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Abstract. We present criteria for the coulombian interaction energy of infinitely many
points in Rd, d ≥ 1, with a uniformly charged background introduced in [26, 24] to be
finite, as well as examples. We also show that in this unbounded setting, it is not always
possible to project an L2

loc vector field onto the set of gradients in a way that reduces its
average L2 norm on large balls.

1. Introduction

In [26], S.Serfaty and the second author introduced an energy describing the coulombian
interaction energy of infinitely many unit positive charges in the plane with a uniformly
negatively charged background. This energy was dubbed W after a similar energy which
arose in [2] as a sharp (codimension 2) interface limit of a vector Modica-Mortola type
functional, in a bounded domain. The definition in [26] was later modified and generalized
in [24] to coulombian interaction energies in any dimensions, and in [25] for Riesz potential
interactions.

It turns out that W , appears naturally in several variational settings. This is the case of
the Ginzburg-Landau model of superconductivity ([26]) or the Ohta-Kawasaki model for
diblock co-polymers ([10]), other natural candidates would be superfluids modeled by the
Gross-Pitaevski functional or certain models for dislocations where the analysis of vortices
is already well advanced ([14, 15, 8] for example, the literature on these subjects is already
quite large). In all these contexts there exist limits when the characteristic size of a vortex
goes to zero and the number of vortices tends to +∞, simultaneously. Then the vortices
of minimizers will be described at the macro-scale by a certain optimal density and at the
micro-scale by discrete subsets of R2 which minimize W , this energy accounting for the
interaction of individual vortices with the field generated by the density, the latter being
constant at the microscale if the optimal density is well-behaved.

Another context in which W appears is the case of weighted Fekete N -sets. The Fekete
N -sets are N -tuples of points in the plane which minimize

wN (x1, . . . , xN ) = −
∑
i̸=j

log |xi − xj |+N
∑
i

V (xi),

where V is a confining potential. In the aforementionned models, the Fekete N sets would
arise when the sharp interface limit is taken but the number of vortices remains equal
to N . When N tends to +∞, again W governs the arrangement of the points at the
microscale ([27], [28]). Note that this arrangement has been studied by other methods as
well (see [1] and the references therein).
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Also, the energy W plays a role in the Coulomb gas model in statistical mechanics,
for which the probability law density of N particles is PN = 1

Zn,β
e−βwn , where β is the

inverse of temperature and Zn,β is the partition function. There ([27], [28]) the minimum
of W appears in the asymptotic expansion of logZN,β as N → +∞ for large β, i.e. small
temperature, and more recently in the large deviation analysis at finite temperature of
[20]. In the context of point processes, it is possible to define the energy of a point process
P as the expectation of W under P , but alternative definitions are given in [6, 18].

Finally W coincides with the jellium energy, at least in some situations. In physics,
jellium, also known as the uniform electron gas or homogeneous electron gas, is a quan-
tum mechanical model of interacting electrons in a solid where the positive charges are
assumed to be uniformly distributed in space whence the electron density is a uniform
quantity as well in space. The jellium Hamiltonian consists of three parts: electronic
Hamiltonian consisting of the kinetic and electron-electron repulsion terms, the Hamil-
tonian of the positive background charge interacting electrostatically with itself, and the
electron-background interaction Hamiltonian. In particular, in jellium model, a Wigner
crystal is the solid (crystalline) phase of electrons first predicted by Eugene Wigner in
1934 in [33]. A gas of electrons moving in 2 dimension or 3 dimension in a uniform, inert,
neutralizing background will crystallize and form a lattice if the electron density is less
than a critical value. At temperature T = 0, when the kinetic energy is equal to zero,
the renormalized energy W is exactly the jellium Hamiltonian for the Bravais lattices.
Identifying W to the jellium energy in general is a more delicate matter that we do not
pursue, see [21] for a precise definition of the jellium energy and some issues related to it.

Until now, some basic but useful facts are known about W (see [26]): It is bounded
below, admits minimizers, and minimizers may be approximated by doubly periodic con-
figurations of points. It is also known that among perfect (Bravais) lattices, the triangular
lattice is the unique minimizer of W ([26]). The minimal value of W is not known, even
though it can be used to express other quantities as in the aforementionned expansion of
logZN,β , but also the energy of weighted Fekete N -sets (see [23], or [3] in the case of the
sphere). Finding the minimum of W seems to be a challenging problem, even though such
results exist for energies that similarly measure the distance of a discrete subset of R2 to
the uniform measure ([7]). In the context of point processes, the value of W for some
classical processes has been computed in [6], and the minimum of W of one-dimensional
stationary point processes has been determined in [19] to be uniquely achieved for the
uniform probability on translates of Z.

In this paper we focus on the natural question of which discrete subsets Λ ⊂ Rd are such
that W (Λ) < +∞. We find sufficient conditions for this to hold, in terms of discrepancy
estimates. Note that necessary conditions can be found in [20], in terms of discrepancies
as well, either for point configurations or processes. It turns out also that this connects to
problems of independent interest and which to our knowledge have not been addressed in
the literature. The first one is that of a Hodge decomposition for L2

loc instead of L2 vector
fields. More precisely is it possible to project an L2

loc vector field on the set of gradients
in a way that reduces its average L2 norm on large balls ? We provide a counter-example
in Remark 4.
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2. Main results

Let us now define W , following [25] (see also [24]). It is shown in [24] that this definition
agrees with the earlier one given in [26] for the case of 2 dimensions, for lattices Λ for which
the distance between two distinct points is bounded below by a positive number, what we
denote below uniformly separated lattices.

Following [25], for any integer d ≥ 2 we let gd : Rd → R be defined by

(1) gd(x) =


1

|x|d−2
if d > 2

− log |x| if d = 2.

Then we have

(2) −∆gd(x) = cdδ,

where δ denotes the Dirac mass and

(3) cd = d(d− 2)|Bd| if d ̸= 2 and c2 = 2π.

Given η > 0 we let g
(η)
d (x) = min(gd(x), gd(η)) and define δ(η) by the following equality

(4) −∆g
(η)
d (x) = cdδ

(η).

We also let δ
(η)
p (·) = δ(η)(· − p). It holds (see [25]) that δ(η) is a positive measure of total

mass 1 supported on ∂Bd(0, η).
We give the following definitions.

Definition 1. Let Λ be a discrete subset of Rd and m be a nonnegative number. Assume
E : Rd → Rd satisfies

(5) −divE = cd (ν −m) , where ν =
∑
p∈Λ

δp.

The mollified vector-field Eη is defined for any η > 0 by

(6) Eη(x) = E(x) +
∑
p∈Λ

∇
(
g
(η)
d − gd

)
(x− p).

Let KR denote the square (−R/2, R/2)d. The renormalized energy of E is defined as

(7) W(E) = lim inf
η→0

Wη(E), where Wη(E) = lim sup
R→+∞

−
∫
KR

|Eη|2 −mcdgd(η).

Note that in the above definition, the number m used to defined W(E) is the same as
the one in (5), hence depends on E.

Now, we consider the set FΛ,m of vector fields in L2
loc(Rd \ Λ,Rd) satisfying (5) for a

given Λ and m, and the subset PΛ,m of curl-free vector fields in FΛ,m, or equivalently the
set of those elements in FΛ,m which are gradients. We may now define

(8) Wm(Λ) := inf
∇U∈PΛ,m

W(∇U), W̃m(Λ) := inf
E∈FΛ,m

W(E).

We wil see that Wm(Λ) and W̃m(Λ) can be finite for at most one value of m, which is
the asymptotic density of Λ if it exists.
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Remark 1. It is clear that W̃m ≤ Wm, since PΛ,m ⊂ FΛ,m.

Remark 2. From a physical point of view, it is natural to consider all curl-free electric
vector fields. However, from a mathematical point of view, relaxing the condition to be
a gradient leads to nicer properties, as in [31] for the calculation of the transportation
distance of measures. We can expect in some cases the two definitions to coincide, but it
is not clear wether this is the case whenever Wm is finite.

In [26, 24, 25], only Wm is considered. One could think at first that Wm and W̃m are
equal, the argument being the following: Since W(E) may be seen as the average of |E|2
over R2 (with the infinite part due to the Dirac masses in (5) removed), then projecting
onto the set of curl-free fields would reduce this quantity, so that the infimum of W(E)

over FΛ,m would in fact be achieved by some E ∈ PΛ,m, proving that Wm(Λ) = W̃m(Λ).
It turns out however that this is not the case and in fact we prove (see Theorem 1 below)
that,

Theorem A. In the case d = 2, we have, form = 0, Wm(N) = +∞ and W̃m(N) < +∞.
Note that the asymptotic density of N in R2 is zero, which is why we take m = 0 here.

Remark 3. In [5], Blanc, Le Bris and Lions have studied infinite sets of points charges
in Rd and defined similar energies even in nonlinear models where the background is opti-
mized rather than fixed, with an additional penalizing term. They gave a list of sufficient
conditions on the lattices L that yields a finite energy. See [4], [5].

The rest of the paper is devoted to giving sufficient conditions on Λ for W̃m and/or Wm

to be finite. There are roughly two factors which can make Wm or W̃m infinite. First,
there is the coulombic interaction between pairs of points, which can be made infinite by
bringing points very close to each other: we will not consider this factor here and to rule
it out we restrict ourselves to uniformly separated Λ’s in the following sense.

Definition 2. Given a discrete set Λ ⊂ Rd, we say that it uniformly separated if

inf
p̸=q∈Λ

|p− q| > 0.

The second factor which can make Wm or W̃m infinite is the interaction with the
background. If we restrict ourselves to uniformly separated Λ’s, then for a given m the

quantities Wm(Λ) or W̃m(Λ) measure how close cd
∑

p∈Λ δp is to a uniform density m.
Our second main result shows that this can be measured by simply counting the number
of points of Λ in any given ball (see Theorems 2 and 5). In particular we have

Theorem B. Assume that Λ is uniformly separated and that there exists m,C ≥ 0
and ε ∈ (0, 1) such that for any x ∈ Rd and R > 1 we have, denoting ♯A the number of
elements in A,

(9)
∣∣∣♯(Bd(x,R) ∩ Λ

)
−m|Bd|Rd

∣∣∣ ≤ CRd−1−ε

Then Wm(Λ) < +∞.

This criterion for finiteness is optimal in the sense that if we replace the right-hand
side in (9) by CRd−1+ε, then it is not difficult to construct Λ’s satisfying (9) and having
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infinite renormalized energies (see Proposition 5). This criterion can be relaxed a bit in

the case of W̃m (see Theorem 5).
This leaves open the case ε = 0 (in which case N and Z satisfy (9) with m = 0). In this

case we have
Theorem C. Assume d = 2. Let V ⊂ Z2 and Λ := Z2 \ V . Assume there exists some

constant C > 0 such that for all x ∈ R2 and R > 1 we have

♯ (V ∩B(x,R)) ≤ CR.

Then W̃1(Λ) < +∞.

The proof of this theorem is based on the fact that under the above hypothesis there
exists a bijection between Z2 \ A and Z2 under which points are moved at uniformly
bounded distances. This follows from a result of M.Laczkovich, [17]. Its conclusion cannot
be improved to W1(Λ) < +∞, see Proposition 4.

The criterion
∣∣♯ (Bd(x,R) ∩ Λ

)
−m|Bd|Rd

∣∣ ≤ CRd−1−ε is satisfied by perfect (or Bra-
vais) lattices, or more generally by periodic lattices (see [12]) — even though in this case
(see below) the conclusion of Theorem B is almost trivial. However we are not aware that
this is known for quasi-cristalline lattices, and thus we give a construction similar to that
of Theorem B which allows us to conclude for an example of Penrose-type lattice Λ that

W̃m(Λ) < +∞. We have not sought generality in this direction, and refer to Section 7 for

the construction of Λ and the proof that W̃m(Λ) is finite.

3. Properties of Wm, W̃m

We recall some facts from [26, 27, 24, 25].

The density of points is m. (See [25, Lemma 2.1]) If η > 0 and if W(Eη) is finite, where
E satisfies (5) and Eη is defined in (6), then

(10) m = lim
R→+∞

ν(KR)

Rd
.

Structure of PΛ,m. If Wm(Λ) is finite, then the set {∇U ∈ PΛ,m | W(∇U) < +∞} is a
d-dimensional affine space. Any two gradients in this set differ by a constant vector.

Indeed if ∇U and ∇V both belong to PΛ,m then U − V is a harmonic function. Thus
if it is not linear, it grows at least quadratically, from which it is not difficult to deduce
that if W(∇V ) is finite, then W(∇U) must be infinite. Thus two gradients in PΛ,m with
finite renormalized energy differ by a constant vector.

Minimization. (See [25, Proposition 1.4]) For any given m, the function Λ → Wm(Λ) is
bounded from below and admits a minimizer.

Bravais lattices. (See [26]) Assume Λ = Zu⃗ ⊕ Zv⃗ where (u⃗, v⃗) is a basis of R2 satisfying
the normalized volume condition |u⃗ ∧ v⃗| = 1. Then, the minimum of W1 among lattices
of this type is achieved by the triangular lattice

Λ1 :=

√
2√
3

(
(1, 0)Z⊕

(
1

2
,

√
3

2

)
Z

)
.
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An important fact when investigating the finiteness of W(E) is the following fact, the
derivation of which is similar to that of [25], Proposition 2.4.

Proposition 1. Assume E satisfies (5) where Λ is uniformly separated. Then for any
η > 0, we have

W(E) < +∞ ⇐⇒ W(Eη) < +∞.

Proof. First we claim that for any α, η > 0 we have W(Eα) < +∞ ⇐⇒ W(Eη) < +∞.
Indeed

Eα(·) = Eη(·) +
∑
p∈Λ

∇(g
(α)
d − g

(η)
d )(· − p).

Since ∇(g
(α)
d −g

(η)
d ) is supported in the ball of radius max(α, η), for any x ∈ Rd the number

of p’s such that ∇(g
(α)
d − g

(η)
d )(x − p) is nonzero is bounded by the number of points in

the ball centered at x with radius max(α, η), which is bounded independantly of x since
Λ is uniformly separated. Thus ∥Eα − Eη∥∞ ≤ cα,η, from which the claim follows.

It follows from the above that if W(E) is finite, then W(Eα) < +∞ for every α > 0.
To show that W(Eη) < +∞ =⇒ W(E) < +∞ we assume that W(Eη) is finite.

Then W(Eα) is finite for every α > 0, thus we may assume that W(Eη) < +∞ for some
η ∈ (0, δ/2), where δ is the minimal distance between two points in the lattice. Then to
prove the result it suffices to show that for any α ∈ (0, η] we have W(Eα) < W(Eη) + cη,
where cη is independent of α.

To do this we estimate for R > 1 the integral over KR of |Eα|2 − |Eη|2, which we write
as (Eα + Eη) · (Eα − Eη). Since this involves integrating by parts, we first need to find a
good radius. Since W(Eη) is finite, we have∫

KR

|Eη|2 < CRd.

A mean-value argument then shows that for any M ∈ (0, R) there exists t ∈ (R,R +M)
such that ∥Eη∥2L2(∂Kt)

≤ CRd/M , and then that

(11)

∫
∂Kt

|Eη| ≤ C
Rd− 1

2

M
1
2

.

Moreover, since Λ is uniformly separated, the number of p’s in Λ such that the support

of ∇(g
(α)
d − g

(η)
d )(x − p) intersects Kt \ KR is bounded above by cα,η|Kt \ KR|, hence

by cα,ηMRd−1. We choose M = R
1
3 and deduce, using the fact that the supports of the

functions ∇(g
(α)
d −g

(η)
d )(·−p) are disjoint if α, η < δ/2 and the Cauchy-Schwarz inequality,

that
(12)∣∣∣∣∣
∫
Kt\KR

|Eα|2 − |Eη|2
∣∣∣∣∣ =

∣∣∣∣∣∣
∑
p∈Λ

∫
Kt\KR

(
∇(g

(α)
d − g

(η)
d )(· − p)

)
· (Eα + Eη)

∣∣∣∣∣∣ ≤ cα,ηR
d− 1

3 .
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To estimate the left-hand side we integrate by parts to find,

(13)

∫
Kt

|Eα|2 − |Eη|2 = −
∑
p∈Λ

∫
Kt

div(Eα + Eη)(g
(α)
d − g

(η)
d )(· − p) + Bdry

= cd
∑

p,p′∈Λ

∫
Kt

(g
(α)
d −g

(η)
d )(x−p) d(δ

(α)
p′ +δ

(η)
p′ )(x)−2cdm

∑
p∈Λ

∫
Kt

(g
(α)
d −g

(η)
d )(x−p) dx+Bdry,

where, in view of (11), the boundary term Bdry satisfies the bound

(14) Bdry ≤ cα,ηR
d− 2

3 .

Then, since the function (g
(α)
d − g

(η)
d )(· − p) is equal to 0 outside Bd(p, η), is equal to

gd(α)− gd(η) on ∂Bd(p, α) and since the balls Bd(p, η) are disjoint, we find∑
p,p′∈Λ

∫
Kt

(g
(α)
d − g

(η)
d )(x− p) d(δ

(α)
p′ + δ

(η)
p′ )(x) = cd(gd(α)− gd(η))

∑
p∈Λ

δ(α)p (Kt).

The right-hand side differs from #{Λ∩KR} by at most CRd− 2
3 , which bounds the number

of points in Kt+α \KR and, on the other hand,∑
p∈Λ

∫
Kt

(g
(α)
d − g

(η)
d )(x− p) dx ≤ Ctd

∫
Bd

η

|gd| ≤ CRdcη,

where cη = ∥gd∥L1(Bd
η)
, so that indeed cη → 0 as η → 0. Inserting the two previous

equations in (13) and in view of (12), (14) we find that∣∣∣∣−∫
KR

|Eα|2 − cdmgd(α)−−
∫
KR

|Eη|2 + cdmgd(η)

∣∣∣∣ ≤ C

(
cα,ηR

− 1
3 + cα,η

|#{Λ ∩KR} −mRd|
Rd

+ cη

)
.

Taking the limit R → +∞ the right-hand side converges to Ccη, since m is the asymptotic
density of Λ, and we are left with

|W(Eα)−W(Eη)| ≤ Ccη.

□

4. Examples with finite or infinite energy.

We begin by showing that moving the points in Zd at a bounded distance yields a Λ
with finite energy, assuming Λ is uniformly separated.

Proposition 2. Let Λ satisfy infx,y∈Λ,x ̸=y |x− y| > 0 and assume there exists a bijective

map Φ : Λ → Zd such that supp∈Λ |Φ(p)− p| < ∞. Then W̃1(Λ) < +∞.

Proof. Assume the hypothesis are satisfied. We choose η > 0. Then from the previous
proposition it suffices to find E satisfying (5) with m = 1 and such that W(Eη) < +∞ to

prove that W̃1(Λ) is finite.
Let R1 = 2 supp∈Λ |Φ(p)− p|. Then for every p ∈ Λ, we solve{

−∆Up = cd

(
δ(η)p − δ

(η)
Φ(p)

)
in B(p,R1)

∂Up

∂ν = 0 on ∂B(p,R1)
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where ν is the outer unit normal on the boundary. From elliptic regularity, ∇Up is bounded
in L∞ by a constant depending on η but independent of p.

Let V be the Zd-periodic solution — which is unique modulo an additive constant —
of

−∆V = cd

∑
p∈Zd

δ(η)p − 1

 in Rd

Then by periodicity ∇V is bounded in L∞(Rd). We define E : Rd → R by

E = ∇V +
∑
p∈Λ

∇Up +
∑
p∈Λ

∇(gd − g
(η)
d )(· − p),

where ∇Up is extended by 0 outside of B(p,R1) and is thus defined on the whole of Rd.
From the assumptions on Λ and Φ the sum above is finite on any compact set and thus E
is well defined and we have

−divE = cd

∑
p∈Λ

δp − 1

 in Rd, Eη = ∇V +
∑
p∈Λ

∇Up.

On the other hand, ∇Up is supported in B(p,R1) and bounded independently of p. It

follows that Eη ∈ L∞(Rd), since the number of p’s such that x ∈ B(p,R1) is bounded

uniformly with respect to x ∈ Rd, from the uniform separation of Λ. It follows immediately
from the definition that W(Eη) < +∞. □

We will prove below that the conclusion in the above proposition cannot be improved
to W1(Λ) < +∞.

A consequence of Proposition 2 is

Corollary 1. We have, with m = 1,

W̃1(Z2 \ Z) < ∞, W̃1(Z2 \ N) < ∞

Proof. We define the bijective map Φ : Z2 \ Z → Z2 by letting

Φ(p1, p2) =

{
(p1, p2 − 1) if p2 ≥ 1
(p1, p2) if p2 < 0

The fact that W̃1(Z2 \ Z) < ∞ then follows from the above proposition. The proof
for Z2 \ N is similar, in this case we let Φ(p1, p2) = (p1, p2) if p2 < 0 or p1 < 0, and
Φ(p1, p2) = (p1, p2 − 1) otherwise. □

A second tool for constructing E’s with finite energy is

Proposition 3. Assume E1 (resp. E2) satisfy (5) with some Λ1,m1 (resp. Λ2,m2) which
is uniformly separated. Assume also that the union Λ = Λ1∪Λ2 is disjoint and is uniformly
separated. The following hold.

(1) If W(E1) < ∞ and W(E2) < ∞ then W(E1 + E2) < ∞.
(2) If W(E1 + E2) < ∞ and W(E2) < ∞ for the background m2, then W(E1) < ∞.
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Proof. From Proposition 1, we may work with the η regularizations of the fields for some
arbitrary η > 0.

Since

(E1 + E2)η = (E1)η + (E2)η,

we have for any R > 0 that∫
KR

|(E1 + E2)η|2 ≤ 2

∫
KR

|(E1)η|2+|(E2)η|2 ,
∫
KR

|(E1)η|2 ≤ 2

∫
KR

|(E1 + E2)η|2+|(E2)η|2 ,

from which the proposition follows at once. □
Corollary 2.

W̃0(Z) < +∞, W̃0(N) < +∞

Proof. There exists E ∈ FZ2,1 and from Corollary 1 there exists E2 ∈ FZ2\Z,1 such that
W(E) and W(E2) are both finite. Let E1 = E − E2. Then, by Proposition 3 we have
W(E1) < +∞ and since −div(E1) =

∑
p∈Z δp, and Z is uniformly separated, we have

E1 ∈ FZ,0, hence W̃0(Z) < +∞. The proof for N is identical, taking instead E2 ∈ FZ2\N,1
such that W(E2) is finite, which exists from Corollary 1. □
Proposition 4. In the case d = 2 we have

W0(Z) = 0, W0(N) = +∞

The case of Z. We need to exhibit U such that −∆U = 2π
∑

p∈Z δp, and such thatW(∇U)
is finite. A natural candidate would be

U(x, y) = −1

2

∑
k∈Z

log((x− k)2 + y2),

but this series is divergent. However we may consider the series of gradients, and group
together the k’th and −k’th term to get a series

E(x, y) = −

(
(x, y)

x2 + y2
+

+∞∑
k=1

(x− k, y)

(x− k)2 + y2
+

(x+ k, y)

(x+ k)2 + y2

)

= −

(
(x, y)

x2 + y2
+

+∞∑
k=1

2(x, y)(x2 + y2 − k2) + 4(0, 1)yk2

(x2 − k2)2 + y4 + 2y2(x2 + k2)

)
,

which is easily seen to be convergent for any (x, y) such that x /∈ Z or y ̸= 0. Then it is
straightforward to check that curlE = 0 in the sense of distributions , so that E = ∇U
for some function U defined in R2 \ Z and then that

−∆U = −divE = 2π
∑
p∈Z

δp.

Using periodicity, to prove that W(∇U) = 0 it suffices to check that, for some η > 0,∫
[− 1

2
, 1
2
]×R∩KR

|Eη|2 < CR,

where Eη is the regularization of ∇U . The regularization takes care of the singularity at
the origin and modifies ∇U on a compact set only, hence the only issue is the integrability
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of |∇U |2 as y → ∞ when x is fixed and the periodicity of ∇U in x-direction, which clearly
holds. □
The case of N. We must prove that no ∇U ∈ PN,0 is such that W(∇U) < +∞. Our
strategy is to construct ∇H1 ∈ PN,0 such that W(∇H1) = +∞ and such that, letting Eη

denote the regularization of ∇H1, for any fixed η > 0 we have

(15)

∫
KR

|Eη|2 ≤ CR2 log2R.

To construct H1 we use the Weierstass construction for a holomorphic function in the
plane with a simple zero at each p ∈ N to define

H(z) := Πk∈N(1−
z

k
)e

z
k .

Then we let
H1(z) = − log |H(z)|.

It is straightforward to check that the product in the definition of H converges uniformly
on any compact subset of C \ N and that

−∆H1 = 2π
∑
k∈N

δk in R2

and for all z ∈ C = R2

(16) |H1(z)| ≤
∑
k∈N

∣∣∣log(1− z

k
) +

z

k

∣∣∣
and

(17) |∇H1(z)| =

∣∣∣∣∣∑
k∈N

z

k(k − z)

∣∣∣∣∣ .
Next, rather than proving (15), we prove the following stronger pointwise estimates,

from which (15) clearly follows:

(18) |∇H1(z)| ≤ C(log(|z|+ 1) + 1), outside ∪k∈NB(k,
1

4
),

(19)

∣∣∣∣∇H1(z) +
1

z − k

∣∣∣∣ ≤ C(log(|z|+ 1) + 1), in B(k,
1

4
).

For (18), take any z ∈ C \ ∪k∈NB(k, 14), it follows from (17) that

|∇H1(z)| ≤
∑

1≤k≤[2|z|+1]

(∣∣∣∣ 1

k − z

∣∣∣∣+ ∣∣∣∣1k
∣∣∣∣)+

∑
k>[2|z|+1]

∣∣∣∣ z

k(k − z)

∣∣∣∣ := I + II,

where [·] denotes the integer part of a real number. We have

II ≤
∑

k>[2|z|+1]

|z|
(k − |z|)2

≤ |z|
∫ +∞

|z|

dt

t2
≤ 1,

∑
1≤k≤[2|z|+1]

1

k
≤ 1 +

∫ 2|z|+1

1

dt

t
≤ 2(log(|z|+ 1) + 1).
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On the other hand,∑
1≤k≤[2|z|+1]

∣∣∣∣ 1

k − z

∣∣∣∣ ≤ ∑
1≤k≤[2|z|+1]

∣∣∣∣ 1

Re(k − z)

∣∣∣∣ ≤ 5 + 2

∫ 2|z|+1

1

dt

t
≤ 5(log(|z|+ 1) + 1).

Therefore, for any z ∈ C \ ∪k∈NB(k, 14), we have |∇H1(z)| ≤ 8(log(|z| + 1) + 1), and
therefore (18) holds.

Now we prove (19). Let z = x+ iy ∈ B(k, 14) for some k ∈ N. As above∣∣∣∣∇H1(z) +
(x− k,−y)

|z − k|2

∣∣∣∣ ≤ 8(log(|z|+ 1) + 1) +
1

k
≤ 9(log(|z|+ 1) + 1),

or equivalently,∣∣∣∣∇H1(z) +
1

z − k

∣∣∣∣ ≤ 8(log(|z|+ 1) + 1) +
1

k
≤ 9(log(|z|+ 1) + 1),

since z ∈ C \ ∪i̸=k∈NB(i, 14). This proves (19)
We now turn to the proof that W(∇H1) = +∞. This is done by computing a lower

bound for |∇H1(z)|, where z = x + iy. More precisely we prove that or any ε > 0, there
exists some positive constant C1 depending on ε such that

(20) |∇H1(z)| ≥ (log(|z|+ 1)− C1), if |y| ≥ ε|z|+ 1.

For this purpose we consider the meromorphic function

f(z) :=
∑
k∈N

z

k(k − z)
.

If |y| ≥ ε|z|+ 1, then z ∈ C \ ∪k∈NB(k, 14). Thus∣∣∣∣∣∣f(z)−
∑

1≤k≤[2|z|+1]

(
1

k − z
− 1

k

)∣∣∣∣∣∣ ≤ II ≤ 1,

so that ∣∣∣∣∣∣f(z) +
∑

1≤k≤[2|z|+1]

1

k

∣∣∣∣∣∣ ≤ 1 +
∑

1≤k≤[2|z|+1]

∣∣∣∣ 1

k − z

∣∣∣∣
≤ 1 +

∑
1≤k≤[2|z|+1]

∣∣∣∣1y
∣∣∣∣

≤ 1 +
∑

1≤k≤[2|z|+1]

1

|y|

≤ 1 +
2|z|+ 1

|y|
≤ 1 + 2/ε.

On the other hand, we have ∑
1≤k≤[2|z|+1]

1

k
≥ log(|z|+ 1),

hence (20) follows. We claim that this implies that W(∇H1) = +∞.
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To see this, we choose η > 0 small so that if we let Eη denote the regularization of ∇H1,
then Eη = ∇H1 on {z = x + iy ∈ BR−1 | |y| ≥ ε|z| + 1}. Then, integrating (20) there
proves that Wη(∇H1) = +∞, hence W(∇H1) = +∞.

We may now argue by contradiction to prove the proposition. Assume that there exists
H2 ∈ PN,0 such that W(∇H2) < +∞. Then H = H2−H1 is a harmonic function over R2.
Let Eη denote as above the regularization of ∇H1, then we have ∇H = (∇H2)η − Eη. It
follows from (15) and the finiteness of W((∇H2)η) that∫

KR

|∇H|2 ≤ CR2 log2R.

This together with the harmonicity of H implies that ∇H is constant, which in turn
implies that W(Eη) is finite, a contradiction. □

We summarize the content of this section in the following

Theorem 1. We have

W̃0(Z) = 0, W̃0(N) < +∞, W̃1(Z2 \ Z) < +∞, W̃1(Z2 \ N) < +∞(21)

W0(Z) = 0, W1(Z2) < +∞, W1(Z2 \ Z) < +∞(22)

W0(N) = +∞, W1(Z2 \ N) = +∞(23)

Proof. The result comes from Corollary 1, Corollary 2, Proposition 3 and Proposition 4.
Indeed, it follows from Proposition 3 that

W0(Z) < +∞ ⇔ W1(Z2 \ Z) < +∞
W0(N) = +∞ ⇔ W1(Z2 \ N) = +∞

Therefore, (22) and (23) follows from Proposition 4 and the clear fact that W1(Z2) < +∞.
And (21) comes from Corollary 1 and Corollary 2. □

Remark 4. The fact that W̃0(N) < +∞ and W0(N) = +∞ means that there exists a
vector field Eη such that

−
∫
KR

|Eη|2

is bounded independently of R, while this is the case for no gradient having the same
divergence as Eη.

5. Sufficient conditions for finite renormalized energy

Theorem 2. Given a discrete Λ, assume there exists m ≥ 0 and ε ∈ (0, 1), C > 0 such
that for any x ∈ Rd and for R > 1, we have

(24)
∣∣∣♯ (B(x,R) ∩ Λ)−m|Bd

R|
∣∣∣ ≤ CRd−1−ε

and

(25) inf
x,y∈Λ,x ̸=y

|x− y| > 0

Then Wm(Λ) < +∞.
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Remark 5. For a Bravais lattice, the assumptions in the above theorem are satisfied. It
was proved by Landau (1915) — see [12] for a more general statement — that the first
assumption holds with ε = 1−2/(d+1), see [11] for references on more recent developments.

We recall a technical lemma.

Lemma 1. (Theorem 8.17 in [9]) Assume q > d and p > 1. There exists a constant C > 0
such that the following holds.

If u satisfies

−∆u = g +
∑
i

∂ifi

in some domain Ω ⊂ Rd such that B(0, 2R) ⊂ Ω, then

∥u∥L∞(B(0,R)) ≤ C(R
− d

p ∥u∥Lp(B(0,2R)) +R
1− d

q ∥f∥Lq(B(0,2R)) +R
2− 2d

q ∥g∥Lq/2(B(0,2R))).

Proof of Theorem 2. Assume Λ satisfies (24) and (25). The proof consists in constructing
E ∈ FΛ,m such thatW(E) < +∞, which is done by successive approximations constructing
first some U1, then a correction U2 to U1, then a correction U3 to U1 + U2, etc... In this
construction, the Uk’s are functions, and the sum of their gradients will converge to E.

Let Rn = 2n−1. For all p ∈ Λ, we let U1
p be the solution to

−∆U1
p (y) = cd

(
δ(η)p (y)−

1B(p,R1)(y)

|B(0, R1)|

)
in B(p,R1)

U1
p (y) =

∂U1
p

∂ν
(y) = 0 on ∂B(p,R1)

where 1B(x,r) is the indicator function of the ball B(x, r). The existence of a solution with

Neumann boundary conditions follows from the fact that δ
(η)
p − 1B(p,R1)

πR1
2 has zero integral,

and the radial symmetry of the solution implies U1
p is constant on the boundary, and the

constant can be taken equal to zero. In fact, extending U1
p by zero outside B(p,R1), we

get a solution of

−∆U1
p (y) = cd

(
δ(η)p (y)−

1B(p,R1)(y)

|B(0, R1)|

)
in Rd, which is supported in B(p,R1).

We let

U1(y) :=
∑
p∈Λ

U1
p (y).

This sum is well defined since, Λ being discrete, it is locally finite. Moreover U1 solves

(26) −∆U1(y) = cd

∑
p∈Λ

δ(η)p − n1(y)

 , where n1(y) :=
♯ (Λ ∩B(y,R1))

|B(0, R1)|

Then we proceed by induction. For any k ≥ 2 we let Uk be the solution to

(27)

 −∆Uk
p (y) = cd

(
1B(p,Rk−1)(y)

|B(0, Rk−1)|
−

1B(p,Rk)(y)

|B(0, Rk)|

)
in B(p,Rk)

Uk
p (y) =

∂Uk
p

∂ν (y) = 0 on ∂B(p,Rk),
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and we let Uk
p = 0 outside B(p,Rk). We let Uk(y) :=

∑
p∈Λ Uk

p (y), so that

−∆Uk(y) = cd (nk−1(y)− nk(y)) ,

where, for any k ∈ N,

nk(y) :=
♯ (Λ ∩B(y,Rk))

|B(0, Rk)|
.

Now we study the convergence of
∑∞

k=1∇Uk.
First we note that since Rk = 2Rk−1 we have for any k ≥ 2 that

(28) Uk
p (y) = R2−d

k v (|y − p|/Rk) ,

where v is a bounded C1 function on R+ supported in [0, 1] and independent of k. It

follows, since ∥∇Uk
p ∥∞ ≤ CR1−d

k and the sum defining Uk has at most CRd
k non zero

terms, that

(29) ∥∇Uk∥∞ ≤ CRk.

Second we estimate ∥Uk∥∞. We claim that

(30) ∀k ≥ 2, ∃Ck ∈ R such that ∥Uk(y)− Ck∥∞ = O(R1−ε
k ).

Indeed, let ay(r) := ♯ (B(y, r) ∩ Λ). Then we have for any y ̸∈ Λ

Uk(y) = R2−d
k

∑
p∈B(y,Rk)∩Λ

v

(
|p− y|
Rk

)
= R2−d

k

∫ Rk

0
v

(
t

Rk

)
a′y(t)dt = −R2−d

k

∫ Rk

0

1

Rk
v′
(

t

Rk

)
ay(t)dt.

But, using (24), we have ay(t) = m|B(0, t)|+O(td−1−ε), hence

Uk(y) = −mR2−d
k

∫ Rk

0

1

Rk
v′
(

t

Rk

)
|B(0, t)|dt+O(R1−ε

k ).

The first term is independent of y, we call it Ck. This proves (30).
On the other hand, from (24) we have

(31) ∥nk −m∥∞ ≤ CR−1−ε
k ,

so that

(32) ∥∆Uk∥∞ = O(R−1−ε
k ).

Now, we claim that (30) and (32) imply that

(33) ∥∇Uk∥∞ = O(R−ε
k ).

To see this we use the elliptic estimate of Lemma 1. For all y ∈ Rd we have

(34)

∫
B(y,Rk)

|∇Uk|2 =
∫
B(y,Rk)

|∇(Uk − Ck)|2

= −
∫
B(y,Rk)

∆Uk(Uk − Ck) +

∫
∂B(y,Rk)

∂Uk

∂ν
(Uk − Ck) ≤ CRd

k

(
R−2ε

k + ∥∇Uk∥∞R−ε
k

)
Now we apply Lemma 1. We have

−∆
(
∇Uk

)
= cd∇ (nk−1 − nk) ,
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therefore for any q > d and p > 1,

∥∇Uk∥L∞(BRk/2) ≤ C

(
R

− d
p

k ∥∇Uk∥Lp(BRk
) +R

1− d
q

k ∥nk−1 − nk∥Lq(BRk
)

)
.

Then, taking p = 2 and noting that (31) implies ∥nk−1−nk∥q ≤ CR
d
q
−(1+ε)

k , we find using
(34) that

∥∇Uk∥L∞(BRk/2) ≤ C
(
R−2ε

k +R−ε
k ∥∇Uk∥L∞(BRk

)

) 1
2
+ CR−ε

k .

This proves (33).
Now (33) implies that the sum

∑
k≥2∇Uk converges, and if we let Eη = ∇U1 +∑

k≥2∇Uk, then −divEη = cd(
∑

p∈Λ δ
(η)
p −m), using (26), (27) and (31). Moreover Eη

is a gradient since it is a sum of gradients, thus it is the regularization of some E ∈ PΛ,m.
To conclude, summing (33) we find that Eη is bounded in L∞ and therefore that

W(Eη) < ∞, which implies that W(E) < +∞, and then that Wm(Λ) < +∞. □

For W̃m the hypothesis of Theorem 2 can be slightly relaxed.

Theorem 2′. Assume there exists some non-negative number m ≥ 0 and some positive
numbers ε ∈ (0, 1), C > 0 and a increasing sequence {Rn} tending to +∞ such that for
any x ∈ Rd and for any n ∈ N, we have

|♯ (B(x,Rn) ∩ Λ)−m|B(0, Rn)|| ≤ CRd−1−ε
n ,

and such that ∑
n

R−ε
n < +∞

and
inf

x,y∈Λ,x ̸=y
|x− y| > 0.

Then W̃m(Λ) < +∞.

To prove Theorem 2’, we will first use the following simple estimate.

Lemma 2. Let u be a solution of the following problem in B(0, R) ⊂ Rd.{
−∆u = f in B(0, R)
∂u
∂ν = 0 on ∂B(0, R)

Then ∫
B(0,R)

|∇u|2 ≤ CRd+2∥f∥2∞

where C is a constant independent of R.

Proof. We have∫
B(0,R)

|∇u|2 = −
∫
B(0,R)

u∆u =

∫
B(0,R)

fu ≤ ∥u∥1∥f∥∞ ≤
√

|B(0, R)|∥u∥2∥f∥∞

Without loss of generality, we assume
∫
u = 0. By Poincaré inequality,

∥u∥2 ≤ CR∥∇u∥2.
Inserting in the previous inequality, the desired result follows. □
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Proof of Theorem 2′. Define

m0 =
∑
p∈Λ

δ(η)p

and, for any integer k ≥ 1,

Ik =
1BRk

|BRk
|
,

where 1BRk
is the indicator function of the ball B(0, Rk).

We let for any k ≥ 1
mk = mk−1 ∗ Ik ∗ Ik

and, for any y ∈ Rd, we let the function Uk,y be the solution to{
−∆Uk,y(x) = cd (mk−1(x)−mk−1 ∗ Ik(y))1BRk

(x− y) in B(y, 2Rk)
∂Uk,y

∂ν (x) = 0 on ∂B(y, 2Rk).

Then we let

Ek(x) =
1

|B(0, Rk)|

∫
Rd

∇Uk,y(x) dy.

We have

− divEk(x) = cd

(
mk−1(x)−

1

|B(0, Rk)|

∫
Rd

mk−1 ∗ Ik(y)1BRk
(x− y) dy

)
= cd (mk−1(x)−mk−1 ∗ Ik ∗ Ik(x))
= cd (mk−1(x)−mk(x)) .

(35)

We claim that

(36) mk(y) = m+O(R−1−ε
k ).

To see this, it suffices to note that from the commutativity of the convolution we have

mk −m = (m0 ∗ Ik −m) ∗ (Ik ∗ Ik−1 ∗ Ik−1 ∗ · · · ∗ I1 ∗ I1),
where we also used the fact that, since m is a constant, m ∗ Ij = m. Then, from our first

assumption, we have |m0 ∗ Ik − m| ≤ CR
−(1+ε)
k , which implies (36) since every Ik is a

positive function with integral 1, and thus convoluting a function with it does not increase
the L∞ norm.

From (36) it then follows that |mk−1(.)−mk−1 ∗ Ik(y)|∞ < CR−1−ε
k . Then, from (5)

and using Lemma 2 we find

∥∇Uk
y ∥2L2(B(y,2Rk))

≤ CRd+2
k R−2−2ε

k−1 ≤ CRd−2ε
k .

Finally, using Lemma 1 as in the proof of Theorem 2 with q > d arbitrary, we obtain

∥∇Uk
y ∥L∞(B(y,Rk)) ≤ C

(
R

− d
2

k ∥∇Uk
y ∥L2(B(y,2Rk)) +R

1− d
q

k ∥mk−1 −mk−1 ∗ Ik∥Lq(B(y,Rk))

)
≤ C

(
R

− d
2

k R
d
2
−ε

k +R
1− d

q

k R−1−ε
k R

d
q

k

)
≤ CR−ε

k .

It follows that ∥Ek∥∞ ≤ CR−ε
k and thus Eη :=

∑
k Ek is well defined and satisfies

− divEη = cd(
∑

p∈Λ δ
(η)
p −m). Moreover it is bounded in L∞ hence W(Eη) < +∞. Thus
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Eη is the regularization of some E such that −divE = cd(
∑

p∈Λ δp−m) and W(E) < +∞,

which proves that W̃m(Λ) is finite. □

The conditions in Theorem 2 are optimal in the following sense. We state this in the
case d = 2 and m = 0 for convenience, but a similar construction works for any d ≥ 2 and
m ≥ 0.

Proposition 5. There exists Λ ⊂ R2 such that W̃0(Λ) = +∞ and for any x ∈ R2 and
any R > 1

(37) ♯ (B(x,R) ∩ Λ) ≤ CR1+ε.

Proof. The counter-example is as follows. Given ε > 0, we choose 1 < α < 2 such that
2/α < 1 + ε and we let

Λ = {(kα, lα) | k, l ∈ Z}.
Assume −divE =

∑
p∈Λ δp. We need to prove that Λ satisfies(37) and that W(E) = +∞.

To see that (37) is satisfied, note that since α > 1, the density of points in Λ decreases
as one moves away from the origin. Thus it suffices to check that ♯ (B(0, R) ∩ Λ) ≤ CR1+ε.
But B(0, R) ⊂ KR, where KR = [−R,R]× [−R,R], and if R = nα then we can compute
explicitely

♯ (KR ∩ Λ) = (2n+ 1)2 = (2R
1
α + 1)2 ≤ CR

2
α ≤ CR1+ε.

Therefore (37) holds.
To prove that W(E) = +∞ it suffices to prove that W(Eη) = +∞ for some fixed

arbitrary η > 0, where Eη is the regularization of E, which satisfies

−divEη =
∑
p∈Λ

δ(η)p .

For this we compute ∫
KR

|Eη|2 ≥
∫ R

0

(∫
∂Kt

(Eη · ν)2
)

dt

≥
∫ R

0

1

|∂Kt|

(∫
∂Kt

(Eη · ν)
)2

dt

=

∫ R

0

1

|∂Kt|

(∫
Kt

divEη

)2

dt

≥ c

∫ R

0

1

t
(t

2
α )2 dt = cR

4
α ,

(38)

where c is a generic small positive number independant of R.
Since α < 2, we deduce that −

∫
KR

|Eη|2 tends to +∞ as R → +∞, and then that

W(Eη) = +∞. □

6. Critical case

In view of Theorem 2 and Proposition 5, the critical discrepancy between
∑

p∈Λ δp
and the uniform measure mdx is when |♯ (B(x,R) ∩ Λ)−m|B(0, R)|| = O(Rd−1). This
includes the cases Λ = Z ⊂ R2 or N ⊂ R2. As shown by Theorem 1, we cannot expect
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W (Λ) to be finite under such an assumption. However something can be said for W̃ ,
which relies on Proposition 2 and a result of M.Laczkovich [16, 17], at the basis of which
lies a duality argument which can be generalized to measures not necessarily of the form∑

p∈Λ δp (see M.Sodin-B.Tsirelson [31], or G.Strang [32]).

We cite the following theorem from [17]. Here Per(A) denotes the (d− 1)-dimensional
Hausdorff measure of ∂A ⊂ Rd, whereas Per1(A) is a variant of perimeter defined as the
d-dimensional Lebesgue measure of the set of x ∈ Rd such that d(x, ∂A) < 1.

Theorem 3. Let Λ be a discrete subset of Rd and m > 0. Then the following statements
are equivalent:

i) There exists C > 0 such that for any finite union of unit cubes A it holds that

|#(Λ ∩A)−m|A|| ≤ C Per(A),

ii) There exists C > 0 such that for bounded measurable A it holds that

|#(Λ ∩A)−m|A|| ≤ C Per1(A),

iii) There exists a bijection from φ : Λ → m− 1
dZd such that supp∈Λ |φ(p)− p| < +∞.

Together with Proposition 2 this implies immediately that

Theorem 4. Let Λ ⊂ Rd be discrete, uniformly separated, and such that either

i) There exists C > 0 such that for any finite union of unit cubes A it holds that

|#(Λ ∩A)−m|A|| ≤ C Per(A),

or
ii) There exists C > 0 such that for bounded measurable A it holds that

|#(Λ ∩A)−m|A|| ≤ C Per1(A),

then W̃m(Λ) < +∞.

In the case d = 2 and if Λ is a subset of Z2 we have a simpler statement

Corollary 3. Assume Λ = Z2 \ V , where V is such that there exists C > 0 such that for
x ∈ R2 and any R > 1 it holds that

#(V ∩B(x,R)) ≤ CR,

then W̃1(Λ) < +∞.

Proof. We show that the inequality

(39) |#(Λ ∩A)− |A|| ≤ C Per(A)

holds for any finite union of cubes A. Let A1, . . . , Ak denote the connected components of
A. Then each Ai may be included in a ball Bi of radius Ri such that Ri ≤ C Per(Ai) for
some universal constant C > 0. This is of course specific to the dimension 2. Applying
the hypothesis of the corollary in Bi we find that V ∩Bi has cardinal at most CRi, hence
#(V ∩Ai) ≤ C Per(Ai). On the other hand |#(Z2 ∩Ai)− |Ai|| < C Per(Ai) (a way to see
this is to apply Theorem 3 to Λ = Z2).

It follows that |#(Λ∩Ai)− |Ai|| < C Per(Ai), and summing over i we deduce (39). □
Another easy consequence of Proposition 2, for which we omit a proof is
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Corollary 4. Let Λ ⊂ Rd+1 be discrete and uniformly separated, and of the form Λ =
Λ1 × Zd, where Λ1 ⊂ R.

If there exists C > 0 such that for any x ∈ R and R > 1 we have |♯(Λ1 ∩ [x − R, x +

R]− 2R| ≤ C then W̃1(Λ) < +∞.

7. A Penrose lattice

We now describe the construction of a Penrose-type lattice Λ such that W̃ (Λ) < +∞.
Of course it would be better to show that Λ satisfies the hypothesis of Theorem 2, but
this is to our knowledge an open problem.

For simplicity, we consider the Robinson triangle decompositions in Penrose’s second
tilling (P2)–kite and dart tiling, or in Penrose’s third tilling (P3)–rhombus tiling, (see
[29]). The construction is as follows: Ω1 and Ω2 are two Robinson triangles, namely, Ω1

is an obtuse Robinson triangle having side lengths (1, 1, φ), while Ω2 is an acute triangle
with sidelengths (φ,φ, 1), where φ = (1 +

√
5)/2; the scaled-up domain φΩ1 decomposes

as the union of a copy of Ω1 and a copy of Ω2, where the interiors are disjoint — and such
that φΩ2 decomposes as the union of one copy of Ω1 and two copies of Ω2 with disjoint
interiors (see figure).

For i = 1, 2 we choose a point pi in the interior of Ωi.
Then we proceed by induction, starting with Ω1 choosing p1 as the origin, then scaling up

by φ, then decomposing, then scaling up again, then decomposing each piece, etc... After n
steps we have a (large domain) φnΩ1 tiled by a number of copies of either Ω1 or Ω2. In each
tile we have a distinguished point, the union of these points is denoted Λn. As n → +∞
and modulo a subsequence, Λn converges to a discrete set Λ, which is uniformly separated
since the distance between two points is no less than min (d(p1, ∂Ω1), d(p2, ∂Ω2)) .

Theorem 5. We have W̃m(Λ) < +∞, for some m > 0.

Proof. As usual, we choose some η > 0 and prove that there exists a solution Eη of

− divEη = 2π(δ
(η)
p −m) for some m > 0 such that W(Eη) < +∞.

For each n we define a current En as follows. On each copy of Ωi we let En be equal to
(a copy of) ∇Ui, where{

−∆Ui = 2π
(
δ
(η)
pi − 1

|Ωi|

)
in Ωi

∂Ui
∂ν = 0 on ∂Ωi.

Then En converges as n → +∞ to a current Ẽη such that the following holds in R2

−div Ẽη = 2π

∑
p∈Λ

δ(η)p − α

 ,

where α = 1/|Ωi| on each copy of Ωi. It is not difficult to check that W(Ẽη) < +∞, but

the background density α is not constant. We need to add a correction to Ẽη, which is
the object of the following

Lemma 3. There exist m > 0 and a solution of the following equation in R2

(40) − divE′ = α−m

such that ∥E′∥∞ < +∞.
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Assuming the lemma is true we let Eη = Ẽη+E′. Then −divEη = 2π
(∑

p∈Λ δ
(η)
p −m

)
thus the corresponding E ∈ FΛ,m for the background m, and the fact that W(Ẽη) < +∞
and E′ ∈ L∞ implies that W (Eη) < +∞ and the Theorem. □

Proof of Lemma 3. The current E′ is obtained as the limit of En, where En solves

(41)

{
− divEn = 2π(αn −mn) in φnΩ1

En · ν = 0 on ∂(φnΩ1),

where αn : φnΩ1 → R is the function equal to 1/|Ωi| on each of the copies of Ωi, i = 1, 2
which tile φnΩ1, and where mn is equal to the average of αn on φnΩ1.

The current En is defined recursively. First we define the equivalent of αn for Ω2-type
domains: For any integer n we tile φnΩ2 by one copy of φn−1Ω1 and two copies of φn−1Ω2,
then we tile each of the three pieces, etc... until we have tiled φnΩ2 by copies of either Ω1

or Ω2. then we let βn : φnΩ2 → R be the function equal to 1/|Ωi| on each of the copies of
Ωi, i = 1, 2. We also define qn to be the equivalent of mn, i.e. the average of βn on φnΩ2.
Finally we define Ēn to be the equivalent of En for type 2 domains, i.e. the solution of
(41) with αn replaced by βn, mn replaced by qn and Ω1 replaced by Ω2.
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Below it will be convenient to abuse notation by writing φnΩi for a copy of φnΩi. Then
we have φnΩ1 = φn−1Ω1 ∪ φn−1Ω2. We let

(42) En = En−11φn−1Ω1
+ Ēn−11φn−1Ω2

+∇Un1φnΩ1 ,

where

(43)

{
−∆Un = 2π(mn −mn−1)1φn−1Ω1

+ 2π(mn − qn−1)1φn−1Ω2
in φnΩ1

∂Un
∂ν = 0 on ∂(φnΩ1).

It is straightforward to check that En satisfies (41) assuming En−1 and Ēn−1 do.
The relation (42) is the recursion relation which repeated n times allows to write En

as equal to a sum of on the one hand error terms ∇Uk (or their type 2 equivalent that we
denote Vk), for k between 1 and n, and on the other hand of a vector field which on each
elementary tile of type Ω1 of φnΩ1 is equal to E0 and on a tile of type Ω2 is equal to Ē0.
However from (41) we may take E0 = 0 and Ē0 = 0, thus we are left with evaluating the
error terms.

Claim: There exists C > 0 such that for any integer k > 0 we have

∥∇Uk∥∞, ∥∇Vk∥∞ ≤ Cφ−3k.

This clearly proves that the sum of errors for k = 1 . . . n is bounded in L∞ independently
of n and therefore that {En} is bounded in L∞. Then the limit E′ is in L∞.

To prove the lemma, it remains to prove the claim, and to show that E′ satisfies (40)
for some m > 0, which in view of (41) amounts to showing that {mn}n converges to such
an m. For this we define u2n (resp. u2n+1) be the number of elementary tiles of type Ω1

(resp. Ω2) in φnΩ1. We define similarly v2n and v2n+1 by replacing Ω1 by Ω2. Therefore
u0 = 1, u1 = 0, v0 = 0, v1 = 1. We have the following recurrence relations

u2n+2 = u2n + u2n+1, u2n+3 = u2n + 2u2n+1,

which we can summarize as the single relation un+2 = un+1 + un. Similarly vn+2 =
vn+1 + vn. It follows that

un = φn 1

φ+ 2
+ (−φ)−nφ+ 1

φ+ 2
, vn = φn φ

φ+ 2
+ (−φ)−n −φ

φ+ 2
.

We have un = aφn +O(φ−n) and vn = bφn +O(φ−n) with a = 1
φ+2 and b = φ

φ+2 strictly

positive. Then we easily deduce that

mn =
u2n + u2n+1

u2n|Ω1|+ u2n+1|Ω2|
= m+O(φ−4n),

where

m =
1 + φ

|Ω1|+ φ|Ω2|
,

and similarly that qn = m+O(φ−4n). This proves in particular the convergence of {mn}n.
Moreover it shows that the right-hand side of (43) is bounded by Cφ−4n. By elliptic
regularity (lemma 1 and lemma 2) we deduce that

∥∇Un∥∞ ≤ C|φnΩ1|
1
2φ−4n = C|Ω1|

1
2φ−3n,

and a similar bound for Vn. This proves the claim, and the lemma □
Remark 6. The above construction could easily be generalized to similar recursive con-
structions.
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