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Abstract. In this paper we first establish an optimal Sobolev type inequality for hypersurfaces
in Hn(see Theorem 1.1). As an application we obtain hyperbolic Alexandrov-Fenchel inequal-
ities for curvature integrals and quermassintegrals. Precisely, we prove a following geometric
inequality in the hyperbolic space Hn, which is a hyperbolic Alexandrov-Fenchel inequality,∫

Σ

σ2k ≥ C2k
n−1ωn−1

{(
|Σ|
ωn−1

) 1
k

+

(
|Σ|
ωn−1

) 1
k

n−1−2k
n−1

}k

,

provided that Σ is a horospherical convex, where 2k ≤ n−1. Equality holds if and only if Σ is a
geodesic sphere in Hn. Here σj = σj(κ) is the j-th mean curvature and κ = (κ1, κ2, · · · , κn−1)
is the set of the principal curvatures of Σ. Also, an optimal inequality for quermassintegrals in
Hn is as following:

W2k+1(Ω) ≥ ωn−1

n

k∑
i=0

n− 1− 2k

n− 1− 2k + 2i
Ci

k

(
nW1(Ω)

ωn−1

)n−1−2k+2i
n−1

,

provided that Ω ⊂ Hn is a domain with Σ = ∂Ω horospherical convex, where 2k ≤ n − 1.
Equality holds if and only if Σ is a geodesic sphere in Hn. Here Wr(Ω) is quermassintegrals in
integral geometry.

1. Introduction

In this paper we first establish Sobolev type inequalities for hypersurfaces in the hyperbolic
space Hn. Let g be a Riemannian metric on a Riemannian manifold. Its kth Gauss-Bonnet
curvature (or Lovelock curvature) Lk is defined by (see [13] for instance)

(1.1) Lk :=
1

2k
δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−1i2k

j2k−1j2k .

Here Rij
kl is the Riemannian curvature with respect to g, and the generalized Kronecker delta

is defined by

δj1j2...jri1i2...ir
= det


δj1i1 δj2i1 · · · δjri1
δj1i2 δj2i2 · · · δjri2
...

...
...

...

δj1ir δj2ir · · · δjrir

 .
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When k = 1, L1 is just the scalar curvature R. When k = 2, it is the so-called (second)
Gauss-Bonnet curvature

L2 = ‖Rm‖2 − 4‖Ric‖2 +R2,

where Rm, Ric are the Riemannian curvature tensor, and the Ricci tensor with respect to
g respectively. The Gauss-Bonnet curvature Lk is a very natural generalization of the scalar
curvature. When the underlying manifold is local conformally flat, Lk equals to the σk-scalar
curvature up to a constant multiple, precisely(cf. [14])

Lk = 2kk!(n− 1− k)(n− 2− k) · · · (n− 2k)σk(g).(1.2)

Here the σk-scalar curvature was introduced in Viaclovsky [30] by

σk(g) := σk(Λg),(1.3)

and Λg is the set of the eigenvalues of the Schouten tensor Ag defined by

(1.4) Ag =
1

n− 3

(
Ricg −

Rg
2(n− 2)

g

)
.

Here we consider the (n− 1)-dimensional manifold M with metric g. The σk-scalar curvature is
also a very natural generalization of the scalar curvature R (in fact, σ1(g) = 1

2(n−2)R) and has

been intensively studied in the fully nonlinear Yamabe problem. The fully nonlinear Yamabe
problem for σk is a generalization of ordinary Yamabe problem for the scalar curvature R. In
the ordinary Yamabe problem, the following functional, the so-called Yamabe functional, plays
a crucial role

F1(g) = (vol(g))−
n−3
n−1

∫
Rgdµ(g).(1.5)

For a given conformal class [g] = {e−2ug |u ∈ C∞(M)}, the Yamabe constant is defined by

Y1([g]) = inf
g̃∈[g]
F1(g̃).

By the resolution of the Yamabe problem, Aubin and Schoen [2, 25] proved that for any metric
g on M

Y1([g]) ≤ Y1([gSn−1 ]) and Y1([g]) < Y1([gSn−1 ]) for any (M, [g]) other than [gSn−1 ],(1.6)

where [gSn−1 ] is the conformal class of the standard round metric on the sphere Sn−1. From this,
one can see the importance of the constant Y1([gSn−1 ]). In fact, one can prove that

Y1([gSn−1 ]) = (n− 1)(n− 2)ω
2

n−1

n−1 ,(1.7)

where ωn−1 is the volume of gSn−1 . It is trivial to see that (1.7) is equivalent to∫
M
L1dµ(g) =

∫
M
Rgdµ(g) ≥ (n− 1)(n− 2)ω

2
n−1

n−1vol(g)
n−3
n−1 ,(1.8)

for any g ∈ [gSn−1 ], which is in fact an optimal Sobolev inequality. See [20]. As a natural
generalization, we proved in [19] a generalized Sobolev inequality for σk-scalar curvature σk(g),
which states ∫

M
σk(g)dµ(g) ≥

Ckn−1

2k
ω

2k
n−1

n−1vol(g)
n−1−2k

n−1 ,(1.9)
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for any g ∈ Ck−1([gSn−1 ]), where Ck−1([gSn−1 ]) = [gSn−1 ]∩Γ+
k−1 and Γ+

k = {g |σj(g) > 0, ∀j ≤ k}.
In this paper, we denote Ckn−1 = (n−1)!

k!(n−1−k)! . By (1.2) inequality (1.9) can be written in the

following form ∫
Σ
Lkdµ(g) ≥ C2k

n−1(2k)! ω
2k

n−1

n−1 (vol(g))
n−1−2k

n−1 ,(1.10)

for any g ∈ Ck−1([gSn−1 ]). We call both inequalities (1.8), (1.10) optimal Sobolev inequalities and
would like to investigate which classes of metrics satisfy the optimal Sobolev inequalities. (1.8)
and (1.10) mean that a suitable subclass of the conformal class of the standard round metric
satisfies the optimal Sobolev inequalities. From (1.6) we know in any conformal class other than
the conformal class of the standard round metric, there exist many metrics which do not satisfy
the optimal Sobolev inequality. Hence it is natural to ask if there are other interesting classes
of metrics satisfy the optimal Sobolev inequality? Observe that for a closed hypersurface Σ in
Rn,

Lk = (2k)!σ2k,(1.11)

where σ2k is the 2k-mean curvature of Σ, which is defined by

σj = σj(κ),

where κ = (κ1, κ2, · · · , κn−1), κj (1 ≤ j ≤ n−1) is the principal curvature of B, and B is the 2nd
fundamental form of Σ induced by the standard Euclidean metric. The classical Alexandrov-
Fenchel inequality (see [27] for instance) implies for convex hypersurfaces in Rn that∫

Σ
Lk(g)dµ(g) = (2k)!

∫
Σ
σ2kdµ(g) ≥ C2k

n−1(2k)! ω
2k

n−1

n−1 |Σ|
n−1−2k

n−1 .(1.12)

I this paper we use |Σ| to denote the area of Σ with respect to the induced metric. Inequality
(1.12) means that the induced metric of any convex hypersurfaces in Rn satisfy the optimal
Sobolev inequalities. The convexity can be weakened. See the work of Guan-Li [18], Huisken
[21] and Chang-Wang [6].

In this paper we prove that the induced metric of horospherical convex hypersurfaces in Hn

also satisfy the optimal Sobolev inequalities.

Theorem 1.1. Let 2k < n− 1. Any horospherical convex hypersurfaces Σ in Hn satisfies∫
Σ
Lkdµ(g) ≥ C2k

n−1(2k)! ω
2k

n−1

n−1 |Σ|
n−1−2k

n−1 ,(1.13)

equality holds if and only if Σ is a geodesic sphere.

A hypersurface in Hn is horospherical convex if all principal curvatures are larger than or
equal to 1. The horospherical convexity is a natural geometric concept, which is equivalent
to the geometric convexity in Riemannian manifolds. For any hypersurface in Hn, the Gauss-
Bonnet curvature Lk of the induced metric of the hypersurface can be expressed in terms of the
curvature integrals by (see also Lemma 3.1 below)

Lk = C2k
n−1(2k)!

k∑
j=0

(−1)j
Cjk

C2k−2j
n−1

σ2k−2j .(1.14)
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Comparing (1.12) for Rn with (1.13) for Hn and (1.11) with (1.14), we obtain the same inequality
for Lk, while Lk has diferent expression in terms of the curvature integrals. We remark that
when 2k = n− 1, (1.13) is an equality for any hypersurface diffeomorphic to a sphere, i.e,∫

Σ
Ln−1

2
dv(g) = (n− 1)!ωn−1.

This follows that the Gauss-Bonnet-Chern theorem.
As a first direct application, we establish Alexandrov-Fenchel type inequalities for curvature

integrals.

Theorem 1.2. Let 2k ≤ n− 1. Any horospherical convex hypersurface Σ ⊂ Hn satisfies

(1.15)

∫
Σ
σ2k ≥ C2k

n−1ωn−1

{(
|Σ|
ωn−1

) 1
k

+

(
|Σ|
ωn−1

) 1
k

n−1−2k
n−1

}k
,

equality holds if and only if Σ is a geodesic sphere.

When k = 1 Theorem 1.1, and hence Theroem 1.2, is true even for any star-shaped and
two-convex hypersurfaces in Hn, ie., σ1 ≥ 0 and σ2 ≥ 0, which was proved by Li-Wei-Xiong in
a recent work [22]. When k = 2, Theorem 1.1 was proved in our recent paper [15]. Due to the
complication of the variational structure of

∫
σk in the hyperbolic space, the case k ≥ 2 is quite

different from the case k = 1. For case k ≥ 2 the horospherical convexity of the hypersurface Σ
plays an essential role.

At the end of this paper we show that a similar inequality holds for σ1 and propose a conjecture
for general odd σ2k+1.

Another application is an optimal inequality for quermassintegrals in Hn. For a (geodesically)
convex domain Ω ⊂ Hn with Σ = ∂Ω, quermassintegrals are defined by

Wr(Ω) :=
(n− r)ωr−1 · · ·ω0

nωn−2 · · ·ωn−r−1

∫
Lr
χ(L ∩ Ω)dL,(1.16)

where Lr is the space of r-dimensional totally geodesic subspaces L in Hn, ωr is the area of the
r-dimensional standard round sphere and dL is the natural (invariant) measure on Lr (cf. [24],
[28]). As in the Euclidean case we take W0(Ω) = V ol(Ω). With these definitions, unlike the
euclidean case, the quermassintegral in Hn do not coincide with the mean curvature integrals,
but they are closely related (cf. [28])
(1.17)

1

Crn−1

∫
Σ
σr = n

(
Wr+1(Ω) +

r

n− r + 1
Wr−1(Ω)

)
, W0(Ω) = V ol(Ω), W1(Ω) =

1

n
|Σ|.

The relationship between W0 and W1, the hyperbolic isoperimetric inequality, was established
by Schmidt [26] 70 years ago. When n = 2, the hyperbolic isoperimetric inequality is

L2 ≥ 4πA+A2,

where L is the length of a curve γ in H2 and A is the area of the enclosed domain by γ. In
general, this hyperbolic isoperimetric inequality has no explicit form. There are many attempts
to establish relationship between Wk(Ω) in the hyperbolic space Hn. See, for example, [24]
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and [29]. In [11], Gallego-Solanes proved by using integral geometry the following interesting
inequality for convex domains in Hn, precisely, there holds,

Wr(Ω) >
n− r
n− s

Ws(Ω), r > s,(1.18)

which implies ∫
Σ
σkdµ > cCkn−1|Σ|,(1.19)

where c = 1 if k > 1 and c = (n − 2)/(n − 1) if k = 1 and |Σ| is the area of Σ. Here dµ is the
area element of the induced metric. The constants in (1.18) and (1.19) are optimal in the sense
that one can not replace them by bigger constants. However, they are far away being optimal.

As another application of Theorem 1.1, we have the following optimal inequalities of Wk(Ω)
for general odd k in terms of W1 = 1

n |Σ|.

Theorem 1.3. Let 2k ≤ n− 1. If Ω ⊂ Hn be a domain with Σ = ∂Ω horospherical convex, then

(1.20) W2k+1(Ω) ≥ ωn−1

n

k∑
i=0

n− 1− 2k

n− 1− 2k + 2i
Cik

(
nW1(Ω)

ωn−1

)n−1−2k+2i
n−1

,

where ωn−1 is the area of the unit sphere Sn−1. Equality holds if and only if Σ is a geodesic
sphere.

As a direct corollary we solve an isoperimetric problem for horospherical convex surfaces with
fixed W1.

Corollary 1.4. Let 2k ≤ n − 1. In a class of horospherical convex hypersurfaces in Hn with
fixed W1, the minimum of W2k+1 is achieved by and only by the geodesic spheres.

Corollary 1.4 answers a question asked in the paper of Gao, Hug and Schneider [12] in this
case.

In order to prove Theorem 1.1, motivated by [15] and [22] (see also [4] and [9]), we consider
the following functional

(1.21) Q(Σ) := |Σ|−
n−1−2k

n−1

∫
Σ
Lk.

Here Lk is the Gauss-Bonnet curvature with respect to the induced metric g on Σ. This is a
Yamabe type functional. One of crucial points of this paper is to show that functional Q is
non-increasing under the following inverse curvature flow

(1.22)
∂Σt

∂t
=
n− 2k

2k

σ2k−1

σ2k
ν,

where ν is the outer normal of Σt, provided that the initial hypersurface is horospherical convex.
One can show that horospherical convexity is preserved by flow (1.22). By the convergence
results of Gerhardt [16] on the inverse curvature flow (1.22), we show that the flow approaches
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to surfaces whose induced metrics belong to the conformal class of the standard round sphere
metric. Therefore, we can use the result (1.10) to

Q(Σ) ≥ lim
t→∞

Q(Σt) ≥ C2k
n−1(2k)!ω

2k
n−1

n−1 .

The rest of this paper is organized as follows. In Section 2 we present some basic facts
about the elementary functions σk and recall the generalized Sobolev inequality (1.10) from
[19]. In Section 3, We present the relationship between various geometric quantities including
the intrinsic geometric quantities

∫
Σ Lk, the curvature integrals

∫
Σ σk and the quermassintegrals

Wr(Ω) . In Section 4 we prove the crucial monotonicity of Q and analyze its asymptotic behavior
under flow (1.22). The proof of our main theorems are given in Section 5. In Section 6, we show
that a similar inequality holds for σ1 and propose a conjecture for integral integrals σ2k+1.

2. Preliminaries

Let σk be the k-th elementary symmetry function σk : Rn−1 → R defined by

σk(Λ) =
∑

i1<···<ik

λi1 · · ·λik for Λ = (λ1, · · · , λn−1) ∈ Rn−1.

For a symmetric matrix B, denote λ(B) = (λ1(B), · · · , λn(B)) be the eigenvalues of B. We set

σk(B) := σk(λ(B)).

The Garding cone Γ+
k is defined as

Γ+
k = {Λ ∈ Rn−1 |σj(Λ) > 0, ∀j ≤ k}.

A symmetric matrix B is called belong to Γ+
k if λ(B) ∈ Γ+

k . We collect the basic facts about
σk, which will be directly used in this paper. For other related facts, see a survey of Guan [17]
or [22].

(2.1) σk(B) =
1

k!
δi1···ikj1···jkb

j1
i1
· · · bjkik ,

where B = (bij). In the following, for simplicity of notation we denote

pk =
σk

Ckn−1

.

Lemma 2.1. For Λ ∈ Γ+
k , we have the following Newton-MacLaurin inequalities

pk−1pk+1

p2
k

≤ 1,(2.2)

p1pk−1

pk
≥ 1.(2.3)

Moreover, equality holds in (2.2) or (2.3) at Λ if and only if Λ = c(1, 1, · · · , 1).
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The Newton-MacLaurin inequalities play a very important role in proving geometric inequal-
ities mentioned above. However, we will see that these inequalities are not precise enough to
show our inequality (1.13).

Let Hn = R+ × Sn−1 with the hyperbolic metric

ḡ = dr2 + sinh2 rgSn−1 ,

where gSn−1 is the standard round metric on the unit sphere Sn−1 and Σ ⊂ Hn a smooth closed
hypersurface in Hn with a unit outward normal ν. Let h be the second fundamental form of Σ
and κ = (κ1, · · · , κn−1) the set of principal curvatures of Σ in Hn with respect to ν. The k-th
mean curvature of Σ is defined by

σk = σk(κ).

We now consider the following curvature evolution equation

(2.4)
d

dt
X = Fν,

where Σt = X(t, ·) is a family of hypersurfaces in Hn, ν is the unit outward normal to Σt = X(t, ·)
and F is a speed function which may depend on the position vector X and principal curvatures
of Σt. One can check that [23] along the flow

d

dt

∫
Σ
σkdµ =(k + 1)

∫
Σ
Fσk+1dµ+ (n− k)

∫
Σ
Fσk−1dµ,(2.5)

and thus

(2.6)
d

dt

∫
Σ
pkdµ =

∫
Σ

(
(n− k − 1)pk+1 + kpk−1

)
Fdµ.

If one compares flow (2.4) in Hn with a similar flow of hypersurfaces in Rn, the last term in (2.5)
is an extra term. This extra term comes from −1, the sectional curvature of Hn and makes the
phenomenon of Hn quite different from the one of Rn.

As mentioned above we use the following inverse flow

(2.7)
d

dt
X =

p2k−1

p2k
ν.

By using the result of Gerhardt [16] we have

Proposition 2.2. If the initial hypersurface Σ is horospherical convex, then the solution for
the flow (2.7) exists for all time t > 0 and preservs the condition of horospherical convexity.
Moreover, the hypersurfaces Σt become more and more umbilical in the sense of

|hij − δij | ≤ Ce−
t

n−1 , t > 0,

i.e., the principal curvatures are uniformly bounded and converge exponentially fast to one. Here
hi
j = gikhkj, where g is the induced metric and h is the second fundamental form.

Proof. For the long time existence of the inverse curvature flow, see the work of Gerhardt [16].
The preservation of the horospherical convexity along flow (2.7) was proved in [15] with the help
of a maximum principle for tensors of Andrews [1]. �
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Let g be a Riemannian metric on Mn−1. Denote Ricg and Rg the Ricci tensor and the scalar
curvature of g respectively. The Schouten tensor Ag is defined by (1.4).The σk-scalar curvature,
which is introduced by Viaclovsky [30], is defined by

σk(g) := σk(Ag).

This is a natural generalization of the scalar curvature R. In fact, σ1(g) = 1
2(n−2)R. Recall that

M is of dimension n − 1. We now consider the conformal class [gSn−1 ] of the standard sphere
Sn−1 and the following functionals defined by

(2.8) Fk(g) = vol(g)−
n−1−2k

n−1

∫
Sn−1

σk(g) dµ, k = 0, 1, ..., n− 1.

If a metric g satisfies σj(g) > 0 for any j ≤ k, we call it k-positive and denote g ∈ Γ+
k . From

Theorem 1.A in [19] we have

Proposition 2.3. Let 0 < k < n−1
2 and g ∈ [gSn−1 ] k-positive. We have

(2.9) Fk(g) ≥ Fk(gSn−1) =
Ckn−1

2k
ω

2k
n−1

n−1 .

Inequality (2.9) is a generalized Sobolev inequality, since when k = 1 inequality (2.9) is just
the optimal Sobolev inequality. See for example [20]. For another Sobolev inequalities, see also
[3] and [7].

3. Relationship between various geometric quantities

The Gauss-Bonnet curvatures Lk, and hence
∫

Σ Lk are intrinsic geometric quantities, which
depend only on the induced metric g on Σ and do not depend on the embeddings of (Σ, g).
Lemma 3.2 and Lemma 3.3 below imply that σ2k,

∫
σ2k and W2k+1 are also intrinsic. σ2k+1,∫

σ2k+1 and W2k are extrinsic. The functionals
∫

Σ Lk are new geometric quantities for the
study of the integral geometry in Hn. In this section we present the relationship between these
geometric quantities.

We first have a relation between Lk and σk.

Lemma 3.1. For a hypersurface (Σ, g) in Hn, its Gauss-Bonnet curvature Lk can be expressed
by higher order mean curvatures

Lk = C2k
n−1(2k)!

k∑
i=0

Cik(−1)ip2k−2i.(3.1)

Hence we have∫
Σ
Lk = C2k

n−1(2k)!

k∑
i=0

Cik(−1)i
∫

Σ
p2k−2i = C2k

n−1(2k)!

k∑
i=0

(−1)i
Cik

C2k−2i
n−1

∫
Σ
σ2k−2i.(3.2)

Proof. First recall the Gauss formula

Rij
kl = (hi

khj
l − hilhjk)− (δi

kδj
l − δilδjk),



HYPERBOLIC ALEXANDROV-FENCHEL INEQUALITIES II 9

where hi
j := gikhkj and h is the second fundamental form. Then substituting the Gauss formula

above into (1.1) and recalling (2.1), we have by a straightforward calculation,

Lk =
1

2k
δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−1i2k

j2k−1j2k

= δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

(hi1
j1hi2

j2 − δi1j1δi2j2) · · · (hi2k−1

j2k−1hi2k
j2k − δi2k−1

j2k−1δi2k
j2k)

=

k∑
i=0

Cik(−1)i(n− 2k)(n− 2k + 1) · · · (n− 1− 2k + 2i)
(
(2k − 2i)!σ2k−2i

)
= C2k

n−1(2k)!
k∑
i=0

Cik(−1)ip2k−2i.

Here in the second equality we use the symmetry of generalized Kronecker delta and in the third
equality we use (2.1) and the basic property of generalized Kronecker delta

δ
i1i2···ip−1ip
j1j2···jp−1jp

δi1
j1 = (n− p)δi2i3···ipj2j3···jp ,(3.3)

which follows from the Laplace expansion of determinant.
�

Motivated by the expression (3.1), we introduce the following notations,

(3.4) L̃k =
k∑
i=0

Cik(−1)ip2k−2i, Ñk =
k∑
i=0

Cik(−1)ip2k−2i+1.

It is clear that

Lk = (2k)!C2k
n−1L̃k, Nk = (2k)!C2k

n−1Ñk.

Lemma 3.2. We have

(3.5) σ2k = C2k
n−1p2k = C2k

n−1

( k∑
i=0

CikL̃i

)
,

and hence ∫
Σ
σ2k = C2k

n−1

k∑
i=0

Cik

∫
Σ
L̃i =

1

(2k)!

k∑
i=0

Cik

∫
Σ
Li.

To show Theorem 1.3 below, we need

Lemma 3.3. The quermassintegral W2k+1 can be expressed in terms of integral of L̃i

(3.6) W2k+1(Ω) =
1

n

k∑
i=0

Cik
n− 1− 2k

n− 1− 2k + 2i

∫
Σ
L̃k−i.
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Proof. We use the induction argument to show (3.6). When k = 0, we have by (1.17) that
W1(Q) = 1

n |Σ|. We then assume that (3.6) holds for k − 1, that is

W2k−1(Ω) =
1

n

k−1∑
j=0

Cjk−1

n+ 1− 2k

n+ 1− 2k + 2j
L̃k−1−j

=
1

n

∫
Σ

k∑
i=1

Ci−1
k−1

n+ 1− 2k

n− 1− 2k + 2i
L̃k−i.(3.7)

By (1.17) and (3.5), we have

W2k+1(Ω) =
1

n

∫
Σ
p2k −

2k

n− 2k + 1
W2k−1(Ω)

=
1

n

∫
Σ

k∑
i=0

CikL̃i −
2k

n− 2k + 1
W2k−1(Ω).

Substituting (3.7) into above, one immediately obtains (3.6) for k. Thus we complete the
proof. �

One can also show the following relation between the quermassintegrals and the curvature
integrals.

Lemma 3.4.

W2k+1(Ω) =
1

n

k∑
j=0

(−1)j
(2k)!!(n− 2k − 1)!!

(2k − 2j)!!(n− 2k − 1 + 2j)!!

1

C2k−2j
n−1

∫
Σ
σ2k−2j ,(3.8)

where

(2k − 1)!! := (2k − 1)(2k − 3) · · · 1 and (2k)!! := (2k)(2k − 2) · · · 2.

Proof. One can show this relation by a direct computation. See also [24] or [29]. �

4. Monotonicity

In this section we prove the monotonicity of functional Q under inverse curvature flow. First,

we have the variational formula for
∫
L̃k.

Lemma 4.1. Along the inverse flow (2.7), we have

(4.1)
d

dt

∫
Σ
L̃k = (n− 1− 2k)

∫
L̃k + (n− 1− 2k)

∫
Σ

(
Ñk

p2k−1

p2k
− L̃k

)
.
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Proof. It follows from (2.6) that along the inverse flow (2.4), we have

d

dt

∫
Σ
L̃k =

∫
Σ

k∑
i=0

Cik(−1)i
((
n− 1− 2k + 2i

)
p2k−2i+1 + 2(k − i)p2k−2i−1

)
F

=

∫
Σ

k∑
i=0

Cik(−1)i
(
n− 1− 2k + 2i

)
p2k−2i+1F +

∫ k∑
j=1

Cj−1
k (−1)j−12(k − j + 1)p2k−2j+1F

=

∫
Σ

k∑
i=0

Cik(−1)i
(
n− 1− 2k

)
p2k−2i+1F +

∫
Σ

k∑
j=1

2(−1)j
(
Cjkj − C

j−1
k (k − j + 1)

)
p2k−2j+1F

=(n− 1− 2k)

∫
Σ

k∑
i=0

Cik(−1)ip2k−2i+1

=(n− 1− 2k)

∫
Σ
ÑkF

=(n− 1− 2k)

∫
Σ
L̃k + (n− 1− 2k)

∫ (
ÑkF − L̃k

)
.

Substituting F =
p2k−1

p2k
into above, we get the desired result. �

In order to show the monotonicity of the functional Q defined in (1.21) under the inverse flow
(2.7), we need to show the non-positivity of the last term in (4.1). That is

p2k−1

p2k
Ñk − L̃k ≤ 0.(4.2)

When k = 1, (4.2) is just
p1

p2
(p3 − p1)− (p2 − 1) ≤ 0,

which follows from the Newton-Maclaurin inequalities in Lemma 2.1. In fact, it is clear that

p1

p2
(p3 − p1)− (p2 − 1) = (

p1p3

p2
− p2) + (1− p2

1

p2
).

Hence the non-positivity follows, for both terms are non-positive, by Lemma 2.1. This was used
in [22]. When k ≥ 2, the proof of (4.2) becomes more complicated. When k = 2, one needs to
show the non-positivity of

(4.3)
p3

p4
(p5 − 2p3 + p1)− (p4 − 2p2 + 1) =

(
p3

p4
p5 − p4

)
+ 2

(
p2 −

p2
3

p4

)
+

(
p3

p4
p1 − 1

)
.

By Lemma 2.1, the first two terms are non-positive, but the last term is non-negative. It was
showed in [15] that (4.3) is non-positive if κ ∈ Rn−1 satisfying

(4.4) κ ∈ {κ = (κ1, κ2, · · · , κn−1) ∈ Rn−1 |κi ≥ 1}.

We want to show that (4.2) is true for general k ≤ 1
2(n − 1). This is one of key points of this

paper. Now the case is more complicated than the case k = 2.
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Proposition 4.2. For any κ satisfying (4.4), we have

p2k−1

p2k
Ñk − L̃k ≤ 0.(4.5)

Equality holds if and only if one of the following two cases holds

either (i)κi = κj ∀ i, j, or (ii)∃ i with κi < 1 &κj = 1 ∀j 6= i.(4.6)

We sketch the proof into several steps. Before the proof, we introduce the notation of
∑
cyc

to

simplify notations. Precisely, given n−1 numbers (κ1, κ2, · · · , κn−1), we denote
∑
cyc
f(κ1, · · · , κn−1)

the cyclic summation which takes over all different terms of the type f(κ1, · · · , κn−1). For in-
stance, ∑

cyc

κ1 = κ1 + κ2 + · · ·+ κn−1,
∑
cyc

κ2
1κ2 =

n−1∑
i=1

(
κ2
i

∑
j 6=i

κj

)
,

∑
cyc

κ1(κ2 − κ3)2 =
n−1∑
i=1

(
κi

∑
1≤j<k≤n−1

j,k 6=i

(κj − κk)2

)
,

= (n− 3)
∑
cyc

κ1κ
2
2 − 6

∑
cyc

κ1κ2κ3.

Lemma 4.3. For any κ satisfying (4.4), we have

(4.7) Ñk − p1L̃k ≤ 0.

Equality holds if and only if one of the following two cases holds

either (i)κi = κj ∀ i, j, or (ii) ∃ i with κi > 1 &κj = 1 ∀j 6= i.

Proof. It is crucial to observe that (4.7) is indeed equivalent to the following inequality:∑
1≤im≤n−1,ij 6=il(j 6=l)

κi1(κi2κi3 − 1)(κi4κi5 − 1) · · · (κi2k−2
κi2k−1

− 1)
(
κi2k − κi2k+1

)2 ≥ 0,(4.8)

where the summation takes over all the (2k+ 1)-elements permutation of {1, 2, · · · , n− 1}. For
the convenience of the reader, we sketch the proof of (4.8) briefly. First, note that from (3.4)
that

(p1L̃k − Ñk) = p1

k∑
i=0

Ck−ik (−1)k−ip2i −
k∑
i=0

Ck−ik (−1)k−ip2i+1

=
k∑
i=0

(−1)k−iCik(p1p2i − p2i+1).

Next we calculate each term p1p2i − p2i+1 carefully. By using

(n− 1)Cjn−1 = (j + 1)Cj+1
n−1 + (n− 1)Cj−1

n−1),
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we have

σjσ1 =

(∑
cyc

κi1κi2 · · ·κij
)(∑

cyc

κij+1

)
= (j + 1)

(∑
cyc

κi1κi2 · · ·κijκij+1

)
+
∑
cyc

κ2
i1κi2 · · ·κij ,

and

p1p2j − p2j+1

=
1

(n− 1)C2j
n−1

(∑
cyc

κi1κi2 · · ·κi2j
)(∑

cyc

κi2j+1

)
− 1

C2j+1
n−1

∑
cyc

κi1κi2 · · ·κi2j+1

=
1

(n− 1)C2j
n−1C

2j+1
n−1

(
C2j+1
n−1 (2j + 1)

∑
cyc

κi1κi2 · · ·κi2jκi2j+1 + C2j+1
n−1

∑
cyc

κ2
i1κi2 · · ·κi2j

−(n− 1)C2j
n−1

∑
cyc

κi1κi2 · · ·κi2j+1

)
=

1

(n− 1)C2j
n−1C

2j+1
n−1

·
C2j+1
n−1

n− 2j

∑
cyc

κi1κi2 · · ·κi2j−1(κi2j − κi2j+1)2

=
(2j)!(n− 2j − 2)!

(n− 1) · (n− 1)!

∑
cyc

κi1κi2 · · ·κi2j−1(κi2j − κi2j+1)2.

In (4.8), the coefficient of κ1κ2 · · ·κ2j−1(κ2j − κ2j+1)2 is

2(−1)k−jCj−1
k−1(2j − 1)!C2k−2j

n−2j−2[2(k − j)]! =
(−1)k−j

k
Cjk(2j)!(n− 2j − 2)!

= (−1)k−jCjk
(2j)!(n− 2j − 2)!

(n− 1) · (n− 1)!
· (n− 1) · (n− 1)!

k
.

Therefore we have

0 ≤
∑

1≤im≤n−1,ij 6=il(j 6=l)

κi1(κi2κi3 − 1)(κi4κi5 − 1) · · · (κi2k−2
κi2k−1

− 1)
(
κi2k − κi2k+1

)2
=

(n− 1) · (n− 1)!

k

k∑
j=0

(−1)k−jCjk(p1p2j − p2j+1)

=
(n− 1) · (n− 1)!

k
(p1L̃k − Ñk).

This finishes the proof. �

In view of (4.8), we have the following remark which will be used later.

Remark 4.4. For any κ = (κ1, · · · , κn−1) satisfying 0 < κi ≤ 1, (i = 1, · · · , n − 1), then

(−1)k−1
(
Ñk − p1L̃k

)
≤ 0.
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Lemma 4.5. For any κ satisfying (4.4), we have

Ñk ≥ 0, L̃k ≥ 0.

Proof. They are equivalent to the following inequalities respectively:∑
1≤im≤n−1,ij 6=il(j 6=l)

κi1(κi2κi3 − 1)(κi4κi5 − 1) · · · (κi2k−2
κi2k−1

− 1)(κi2kκi2k+1
− 1) ≥ 0,(4.9)

∑
1≤im≤n−1,ij 6=il(j 6=l)

(κi2κi3 − 1)(κi4κi5 − 1) · · · (κi2k−2
κi2k−1

− 1)(κi2kκi2k+1
− 1) ≥ 0.(4.10)

where the summation takes over all the (2k+ 1)-elements permutation of {1, 2, · · · , n− 1}. The
proof to show the equivalence of (4.9),(4.10) is exactly the same as the one of (4.8). Hence we
omit it here. �

Remark 4.6. For any κ = (κ1, · · · , κn−1) satisfying 0 < κi ≤ 1, (i = 1, · · · , n − 1), then

(−1)kÑk ≥ 0, (−1)kL̃k ≥ 0.

Making use of Lemma 4.3 and Remark 4.4, we can show the following result which is stronger
than Proposition 4.2.

Lemma 4.7. For any κ satisfying (4.4), we have

p2kÑk − p2k+1L̃k ≤ 0.

Proof. According to the induction argument proved in [15] (see p.8), we only need to prove it
for n− 1 = 2k + 1. Let zi = 1

κi
≤ 1, and

p̂i = pi(z1, z2, · · · , z2k+1).

It is clear that

p̂j =
p2k+1−j
p2k+1

.(4.11)

By Remark 4.4, we have

(−1)k−1
k∑
i=0

Cik(−1)ip̂2k−2i+1 − (−1)k−1p̂1

k∑
i=0

Cik(−1)ip̂2k−2i ≤ 0,(4.12)

which is equivalent to

(−1)k−1
k∑
i=0

Cik(−1)i
p2i

p2k+1
− (−1)k−1 p2k

p2k+1

k∑
i=0

Cik(−1)i
p2i+1

p2k+1
≤ 0.(4.13)

Thus we have

k∑
i=0

Cik(−1)k−ip2i −
p2k

p2k+1

k∑
i=0

Cik(−1)k−ip2i+1 ≥ 0,(4.14)

which implies p2k
p2k+1

Ñk − L̃k ≤ 0. �
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Proof of Proposition 4.2. Then by the Newton-MacLaurin inequality p2k−1p2k+1 ≤ p2
2k, we

obtain
p2k−1

p2k
Ñk − L̃k ≤

p2k

p2k+1
Ñk − L̃k ≤ 0,

which is exactly (4.5). Here we have used Lemma 4.5. �

Remark 4.8. Proposition 4.2 holds for κ ∈ Rn−1 with κiκj ≥ 1 for any i, j. This is equivalent
to the condition that the sectional curvature of Σ is non-negative.

Remark 4.9. From the proof of Proposition 4.2, it is easy to see that (4.5) has an inverse
inequality for κ ∈ Rn−1 with 0 ≤ κi ≤ 1.

Now we have a monotonicity of Q(Σt) defined by (1.21) under the flow (2.7).

Theorem 4.10. Functional Q is non-increasing under the flow (2.7), provided that the initial
surface is horospherical convex.

Proof. It follows from (3.1), (3.4) and Proposition 4.2 that

(4.15)
d

dt

∫
Σ
Lk ≤ (n− 1− 2k)

∫
Σ
Lk.

On the other hand, by (2.6) and (2.3), we also have

(4.16)
d

dt
|Σt| =

∫
Σt

p2k−1

p2k
(n− 1)p1dµ ≥ (n− 1)|Σt|.

Combining (4.15) and (4.16) together, we complete the proof.
�

Remark 4.11. From the above proof, one can check that to obtain a monotonicity of Q it is
enough to choose F = 1

p1
. Then from (4.1) and (4.7), it holds for all k

d

dt

∫
L̃k =(n− 2k − 1)

∫
L̃k + (n− 2k − 1)

( 1

p1
Ñk − L̃k

)
≤(n− 2k − 1)

∫
L̃k.

5. Proof of main Theorems

Now we are ready to show our main theorems.

Proof of Theorem 1.1. First recall the definition (1.21) of the functional Q , (1.13) is equivalent
to

(5.1) Q(Σ) ≥ C2k
n−1(2k)! ω

2k
n−1

n−1 .

Let Σ(t) be a solution of flow (2.7) obtained by the work of Gerhardt [16]. This flow preserves
the horospherical convexity and non-increases for the functional Q. Hence, to show (5.1) we
only need to show

(5.2) lim
t→∞

Q(Σt) ≥ C2k
n−1(2k)! ω

2k
n−1

n−1 .
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Since Σ is a horospherical convex hypersurface in (Hn, ḡ), it is written as graph of function
r(θ), θ ∈ Sn−1. We denote X(t) as graphs r(t, θ) on Sn−1 with the standard metric ĝ. We set
λ(r) = sinh(r) and we have λ′(r) = cosh(r). It is clear that

(λ′)2 = (λ)2 + 1.

We define ϕ(θ) = Φ(r(θ)). Here Φ verifies

Φ′ =
1

λ
.

We define another function

v =
√

1 + |∇ϕ|2ĝ.

By [16], we have the following results.

Lemma 5.1.

λ = O(e
t

n−1 ), |∇ϕ|+ |∇2ϕ| = O(e−
t

n−1 ).

From Lemma (5.1), we have the following expansions:

λ′ = λ(1 +
1

2
λ−2) +O(e−

4t
n−1 ),(5.3)

and

1

v
= 1− 1

2
|∇ϕ|2ĝ +O(e−

4t
n−1 ).(5.4)

We have also

∇λ = λλ′∇ϕ.(5.5)

The second fundamental form of Σ is written in an orthogonal basis (see [10] for example)

hi
j =

λ′

vλ

(
δi
j − ϕi

j

λ′
+
ϕiϕlϕ

jl

v2λ′

)
= δi

j + (
1

2λ2
− 1

2
|∇ϕ|2)δi

j − ϕi
j

λ
+O(e−

4t
n−1 ),

where the second equality follows from (5.3) and (5.4). We set

Ti
j = (

1

2λ2
− 1

2
|∇ϕ|2)δi

j − ϕi
j

λ
,(5.6)

then from the Gauss equations, we obtain

Rij
kl = −(δi

kδj
l − δilδjk) + (hi

khj
l − hilhjk)

= δi
kTj

l + Ti
kδj

l − Tilδjk − δilTjk +O(e−
4t

n−1 ).
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It follows from (1.1) that

Lk = 1
2k
δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−1i2k

j2k−1j2k

= 2kδ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ti1
j1δi2

j2 · · ·Ti2k−1
j2k−1δi2k

j2k +O(e−
(2k+2)t
n−1 )

= 2k(n− 1− k) · · · (n− 2k)δ
i1i3···i2k−1

j1j3···j2k−1
Ti1

j1Ti3
j3 · · ·Ti2k−1

j2k−1 +O(e−
(2k+2)t
n−1 )

= 2kk!(n− 1− k) · · · (n− 2k)σk(T ) +O(e−
(2k+2)t
n−1 ).

Here in the second equality we use the fact

δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ti1
j1δi2

j2 = δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

δi1
j1Ti2

j2

= −δi1i2···i2k−1i2k
j1j2···j2k−1j2k

Ti1
j2δi2

j1 = −δi1i2···i2k−1i2k
j1j2···j2k−1j2k

δi1
j2Ti2

j1 ,

and in the third equality we use (2.1) and (3.3).
Recall ϕi = λi/λλ

′, then by (5.3) we have

ϕij =
λij
λ2
− 2λiλj

λ3
+O(e−

3t
n−1 ).(5.7)

By the definition of the Schouten tensor,

Aĝ =
1

n− 3

(
Ricĝ −

Rĝ
2(n− 2)

ĝ

)
=

1

2
ĝ.

Its conformal transformation formula is well-known (see for example [30])

(5.8) Aλ2ĝ = −∇
2λ

λ
+

2∇λ⊗∇λ
λ2

− 1

2

|∇λ|2

λ2
ĝ +Aĝ = −∇

2λ

λ
+

2∇λ⊗∇λ
λ2

− 1

2

|∇λ|2

λ2
ĝ +

1

2
ĝ.

Substituting (5.5) and (5.7) into (5.6), together with (5.8), we have

Ti
j = ((λ2ĝ)−1Aλ2ĝ)i

j
+O(e−

4t
n−1 ),

which implies

Lk = 2kk!(n− 1− k) · · · (n− 2k)σk(Aλ2ĝ) +O(e−
(2k+2)t
n−1 ).(5.9)

As before, Σ(t) is a horospherical convex hypersurface. As a consequence, Σ has the nonnegative

sectional curvature so that T + O(e−
4t

n−1 ) is positive definite. We consider λ̃ := λ1−e−
t

n−1
and

the conformal metric λ̃2ĝ. We have

λ̃2(λ̃2ĝ)−1Aλ̃2ĝ =
1

2
e−

t
n−1 I +

1

2
e−

t
n−1 (1− e−

t
n−1 )
|∇λ|2

λ2
I − e−

t
n−1 (1− e−

t
n−1 )ĝ−1∇λ⊗∇λ

λ2

+λ2(1− e−
t

n−1 )(λ2ĝ)−1Aλ2ĝ.

Recall 1
2e
− t

n−1 I + λ2(1− e−
t

n−1 )(λ2ĝ)−1Aλ2ĝ ∈ Γ+
n−1 for the sufficiently large t and 1

2e
− t

n−1 (1−
e−

t
n−1 ) |∇λ|

2

λ2 I−e−
t

n−1 (1−e−
t

n−1 )ĝ−1∇λ⊗∇λ
λ2 ∈ Γ+

k for any k ≤ n−1
2 . Therefore, we infer λ̃2ĝ ∈ Γ+

k

for any k ≤ n−1
2 . The Sobolev inequality (2.9) for the σk operator gives

(vol(λ̃2ĝ))−
n−1−2k

n−1

∫
Sn−1

σk(Aλ̃2ĝ)dvolλ̃2ĝ ≥
(n− 1) · · · (n− k)

2kk!
ω

2k
n−1

n−1 .(5.10)
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On the other hand, we have

(vol(λ̃2ĝ))−
n−1−2k

n−1
∫
Sn−1 σk(Aλ̃2ĝ)dvolλ̃2ĝ

= (1 + o(1))(vol(λ2ĝ))−
n−1−2k

n−1
∫
Sn−1 σk(Aλ2ĝ)dvolλ2ĝ,

(5.11)

since

λ−e
− t

n−1
= 1 + o(1).

As a consequence of (5.9),(5.10) and (5.11), we deduce

lim
t→+∞

(vol(Σ(t)))−
n−1−2k

n−1

∫
Σ(t)

Lk ≥ (n− 1)(n− 2) · · · (n− 2k)ω
2k

n−1

n−1 .

When (5.1) is an equality, then Q is constant along the flow. Then (4.16) is an equality, which
implies that equality in the inequality

p2k−1

p2k
p1 ≥ 1,

holds. Therefore, Σ is a geodesic sphere. �

Proof of Theorem 1.2. It follows from (3.1), (3.4) and Theorem 1.1 that when n− 1 > 2k

(5.12)

∫
Σ
L̃k ≥ ω

2k
n−1

n−1 (|Σ|)
n−1−2k

n−1 .

Using the expression (3.5) of
∫

Σ σk in terms of
∫

Σ L̃j we get the desired result

∫
Σ
σ2k ≥ C2k

n−1ωn−1

{(
|Σ|
ωn−1

) 1
k

+

(
|Σ|
ωn−1

) 1
k

n−1−2k
n−1

}k
.

By Theorem 1.1, equality holds if and only if Σ is a geodesic sphere.
When n − 1 = 2k, since the hypersurface Σ is convex. we know that (1.13) is an equality

when n− 1 = 2k by the Gauss-Bonnet-Chern theorem, even for any hypersurface diffeomorphic
to a sphere. Hence in this case, we also have all the above inequalities with equality which in
turn implies by [22] or [15] that Σ is a geodesic sphere. �

Proof of Theorem 1.3. When n− 1 > 2k, the proof follows directly from (5.12) and Lemma 3.3.
When n− 1 = 2k, the proof follows by the same reason as in Theorem 1.2. �

From (1.17), it is easy to see that Theorem 1.3 implies Theorem 1.2, meanwhile Theorem 1.2
may not directly imply Theorem 1.3, since there are negative coefficients in (3.8) above.

6. Alexandrov-Fenchel inequality for odd k

In this section, we show an Alexandrov-Fenchel inequality for σ1, which follows from the result
of Cheng-Zhou [8] and Theorem 1.2 (or more precisely from [22]).
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Theorem 6.1. Let n ≥ 2. Any horospherical convex hypersurface Σ ⊂ Hn satisfies

(6.1)

∫
Σ
σ1 ≥ (n− 1)ωn−1

{(
|Σ|
ωn−1

)2

+

(
|Σ|
ωn−1

) 2(n−2)
n−1

} 1
2

.

where ωn−1 is the area of the unit sphere Sn−1 and |Σ| is the area of Σ. Equality holds if and
only if Σ is a geodesic sphere.

Proof. Notice that the horospherical convex condition implies that the Ricci curvature of Σ is
non-negative. We observe first that by a direct computation (1.4) in [8]∫

Σ
|H −H|2 ≤ n− 1

n− 2

∫
Σ
|B − H

n− 1
g|2,

is equivalent to ∫
Σ
σ2

∫
Σ
σ0 ≤

n− 2

2(n− 1)

( ∫
Σ
σ1

)2
.(6.2)

Then we use the optimal inequality for σ2 proved in [22] (see also Theorem 1.2),∫
Σ
σ2 ≥

(n− 1)(n− 2)

2

(
ω

2
n−1

n−1 |Σ|
n−3
n−1 + |Σ|

)
,(6.3)

to obtain the desired inequality for σ1,∫
Σ
σ1 ≥ (n− 1)ωn−1

{(
|Σ|
ωn−1

)2

+

(
|Σ|
ωn−1

) 2(n−2)
n−1

} 1
2

.

When (6.1) is an equality, in turn, (6.3) is also a equality, then it follows from [22] that the
hypersurface is a geodesic sphere. �

Motivated by Theorem 1.2 and (6.2), we would like propose the following

Conjecture 6.2. Let n− 1 ≥ 2k + 1. Any horospherical convex hypersurface Σ ⊂ Hn satisfies∫
Σ
σ2k+1 ≥ C2k+1

n−1 ωn−1

{(
|Σ|
ωn−1

) 2
2k+1

+

(
|Σ|
ωn−1

) 2
2k+1

(n−2k−2)
n−1

} 2k+1
2

.

Equality holds if and only if Σ is a geodesic sphere.

The conjecture follows from Theorem 1.2 and the following conjecture

(6.4)

(
C2k+1
n−1

)2
C2k+2
n−1 C

2k
n−1

∫
Σ
σ2k+2

∫
Σ
σ2k ≤

(∫
Σ
σ2k+1

)2

.
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im n-dimensionalen sphärischen Raum. (German) Math. Z. 46, (1940), 743–794.
[27] R. Schneider, Convex bodies: The Brunn-Minkowski theory, Cambridge University, (1993). MR1216521.
[28] G. Solanes, Integral geometry and the Gauss-Bonnet theorem in constant curvature spaces, Trans. Amer.

Math. Soc. 358 (2006), no. 3, 1105–1115.
[29] G. Solanes, Integrals de curvatura i geometria integral a l’espai hiperbolic, Univ. Aut. Barcelona, PhD

Thesis, 2003.



HYPERBOLIC ALEXANDROV-FENCHEL INEQUALITIES II 21

[30] J. Viaclovsky, Conformal geometry, contact geometry, and the calculus of variations, Duke Math. J. 101
(2000), no. 2, 283–316.
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