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1. Introduction

One of the important results in differential geometry is the Riemannian positive mass theorem
(PMT): Any asymptotically flat Riemannian manifold Mn with a suitable decay order and with
nonnegative scalar curvature has nonnegative ADM mass. This theorem was proved by Schoen
and Yau [50] for manifolds of dimension n ≤ 7 using a minimal hypersurface argument and
by Witten [57] for any spin manifold. See also [44]. For locally conformally flat manifolds the
proof was given in [51] using the developing map. Very recently, the PMT was proved for all
asymptotically flat Riemannian manifold Mn which are represented by a graph in Rn+1 by Lam
[35]. For general higher dimensional manifolds, the proof of the positive mass theorem was
announced by Lohkamp [40] by an argument extending the minimal hypersurface argument of
Schoen and Yau and by Schoen in [49]. There are many generalizations of the positive mass
theorem. For example, a refinement of the PMT, the Riemannian Penrose inequality is proved
by Huisken-Ilmanen [33] and Bray [4] for n = 3 and by Bray and Lee [3] for n ≤ 7. See the
excellent surveys on the Riemannian Penrose inequality of Bray [5] and Mars [42].

The ADM mass was introduced by Arnowitt, Deser, and Misner [1] for asymptotically flat
Riemannian manifolds. A complete manifold (Mn, g) is said to be an asymptotically flat(AF) of
order τ (with one end) if there is a compact K such that M\K is diffeomorphic to Rn \BR(0)
for some R > 0 and in the standard coordinates in Rn, the metric g has the following expansion

gij = δij + σij

with
|σij |+ r|∂σij |+ r2|∂2σij | = O(r−τ ),

where r and ∂ denote the Euclidean distance and the standard derivative operator on Rn re-
spectively. The ADM mass is defined by

(1.1) m1(g) := mADM :=
1

2(n− 1)ωn−1
lim

r→∞

∫

Sr

(gij,i − gii,j)njdS,

where ωn−1 is the volume of (n− 1)-dimensional standard unit sphere and Sr is the Euclidean
coordinate sphere, dS is the volume element on Sr induced by the Euclidean metric, n is the
outward unit normal to Sr in Rn and the derivative is the ordinary partial derivative.

In a seminal paper Bartnik [2] proved that the ADM mass is well-defined for asymptotically
flat Riemannian manifolds with a suitable decay order τ and it is a geometric invariant. Precisely,
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it does not depend on the choice of the coordinates, provided

(1.2) τ >
n− 2

2
.

With this restriction, the ADM mass cannot be defined for many other interesting asymptotically
flat Riemannian manifolds. For example, the following metric

(1.3) g
(2)
Sch =

(
1− 2m

r
n
2
−2

)−1

dr2 + r2dΘ2 =
(

1 +
m

2r
n−4

2

) 8
n−4

gRn ,

plays an important role as the Schwarzschild metric in the (pure) Gauss-Bonnet gravity [12]. Its
decay order is n−4

2 , which is smaller than n−2
2 . Here dΘ2 is the standard metric on Sn−1. For

the discussion of this metric and more general Schwarzschild type metrics, see Section 6 below.
It is well-known that the ADM mass is very closely related to the scalar curvature. In fact,

on an asymptotically flat manifold with decay order τ , the scalar curvature has the following
expression [48]

R(g) = ∂j(gij,i − gii,j) + O(r−2τ−2).
From this expression one can check that

lim
r→∞

∫

Sr

(gij,i − gii,j)njdS

is well defined, provide that τ > n−2
2 and R is integrable. This term gives the ADM mass

after a normalization. From this interpretation one can easily see the mathematical meaning of
the ADM mass. This also motivates us to introduce a new mass by using the following second
Gauss-Bonnet curvature1

L2 = RµνρσRµνρσ − 4RµνR
µν + R2 = |W |2 + 8(n− 2)(n− 3)σ2,

where W is the Weyl tensor and σ2 is the so-called σ2-scalar curvature. More discussion about
the Gauss-Bonnet curvature and the σ2-scalar curvature will be given in the next section. In
this paper we use the Einstein summation convention.

Definition 1.1 (Gauss-Bonnet-Chern Mass). Let n ≥ 5. Suppose (Mn, g) is an asymptotically
flat manifold of decay order

(1.4) τ >
n− 4

3
,

and the second Gauss-Bonnet curvature given by L2 = RijklR
ijkl− 4RijRij + R2 is integrable in

(Mn, g). We define the Gauss-Bonnet-Chern mass-energy by

(1.5) m2(g) := mGBC(g) = c2(n) lim
r→∞

∫

Sr

P ijkl∂lgjknidS,

where c2(n) = 1
2(n−1)(n−2)(n−3)ωn−1

, n is the outward unit normal to Sr, dS is the area element
of Sr and the tensor P is defined

P ijkl = Rijkl + Rjkgil −Rjlgik −Rikgjl + Rilgjk +
1
2
R(gikgjl − gilgjk).

1The second named author would like to thank Professor Schoen for his suggestion to use this way to define a
mass by using the σk-curvature (k ≥ 2) in Toronto in 2005.



GAUSS-BONNET-CHERN MASS 3

We remark that when n = 4 one can also define the m2 mass, but in this case (i.e., n = 4) m2

always vanishes. See also the discussion in Section 7. In fact one easily check that m2 vanishes
for asymptotically flat manifolds of decay decay order larger than n−4

2 . Hence the ordinary
Schwarzschild metric

g
(1)
Sch =

(
1− 2m

rn−2

)−1

dr2 + r2dΘ2 =
(

1 +
m

2rn−2

) 4
n−4

gRn

considered in the Einstein gravity have a vanishing GBC mass whenever it can be defined, for
it has a decay order τ = n − 2 > n−4

2 . For the metric given in (1.3) one can check that the
Gauss-Bonnet mass m2(g) = m2, which is positive. See Section 6 below.

Our work is partly motivated by the study of the σ2-curvature and partly by the study of
Einstein-Gauss-Bonnet gravity, in which there is a similar mass defined for the Gauss-Bonnet

(1.6) R + Λ + αL2,

where Λ is the cosmological constant and α is a parameter. In contrast, if one considers only
the term L2, it is called the pure Gauss-Bonnet, or pure Lovelock gravity in physics. The study
of Einstein-Gauss-Bonnet gravity was initiated by the work of Boulware, Deser, Wheeler [6],
[56]. A mass for (1.6) was introduced by Deser-Tekin [23] and [24]. See also [21],[43],[11] and
especially [12] and references therein.

Similar to the work of Bartink for the ADM mass we first show that the GBC mass m2 is a
geometric invariant in the following

Theorem 1.2. Suppose (Mn, g)(n ≥ 5) is an asymptotically flat manifold of decay order τ >
n−4

3 and the second Gauss-Bonnet curvature L2 is integrable in (Mn, g), then the Gauss-Bonnet-
Chern mass m2 is well-defined and does not depend the choice of the asymptotical coordinates
used in the definition.

Now it is a natural question to ask:

Is the GBC mass m2 nonegative when the Gauss-Bonnet curvature L2 is nonnegative?

Due to the lack of methods, we can not yet attack this question for a general asymptotically
flat manifold. Instead, we leave this question as a conjecture and provide a strong support in
the following result. Precisely, the problem has an affirmative answer, if the asymptotically flat
manifold Mn can be embedded in Rn+1 as a graph over Rn.

Definition 1.3. Let f : Rn → R be a smooth function and let fi, fij and fijk denote the first,
the second and the third derivative of f . f is called asymptotically flat of order τ if

fi(x) = O(|x|−τ/2),

|x||fij(x)|+ |x|2|fijk(x)| = O(|x|−τ/2)

at infinity for some τ > (n− 4)/3.



4 YUXIN GE, GUOFANG WANG, AND JIE WU

Theorem 1.4 (Positve Mass Theorem). Let (Mn, g) = (Rn, δ+df⊗df) be the graph of a smooth
asymptotically flat function f : Rn → R. Let L2 , RijklR

ijkl−4RijR
ij +R2 be the Gauss-Bonnet

curvature with respect to g and m2 be the corresponding mass defined in the definition 1.1.Then

m2 =
1

4(n− 1)(n− 2)(n− 3)ωn−1

∫

Mn

L2 · 1√
1 + |∇δf |2

dVg.

Particularly, L2 ≥ 0 yields m2 ≥ 0.

For the more details see Section 4 below. This result is motivated by the recent work of Lam
[35] mentioned above. See also the work in [32], [18] and [19].

Remark 1.5. In this paper, for simplicity we focus on the mass defined by the second Gauss-
Bonnet curvature. From the proof one can easily generalize the results to the mass defined by
the generalized Gauss-Bonnet curvature

Lk =
1
2k

δ
i1i2···i2k−1i2k

j1j2···j2k−1j2k
Ri1i2

j1j2 · · ·Ri2k−1i2k

j2k−1j2k

= P ijlm
k Rijlm

by (2.1) and (7.1) with k < n/2. See the discussion in Section 7.

More interesting is that we have a Penrose type inequality, at least for the graphs.

Theorem 1.6 (Penrose Inequality). Let Ω be a bounded open set in Rn and Σ = ∂Ω. If f :
Rn \ Ω → R is a smooth asymptotically flat function such that each connected component of
f(Σ) is in a level set of f and |∇f(x)| → ∞ as x → Σ. Let Ωi be connected components of
Ω, i = 1, · · · , k and let Σi = ∂Ωi and assume that each Ωi is convex, then

m2 ≥ c2(n)
2

∫

Mn

L2√
1 + |∇f |2 dVg +

k∑

i=1

1
4

( ∫
Σi

R

(n− 1)(n− 2)ωn−1

)n−4
n−3

≥ c2(n)
2

∫

Mn

L2√
1 + |∇f |2 dVg +

k∑

i=1

1
4

( ∫
Σi

H

(n− 1)ωn−1

)n−4
n−2

≥ c2(n)
2

∫

Mn

L2√
1 + |∇f |2 dVg +

k∑

i=1

1
4

( |Σi|
ωn−1

)n−4
n−1

≥ c2(n)
2

∫

Mn

L2√
1 + |∇f |2 dVg +

1
4

( |Σ|
ωn−1

)n−4
n−1

.

In particular, L2 ≥ 0 yields

m2 ≥ 1
4

( ∫
Σ R

(n− 1)(n− 2)ωn−1

)n−4
n−3

≥ 1
4

( |Σ|
ωn−1

)n−4
n−1

.

Moreover, the equalities are achieved by the metric (1.3.)

Our Penrose inequalities are optimal since one can check that equality in the Penrose inequal-
ity is achieved by the metrics (1.3). Also as illustrated in the Remark 6.5, the metric (1.3) can
be realized as the induced metric of a graph.
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Our results open many interesting questions and establish a natural relationship between many
interesting functionals of intrinsic curvatures and extrinsic curvatures, which we will discuss at
the end of this paper.

The rest of the paper is organized as follows. In Section 2 we recall the definitions of the
Gauss-Bonnet curvature and the Lovelock curvature. The new mass is defined and proved being
a geometric invariant in Section 3. In Section 4 we show that the new mass is nonnegative if the
Gauss-Bonnet curvature is nonnegative for graphs. The Penrose type inequality will be proved
in Section 5. In Section 6, we will discuss the metric (1.3), which is an important example and
compute its Gauss-Bonnet mass explicitly. Further generalizations, problems and conjectures
are discussed in Section 7.

2. Lovelock curvatures

In this section, let us recall the work of Lovelock [37] on generalized Einstein tensors. Let

E = Ric− 1
2
Rg

be the Einstein tensor. The Einstein tensor is very important in physics, and certainly also in
mathematics. It admits an important property, namely it is a conversed quantity, i.e.,

Ei
j,i = 0.

In this paper we use the summation convention. In [37] Lovelock studied the classification of
tensors A satisfying

(i) Aij = Aji, i.e., A is symmetric;
(ii) Aij = Aij(gAB, gAB,C , gAB,CD);
(iii) Aij

;j = 0, ie. A is divergence-free;
(iv) Aij is linear in the second derivatives of gAB.

It is clear that the Einstein tensor satisfies all the conditions. In fact, the Einstein tensor is the
unique tensor satisfying all four conditions, up to a multiple constant. Lovelock classified all
2-tensors satisfying (i)–(iii). He proved that any 2-tensor satisfying (i)–(iii) has the form

∑

j

αjE
(j)

with certain constants αj , j ≥ 0, where the 2-tensor E(k) is defined by

E(k)
ij := − 1

2k+1
gαiδ

αi1i2···j2k−1i2k

jj1j2···j2k−1i2k
Ri1i2

j1j2 · · ·Ri2k−1i2k

j2k−1j2k .

Here the generalized Kronecker delta is defined by

δj1j2...jr

i1i2,...ir
= det




δj1
i1

δj2
i1

· · · δjr

i1

δj1
i2

δj2
i2

· · · δjr

i2
...

...
...

...
δj1
ir

δj2
ir

· · · δjr

ir


 .
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As a convention we set E(0) = 1. It is clear to see that E(1) is the Einstein tensor. The tensor
E(k)

ij is a very natural generalization of the Einstein tensor. We call E(k) the k−th Lovelock
curvature and its trace

(2.1) Lk :=
1
2k

δ
i1i2···i2k−1i2k

j1j2···j2k−1j2k
Ri1i2

j1j2 · · ·Ri2k−1i2k

j2k−1j2k

the k-th Gauss-Bonnet curvature, or simply the Gauss-Bonnet curvature. Both have been in-
tensively studied in the Gauss-Bonnet gravity, which is a generalization of the Einstein gravity.
One could check that Lk = 0 if 2k > n. When 2k = n, Lk is in fact the Euler density, which
was studied by Chern [9, 10] in his proof of the Gauss-Bonnet-Chern theorem. See also a nice
survey [58] on the proof of the Gauss-Bonnet-Chern theorem. For k < n/2, Lk is therefore called
the dimensional continued Euler density in physics. The above curvatures have been studied by
many mathematicians and physicists, see for instance Pattersen [45] and Labbi [34].

In this paper we focus on the case k = 2. The results can be generalized to k < n/2. For the
discussion see Section 7. One can also check that

E(2)
µν = 2RRµν − 4RµαRα

ν − 4RαβRα
µ

β
ν + 2RµαβγRν

αβγ − 1
2
gµνL2,

and

L2 =
1
4
δi1i2i3i4
j1j2j3j4

Rj1j2
i1i2R

j3j4
i3i4 = RµνρσRµνρσ − 4RµνR

µν + R2.

L2 is called the Gauss-Bonnet term in physics. A direct computation gives the relation of L2

with σ2-scalar curvature and the Weyl tensor

(2.2)

L2 = |W |2 − 4
n− 3
n− 2

|Ric|2 +
n(n− 3)

(n− 1)(n− 2)
R2

= |W |2 +
n− 3
n− 2

(
n

n− 1
R2 − 4|Ric|2

)

= |W |2 + 8(n− 2)(n− 3)σ2.

Here the σk-scalar curvature σ2 has been intensively studied in the σk-Yamabe problem, which is
first studied by Viaclovsky and Chang-Gursky-Yang. For the study of the σk- Yamabe problem,
see for example the survey of Guan [26] and Viaclovsky [54].

As a generalization of the Einstein metric, the solution of the following equation is called
(string-inspired) Einstein-Gauss-Bonnet metric

E(2)
µν = λgµν .

E(2) was already given by Lanczos [36] in 1938 and is called the Lanczos tensor. If g is such a
metric, it is clear that

λ =
1
n

gµνE(2)
µν =

4− n

2n
L2 =

4− n

2n

(
8(n− 2)(n− 3)σ2(g) + |W |2

)
.

Since E(2) is divergence free, λ must be constant in this case. This is a Schur type result. An
almost Schur lemma for E(k) was proved in [30], which generalizes a result of Andrews, De
Lellis-Topping [22].
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3. The Gauss-Bonnet-Chern Mass

In this section, we will introduce a new mass by using the Gauss-Bonnet curvature for asymp-
totically flat manifolds. This would be compared with the ADM mass which can be defined from
the scalar curvature as told in the introduction. Moreover, following the approach from [2],[41],
we are able to show that this new defined mass is geometrical invariant, i.e. it does not depend
on the choice of asymptotic coordinates at infinity. Recall for a complete Riemannian manifold
(M, g), the Gauss-Bonnet curvature is given by

L2 = RijklR
ijkl − 4RijR

ij + R2.

One ingredient to the main theorems in this section is the observation that the Gauss-Bonnet
curvature has the following decomposition

L2 = RijklP
ijkl,

where

(3.1) P ijkl = Rijkl + Rjkgil −Rjlgik −Rikgjl + Rilgjk +
1
2
R(gikgjl − gilgjk).

This decomposition of L2 will play a crucial role in the following discussion. It is very easy to see
that this (0, 4) tensor P has the same symmetric property as the Riemannian curvature tensor,
precisely,

(3.2) P ijkl = −P jikl = −P ijlk = P klij .

Also one can easily check that P satisfies the first Bianchi identity. Another key ingredient is
to note that P is divergence-free. Before we discuss further, let us clarify the convention for
Riemannian curvature first:

Rijkl = Rm
ijlgmk, Rik = gjlRijkl = Rj

jik,

Rijk
m = Rijksgms, Rij

k
m = Rijsmgks.

Lemma 3.1.
∇iP

ijkl = ∇jP
ijkl = ∇kP

ijkl = ∇lP
ijkl = 0.

Proof. This lemma follows directly from the differential Bianchi identity.

∇iP
ijkl = −∇kRijl

i −∇lRij
i
k +∇lRjk −∇kRjl

−1
2
∇kRgjl +

1
2
∇lRgjk +

1
2
∇iR(gikgjl − gilgjk)

= ∇kRjl −∇lRjk +∇lRjk −∇kRjl − 1
2
∇kRgjl +

1
2
∇lRgjk

+
1
2
∇kRgjl − 1

2
∇lRgjk

= 0.

The rest follows from the symmetry property (3.2) of P . ¤
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This divergence-free property of P was observed already in physic’s literature, see for instance
[17]. In view of Lemma 3.1, we are able to derive the corresponding expression of the mass-energy
in the Einstein Gauss-Bonnet gravity. We observe that for the asymptotically flat manifolds, the
Gauss-Bonnet curvature can be expressed as a divergence term beside some terms with faster
decay. First, in the local coordinates, the curvature tensor is expressed as

Rm
ijk = ∂iΓm

jk − ∂jΓm
ik + Γm

isΓ
s
jk − Γm

jsΓ
s
ik.

Then by the divergence-free property of P and the fact that the quadratic terms of Christoffel
symbols has faster decay, we compute

L2 = RijklP
ijkl = gkmRm

ijlP
ijkl

= gkm(∂iΓm
jl − ∂jΓm

il )P
ijkl + O(r−4−3τ )

= gkm

[
∇i(Γm

jl P
ijkl)−∇j(Γm

il P
ijkl)

]
+ O(r−4−3τ )

=
1
2
∇i

[
(gjk,l + gkl,j − gjl,k)P ijkl

]
− 1

2
∇j

[
(gik,l + gkl,i − gil,k)P ijkl

]
+ O(r−4−3τ )

= 2∇i

(
gjk,lP

ijkl

)
+ O(r−4−3τ )

= 2∂i

(
gjk,lP

ijkl

)
+ O(r−4−3τ ),(3.3)

where the fifth equality follows from (3.2).

With this divergence expression of L2, one can check that the limit

lim
r→∞

∫

Sr

P ijkl∂lgjknidSr

exists and is finite provided that L2 is integrable and the decay order τ > n−4
3 , and hence we

have:

Theorem 3.2. Suppose (Mn, g)(n ≥ 5) is an asymptotically flat manifold with decay order
τ > n−4

3 and the Gauss-Bonnet curvature L2 = RijklR
ijkl − 4RijRij + R2 is integrable in

(Mn, g), then the mass m2(g) defined in Definition 1.1 is well-defined.

We call m2 the Gauss-Bonnet-Chern mass, or just the GBC mass. The definition of the
Gauss-Bonnet mass involves the choice of asymptotic coordinates. So it is natural to ask if it
is a geometric invariant which does not depend on the choices of asymptotic coordinates as the
ADM mass. We have an affirmative answer.

Theorem 3.3. If (Mn, g) is asymptotically flat of order τ > n−4
3 , then m2(g) depends only on

the metric g.

Proof. The argument follows closely the one given by Bartink in the proof of ADM mass [2].
See also [41]. The key is to realize that when changing the asymptotic coordinates, some extra
terms which do not decay fast enough to have vanishing integral can be gathered in a divergence,
thus its integral over any closed hypersurface vanishes. The first step is the same as observed in



GAUSS-BONNET-CHERN MASS 9

[2],[41]. For the convenience of readers, we sketch it.

Step 1. Suppose {xi} and {x̂i} are the two choices of asymptotic coordinates on M rK. In
view of [2], after composing with an Euclidean motion, we may assume

x̂i = xi + ϕi, where ϕi ∈ C2,α
1−τ

for some 0 < α < 1. For the definition of these weighted spaces, please refer to [2, 41] for the
details. Then the radial distance functions r = |x| and r̂ = |x̂| are related by

C−1r ≤ r̂ ≤ Cr, with some constant C > 0.

Let {SR : r = R} and {ŜR : r̂ = R} be two spheres and AR : C−1R ≤ r̂ ≤ CR an annulus. The
divergence theorem yields

∣∣∣∣
∫

ŜR

P ijkl∂lgjkn̂idŜ −
∫

SR

P ijkl∂lgjknidS

∣∣∣∣ ≤
∫

AR

∣∣∂i(P ijkl∂lgjk)
∣∣dx.

Due to (3.3) together with the assumption that L2 is integrable and τ > n−4
3 , the integral

∫

AR

∣∣∂i(P ijkl∂lgjk)
∣∣dx → 0 as R →∞.

Therefore we can replace SR by ŜR in the definition of m2(g) without changing the mass.

Step 2. Denote ∂i = ∂
∂xi , ∂̂i = ∂

∂x̂i , gij = g(∂i, ∂j) and ĝij = g(∂̂i, ∂̂j), then we have

∂̂i = ∂i − ∂iϕ
s∂s + O(r−τ ),

ĝij = gij − ∂iϕ
j − ∂jϕ

i + O(r−2τ ),

∂̂kĝij = ∂kgij − ∂k∂iϕ
j − ∂k∂jϕ

i + O(r−1−2τ ).(3.4)

We compute

∫

Sr

(
P ijkl∂lgjk − P̂ ijkl∂̂lĝjk

)
nidS

=
∫

Sr

P ijkl(∂lgjk − ∂̂lĝjk)nidS +
∫

Sr

(P ijkl − P̂ ijkl)∂̂lĝjknidS

= I + II.
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In view of Lemma 3.1 together with (3.2) and (3.4), we compute

I =
∫

Sr

P ijkl(∂l∂jϕ
k + ∂l∂kϕ

j)nidS + O(r−3−3τ )

=
∫

Sr

P ijkl(∂l∂jϕ
k)nidS + O(r−3−3τ )

=
∫

Sr

P ijkl(∂j∂lϕ
k)nidS + O(r−3−3τ )

=
∫

Sr

P ijkl∂j

(
(∂lϕ

k)ni

)
dS + O(r−3−3τ )

=
∫

Sr

∂j

(
P ijkl(∂lϕ

k)ni

)
dS + O(r−3−3τ )

=
∫

Sr

[∂j − 〈n, ∂j〉n]
(
P ijkl(∂lϕ

k)ni

)
dS +

∫

Sr

〈n, ∂j〉n
(
P ijkl(∂lϕ

k)ni

)
dS + O(r−3−3τ ),

where the fourth equality follows from (3.2) and n(f) = ∂
∂nf . The first integral in I vanishes

from the divergence theorem. We will show that the second integral decays fast and vanishes as
r approaching infinity.

Since on the coordinate sphere Sr, the outward unit normal induced by the Euclidean metric
n,ni ∂

∂xi = ∇r, we thus have

ni , δijn
j = ni =

xi

r
.

By Lemma 3.1 and (3.3), we derive
∫

Sr

〈n, ∂j〉n
(
P ijkl(∂lϕ

k)ni

)
dS

=
∫

Sr

njn
t ∂

∂xt

(
P ijkl(∂lϕ

k)ni

)
dS

=
∫

Sr

njn
tP ijkl

(
∂t∂lϕ

k
)
nidS +

∫

Sr

njn
tP ijkl(∂lϕ

k)
∂

∂xt
(ni)dS +

∫

Sr

O(r−3−3τ )dS

=
∫

Sr

xixjxt

r3
P ijkl(∂t∂lϕ

k)dS +
∫

Sr

xjxt

r2
P ijkl(∂lϕ

k)(
δit

r
− xixt

r3
)dS +

∫

Sr

O(r−3−3τ )dS

=
∫

Sr

O(r−3−3τ )dS.

Hence we obtain

I =
∫

Sr

O(r−3−3τ )dS.

For the second term II, we calculate

II =
∫

Sr

[
(P ijkl − P̂ ijkl)∂lgjkni + O(r−3−3τ )

]
dS,
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and

P ijkl − P̂ ijkl = Pijkl − P̂ijkl + O(r−2−2τ )

= (Rk
ijl − R̂k

ijl) + (Rjk − R̂jk)gil − (Rjl − R̂jl)gik − (Rik − R̂ik)gjl

+(Ril − R̂il)gjk +
1
2
(R− R̂)(gikgjl − gilgjk) + O(r−2−2τ ).

From the expression of the curvature tensor and the Ricci tensor in local coordinates

Rk
ijl = −1

2
(∂i∂kgjl − ∂i∂lgjk − ∂j∂kgil + ∂j∂lgik) + O(r−2−2τ ),

Rjk =
1
2
(∂i∂kgji − ∂i∂igjk − ∂j∂kgii + ∂j∂igik) + O(r−2−2τ ),

and the difference

∂̂kĝij = ∂kgij − ∂k∂iϕ
j − ∂k∂jϕ

i + O(r−1−2τ ),

we have

Rk
ijl − R̂k

ijl = −1
2
[
∂i∂k∂jϕ

l + ∂i∂k∂lϕ
j − ∂i∂l∂jϕ

k − ∂i∂l∂kϕ
j − ∂j∂k∂iϕ

l

−∂j∂k∂lϕ
i + ∂j∂l∂iϕ

k + ∂j∂l∂kϕ
i
]
+ O(r−2−2τ )

= O(r−2−2τ ).

Similarly we have

Rjk − R̂jk = O(r−2−2τ ).

Thus we obtain

II =
∫

Sr

O(r−3−3τ )dS.

Combining the two things together, we obtain
∫

Sr

(P ijkl∂lgjk − P̂ ijkl∂̂lĝjk)nidS = I + II =
∫

Sr

O(r−3−3τ )dS,

which implies that

lim
r→∞

∫

Sr

(P ijkl∂lgjk − P̂ ijkl∂̂lĝjk)nidS = 0,

when τ > n−4
3 . Therefore we conclude m(g) = m(ĝ) and finish the proof. ¤

For the Euclidean metric, the GBC mass m2 is trivially zero. Examples with non-vanishing
GBC mass will be given in Section 6 later.
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4. Positive mass theorem in the graph case

In this section, we investigate the special case that asymptotically flat manifolds are given
as graphs of asymptotically constant functions over Euclidean space Rn. As in the Riemannian
positive mass theorem studied by Lam[35], for the new defined Gauss-Bonnet mass, we can
show that the corresponding Riemannian positive mass holds for graphs when the Gauss-Bonnet
curvature replaces the scalar curvature in all dimensions n ≥ 5.

Following the notation in [35], suppose (Mn, g) = (Rn, δ + df ⊗ df) be the graph of a smooth
asymptotically flat function f : Rn → R which is as defined in the definition 1.3. Then

gij = δij + fifj ,

and the inverse of gij is

gij = δij − fifj

1 + |∇f |2 ,

where the norm and the derivative ∇f are taken with respect to the flat metric δ. It is clear
that such a graph is an asymptotically flat manifold of order τ in the sense of Definition 1.1.
The Christoffel symbols Γk

ij with respect to the metric g and its derivatives can be computed as
follows:

Γk
ij =

fijfk

1 + |∇f |2 ,(4.1)

Γk
ij,l =

fijlfk + fijfkl

1 + |∇f |2 − 2fijfkfsfls

(1 + |∇f |2)2 .

The expression for the curvature tensor follows directly. For the convenience of the reader, we
compute in the following lemma.

Lemma 4.1.

Rijkl =
fikfjl − filfjk

1 + |∇f |2 .

Proof. We begin with the (1, 3)-type curvature tensor:

Rl
ijk = Γl

jk,i − Γl
ik,j + Γl

isΓ
s
jk − Γl

jsΓ
s
ik

=
fjkifl + fjkfli

1 + |∇f |2 − 2fjkflfisfs

(1 + |∇f |2)2 −
fijkfl + fikflj

1 + |∇f |2

+
2fikflfjsfs

(1 + |∇f |2)2 +
fisfjkflfs − fjsfikflfs

(1 + |∇f |2)2

=
filfjk − fikfjl

1 + |∇f |2 +
(fikfjs − fjkfis)fsfl

(1 + |∇f |2)2 .
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Then we have

Rijkl = Rm
ijlgkm

=
(fimfjl − filfjm

1 + |∇f |2 +
(filfjs − fjlfis)fsfm

(1 + |∇f |2)2
)
(δmk + fmfk)

=
fikfjl − filfjk

1 + |∇f |2 +
(fimfjl − filfjm)fmfk

1 + |∇f |2 +
(filfjs − fjlfis)fsfk

1 + |∇f |2

=
fikfjl − filfjk

1 + |∇f |2 .

¤
Remark 4.2. This proof use the intrinsic definition of the curvature tensor. One can also
calculate it from the Gauss formula via the extrinsic geometry.

The divergence-free property of P enables us to express the Gauss-Bonnet curvature L2 as a
divergence term. This is a key ingredient to show the corresponding positive mass theorem for
the GBC mass in the graph case.

Lemma 4.3.
∂i(P ijkl∂lgjk) =

1
2
L2.

Proof.
∂i(P ijkl∂lgjk) = ∂iP

ijkl∂lgjk + P ijkl∂i∂lgjk.

We begin with the first term. Here it is important to use Lemma 3.1 to eliminate the terms of
derivative of f of order three. In view of (3.2), we compute

(∂iP
ijkl)∂lgjk

= (∇iP
ijkl − P sjklΓi

is − P isklΓj
is − P ijslΓk

is − P ijksΓl
is)∂lgjk

= −(
P sjkl fisfi

1 + |∇f |2 + P iskl fisfj

1 + |∇f |2 + P ijsl fisfk

1 + |∇f |2 + P ijks fisfl

1 + |∇f |2
)
(fjlfk + fklfj)

= −[
P sjkl fisfjlfifk

1 + |∇f |2 + P ijsl fisfjl|∇f |2 + fisfklfkfj

1 + |∇f |2 + P ijks fisfjlfkfl + fisfklfjfl

1 + |∇f |2
]

= − P ijkl

1 + |∇f |2
[
(fisfjl + filfjs)fkfs + (fikfsl + filfks)fjfs + |∇f |2fikfjl

]

= − |∇f |2
1 + |∇f |2 fikfjlP

ijkl,

where we have relabeled the indices in the fourth equality and used the property (3.2) in the
third and fifth equality.

The second term is also simplified by (3.2).

P ijkl∂i∂lgjk = P ijkl∂i∂l(fjfk)

= P ijkl · (fijlfk + fiklfj + fikfjl + fijfkl)

= P ijklfikfjl.
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Combining these two terms together, we arrive at

∂i(P ijkl∂lgjk) = P ijkl · fikfjl

1 + |∇f |2

=
1
2
P ijkl · (fikfjl − filfjk

1 + |∇f |2
)
.(4.2)

Recall that
L2 = P ijklRijkl,

and invoke the expression of the curvature tensor in Lemma 4.1, we complete the proof of the
lemma. ¤

Lam showed a similar result for the scalar curvature, which is the crucial observation in [35].
See also the first paragraph of Section 7 below.

Now we are ready to prove our main Theorem 1.4.

Proof of Theorem 1.4. In view of Lemma 4.3 and the divergence theorem in (Rn, δ), we derive

m2 = lim
r→∞ c2(n)

∫

Sr

P ijkl∂lgjkn
idSr

= c2(n)
∫

Rn

∂i(P ijkl∂lgjk)dVδ

=
c2(n)

2

∫

Rn

L2dVδ

=
c2(n)

2

∫

Mn

L2 · 1√
1 + |∇f |2 dVg,

where c2(n) = 1
2(n−1)(n−2)(n−3)ωn−1

and the last equality holds due to the fact

dVg =
√

detgdVδ =
√

1 + |∇f |2dVδ.

¤

5. Penrose inequality for graphs on Rn

In this section we investigate the Penrose inequality related to the GBC mass for the manifolds
which can be realized as graphs over Rn. Let Ω be a bounded open set in Rn and Σ = ∂Ω. If
f : Rn \Ω → R is a smooth asymptotically flat function such that each connected component of
{(x, f(x)) |x ∈ Σ} is in a level set of f and

(5.1) |∇f(x)| → ∞ as x → Σ,

then the graph of f , (Mn, g) = (Rn \ Ω, δ + df ⊗ df), is an asymptotically flat manifold with
an area horizon Σ. See Remark 5.1 below. Without loss of generality we may assume that
{(x, f(x)) |x ∈ Σ} is included in f−1(0). In this case we can identify {(x, f(x)) |x ∈ Σ} with Σ.
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On Σ, the outer unit normal vector induced by δ is

n , ni ∂

∂xi
= − ∇f

|∇f | .

Then

ni = − fi

|∇f | and ni , δijn
j = ni.

As in the proof of Lemma 4.3, integrating by parts now gives

m2 = lim
r→∞ c2(n)

∫

Sr

P ijkl∂lgjknidS

=
c2(n)

2

∫

Rn\Ω
L2 · 1√

1 + |∇f |2 dVg − c2(n)
∫

Σ
P ijkl∂lgjknidSr

=
c2(n)

2

∫

Mn

L2 · 1√
1 + |∇f |2 dVg − c2(n)

∫

Σ
P ijkl(fljfk + fklfj)nidSr

=
c2(n)

2

∫

Mn

L2√
1 + |∇f |2 dVg − c2(n)

∫

Σ
P ijklfljfknidSr,

where the last term in the third equality vanishes because of symmetry. From the definition of
P ijkl together with the expression gij = δij − fifj

1+|∇f |2 we have

P ijklfjlfkni

= Rijklfjlfkni + Rjk(fijfk −
fljflfk

1 + |∇f |2 fi)ni −Rik(fjjfk −
fljflfj

1 + |∇f |2 fk)ni

+Rilfj
fjl

1 + |∇f |2 ni −Rjlfjl · fi

1 + |∇f |2 ni +
1
2
R · fjjfi − fijfj

1 + |∇f |2 ni

= I + II + III + IV + V + V I.

Recall that we have assumed that Σ is in a level set of f . At any given point p ∈ Σ, we choose
the coordinates such that { ∂

∂x2 , · · · , ∂
∂xn } denotes the tangential space of Σ and ∂

∂x1 denotes
the normal direction of Σ. To clarify the notations, in the following we will use the convention
that the Latin letters stand for the index: 1, 2, · · · , n and the Greek letters stand for the index:
2, · · · , n. Now the computations are all done at the given point p. It is easy to see that we have

fα = 0 and fαβ = Aαβ|∇f | = Aαβ |f1|,

where Aαβ is the second fundamental form of the isometric embedding (Σ, h) into the Euclidean
space Rn. In other words, h is the induced metric. Note that (Σ, h) is also an isometric
embedding from (Σ, h) into the graph.
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Next, we calculate each term in P ijklfjlfkni. The point in the computation is to distinguish
the tangential direction and the normal direction carefully.

I = R1α1βfαβf1n
1 = R1α1βAαβ |f1|f1 · (− f1

|f1|)

= −R1α1βAαβf2
1 ,

II = Rj1(f1jf1 − f1jf
3
1

1 + f2
1

) · n1 = (R1jf1j)
f1

1 + f2
1

· (− f1

|f1|)

= −(R1jf1j)
f2
1

(1 + f2
1 )|f1|

,

III = −R11
[
(H0|f1|+ f11)f1 − f11f

3
1

1 + f2
1

)
] · n1

= −R11
[
(H0|f1|f1 +

f11f1

1 + f2
1

)
] · (− f1

|f1|)

= R11
[
H0f

2
1 +

f11f
2
1

(1 + f2
1 )|f1|

)
]
,

IV = R1lf1l
f1

1 + f2
1

· n1 = −R1lf1l
f2
1

(1 + f2
1 )|f1|

,

V = −(Rjlfjl)
f1

1 + f2
1

· (− f1

|f1|) = (Rjlfjl)
f2
1

(1 + f2
1 )|f1|

= (2R1lf1l + Rαβfαβ −R11f11)
f2
1

(1 + f2
1 )|f1|

= (2R1lf1l + RαβAαβ|f1| −R11f11)
f2
1

(1 + f2
1 )|f1|

,

V I =
1
2
R

(H0|f1|+ f11)f1 − f11f1

1 + f2
1

· (− f1

|f1|)

= −1
2
RH0

f2
1

1 + f2
1

.

Noting that II + IV cancels the first term of V and the second term in III cancels the third
term in V we get

P ijklfjlfkni = I + II + III + IV + V + V I

= −R1α1βAαβf2
1 + R11H0f

2
1 + RαβAαβ · f2

1

(1 + f2
1 )
− 1

2
RH0

f2
1

1 + f2
1

.(5.2)

Similarly, for the embedding (Σn−1, h) ↪→ (Mn, g) we denote the outer unit normal vector
induced by g by ñ, and the corresponding second fundamental form by Ãαβ . Then a direct
calculation gives

Ãαβ =
1√

1 + f2
1

Aαβ.
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Remark 5.1. From the above formula we have the following equivalent statements, provided
Σ ⊂ Rn is strictly mean convex:

• |∇f | = ∞ on Σ;
• Σ is minimal, i.e., trÃ = 0;
• Σ is totally geodesic, i.e., Ã = 0.

Therefore Σ is an area-minimizing horizon if and only if |∇f | = ∞ on Σ and if and only if Σ
is totally geodesic. Hence |∇f | = ∞ is a natural assumption.

By the Gauss-Codazzi equation,

R̂αβγδ = AαγAβδ −AαδAβγ ,

where R̂m is the corresponding curvature tensor with respect to the induced metric h on Σ. On
the other hand, we have

R̂αβγδ = Rαβγδ + ÃαγÃβδ − ÃαδÃβγ = Rαβγδ +
AαγAβδ −AαδAβγ

1 + f2
1

,

which yields

Rαβγδ =
f2
1

1 + f2
1

(AαγAβδ −AαδAβγ)

=
f2
1

1 + f2
1

R̂αβγδ.(5.3)

Similarly, we have

F̃αβ , Rαγβδgγδ

=
|∇f |2

1 + |∇f |2 (H0Aαβ −AαγAγβ) =
|∇f |2

1 + |∇f |2 R̂αβ,(5.4)

and

(5.5) F̃ , Rαβgαβ =
|∇f |2

1 + |∇f |2 (H2
0 −AαβAαβ) =

|∇f |2
1 + |∇f |2 R̂.

We then go back to the equality (5.2). Noting the facts

Rαβ = F̃αβ + R1α1β · g11 = F̃αβ + R1α1β(1 + f2
1 ),

and

R = F̃ + 2R11g11 = F̃ + 2R11(1 + f2
1 ).
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We compute

P ijklfjlfkni = −R1α1βAαβf2
1 + R11H0f

2
1 + RαβAαβ · f2

1

(1 + f2
1 )
− 1

2
RH0

f2
1

1 + f2
1

= −R1α1βAαβf2
1 + R11H0f

2
1 +

[
F̃αβ + R1α1β(1 + f2

1 )
]
Aαβ · f2

1

(1 + f2
1 )

−1
2
[
F̃ + 2R11(1 + f2

1 )
] ·H0

f2
1

1 + f2
1

= (F̃αβAαβ − 1
2
F̃H0) · f2

1

1 + f2
1

= (R̂αβ − 1
2
R̂hαβ)Aαβ

( |∇f |2
1 + |∇f |2

)2

,

where we have used (5.4) and (5.5). Therefore we conclude
∫

Σ
P ijklfjlfkn

idSr =
∫

Σ
(
|∇f |2

1 + |∇f |2 )2(R̂αβ − 1
2
R̂hαβ)AαβdS.

One can check that
−(R̂αβ − 1

2
R̂hαβ)Aαβ = 3H3,

where Hk means the k-th mean curvature, which is defined by the k-th elementary symmetric
function on the principal curvatures of the second fundamental form A.

Making use of the assumption that |∇f(x)| → ∞ as x → Σ, thus

m2 =
c2(n)

2

∫

Mn

L2√
1 + |∇f |2 dVg − c2(n)

∫

Σ
P ijklfljfkn

idS

=
c2(n)

2

∫

Mn

L2√
1 + |∇f |2 dVg + c2(n)

∫

Σ
(
|∇f |2

1 + |∇f |2 )2 · 3H3dS

=
c2(n)

2

∫

Mn

L2√
1 + |∇f |2 dVg + c2(n)

∫

Σ
3H3dS,

where c2(n) = 1
2(n−1)(n−2)(n−3)ωn−1

.

To summarize, we have showed that

Proposition 5.2. Let Ω be a bounded open set in Rn and Σ = ∂Ω. If f : Rn \ Ω → R is a
smooth asymptotically flat function such that each connected component of f(Σ) is in a level set
of f and |∇f(x)| → ∞ as x → Σ. Let H3 denotes the 3-th mean curvature of Σ induced by
Euclidean metric. Then

m2 =
c2(n)

2

∫

Mn

L2√
1 + |∇f |2 dVg + c2(n)

∫

Σ
3H3dS.

Let Ωi be connected components of Ω, i = 1, · · · , k and let Σi = ∂Ωi and assume that each
Ωi is convex. The rest to show the Penrose inequality in the graph case is the same as the one
in [35], that to use the Aleksandrov-Fenchel inequality [46] .
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Lemma 5.3. Assume Σ is a convex hypersurface in Rn. Let Hk denote k-th elementary sym-
metric function corresponding to the second fundamental form A with respect to the induced
metric by δ and area |Σ|, then

1
2(n− 1)(n− 2)(n− 3)ωn−1

∫

Σ
3H3dS ≥ 1

4

( ∫
Σ RdS

(n− 1)(n− 2)ωn−1

)n−4
n−3

≥ 1
4

( ∫
Σ HdS

(n− 1)ωn−1

)n−4
n−2

≥ 1
4

( |Σ|
ωn−1

)n−4
n−1

.

Proof. By the Aleksandrov-Fenchel inequality, we infer

1
2(n− 1)(n− 2)(n− 3)ωn−1

∫

Σ
3H3dS ≥ 1

4

( ∫
Σ 2H2dS

(n− 1)(n− 2)ωn−1

)n−4
n−3

≥ 1
4

( ∫
Σ H1dS

(n− 1)ωn−1

)n−4
n−2

≥ 1
4

( |Σ|
ωn−1

)n−4
n−1

.

On the other hand, it follows from the Gauss equation 2H2 = R. Hence the desired results
yields. ¤

Now we are ready to finish the proof of Penrose inequality.

Proof of Theorem 1.6. In view of the Proposition 5.2 together with the Lemma 5.3, we have
showed the first part of Theorem 1.6. To check that the metric (1.3) in the example 6.1 attains
the equality in the Penrose-type inequality. First, it follows from the calculation of appendix
that the Gauss-Bonnet curvature L2 with respect to the metric (1.3) equals to 0. Then the
horizon is {Sρ0 : ρ

n
2
−2

0 = 2m} which implies the right hand side of Penrose-type inequality is

RHS =
1
4

(
ωn−1ρ0

n−1

ωn−1

)n−4
n−1

=
1
4
ρ0

n−4 =
1
4
(2m)2

= m2 = m2.

¤

Remark 5.4. By the work of Guan-Li [27] one can reduce the assumption of convexity of Σ
to the assumption that Σ is of star-shape, H > 0, R > 0 and H3 is non-negative. See also the
related work of [15].
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6. Schwardschild metrics

Example 6.1. (Mn = I × Sn−1, g) with coordinates (ρ, θ), a general Schwardschild metrics are
given

gk
Sch = (1− 2m

ρ
n
k
−2

)−1dρ2 + ρ2dΘ2,

where dΘ2 is the round metric in Sn−1, m ∈ R is the ‘total mass’ of corresponding black hole
solutions in the Lovelock gravity [37]. When k = 1 we recover the Schwarzschild solutions of the
Einstein gravity.

Motivated by the Schwarzschild solutions, the above metrics also have a form of conformally
flat which is more convenient for computation. One can check that the corresponding coordinate
transformation is as follows:

(1− 2m

ρ
n
k
−2

)−1ρ2 + ρ2dΘ2 = (1 +
m

2r
n
k
−2

)
4k

n−2k (dr2 + r2dΘ2).

For our purpose, in this paper we focus on the case k = 2, namely,

g2
Sch = (1− 2m

ρ
n
2
−2

)−1dρ2 + r2dΘ2 = (1 +
m

2r
n
2
−2

)
8

n−4 δ,

where δ is the standard Euclidean metric, which was given in the Introduction.
Next, we will study the correspondence between m and the Gauss-Bonnet mass m2.

Recall

m2 = lim
r→∞

1
2(n− 1)(n− 2)(n− 3)ωn−1

∫

Sr

P ijkl∂lgjkn
idSr

= lim
r→∞

1
2(n− 1)(n− 2)(n− 3)ωn−1

∫

Sr

Pijkl∂lgjkn
idSr,

where

Pijkl = Rijkl + Rjkgil −Rjlgik −Rikgjl + Rilgjk +
1
2
R(gikgjl − gilgjk).

For the simplicity of notation, we introduce the notation of the Kulkarmi-Nomizu product
denoted by ∧©, then we have

(A ∧©B)(X, Y, Z,W )
= A(X, Z)B(Y, W )−A(Y, Z)B(X,W )−A(X,W )B(Y, Z) + A(Y, W )B(X,Z),

and the compressed expression

P = Rm−Ric ∧© g +
1
4
R(g ∧© g).
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Suppose g = e−2uδ, a direct computation gives

Rm = e−2u(∇2
δu + du⊗ du− 1

2
|∇δu|2δ) ∧© δ

Ric = (n− 2)(∇2
δu +

1
n− 2

(∆δu)δ + du⊗ du− |∇δu|2)(6.1)

R = e2u(2(n− 1)∆δu− (n− 1)(n− 2)|∇δu|2).
Then we compute

P = Rm−Ric ∧© g +
1
4
R(g ∧© g)

= Rm− e−2uRic ∧© δ +
1
4
e−4uR(δ ∧© δ)

= (n− 3)e−2u(−∇2
δu +

1
2
(∆δu)δ − du⊗ du− n− 4

4
|∇δu|2δ) ∧© δ.(6.2)

Namely,

Pijkl = (n−3)e−2u
[− uikδjl − ujlδik + uilδjk + ujkδil + (uss−n− 4

2
u2

s)(δikδjl − δilδjk)

−uiukδjl − ujulδik + uiulδjk + ujukδil

]
.

Since g = e−2uδ, we can get
∫

Sr

P ijkl∂lgjknidSr =
∫

Sr

P ijkl(∂le
−2u)δjknidSr =

∫

Sr

−2e−2uP ijjlulnidSr.

In the light of (6.3), we calculate the integral term:

−2e−2uP ijjlul

= −2(n− 3)e4uul[−uil − uil + nuil + ussδil + (uss − n− 4
2

u2
s)(δil − nδil)

−uiul − uiul + nuiul + u2
sδil]

= −2(n− 2)(n− 3)e4uul[uil − ussδil + uiul +
n− 3

2
u2

sδil].

The special case that (Mn, g) is asymptotically flat manifold and conformally flat with a
smooth spherically symmetric function, namely, g = e−2u(r)δ.

Denote the radial derivative of u by ur , ∂u
∂r , and we have

ui = ur · xi

r
(6.3)

uij = urr · xixj

r2
+ ur(

δij

r
− xixj

r3
),(6.4)

which yields

(6.5) uii = urr +
n− 1

r
ur.
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Then it follows from (6.3),(6.4) and (6.5) that

∫

Sr

−2e−2uP ijjlulnidS

=
∫

Sr

2(n− 2)(n− 3)e4uul(−uil + ussδil − uiul − n− 3
2

u2
sδil) · xi

r
dS

=
∫

Sr

2(n− 2)(n− 3)e4uur
xlxi

r2
· [− urr · xixl

r2
− ur(

δil

r
−xixl

r3
) + (urr+

n−1
r

ur)δil

−xixl

r2
u2

r −
n− 3

2
u2

r · δil

]
dS

=
∫

Sr

2(n− 2)(n− 3)ure
4u

[− urr − ur

r
+

ur

r
+ urr +

n− 1
r

ur − u2
r −

n− 3
2

u2
r

]
dS

=
∫

Sr

2(n− 1)(n− 2)(n− 3)e4u · [u2
r

r
− 1

2
u3

r

]
dS.

In particular, for the metric (1.3) in Example 6.1,

e−2u = (1 +
m

2r
n
2
−2

)
8

n−4 ,

namely,

u = − 4
n− 4

log(1 +
m

2r
n
2
−2

),

and then

ur = − 4
n− 4

· 1
1 + m

2r
n
2−2

· m

2
· (2− n

2
)r1−n

2

=
m

1 + m

2r
n
2−2

r1−n
2 .

Therefore,

∫

Sr

2(n− 1)(n− 2)(n− 3)e4u · [u2
r

r
− 1

2
u3

r

]
dS

=
∫

Sr

2(n−1)(n−2)(n−3) · (1+
m

2r
n
2
−2

)
−16
n−4 ·

[
m2

(1+ m

2r
n
2−2 )2

r1−n− 1
2

m3

(1+ m

2r
n
2−2 )3

r3−3
2
n

]
dS

=
∫

Sr

2(n− 1)(n− 2)(n− 3)(1 +
m

2r
n
2
−2

)
−2(n+4)

n−4 ·m2r1−ndS

−
∫

Sr

(n− 1)(n− 2)(n− 3)(1 +
m

2r
n
2
−2

)
−4−3n

n−4 ·m3r3− 3
2
ndS.
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When n ≥ 5, the last term approaches 0 as r →∞. Therefore

lim
r→∞

∫

Sr

1
2(n− 1)(n− 2)(n− 3)ωn−1

P ijkl∂lgjkn
idSr

= lim
r→∞

∫

Sr

1
ωn−1

(1 +
m

2r
n
2
−2

)
−2(n+4)

n−4 ·m2r1−ndSr

= m2,

where ωn−1 is the volume of S1 with the induced metric of standard Euclidean metric. Therefore
the GBC mass m2 of the metric (1.3) is exactly m2 as claimed.

One interesting byproduct of the above computation is the following

Proposition 6.2. Suppose (Mn, g), (n ≥ 5) is asymptotically flat with decay order τ > n−4
3 and

(Mn, g) is spherically symmetric i.e. g = e−2u(r)δ, then

m2 = lim
r→∞

1
ωn−1

∫

Sr

u2
r

r
dSr ≥ 0.

Proof. By the above calculation, we have

m2 = lim
r→∞

1
ωn−1

∫

Sr

e4u(
u2

r

r
− 1

2
u3

r)dSr.

We claim that under the assumption of the decay order, the second term vanishes as r →∞. In
fact, since (Mn, g = e−2u(r)δ) is asymptotically flat with decay order τ , we have ur = O(r−1−τ )
and u = O(r−τ ). Combining with the condition of decay order τ > n−4

3 , we thus get

ur = o(r−
n−1

3 ),

which yields the second integral vanishes as as r → ∞. Moreover, e4u = 1 + o(1). Finally, the
desired result yields. ¤
Remark 6.3. By this lemma and the previous positive mass theorem for graphs, there are no
spherically symmetric asymptotically flat smooth functions on Rn whose graphs have negative
Gauss-Bonnet curvature L2 everywhere.

Remark 6.4. Under the same condition of Proposition 6.2, a direct computation gives the
ADM total mass

mADM , lim
r→∞

1
2(n− 1)ωn−1

∫

Sr

(gij,i − gii,j) · njdSr

= lim
r→∞

1
ωn−1

∫

Sr

e−2uurdSr.

Thus if the manifold is asymptotically flat with decay order τ > n−2
2 and (Mn, g) is spherically

symmetric that g = e−2u(r)δ, unlike our case the ADM mass is not always nonnegative.

Remark 6.5. It is well-known that the Schwarzschild metric has zero scalar curvature and in
the view of analogy, the Gauss-Bonnet curvature L2 with respect to the metric (1.3) is 0. One
can check from the above calculation. Moreover, the metrics in Example 6.1 can be realized as
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a graph with the induced metric from the Euclidean space Rn+1. For example, when n = 5, the
metric 1.3

(M5, g) =
(
R5 \ {0}, (1 +

m

2r
1
2

)8
gR5

)

can be isometrically embedded as a rotating parabola in {(x1, x2, x3, x4, x5, w) ⊂ R6}. The outer
end of metric (1.3) containing the infinity is the graph of the spherically symmetric function

f :⊂ R5 \ B4m2(0) → R given by f(r) = 2r
1
2

√
8m(r

1
2 − 2m) − 1

6m [8m(r
1
2 − 2m)]

3
2 , where r =

|(x1, x2, x3, x4, x5)|.
Lemma 6.6. Assume (Mn, g), (n ≥ 5) a n-dimensional submanifold in Rn+1. Then

L2 = 24H4 := 24
∑

i<j<k<l

λiλjλkλl,

where (λ1, · · · , λn) is the set of eigenvalues of the second fundamental form A.

Proof. We recall the Gauss equation

Rijkl = AikAjl −AilAjk.

Thus the desired result yields from direct calculations. ¤
Proposition 6.7. Let f : Rn → R be a smooth radial function in Definition 1.3. Then the
second fundamental form A has n− 1 eigenvalues fr

r
√

1+f2
r

and one eigenvalue frr

(
√

1+f2
r )3

. Hence

L2 = 24
(

(n− 1)!
(n− 5)!4!

f4
r

r4(1 + f2
r )2

+
(n− 1)!

(n− 4)!3!
f3

r frr

r3(1 + f2
r )3

)

so that

m2 = lim
r→+∞

1
wn−1

∫

Sr

rn−4f4
r (r)

4
≥ 0.

7. Generalization, Problems and conjectures

First of all, we can generalize our results to k < n/2. In the definition of the GBC mass,
the proof of its geometric invariance and in the proof of the positive mass theorem for graphs
over Rn one can see that the crucial things are the divergence free and the symmetry (and also
anti-symmetry) of the tensor P . Hence, with a completely same argument, we can define a mass
for Lk-curvature for any k < n/2. For general Lk-curvature the corresponding Pk curvature is

(7.1) Pk
stlm :=

1
2k

δ
i1i2···i2k−3i2k−2st
j1j2···j2k−3j2k−2j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−3i2k−2

j2k−3j2k−2gj2k−1lgj2km.

We can define a mass for 1 ≤ k < n/2 by

(7.2) mk =
1

ckωn−1
lim

r→∞

∫

Sr

Pk
ijml∂lgjmnidSr,

with a dimensional constant ck(n) > 0. This constant can be decided by computing Example
5.1 such that the mass mk = mk. Remark that for even k, the Gauss-Bonnet-Chern mass mk of
the metric gk

Sch is positive even for negative m. One can check that Pk has the same property
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of divergence free and the same symmetry (and also anti-symmetry) as the tensor P . It is clear
that P2 = P and since R = 1

2(gilgjm − gimgjl)Rijlm

P1
ijlm =

1
2
(gilgjm − gimgjl).

If we use this tensor P1 to define a mass, it is just the ADM mass, with a slightly different, and
certainly equivalent form

1
2(n− 1)ωn−1

lim
r→∞

∫
(gik∂jgik − gjk∂igjk)nidSr.

However, it is interesting to see that with this form one can directly compute to obtain for the
AMD mass m1 that

m1 =
1

2(n− 1)ωn−1
lim

r→∞

∫

Sr

1
1 + |∇f |2 (fiifi − fijfi)νjdSr

without using a trick in the proof of Theorem 5 in [35] by adding a factor 1/(1 + |∇f |2). This
is the reason why we need not use this trick in our proof of Theorem 1.4.

With the same crucial property of Pk, we can show the positive mass theorem and the Penrose
inequality for mk in the case of graphs, provided that the decay order satisfies

τ >
n− 2k

k + 1
.

Moreover, using the Gauss-Bonnet curvature L2 (and also Lk (k < n/2)) we can also introduce
a GBC mass mH

2 for asymptotic hyperbolic manifolds in [28]. The study of the ADM mass for
asymptotic hyperbolic manifolds was initiated by X. Wang [55] and Chruściel-Herzlich [7]. See
also [59]. There are many interesting generalizations. Here we just mention the recent work of
Dahl-Gicquaud-Sakovich [16] and Lima-Girão [20] for asymptotic hyperbolic graphs. In [28] we
obtained a positive mass theorem for mH

2 for asymptotic hyperbolic graphs if L2(g) ≤ L2(gHn),
where gHn is the standard hyperbolic metric. A Penrose type inequality was also obtained.

There are many interesting problems we would like to consider for the new mass.
First all, it would be an interesting problem to consider the relationship between the Gauss-

Bonnet-Chern mass and the Gauss-Bonnet-Chern theorem. The mass defined in Defintion 1.1
can be also defined for n = 4. In this case, the decay order (1.4) needs

τ > 0.

However, this decay condition forces the m2 mass vanishing. Nevertheless, it is interesting to
use it to consider asymptotically cones in dimension 4. There are interesting results about the
Gauss-Bonnet-Chern theorem on higher dimensional, noncompact manifolds using Q-curvature
initiated by Chang-Qing-Yang [14].

It would be interesting to ask if Theorem 1.4 is true for general asymptotically flat manifolds

Problem 1. Is the GBC mass m2 nonnegative for an asymptotically flat manifold with τ > n−4
3

and L2(g) ≥ 0.
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We conjecture that this is true, at least under an additional condition that the scalar curvature
R is nonnegative. The Schwarzschild metric (1.3) has L2 = 0 and R > 0. It would be already
interesting if one can show its nonnegativity for locally conformally flat manifolds. We can
generalize Theorem 1.4 to show the nonnegativity of m2 for a class of hypersurfaces in a manifold
with a certain product structure. This is related to the recent work of Lima [18] and [32] for
the AMD mass. This, together with a positivity result for conformal flat metrics in Rm, will be
presented in a forthcoming paper [29].

The GBC mass m2 is closely related to the σk Yamabe problem. With a suitable definition of
the Green function for the σk Yamabe problem one would like to ask the existence of the Green
function and its expansion. The leading term of the regular part in the expansion of the Green
function should closely related to the mass m2. The metric (1.3) does provide such an example.
For the relationship between the ADM mass, the expansion of the ordinary Green function and
the resolution of the ordinary Yamabe problem, see [47] and [41].

Problem 2. Is there the rigidity result?

Namely, is it true if the m2 = 0, then M = Rn? Proposition 6.2 and Proposition 6.7 show
that the rigidity holds for two (very) specially classes of manifolds, one is the class of spherically
symmetry and conformally flat manifolds and another spherically symmetry graph. For these
two classes of manifolds the mass vanishes implies that the manifold is isometric to the Euclidean
space. Therefore, It is natural to conjecture that the rigidity holds, at least under additional
condition that its scalar curvature is nonnegative. This is a difficult problem, even in the case
of the asymptotically graphs. In this case, it is in fact a Bernstein type problem. Namely, is
there a non-constant function satisfying

2L2 = P ijkl · (fikfjl − filfjk

1 + |∇f |2
)

= 0,(7.3)

under the decay conditions given in Definition 1.3? For the related results on the rigidity of the
AMD mass for graphs, see [32] and [19].

Problem 3. Does Penrose inequality for the GBC mass holds on general asymptotically flat
manifolds?

Theorem 1.6 provides 3 inequalities. Two of them involve only intrinsic invariants, which we
consider as the generalized forms of ordinary Penrose inequality [33] and [5]. Comparing the
ordinary Penrose inequality, we conjecture

m2 ≥ 1
4

( |Σ|
ωn−1

)n−4
n−1

,

if Σ is an area outer minimizing horizon and

m2 ≥ 1
4

( ∫
Σ R

(n− 1)(n− 2)ωn−1

)n−4
n−3
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if Σ is an outer minimizing horizon for the functional∫

Σ
R,

whose Euler-Lagrange equation is
E1

ijBij = 0.

Here E1 is the ordinary Einstein tensor. For mk (k < n/2), one should have k inequalities
relating mk with ∫

Σ
Lj(g)dv(g), j = 0, 1, 2, · · · , k − 1.

These functionals were considered in [38] and [34]. Note that L1 = R.
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conference “Geometric PDEs” in trimester “Conformal and Kähler Geometry” in IHP, Paris
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defined a mass by using an invariant which agrees with the σk curvature when the manifold is
locally conformally flat and the mass is non-negative under the assumption that the σk-curvature
(or some other curvature invariant) is non-negative, if in addition that the manifold is locally
conformally flat and the σk-curvature is zero near infinity, together with a rigidity in that case.
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94010 Créteil Cedex, France

E-mail address: ge@u-pec.fr

Albert-Ludwigs-Universität Freiburg, Mathematisches Institut Eckerstr. 1 D-79104 Freiburg
E-mail address: guofang.wang@math.uni-freiburg.de

School of Mathematical Sciences, University of Science and Technology of China Hefei 230026,
P. R. China and Albert-Ludwigs-Universität Freiburg, Mathematisches Institut Eckerstr. 1 D-
79104 Freiburg

E-mail address: jie.wu@math.uni-freiburg.de


