.
As the boundary M is totally geodesic, we can use the doubling argument along the boundary
M to get a compact manifold without boundary Y := X (J,, X1 where X is a copy of X with
opposite orientation. On the closed manifold Y, we have a natural metric (Y, g;) extending g;
on X. (Y, ;) is a C?“ closed Riemannian manifold with any a € (0,1). Thanks to a result of
Cheeger-Gromov-Taylor [19], we have the uniform lower bound for any closed simple geodesic on
(Y, gi), which yields that both the interior injectivity radius and the boundary injectivity radius
on X are uniformly bounded from below; thus we have proved the claim. We now notice by
a version of Cheeger-Gromov-Hausdorff’s compactness theorem for the manifolds with bound-
ary (for the convenience of readers, we will give more details in the Appendix in Lemma A.2),
modulo a subsequence and modulo diffeomorphism group, {g;} converges in pointed Gromov-
Hausdorff’s sense for C*~1% norm to a non-flat limit metric go, with totally geodesic boundary
whose doubling metric is complete.
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We now have two types of blow-up.

Type (I) : Boundary blow-up

If there exists two positive constants C; A > 0 and a sequence of points p; € X such that
dg, (0X,p;) < C and liminf; |Rmg, (pi)| + |VRmg,(pi)| = A > 0. In such case, we translate p; to
0 and do blow up analysis. Modulo a subsequence, we can assume

lim |Rmg, (0)| + [VRmg,(0)| = A < oc.

In section 4.2 below, we will do analysis on this type of blow-up and show that it does not
occur.

Type (II) : Interior blow up

If blow -up of type I does not occur; that is, dg, (90X, p;) tends to infinity as ¢ tends to infinity.
By applying some result in section 4.2 , together with the topological assumptions we have made
in the statements of Theorems 1.1 and 1.7. ; we will show in section 4.3 below this type of blow
up cannot occur either.

Finally in section 4.4, we will combine the results in section 4.2 and 4.3 , together with some
bootstrapping arguments to finish the proof of Theorems 1.1 and 1.7.

We remark the basic facts stated in Corollary 4.3 for the pair (v;, g;) continue to hold for the
pair (¥, ;) w.r.t to the same base metric g;".

4.2. blow-up analysis on the boundary.

Under the assumptions of Theorem 1.1, if we suppose K; — 0o, we have asserted in section 4.1
that (X, g;) converges to (Xoo, goo) in C*~1% norm in Gromov-Hausdorff sense for some k > 2
and for all a € (0, 1), which is a manifold with totally geodesic boundary.

The following Lemma is the main part of this section, actually the key argument in this paper.

Lemma 4.4. Under the assumptions of Theorem 1.1 and assuming that g; has the type I bound-
ary blow up, goo s conformal to hyperbolic space form.

Proof. We divide the proof in several steps.

Step 1. Claim: There exists some C' > 0 such that v; L'> ¢ provided dg,(z,0X) > A and
v;(x)dg, (z,0X) < C provided 0 < dg,(z,0X) < A where dg, is the Riemann distance function
w.r.t. the metric g;. Here A is some uniform constant smaller than the boundary injectivity
radius.

Without loss of generality, we assume A = 1. Let us denote by 7;(x) := dg,(x,0X) the
distance function to the boundary. From the Chapter 3 in [18], we have the elementary properties
|Vg,ril = 1 and |Ag,r;| is bounded in the tube neighborhood of the boundary {z,r;(x) < 1}
since the boundary is totally geodesic and g; has the bounded curvature. We could take a
cut-off function n € CZ(B(z,7;(x))) such that n = 1 in B(x,r;i(z)/2), n = 0 off B(z,3r;(z)/4),
IVn| < i) and [[An| < _20 In fact, we fix a non-negative regular function { such that

ri(x W

) =1ift <1 and £(t) =01ift > 3. Set n(-) = §(dfflgj)) Let z be a maximal point of ;r;7.
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At that point we have Vg,v;r;n(2) = 0 and 0 > Ag, (v;7m)(z). We recall the equation

R;.
—Agi@i + éh v; = —217?

which implies at the point z

_ 3 R V3, (rin)|?v;
0 > Ag(vrin)(z) = (21);3 + éh vi)rim — 2|92(r:777)’1
T
Vi, (rin)|*v;
‘ gz( 177)| 2 +61A§Z(T’LT])
N

Here we use the fact R5, > 0. On the other hand, |Vy,(rin)|(2) < 5 and |Ag,(rin)|(z) < rfz).

+ l_)iAs_h' (7"1'77)

> 2031 — 2

Hence at the point z, we infer

0 >2(vrin)*(2) — (50(viren) (2)(rn)(2) + C(virin) (2)n(2))
> 2(virm)*(2) — (50(virin)(2) + C(virim)(2))

Hence, v;m;1(z) < C and as a consequence v;(x)r;(z) < C.
As a consequence, we claim there exists some C' > 0 such that o; ' > C provided dy, (z,0X) > 1.
Recall —Ry,v; L= 2/, (5, 1) < 0 since Rg, > 0. It follows from the maximal principle that v;” !

atteint son minimum on the boundary in the set {z,7;(x) > 1}. Hence, the desired claim yields.
Step 2. The limit metric g, is conformal to A.H. Einstein manifold.

Assume g; converge to some complete non compact manifold (X, goo) With a boundary in
the pointed Gromov Hausdorff sense (cf. [22] Theorem 6.35). Indeed, by the Sobolev inequality
(the assumption (4) in Theorem 1.1), there exists some constant ¢ > 0 and r¢ > 0 such that for
any point p, vol(B(p,r)) > ert for all r € (0,7¢). By the result due to Cheeger-Gromov-Taylor
[19] (see also [22] Theorem 5.42), we have the lower bound estimate for the injectivity radius.
Thus, the desired convergence follows from Gromov Hausdorff convergence. For this limiting
metric, due to our assumption that §; is a compact family, the boundary is R3 endowed with
Euclidean metric. We denote by z; the geodesic defining function for the limiting AH metric g1,
with respect to the boundary metric R®. Indeed, g3 is complete since (X, goo) is complete and
the defining function f = lim; v; * satisfying |V, f|| < 1 and f(z) > C; min(d(z,0X),1). We
now claim the metric g&, = f~2g. is Einstein with negative scalar curvature. For this purpose,
we take the limit in equations (4.8) and (4.12) and get that

[Bguf = =3+ 3V, f?
Ricy, = —2f‘1V§w(f).
Again from conformal change, it follows

Ricyy = Ricg, +2f 7'V, (f) + (f 7 D (f) = 3V g (f)*) 950
Together with the two previous relations, we infer
Ricgio = —3g%.

Therefore, the desired claim follows.

Moreover, we note that (4.12), (4.11) and (1.4) are equivalent between them. We have seen
(4.12) is true for the limit metric g, by replacing v=! by f. Hence (1.4) is also true for the limit
metric g, that is

—Ag;} log f=3
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Hence, g is Fefferman-Graham’s compactification of gX.. On the other hand, recall the S-tensor
is a pointwise conformal invariant. From our assumption we have

lim sup supf |Si| =0,
r—0 T B(z,r)

we infer for the limiting metric and for any r > 0

§ o isal=0
B(z,r)

As a consequence, S-tensor for the limiting metric Soo = 0 on the boundary. Near the
boundary, the limiting metric g, on X is a locally hyperbolic space. This is a result due to
Biquard [7] and Biquard-Herzlich [8] since the boundary metric is flat and the S-tensor vanishes.

Step 3. gL is a locally hyperbolic space.
To see this, we work for the Einstein metric g1,. By (2.5), the Weyl tensor satisfies

Ag;W =Rmx+«W
since the cotton tensor C' = 0. Therefore,
A, W] < Cl) W]
where C' = C(z) is some regular function. Set
A :={x € Xs| Ir > 0 such that W =0 on B(z,r)}.

It is clear that A is an open set. From the step 1, we know the Weyl tensor W vanishes in
a neighborhood of the boundary so that A is not empty. As C(x) is a regular function, we
can always bound it locally by some positive constant from above. Applying the well known
unique continuation principle for this strong elliptic system (see [41]), A is also closed. As a
consequence, A = X, since X, is connected, that is, W is identically equal to 0. Hence, g%, is
a hyperbolic space form.

Thus, we have finished the proof of Lemma 4.4. O

We will now prove the analogue of Lemma 4.4 under the assumptions of Theorem 1.7 instead of
Theorem 1.1, where the assumptions on S-tensor is replaced by the assumptions of T-curvature.
To do so, we will first explore the relation between the S tensor and the T' curvature.

The non-local terms S-tensor and T-curvature come from different considerations: the former
one from boundary metric of Bach flat equations; the latter one from boundary term of the
Gauss-Bonnet integrand. However, we will show they are linked in the sense that for the limiting
metric goo, Tne = 0 is equivalent to So, = 0. For conformally compact Einstein manifolds, when
the boundary metric is Ricci flat, the fact that T, = 0 implies S, = 0, was proved earlier in
[12, 13]. We will apply the same strategy of proof there, but as our limiting metric go, is now
defined on the non-compact manifold X, we need to do some more careful analysis.

Recall under the assumptions of Theorem 1.7, if we suppose K; — oo, we have asserted in
section 4.1 that (X, g;) converges t0 (Xoo,goo) in C¥~1% norm in Gromov-Hausdorff sense for
some k > 5 and for all a € (0,1), which is a manifold with totally geodesic boundary (we have
convergence in C*+2% norm in Gromov-Hausdorff sense by a bootstrapping argument in section
4.4). We now state our result.

Lemma 4.5. For the limiting metric goo s our setting, Too = 0 iff Soo = 0.
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Proof. We will first show that T, = 0 implies S, = 0.
Recall the blow up boundary metric h = §o, on the boundary is flat. Let r be the special defining
function related to h. Therefore, in a collar neighborhood V' = [0,¢) x B where B C M is some
compact subset of conformal infinity, we have the expansion (see [29]) for g = r=2(dr? + g,)
gr = h+ rr + o(r?)
where g, is a family of metrics on M and k = —%S by Remark 2.2. We also recall trpx = 0. If
there is no confusion, we drop the index r for g,. Moreover, we have (see [30])
0=rg"02gi; — 9 0rgij — 59" 9™ 01 gun: gij
0 =r82g;; — 20,9ij — 79" 0, 9110r Gjm + 59" OrGimOr gij — (9" O gim ) gij — 2r Ric(gr)ij

As shown in [13], by differentiating up to 5 times and evaluating at r = 0 for these relations, we
infer

AN 1 5
_ 3 Lnk 5 1 912246 7
gr = h+ kr 0" +2(k1—|-24\/€| h)r® +O(r")
where k7 is the traceless part of the composition (/QQ)Z']' = /iim/@;”. The direct calculations lead
to
3
\/@ =r~*/det h(1 — ﬁ‘/i|27”6 + o(r%))
(gr)7 = A9 — 1369 4 O(r°)
so that
9
(4.13) A = (r0,)? — 3rd, — 1—67"6\/<a|2?”8r + 2Ny, — 3div (k(Vy-,-) + O(7)

Here O(r") means the bounded operators like 70, or in M with the coefficients in O(r"). Using
the relation (4.8), the set of functions v; Lis compact in CF+2® gpace. Recall the set of metrics
gi is relatively compact in C**%® space. Using the construction in [40], the special defining
functions r; related to gj forment a relatively compact set locally in C*+2%(V) space provided
k > 1. Here ¢ is independent of i. We know (see[25])

v; ' = r;exp(A + Br})
Rg" r2 +O(r}) and B = ¢3T(g;) + Bar? + O(r}) with c3 an universal constant. We
state both @;1 and r; are relatively compact in C*~1(V). By taking the limit as i — oo, we

infer

where A = —

f=r(1+00")
since Ry, — 0 and under our assumption 7'(g;) — Too = 0. Recall f solves (1.4), that is,
(4.14) _Agjo logf =3
We have the following expansion for log f
log f =logr + far* + fsr® + fer® + for’
where f4, f5, fo € C2(M NV) and f; € C?(V). Together with (4.13) and (4.14), we deduce

9
Agilog f==3— 2cr®lsl® + 4 far' + 700 fa +10f57° +18f6r® + O(7) = =3

As a consequence, we get
1

_ L2
35 %l

fa=f5=0,fe
so that

_ 1 25 7
f—r+32|/<c| >+ O0(r")
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Now we can calculate the scalar curvature for the metric go, = f2g%
_ _ _ _ 9
Ry =6(f 2=V fT1P) = 6(f 72 = (r0,f 1) = 12|V fP) = —1\5\27“4 +o(r)

that is, the scalar curvature is negative in some neighborhood of the boundary provided x # 0.
On the other hand

R, =lim Ry, >0

Thus, xk = 0 in V N M. Now arguing as in the proof of the previous lemma, we prove F is
hyperbolic space. As we need to do the expansion of g, up to order 7, g; should be in C7. We
know g; is compact in C’f;gza norm as in section 4.4 below. Hence, we require k 4+ 2 > 7, that
is, k > 5. Thus T, = 0 implies Soc = 0. Conversely, by lemma 4.4, Soo = 0 implies g, is
conformal to hyperbolic space form. Using the proof in Proposition 4.8 below, g~ is flat. Hence
Too = 0. Thus we have finished the proof of Lemma 4.5. U

Lemma 4.6. Under the assumptions of Theorem 1.7 and assuming that g; has the type I bound-
ary blow up, goo s conformal to hyperbolic space form.

Proof. We will show under the assumption on 71" curvature on Theorem 1.7, T, vanishes, hence
by the Lemma 4.5, the Soo-tensor on the boundary also vanishes and thus the same proof as
lemma 4.4 can be applied.

To see T, vanishes, we go through the similar proof as lemma 4.4. Denote 0 the marked
point. Fixing r > 0, we have

$ o r@=¢ T
Bgi(O,r) Bgi(O,Ki r)

By our assumption on 7', we infer

f Ty = lim T(5) > 0
Bgoo (07T) v BZH (0,7“)

since K 14— 0. On the other hand, the scalar curvature for the limiting metric goo is non-
negative and vanishes on the boundary which implies that T-curvature is non-positive, that is,
T = 1—12‘95? < 0. Thus, the integral of Ti-curvature over the geodesic ball B(0,r) vanishes
for any r > 0. As a consequence, the T, on the boundary for the limiting metric g, is equal to

Zero. O

Remark 4.7. As in Theorem 1.1 and Corollaries 1.2-1.4, we have S-tensor S; is uniformly
bounded in L'. Thus, we can normalize in C° norm for the curvature and going through the
blow up analysis. That is, we can assume k > 1 instead of k > 2 to reach the same results
in Theorem 1.1 and Corollaries 1.2-1.4. Also in Theorem 1.7 and Corollaries 1.9-1.11, if we
assume in addition that S-tensor S; is uniformly bounded in L', we can assume k > 4 in the
place of k > 5 to conclude the same results there.

We now conclude this session by showing the boundary blow up can not occur by establishing
a Liouville type theorem that, under the assumptions of theorems 1.1 or 1.7, g is the flat
metric.

Proposition 4.8. Under the same assumptions as in Theorem 1.1 or Theorem 1.7, there is no
blow up on the boundary.
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Proof. From Lemma 4.4, we know the limiting manifold (X, g% ) is locally hyperbolic space.
We now work on the limit metric g.. For simplicity, we will omit the index co. We denote g
standard hyperbolic space with the upper half space model. As g* = ¢+ in a neighborhood of
the boundary {z; = 0}, we can extend this local isometry to a covering map 7 : g+ — g*. We

write
g1 = 21T and go = e?¥2¢g 7"

where g; is the standard euclidean metric and g2 = goo the limit FG metric. With the help of

the covering map 7, we have 7*gy = e*“2¢g where wy = Wy o 7. We have for i = 1,2
—A§+wi =3

and
wy = log x1

Remind x is the geodesic defining function w.r.t. the flat boundary metric. We write n*gs =
62“’2§+ = 62“’2_2“’191 = 62“91 where u = wg — w;. The semi-compactified metric ga (or 7 g2)
has flat Q4 and the boundary metric of g9 is the euclidean 3-space and totally geometric. Thus

u satisfies the following conditions

A?u=0 in R}
(4.15) —Au—|Vu?>0 inRY
u=Vu=~Au=0 onaRi

The first equation comes from the flat ()4 curvature and second one from the non-negative scalar
curvature. As go on the boundary is euclidean, u on the boundary is a constant 0. On the other
hand, we know by properties of g; and g9 that

(4.16) r1Au = 20 u.

since Ag+u = 0, that is, % S 8901'(;1%8%“) = 0. Hence on the boundary, dju = 0 so that
Vu = 0. On the other hand, it follows from Lemma 2.3 the restriction of the scalar curvature
vanishes on the boundary so that —Awu — |[Vu|? = 0. This yields Au = 0 on the boundary. As
—Auw is harmonic and non-negative, it follows from a result due to H.P.Boas and R.P. Boas [9],

—Au = ax

with some a > 0. Hence, by (4.16), d1u = —ax?/2 so that |Vu|? > |01ul* = a®z]/4. Hence
—Au — |Vul* = azy — a®z}/4 > 0 if and only if @ = 0. From (4.15), |[Vu|? < —Au =0, u is a
constant. Together with the boundary condition, v = 0. That is, g is a flat metric. However,
by the blow up arguments, go = g~ is not flat since either its curvature or the derivative of its
curvature has been normalized to be one at a point in X, which yields the desired contradiction.
Thus there is no boundary blow up and we have finished the proof of Proposition 4.8. O

4.3. blow-up analysis in the interior. Now we will do the blow-up analysis in the interior
and want to prevent this to happen with the help of Proposition 4.8.

Recall for the interior blow up, we have
(1) max{|Rmg,|(0),|VRmg|(0)} = 1;
(2) Tim d;(0, 0X) = oo;

We now claim we also have

(3) For any C >0, sup |Rmg(x)|+ |VRmg,(z)| — 0.
di(2,0X)<C
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We now prove the claim by a contradiction argument. Assume otherwise, then for some fixed
C > 0, modulo a subsequence, we have

sup  |Rmg,(x)| + |[VRmg,(z)| = a >0
d;(z,0X)<C

Let p; € {d;(x,0X) < C} such that

|Rmg, (pi)| + [VRmg,(pi)| = sup  |Rmg, ()| + |VRmg, (z)|
di (2,0X)<C
We mark the point p; as the origin. By pointed Hausdorff-Gromov’s convergence, (X, g;, p;)
converges to a non-flat manifold with the totally geodesic boundary whose doubling manifold
is complete. This is a boundary blow up, which contradicts Proposition 4.8. Therefore, the
desired property (3) follows.

Lemma 4.9. Under the assumptions as in either Theorem 1.1 or Theorem 1.7, we assume
K; — oo and g; has the type II interior blow up. Then the limiting metric goo is Ricci free and
non-flat.

Proof. We divide the proof into 3 steps.
Step 1. Let i9(g;) be the boundary injectivity radius. We claim ig(g;) — oo.

We fix a large B > 1 and consider the scaling metric g; = B~2g;. Thus, sup  |Rmg,(z)| —
dg, (2,0X)<1

0. We argue as before: we state the Sobolev inequality (3.4) implies B(x,r) > cr? for all
x € {dg,(z,0X) < 1} and r < 1. As the boundary M is totally geodesic, we can use the doubling
argument along the boundary M to get a compact manifold without boundary Y := X J,, X1
where X is a copy of X with opposite orientation. On the closed manifold Y, thanks to a result
of Cheeger-Gromov-Taylor [19], we have the uniform lower bound for any closed simple geodesic
onY, which yields i5(g;) > o > 0 for some o > 0 independent of i. Hence i5(g;) = Bia(g:) > Ba.
This gives the desired claim.

Step 2. We claim that there exists some positive constant C' > 0 such that for any A > 1
there exists some positive entire number N € N such that for all j > N for all z € X with
ri(x) = dg,(x,0X) < A, we have
o (z) > COri(x)

)

The proof of the claim is as same as that one of the step 1 in Lemma 4.4.
Step 3. The limiting metric g, is of Ricci flat.

To see so, we first claim lim o; 1(0) = co. For this purpose, we note first by equation (4.8),
20, (v ) = —Rg,v; 1 <0, thus by maximal principle, for each fixed A > 1 and for all sufficiently
large j one has 17;1(0) > ming, (z,9x)=A 771-_1 > C'A. Thus, liminfﬁi_l(O) > CA. As A is
arbitrary, we infer lim inf v, 1(()) = oo which yields the desired result. Thus for any compact set
B C X0, 0 ' is uniformly unbounded as ||V, (5; )| < 1. Apply (4.7), we have conclude the
scalar curvature of go, is zero, since go, is also @ flat (2.6), we conculde g is also Ricci flat.
Thus we have established Lemma 4.9.

O
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We also now apply a recent result due to Cheeger-Naber [20], to show the Weyl tensor of the
limiting metric go, also vanishes. First, we recall the result of Cheeger-Naber (Theorem 1.13 in
[20]).

Lemma 4.10. There exists C = C(v) such that if 4-dimensional Riemannian manifolds X*
satisfies |Ricxa| < 3 and Vol(Bi(p)) > v > 0 for some point p € X, then

/ﬁ [Rm|> < C(v)
Bi(p)

As a direct consequence, we have the following result.
Lemma 4.11. Let E be a 4-dimensional complete non-compact Ricci flat manifold. Assume
V(B(o,t)) = Ct*, ¥t >0

for some positive constant C' > 0. Then we have

/ W < o0.
E

Proof. Let g be the metric on E. We consider the scaling metric g; = i~ 2?¢ for all i € N. It

Vol

is clear that g; is still a complete Ricci flat metric and Vol(B;(o)) > C for each g;. Using
Cheeger-Naber’s result, we deduce for the metric g
[owe=[ wgsc
Bi(0) Bi(0)
where C' is a constant independent of i. Letting i — oo, the desired estimate follows. O

We now recall a result due to Shen-Sormani [44].

Lemma 4.12. Let E be a 4-dimensional complete non-compact Ricci flat manifold. Assume E
is not flat and oriented. Then for any abelian group G, Hs(E,G) is trivial. Moreover, for any
abelian group G

Tor(Hy(E,Z),G) = 0.

In particular, Ho(E,7Z) has no elements of finite order.
We will also use the following result on the topology of X.

Lemma 4.13. If we glue X and the unit 4-ball along the boundary S? and denote X :=
X Uss B*. Then X is a homology 4-sphere.

Proof. We note X is a non-compact manifold. By Proposition 3.29 in [35], we infer that
Hy(X,Z) = 0. We use Mayer-Vietoris exact sequences for B* and X

- — Hy(S*,7) — H;(B%,Z) ® Hy(X,Z) — H;(X,Z) —

We know H;(S3,Z) = Ho(S?,Z) = 0,Hy(S?, Z) = H3(S?,Z) = Z and H;(B*, Z)=0for1<i<4
and H;(X,Z) = 0 for i = 1,2,4 so that H;(X, Z) =0 fori =1, 2 and Hy(X, Z) = Z. On the
other hand, X is a connected 4-manifold. Thus Hy(X,Z) = Z. As X is oriented, X is closed
and orlented. Using the universal coefficient theorem for cohomology (Theorem 3.2 in [35]) , we
infer N

HY(X,7Z) =0.
Applying the Poincaré duality theorem (Theorem 3.30 in [35]), we get

Hs(X,Z) = 0.
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Hence, it follows from Theorem 3.26 in [35] that Ho(X,Z) = Hy(X,Z) = Z and Hy(X,Z) =0
for ¢ # 0,4, that is, X ia a homology 4-sphere. Thus we have finished the proof of Lemma
4.13. O

We recall a result due to Crisp-Hillman ([23] Theorem 2.2).

Lemma 4.14. Let X be a closed oriented homology 4-sphere and S® /T be a spherical 3-manifold
with T' some finite group of SO(4). Assume S3/T is embedded in X. Then T = {1} or I =
Qs (quaternion group) or T the perfect group (that is, S* /T is a homology 3-sphere).

Now we will rule out the interior blow-up.

Proposition 4.15. Under the same assumptions as in Theorem 1.1, there is no blow up in the
mnterior.

Proof. We argue by contradiction. We assume there is blow up in the interior. Let g; be
renormalized metrics as before and we denote X; = (X, g;) for simplicity. We now choose
E = X the blow up metric in the interior. Hence, it is Ricci flat. Moreover,

on each X;, and for any Lipschitz function with compact support f

1

113 < VIR + 5 [ R

As C' is uniformly bounded from below, we can pass in the limit, that is,

1£174(x) < CXo) IV FllT2x0)

since the limiting metric is Ricci flat. This means there is no collapse on E.
We divide the proof in two cases.

Case 1: Hy(E,R) #0.
We use mayer-Vietoris exact sequences for F and X \ E

o= Hy(S?/T,R) — Hy(E,R) ® Hy(X \ E,R) — Hy(X,R) — - --

We know Ha(S?/T,R) = 0 = Hy(X,R). This contradicts the fact that the above sequence is
exact.

Case 2: Hy(E,R) =0.
From the result in [6], E is then ALE of order 3, that is, at the infinity, 05, E = S?/T" is spherical
3-manifold where T" is some finite group of SO(4). By Lemma 4.12, the third betti number
bs = 0. Let E be the universal cover of E. Thus E is also Ricci flat. By Bishop-Gromov volume
comparison theorem, V(B(o,7)) < Cir*. As a consequence, the fundamental group of E is
finite. Since H;(FE,Z) is the abelization of the fundamental group, H;(E,Z) is finite and the

first betti number b; = 0.

We note Ha(E,R) = 0. From Lemma 4.12, H3(FE,Z) = 0. On the other hand, it is clear
H,(E,Z) = 0 since FE is an open manifold (see [35] Proposition 3.29). Thus, the second, third
and forth betti numbers vanish by = b3 = by = 0, and the Euler characteristic number x(E) = 1.

We know a spherical 3-manifold is Seifert fibred 3-manifold and X is a homology 4-sphere.

By the result due to Crisp-Hillman Lemma 4.14, we know the boundary of E at the infinity is
83 /T with T' = {1} or T' = Qg or I the perfect group.
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From Gauss-Bonnet formula, we have

1 2 2y _ 1t 1
oz L (Wel W) = () = = 1- 5

On the other hand, we have the signature of E is trivial since Ho(E,R) = 0. Using the signature
formula

1

1272

where 7(S?/T) is the eta invariant.

When I" = {1}, it follows from the Gauss-Bonnet formula that
W=0

Hence F is flat since E is Ricci flat. This contradicts the non-flatness of E. Or alternatively,
Bishop-Gromov comparison theorem yields that a ALE Ricci flat manifold asymptotic to R?* is
flat, which yields the desired result.

When I' = Qg, we know 7(S?/T') = 3. Hence, we have

0=—7(F)

/E (W2 — [W_ ) —n(s*/T)

oz WP+ W) = ¢
and ) 9
i 2 2y _ ¢
oz (WP =) = 5

The above two equalities leads to a contradiction.
When T is the perfect group, that is, the binary icosohedral group of order 120, then 7(S3/T") =

14+ ﬁ + % ([27]). Similarly, from the above two formulas, we get
1 119
L W2+ W_I2) = =~

and
1 361

— W.l2 = [W_|?) = ==
This is a contradiction.

Thus all cases can not happen, thus there is no interior blow up and we have finished the proof
of Proposition 4.15. g

Remark 4.16. The same method permits us to do blow up analysis on 4-dimensional homolog-
ical sphere manifolds without boundary. In particular, one could get the compactness result of
FEinstein metrics (or the other canonical metrics) on such manifolds under suitable assumptions.

4.4. Proof of Theorem 4.1.

Proof of Theorem 4.1. Propositions 4.8 and 4.15 yields the boundness of ||Rmg,||c1. Together
with Theorem 3.2, we prove the C¥~2 norm for the curvature is uniformly bounded. To handle
the C**! norm of the curvature, we recall first the curvature tensor satisfies some elliptic PDE
with the Dirichlet boundary conditions

(AR = R? — 3|Ric|? in X

R=3R on M

(4.17) AA — %AV2R =Rmx A A in X
Aaﬁ = AaﬁaAom =0,4p0 =0,An, = 7 on M

AW =Rm+«W 4+gxW x A in X

\ W =0 on M
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The desired result follows from the classical elliptic regularity theory and Cheeger-Gromov-
Hausdorff convergence theory (Lemma A.2 in the Appendix). This concludes the proof of
Theorem 4.1. 0

5. PROOF OF THE RESULTS IN SECTION 1

Proof of Theorem 1.1. We have already proved the family of metrics g; has the bounded cur-
vature in C**1 norm in Section 4. The uniform Sobolev inequality holds for the family metric
g; by the assumptions in Theorem 1.1, which implies, as in Section 4, for all i, for all z € X,
we have vol(By,(z,1)) > C > 0 for some constant C' > 0 independent of i, z, that is, there
is non-collapse for the volume. Working on the doubling manifold, it follows from a result of
Cheeger-Gromov-Taylor [19], we have the uniform lower bound for any closed simple geodesic on
the doubling manifolds, which yields that both the interior injectivity radius and the boundary
injectivity radius uniformly lower bound on X. By Cheeger-Gromov-Hausdorff compactness
theory, to prove the compactness of metrics g;, it suffices to prove their diameters are uniformly
bounded from above. We will prove this fact by contradiction. We divide the proof in 4 steps.

Step 1. Without loss of generality, we suppose the boundary injectivity radius is bigger than
1. There exists some C' > 0 such that v; ' > C provided dy, (z,0X) > 1 and v;(z)dy, (z,0X) < C
provided 0 < dg,(z,0X) < 1.Thus the limit metric is conformal to an asymptotic hyperbolic
Einstein manifold. The claim can be proved in the same way as in the proof of Lemma 4.4.

Assume the diameter of g; is unbounded, then g; converges to some non-compact metric goo
on manifold X, with totally geodesic boundary in the Cheeger-Gromov-Hausdorff sense, whose
doubling is complete. Note that by our assumption of Theorem 1.1 that the boundary metric
{gi} of this family {g;} is a compact family.

Step 2. There exists some constant C' > 0 independent of i such that / |Rmy,|*> < C.

From the relation (4.9), we infer

ov; !
/ v; 'Ry, = _2/ Dg(0;h) = _2j{ S = 200l(0X, 1)
X X ox On
-1
since a’gg = —1 on the boundary. Thus, with the help of step 1, we get for some given constant
C>0
(5.1) / R, <C
dg, (2,0X)>1

On the other hand, the boundary metric (90X, h;) is a compact family and also g; has uniform
bound for the curvature tensor. Hence

(5.2) / R, <C
dg, (2,0X)<1

Combining (5.1) and (5.2), we obtain
| Rz
X
which implies

(5.3) / R2 <C
X
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since the scalar curvature R, is uniformly nounded. Using the free Q-curvature condition (2.6),

we deduce ) . OR
/]@F:t/RZ— 9%
X ¢ 12 X i 3 X 871

As we have the compactness of boundary metric and the curvature tensor is bounded in C*
norm, we get the uniform bound for L? norm with the Ricci tensor. Now, thanks of the Gauss-
Bonnet-Chern formula, we have

1 1
X) = W > + —R2 —2|Ey,|?
X0 = oy [ (WP + 2 218,

since the boundary is totally geodesic. This yields the L? bound for the Weyl tensor. Therefore,
the desired result yields.

Step 3. We denote f = limwv,” 1 assuming X is non-compact, we claim

: flx)
(5.4) mlg{)lo m =1

To prove the claim, we fix a point 0 € X, and use the distance function r = dg__(z,0). Note
: : r(z)

0X is a compact set so that lim ——————

o B EOHP 2250 g (2, 0X o)

has always the Sobolev inequality, that is, for any compactly supported Lipschitz function U

1
([ vy <e | (9P gRat?)
oo XOO

= 1. We remark on the limiting metric one

From step 1, / Rgo < 00. Thus, we can find rg such that

/ RZ, <,
{z,r(x)=r0}

where ¢ is a small constant appeared in Theorem 3.4. Recall from Theorem 3.4 and from the
non-negative scalar curvature and also the relations (A.1) and (4.7)

(5:5) Voo [l <1

(5.6) Voo ()P =1 0(1)

(5.7) (Vau (F)i" = o(r™)

In fact, we have from (5.5) that f(z) < r(z). On the other hand, it follows from Theorem 3.4
Rm = o(r™?)

Together with the relations (4.7) and (4.8), we obtain (5.6) and (5.7).

Now we consider vector field =V, f(z). For any € > 0, there exists some A > 0 such that

for all r(z) > A
1—e<|Ve () <1
Set S; := {z;r(z) = t}. Define m(t) := infg, f. We remark m(t) > 0 since f > 0. We consider
along the flow Fy of =V, f(x). We have F,.(S,44) C B(0,2r+ A)\ B(0, A) since |V, (f)| < 1.
On the other hand
m(2r + A) < inf f(FT(ST+A)) < Slnf f(ST-‘rA) - T(l - 5)7
r+A

Sr+A



CONFORMALLY COMPACT EINSTEIN MANIFOLDS 43
which implies
m(r+A)—r(l—¢) >m@2r+A) >0

However, f(x) < r for all x € S, since |Vg_(f)] < 1. Gathering the above facts, we get the
desired claim.

Step 4. A contradiction.

We know the Sobolev inequality is still true for the limiting metric, that is, for any Lipschitz
function U compactly supported in {x,r(x) > ro}, we have

([ vhrzc | w0

For large s, we fix a point z with r(z) = ro + s and consider the function U(y) = s — d(y, x) if
d(y,z) < s, otherwise U(y) = 0. From the above inequality, we get

N

51)01(3(56, 5))Z < wol(B(zx, s))

so that
vol(B(0,2(rp + s))) > vol(B(z, g)) > C(2(ro + )))*

We denote s; = 2(rg + s). By Proposition 3.4 in [18], Proposition 4.5 in [47] and the Courant-
Lebesgue Lemma, there exists some so € (s1/2,s1) such that

vol(B(0, s2)) > csb

and
vol(0B(0, s2)) = vol(0B(0, s2) \ N),
where N is the set of cut-locus w.r.t. 0. Set w = sg. Integrating on B(0,w), we get
02 [ ByD=§ (Tl Vaur) = (Vo (£, Vi)  v0l(0Xcr)
B(0,w) OB(0,w) Sw
Hence we could find a regular point x on the sphere 05(0,w) such that
<vgoof7 vgoor> S €

for some small ¢ since vol(OB(0,w)) > cw?®. Taking normalized radial geodesic connecting this
point (t) to the boundary 90X , we set [(t) = f(v(¢)). Then

U'(s) = (Vg [, Vg.r), and, I"(s) = vgmf(vgwr, Vgor) = o(t_l)
provided s € [t/2,t] with the large ¢. Thus, for any small ¢ > 0 and for all s € [t/2,¢] (¢
depending on ¢) one has
I'(s) < 2e
limit so that
I(t) —1(t/2) < te

This contradicts of the claim (5.4) of the step 3 for the large ¢. Hence, we have finished the
proof of Theorem 1.1. O

Remark 5.1. We can get more informations at the infinity by the strategy as in [47].
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Proof of Corollary 1.2 . By the assumption (4), g; is a compact family so that
lim sup sup Vol(B(z,r)) =0
r—0 T

Now the desired result follows from Theorem 1.1 and the Dunford-Pettis’ Theorem on the weak
compactness in L!. In fact, by Dunford-Pettis’ Theorem, a subset in L' is relatively weakly
compact if and only if it is uniformly integrable. Hence, relatively weak compactness of the
family {S;} implies the condition (2) in Theorem 1.1. O

Proof of Corollary 1.3 . For 1 < ¢ < oo, we know the bounded set in L? is weakly compact in
L4 since L1 is reflexive. Thus such set is also weakly compact in L' and the desired result follows
from Corollary 1.2. When ¢ = oo, a bounded set in L7 is also bounded in L? since {(M, g;)} is
compact. Therefore, we prove the result. O

Proof of Corollary 1.4 . We argue by contradiction. Otherwise, we could find a sequence of
conformally compact oriented Einstein metrics (X, g;") which satisfies the assumptions (1) and
(3-5) as in Theorem 1.1, §, [S;| — 0 and whose compacitified metrics (X, g;) would blow up.
Now S-tensor converge in L' and thus it is strongly compact in L'. Therefore, it is weakly
compact in L'. It follows from Corollary 1.2 that it is a compact family of the compacitified
metrics (X, g;). This contradiction gives the desired result. U

Proof of Theorem 1.7. The proof is almost same as the one of Theorem 1.1. The only difference
is to replace Lemma 4.4 by Lemma 4.6 for the boundary blow-up setting. g

Proof of Corollary 1.9 . By the assumption (4), g; is a compact family so that
lim sup sup Vol(B(z,r)) =0
r—0 T

Now the desired result follows from Theorem 1.7 and the Dunford-Pettis’ Theorem on the weak
compactness in L. O

Proof of Corollary 1.10 . By the assumption 7T; is uniformly bounded from below, By the Holder’s
inequality, we infer for any z € M, r > 0 and ¢

74 <Ti>_stz<B<x,r>>qql<;§ (T )1 < CY UV ol(B(z, )7
B(z,r) B(z,r)

Here (T;)— is the negative part of the @3 curvature. From the compactness of ¢;, we deduce
that

liminfinf inf T, > 0.
r—0 i xeEM B(z,r)

Finally, the desired result follows from Theorem 1.7. Therefore, we prove the result. O

Proof of Corollary 1.11 . This is a direct result of Theorem 1.7. The proof is similar to the one
of Corollary 1.4. O

APPENDIX A. CHEEGER-GROMOV-HAUSDORFF THEORY FOR MANIFOLDS WITH BOUNDARY

There is Cheeger-Gromov-Hausdorff theory for manifolds with boundary in the literature
cf[5, 36, 37] etc. For the convenience of readers, we give a description.
Let (X, g) be a Riemannian manifold with boundary, for p € X\ 90X define the interior injectivity
radius of p, i;n¢(p), to be the supremum over all » > 0 such that all unitary geodesics v : [0,t] —
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X that start at v(0) = p are minimizing from 0 to min{t¢,,r}, where ¢, is the first time the
geodesic «y intersects 0X. The interior injectivity radius of M is defined as

tint(9) = inf{iin: (p)|p € X \ 0X}.
The boundary injectivity radius of p € 0.X is defined by
ig(p) = inf{t|v, stops minimizing at ¢},

where 7, is the geodesic in M such that 7;)(0) is the inward unitary normal tangent vector at p.
The boundary injectivity radius of X is defined by

io(g) = inf{ig(p)|p € 0X}.

Let us recall some definition about the harmonic radius for the manifolds with the boundary.
Assume X is a complete 4-dimensional manifold with the boundary dX. The local coordinates
(xg, 21, 22,73) in D around some interior point p € X \ dX is called harmonic if Az’ = 0 for
all 0 < i < 3. When p € 90X, we need the coordinates x; harmonic and also z¢|pngx = 0
and (z1,x2,73)|pnox are also harmonic coordinates on the boundary. Given « € (0,1) and
Q € (1,2), we define the harmonic radius 71*(Q) to be the biggest number r satisfying the
following properties:
1)if dist(p,0X) > r, there is a neighborhood D of p in X \ dX and a coordinate chart ¢ :
B,./2(0) — D such that, in these coordinates for any tangent vector n € T, X

(A1) Q%n* < gjn(x)’'n* < Q*nf?
and
(A.2) r' @ sup |z — y|~*0gjk(z) — gn(y)| < Q — 1

2)if dist(p, 0X) < r, there is a neighborhood D of p in X and a coordinate chart ¢ : B} (0) — D
such that {20 = 0} maps to X and relations (A.1) and (A.2) hold in these coordinates.

We recall a compactness result due to Anderson-Katsuda-Kurylev-Lassas-Taylor. Given
Ry, i9,S0,do € (0,00), let us denote M(Ry,1ig,So,dp) the class of compact, connected, 4-
dimensional Riemannian manifolds with the boundary (X, g), with smooth metric tensor satis-
fying the following conditions:

(A3) [Ricx || Lo (x) | < Ro, | Ricox || =(ax) < Ro

where Ric is the Ricci tensor;

(A4) Gint(X) = i0,9(0X) > g, 19(X) > 2io

where i(0X) is the injectivity radius of the boundary manifolds X with the induced metric;
(A.5) 1H || Lipax) < So

where H is the mean curvature on the boundary;

(A.6) diam(X) < dy

Let us denote N, (a, p, Q) the class of pointed manifolds (X, g,p) with p € X such that the
harmonic radius r»*(Q) > p.

Lemma A.1. (Anderson-Katsuda-Kurylev-Lassas-Taylor)
M(Ry, ig, So,do) is precompact in the C* topology for any a € (0,1). Moreover, there exists
p > 0 depending on o such that

M(RO)i07 Sﬂv dO) C N*(avp) Q)
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The second assertion in above Lemma still holds without the diameter assumption if we work
with the pointed complete connected manifolds.

We now give the high order regularity of metric tensors for the manifold with the boundary,
provided the boundary metric and curvature tensor are regular, that is,

Lemma A.2. Given « € (0,1), let (X,g) be a complete reqular n-dimensional Riemmannian
metric with C*T22 totally geodesic boundary X for some k > 1. Assume (A.4) holds and there
exists some positive constant Ry such that

(A7) | Ricllcra(xy < B, 19lloriea@x) < a
Then there exists some positive constant C = C(ig, R1,n) such that
lgllertzaxy < C

For simplycity, we just prove the result for 4-dimensional case. This part is some adaption of
the result in [5]. For the convenience of readers, we give the proof in details.

Proof. Let (xg, 1,2, 23) be some harmonic coordinates on a neighborhood D of some point
p € X. From Lemma A.l, we know the harmonic radius is bounded from below since we
have lower bound for the injectivity radius and boundness of Ricci curvature. We work in
such coordinates. Let (gi;j)o<i,j<3 be metric matrix and its inverse matrix (gij)ogi,jgy,. Denote
g = det g;; and A;; the determinant of 3 X 3 matrix formed by omitting column 7 and row j
from the matrix (g;;). We have some elliptic PDE for metric tensor

Agij = —2Ric;; + Pjj (97 89)

where P(g,0g) is a quadratic form in dg with coefficients that are rational functions of g;;.
Recall in harmonic coordinates, we could write Laplace-Betrami operator as follows

Au = gij 8z~8ju
Again by Lemma A.1, metric matrix (g;;) and its invers (¢”/) are bounded in the Holder space
C1® 5o that the terms on the right hand side are bounded in the Hélder space C%“. Let p be some
interior point on X. By the classical interior estimates a priori (see [28] Theorem 6.2), we get the
boundness of the metric matrix (g;;) in the Holder space C?2. Iterating the above procedure,
we get the interior C*+2% estimates & priori. Now we treat the boundary case. Assume p € 0X.
We use the above elliptic equations for the indexes 1 < i =+,j = 8 < 3. We note the boundary

is totally geodesic so that g,g = g,3 on D N 0X. Moreover, g, € C*+22(D N §X). Thus, we
get the elliptic system with Dirichlet boundary conditions

Ngyg = —2Ricyg+ Pyg(g,0g9) in D
98 = G48 on DNoX

By Theorem 6.6 [28] , we infer the boundness of (g,5) in the Hoélder space C*®. Now we write

elliptic PDE for ¢ with Neumann boundary conditions. Let us denote N = ‘gim the unit

normal vector on the boundary 0X. In local coordinates, we can write on the boundary 0.X
N(u) = (¢")"2¢" 9ju

Note the boundary 90X is totally geodesic so that on the boundary D N oX
N(g™) = —2Hg" =0

and

1. oon_1/a i 1o
N(g™) = —Hg" + 5(g™) 2977 0;9% = (™) /g7 039"
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We can write Ricci equation for the components ¢° with Neumann boundary conditions

Ag” = —2Ric” +P%(g,d9) in D
N(g®) = 0 on DNoX
N(g") = 3(¢°)?¢79;9"  on DNOX

Using Theorem 6.30 [28], we deduce the boundness of (ggo) in the Hélder space C%¢. Going
back the equation, we have N(g°7) € C1*(D N dX). Again from Theorem 6.30 [28], we deduce
the boundness of (¢°7) in the Holder space C%“. To see this, recall in harmonic coordinates, we
have ] 1
500i5) = (9i5) = 2(035), 5(0i5) = (9%) = 2(9y5)
Thus for any ¢,j € {0,1,2,3}, we have % < gii, 9" < 2 and lgij] < 2. Hence the coefficients in
the boundary derivative N are all in C»*(D N dX) and (¢°)~%/2¢% > /1/2. On the other
hand, the coefficients g%/ in the Laplace-Betrami operator A = ¢%9;0; are in C%*(D). Thus
the desired uniform estimates follows. From the fact g = det(g,3)/¢9"°, we obtain g € C**(D).
Therefore '
Ay = 9901 < CQ’Q(D)

Now we denote (h,g) = (g5) the 3 x 3 matrix and (h??) the inverse matrix of (h,g), and
h = det(hg). We remark for any 1 <~ <3

A (0%
gy = (~1)PH 8 € CP(D)

Finally, we have

1 — gy09"
goo = 4‘4};%;447 e C**(D)

Now, iterating the above procedure, we prove the desired result g € Ck+2’°‘(D) since the coef-
ficients in the boundary derivative N are all in C*+1%(D N dX) and the coefficients ¢* in the
Laplace-Betrami operator A = g% 0;0; and the terms on the right hand side in Ricci equations
are in C*®(D). Thus, we finish the proof. O
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