
ON A CONFORMAL QUOTIENT EQUATION. II

YUXIN GE AND GUOFANG WANG

Abstract. In this paper we show that two conformal invariants Y2,1 and Ỹ2,1 defined
in (1) and (2) resp. coincide and are achieved by a conformal metric g ∈ Γ+

2 (n ≥ 4),
which satisfies a conformal quotient equation. The paper is a continuation of our paper
[13]

1. Introduction

Let (M, g0) be a compact Riemannian manifold with metric g0 and [g0] the conformal
class of g0. Let Sg be the Schouten tensor of the metric g defined by

Sg =
1

n− 2

(
Ricg −

Rg
2(n− 1)

· g
)
.

Here Ricg and Rg are the Ricci tensor and scalar curvature of a metric g respectively. The
importance of the Schouten tensor in conformal geometry can be viewed in the following
decomposition of the Riemann curvature tensor

Riemg = Wg + Sg ∧© g,

where ∧© is the Kulkani-Nomizu product. Note that g−1 · Wg is invariant in a given
conformal class.

Define σk(g) be the σk-scalar curvature or k-scalar curvature by

σk(g) := σk(g
−1 · Sg),

where g−1 ·Sg is locally defined by (g−1 ·Sg)ij =
∑

k g
ik(Sg)kj and σk is the kth elementary

symmetric function. Here for an n×n symmetric matrix A we define σk(A) = σk(Λ), where
Λ = (λ1, · · · , λn) is the set of eigenvalues of A. It is clear that σ1(g) is a constant multiple
of the scalar curvature Rg. The k-scalar curvature σk(g), which was first considered by
Viaclovsky [33], is a natural generalization of the scalar curvature.

Let

Γ+
k = {Λ = (λ1, λ2, · · · , λn) ∈ Rn |σj(Λ) > 0,∀j ≤ k}

be Garding’s cone. A metric g is said to be k-positive or simply g ∈ Γ+
k if g−1 · Sg ∈ Γ+

k

for every point x ∈M . We call u is k-admissible if e−2ug0 ∈ Γ+
k . Set Ck([g0]) = Γ+

k ∩ [g0].
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As in [11], we define a Yamabe type constant

(1) Y2,1([g0]) :=



inf
g∈C1([g0])

∫
σ2(g)dvol(g)

(
∫
σ1(g)dvol(g))

n−4
n−2

, if n > 4,∫
σ2(g)dvol(g), if n = 4,

sup
g∈C1([g0])

∫
σ2(g)dvol(g)×

∫
σ1(g)dvol(g), if n = 3.

In [11], we prove the following proposition.

Proposition 1. Let (Mn, g0) be a compact Riemannian manifold with g0 ∈ Γ+
1 and n ≥ 3.

Then the conformal invariant Y2,1([g0]) is positive if and only if there is a conformal metric
g ∈ [g0] ∩ Γ+

2 .

As in [21], we also define another Yamabe invariant in the other cone C2([g0]) when it
is not empty, that is

(2) Ỹ2,1([g0]) :=



inf
g∈C2([g0])

∫
σ2(g)dvol(g)

(
∫
σ1(g)dvol(g))

n−4
n−2

, if n > 4,∫
σ2(g)dvol(g), if n = 4,

sup
g∈C2([g0])

∫
σ2(g)dvol(g)×

∫
σ1(g)dvol(g), if n = 3.

By the definition, when the dimension n = 4, we have Y2,1([g0]) = Ỹ2,1([g0]). In this paper,

we consider n 6= 4. Since C2([g0]) ⊂ C1([g0]), it is clear that Y2,1([g0]) ≤ Ỹ2,1([g0]) when

n > 4 and Y2,1([g0]) ≥ Ỹ2,1([g0]) when n = 3. Hence, a natural question is to know if
these two invariants are same. Here we will give an affirmative answer under the suitable
assumptions. One of our main results in this paper is

Theorem 1. Let (Mn, g0) be a compact Riemannian manifold with g0 ∈ Γ+
2 and n ≥ 3.

Assume that 0 < Y2,1([g0]) < +∞. Then we have

(3) Y2,1([g0]) = Ỹ2,1([g0])

Moreover, if n > 4, then Y2,1([g0]) can be achieved by some conformal metric g ∈ Γ+
2 ∩ [g0].

In the case n ≥ 4, the invariant Y2,1([g0]) is finite real number. Moreover, in the case

n ≥ 5, we have always Ỹ2,1(M, [g0]) ≤ Ỹ2,1(Sn),where Ỹ2,1(Sn) is defined for the conformal
class of the standard sphere. And the equality holds if and only if M = Sn is the standard
sphere. Hence the assumption Y2,1([g0]) < +∞ is need just for the case n = 3.Till now we
do not know if it is bounded, though we believe it is true. This is a Sobolev type inequality.
Recently we obtained in [15] another (optimal) Sobolev type inequality for 3-dimensional
manifolds. This is related to a geometric inequality, which was recently obtained by B
Andrews [9] and De Lellis-Topping [10]. See also [14] and [16].
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Following the definition of the sigma invariant of Schoen [30] (see also [26]) one can
define a differential invariant by using Y2,1 (n > 4)

τ2(M) = sup
C1([g])6=∅

Y2,1([g]).

Previously we wanted to use Ỹ2,1 to define it. The advantage to use Y2,1 is that it might be
easier to study. With Theorem 1 we know that both are the same, provided τ2(M) > 0.
One can show that

τ2(M) ≤ τ2(Sn) = τ2(Sn−1 × S).

We hope to use it to study the classification of 5-dimensional manifolds, as Bray-Neves [3]
and Akutagawa-Neves [2] did for 3-dimensional manifolds by using the sigma invariant.

2. Yamabe type flows

Set

F2(g) =

∫
M
σ2(g)dvol(g).

For any small ε ∈ (0, 1), consider the following perturbed functional

F1,ε(g) =

∫
M
e2εuσ1(g)dvol(g),

for g = e−2ug0. The variation of F1,ε is given

d

dt
F1,ε(g) =

n− 2− 2ε

2

∫
e2εuσ1(g)g−1 · d

dt
gdvol(g)− 1

2

∫
e2εu∆g(g

−1 · d
dt
g)dvol(g)

=
n− 2− 2ε

2

∫
e2εuσ1(g)g−1 · d

dt
gdvol(g)− 1

2

∫
∆g(e

2εu)g−1 · d
dt
gdvol(g),

where ∆g is the Laplacian operator with respect to g = e−2ug0. It is easy to see that

∆g(e
2εu) = 2εe2(1+ε)u

(
∆u+ (2ε− (n− 2))|∇u|2

)
.

Set for g = e−2ug0

(4)

σ1,ε(g) =
n− 2− 2ε

n− 2− 4ε

{
σ1(g)− 2ε

n− 2− 2ε
e2u
(
∆u+ (2ε− (n− 2))|∇u|2

)}
= σ1(g) + εe2u

{
|∇u|2 +

2

n− 2− 4ε
σ1(g0)

}
.

From the computation given above we have

Lemma 1. We have

d

dt
F1,ε(g) =

n− 2− 4ε

2

∫
e2εuσ1,ε(g)g−1 · d

dt
(g)dvol(g).
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Now we introduce a flow, which non-increases (resp. non-decreases) F2 when n ≥ 4
(resp. n = 3) and preserves F1,ε.

(5)
du

dt
= −1

2
g−1

d

dt
g = hε

(
e−2u

σ2(g)

σ1(g)

)
− hε

(
rε(g)

(
1 +

e2uν

σ1(g)

)
e(2ε−2)u

)
+ sε(g),

where rε(g) and sε(g) are space constants, given by

(6) rε(g) =

∫
M σ2(g)dvol(g)∫

M e2εuσ1,ε(g)dvol(g)
=
n− 2− 4ε

n− 2− 2ε

∫
M σ2(g)dvol(g)∫

M e2εuσ1(g)dvol(g)

and
(7)∫
M
e2εuσ1,ε(g)

{
hε

(
e−2u

σ2(g)

σ1(g)

)
− hε

(
rε(g)

(
1 +

e2uν

σ1(g)

)
e(2ε−2)u

)
+ sε(g)

}
dvol(g) = 0,

and

(8) ν = ε

(
|∇u|2 +

2

n− 2− 4ε
σ1(g0)

)
.

Here hε : R+ → R is smooth concave function satisfying

(9) hε(t) =

{
t if t ≤ 1

αεt
1− ε

2 + βε if t ≥ 2;

(10) h′ε(t) + h
′′
ε (t)t ≥ 0 ∀t ≥ 0;

where the constants αε > 0, βε are bounded as ε → 0 and αε → 1 as ε → 0. From the
definition, we infer

(11) h′ε(t) = αε(1−
ε

2
)t−

ε
2 if t ≥ 2,

Lemma 2. Flow (5) preserves F1,ε and non-increases (resp. non-decreases) F2 when
n > 4 (resp. n = 3). And hence rε is non-increasing (resp. non-decreasing) along the flow
when n > 4 (resp. n = 3).
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Proof. By the definition of sε(g) and Lemma 1, flow (5) preserves F1,ε. By the definition
of sε and rε, we can compute as follows

(12)

− 2

n− 4

d

dt
F2(g)

= −
∫
M
σ2(g)g−1 · d

dt
gdvol(g)

= −
∫

(σ2(g)− rε(g)e2εuσ1,ε(g))g−1 · d
dt
gdvol(g)

= 2

∫
(σ2(g)− rε(g)e2εuσ1,ε(g))

×
(
hε

(
e−2u

σ2(g)

σ1(g)

)
− hε

(
rε(g)

(
1 +

e2uν

σ1(g)

)
e(2ε−2)u

))
dvol(g)

= 2

∫
e2uσ1(g)

(
e−2u

σ2(g)

σ1(g)
− rε(g)

(
1 +

e2uν

σ1(g)

)
e(2ε−2)u

)
×
(
hε

(
e−2u

σ2(g)

σ1(g)

)
− hε

(
rε(g)

(
1 +

e2uν

σ1(g)

)
e(2ε−2)u

))
dvol(g).

Lemma 3. (see [11]) For 1 < k ≤ n set F = σk
σk−1

. We have

1) the matrix (F ij)(W ) is semi-positive definite for W ∈ Γ+
k−1 and is positive definite

for W ∈ Γ+
k−1\R1, where R1 is the set of symmetric matrices of rank 1.

2) The function F is concave in the cone Γ+
k−1. When k = 2, for all W ∈ Γ+

1 and for
all R = (rij) ∈ Sn, we have

(13)

∑
ijkl

∂2

∂wij∂wkl

(
σ2(W )

σ1(W )

)
rijrkl = −

∑
ij(σ1(W )rij − σ1(R)wij)

2

σ31(W )
.

Set

(14) F̃2,ε(g) = (F1,ε)
− n−4
n−2ε−2

∫
M
σ2(g) dvol(g)

and

Yε(M, [g0]) = inf
g∈C1([g0])

F̃2,ε(g),

Ỹε(M, [g0]) = inf
g∈C2([g0])

F̃2,ε(g),

In the case n > 4 and under the assumptions as in Theorem 1, the above discussion
shows that (5) decreases the functional F̃2,ε(g). If g is a stationary point of the flow, then
the metric g satisfies the following perturbed equation

(15)
σ2(g)

σ1(g)
− ce2εu e

2uν

σ1(g)
= ce2εu,



6 YUXIN GE AND GUOFANG WANG

or equivalently

(16)
σ2(g)

σ1,ε(g)
= ce2εu,

where c > 0 is some positive constant. This is the perturbed equation that we use to
approximate the following equation

(17)
σ2(g)

σ1(g)
= 1.

We will show that Yε is achieved at uε ∈ C2([g0]) for any small ε > 0, which is clearly a
solution of (15). Hence, we can conclude

Y2,1([g0]) = Ỹ2,1([g0]),

since e−2uεg0 converges to the extremal metric when ε → 0. Similarly, we have the same
result in the case n = 3.

3. Local estimates

In this section, we will study local estimates for flow (5) and equation (15). In this
paper, C and C ′ denote positive constants, which in general are independent of ε. They

vary from line to line. Recall ν = ε

(
|∇u|2 +

2σ1(g0)

n− 2− 4ε

)
. Note that ν ≥ 0 and σ1,ε(g) =

σ1(g) + e2uν. By the standard implicit function theorem we have the following short-time
existence result. Let T ∗ ∈ (0,∞] be the maximum of the existence of the flow.

Theorem 2. Assume n ≥ 3. Let u be a solution of (5) in a geodesic ball Br × [0, T ] for
T < T ∗ and r < r0, the injectivity radius of M . We suppose that the function rε(g(t)) is
positive and bounded on [0, T ∗). There are constant ε0 > 0 depending only on (Br, g0), and
constant C depending only on (Br, g0) (independent of ε) and the upper bound of rε(g(t))
on [0, T ] such that for any ε ∈ (0, ε0) and (x, t) ∈ Br/2 × [0, T ]

(18) |∇u|2 + |∇2u| ≤ C(1 + e
− 2−2ε

1−ε/2 inf(x,t)∈Br×[0,T ] u(x,t)).

Proof. Let W = (wij) be an n×n matrix with wij = ∇2
iju+uiuj− |∇u|

2

2 (g0)ij+(Sg0)ij . Here
ui and uij are the first and second derivatives of u with respect to the background metric

g0. Set K = rε(g(t))e(2ε−2)u and K1 = K

(
1 +

ν

σ1(W )

)
. Let Fε : Γ1

+×R+×R×R+ → R
be regular function defined by

(19)

Fε(W, ν, u, t) := hε

(
σ2(W )

σ1(W )

)
− hε

(
rε(g(t))

(
1 +

ν

σ1(W )

)
e(2ε−2)u

)
= hε

(
σ2(W )

σ1(W )

)
− hε(K1)
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Set

(20)

F ijε (W, ν, u, t) :=
∂Fε
∂wij

(W, ν, u, t)

= h′ε

(
σ2(W )

σ1(W )

)
σ1(W )T ij − σ2(W )δij

σ21(W )
+ h′ε(K1)

Kνδij

σ21(W )

where (T ij) = (σ1(W )δij − wij) is the first Newton transformation associated with W ,
and δij is the Kronecker symbol. As W ∈ Γ1

+ and h′ε is positive on (0,+∞), we see that

(F ijε ) is positive definite.

Lemma 4. Fε is concave in Γ+
1 .

Proof. To show this, we compute

∂2Fε
∂wijwkl

= h
′′
ε

(
σ2(W )

σ1(W )

)
∂

∂wij

(
σ2(W )

σ1(W )

)
∂

∂wkl

(
σ2(W )

σ1(W )

)
+ h

′
ε

(
σ2(W )

σ1(W )

)
∂2

∂wij∂wkl

(
σ2(W )

σ1(W )

)
−h′′ε (K1)

(
Kν

σ21(W )

)2

δijδkl − 2h′ε (K1)
Kν

σ31(W )
δijδkl

:= I + II.

where

I := h
′′
ε

(
σ2(W )

σ1(W )

)
∂

∂wij

(
σ2(W )

σ1(W )

)
∂

∂wkl

(
σ2(W )

σ1(W )

)
+ h

′
ε

(
σ2(W )

σ1(W )

)
∂2

∂wij∂wkl

(
σ2(W )

σ1(W )

)

and

II := −h′′ε (K1)

(
Kν

σ21(W )

)2

δijδkl − 2h′ε (K1)
Kν

σ31(W )
δijδkl.

Recall that hε is concave and by lemma 3,
σ2(W )

σ1(W )
is concave in W in the cone Γ1

+. Thus

(I), as a matrix, is non-positive definite. On the other hand, it follows from (10) we have([
−h′′ε (K1)

Kν

σ1(W )
− h′ε(K1)

]
Kν

σ31(W )
δijδkl

)
≤ 0

since K > 0, ν > 0, h′ε(t) + h
′′
ε (t)t ≥ 0 for all t ≥ 0 and σ1(W ) > 0. Therefore, we prove

the Lemma.

From the proof of Lemma 4, we in fact have

(21)
∑
ijkl

∂2Fε
∂wij∂wkl

rijrkl ≤ −h′ε(K1)
Kν

σ31(W )

(∑
i

rii

)2

.



8 YUXIN GE AND GUOFANG WANG

For the simplicity of notations, we now drop the index ε, if there is no confusion. We try
to show the local estimates for first and second order derivatives together. Let S(TM)
denote the unit tangent bundle of M with respect to the background metric g0. We define
a function G̃ : S(TM)× [0, T ] → R

(22) G̃(e, t) = (∇2u+ |∇u|2g0)(e, e)

Without loss of generality, we assume r = 1. Let ρ ∈ C∞0 (B1) be a cut-off function defined
as in [19] such that

(23)

ρ ≥ 0, in B1,

ρ = 1, in B1/2,

|∇ρ(x)| ≤ 2b0ρ
1/2(x), in B1,

|∇2ρ| ≤ b0, in B1.

Here b0 > 1 is a constant. Since e−2ug0 ∈ Γ+
1 , to bound |∇u| and |∇2u| we only need to

bound (∇2u + |∇u|2g0)(e, e) from above for all e ∈ S(TM) and for all t ∈ [0, T ]. To see

this, denote G(e, t) = ρ(x)G̃(e, t). Assume x0 ∈ M and (e1, t0) ∈ S(Tx0M) × [0, T ] such
that

G(e1, t0) = max
S(TM)×[0,T ]

G(e, t),(24)

t0 > 0,(25)

G(e1, t0) > nmax
B1

σ1(g0).(26)

Let (e1, · · · , en) be a orthonormal basis at point (x0, t0). It follows from the fact W ∈ Γ+
1

nG(e1, t0) ≥ ρ(∆u+ n|∇u|2) ≥ ρ(n|∇u|2 +
n− 2

2
|∇u|2 − σ1(g0)),

≥ 3n− 2

2
ρ|∇u|2 − 1

n
G(e1, t0),

so that

G(e1, t0) ≥
3n−2

2

n+ 1
n

ρ|∇u|2 ≥ 21

20
ρ|∇u|2.

Consequently, we obtain

(27) ∇2
11u(x0, t0) ≥

1

20
|∇u|2(x0, t0)

Set for any i 6= j ∈ {1, · · · , n}

e′ =
1√
2

(ei ± ej).

We have

(28) G(e′, t0) =
1

2
(G(ei, t0) +G(ej , t0))± ρ∇2

iju(x0, t0).
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Thus, there holds

(29) ρ|∇2
iju(x0, t0)| ≤ G(e1, t0)−

1

2
(G(ei, t0) +G(ej , t0)).

On the other hand, we have ∀i = 1, · · · , n

(30) (n− 1)G(e1, t0) +G(ei, t0) ≥ ρ(∆u+ n|∇u|2) ≥ ρ(
3n− 2

2
|∇u|2 − σ1(g0)),

which implies

(31) G(ei, t0) ≥ ρ(
3n− 2

2
|∇u|2 − σ1(g0))− (n− 1)G(e1, t0).

Together with (29), we deduce

(32) ρ|∇2
iju(x0, t0)| ≤ nG(e1, t0)−

3n− 2

2
ρ|∇u|2 + ρσ1(g0) ≤ (n+ 1)G(e1, t0).

(Indeed, at all point (x, t), the estimate ρ|∇2
iju| ≤ (n+ 1)G(e1, t0) holds). Now choose the

normal coordinates around x0 such that at point x0
∂

∂x1
= e1

and consider the function on M × [0, T ]

G(x, t) = ρ(x)(u11 + |∇u|2)(x, t).
(without the confusion, we denotes also this function by G). Clearly, (x0, t0) is a maximum
point of G(x, t) on M × [0, T ]. At (x0, t0), we have

0 ≤ Gt = ρ(u11t + 2
∑
l

ulult),(33)

0 = Gj =
ρj
ρ
G+ ρ(u11j + 2

∑
l≥1

ululj), for any j,(34)

0 ≥ (Gij) =

ρρij − 2ρiρj
ρ2

G+ ρ(u11ij +
∑
l≥1

(2uliulj + 2ululij))

 .(35)

Recall that (F ij) is definite positive. Hence, we have

(36)

0 ≥
∑
i,j≥1

F ijGij −Gt

≥
∑
i,j≥1

F ij
ρρij − 2ρiρj

ρ2
G+ ρ

∑
i,j≥1

F ij(u11ij +
∑
l≥1

(2uliulj + 2ululij))

−ρ(u11t + 2
∑
l≥1

ulult).

First, from the definition of ρ, we have

(37)
∑
i,j≥1

F ij
ρρij − 2ρiρj

ρ2
G ≥ −C

∑
i,j≥1
|F ij |1

ρ
G,
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and

(38)

∑
i,j≥1
|F ij | ≥

∑
i

F ii ≥ C
∑
i,j≥1
|F ij |

since F is positive definite . Using the facts that

(39) ukij = uijk +
∑
m

Rmikjum,

(40) ukkij = uijkk +
∑
m

(2Rmikjumk −Ricmjumi −Ricmiumj −Ricmi,jum +Rmikj,kum)

and

(41) (
∑
l

u2l )11 = 2
∑
l

(u11lul + u21l) +O(|∇u|2),

we have

(42)

∑
i,j≥1

F iju11ij

≥
∑
i,j≥1

F ij

wij11 − (u11)iuj − ui(u11)j +
∑
l≥1

(u21l + u11lul)(g0)ij


−2

∑
i,j≥1

F ijui1uj1 − C(1 + |∇2u|+ |∇u|2)
∑
i,j≥1
|F ij |

and

(43)

∑
i,j,l

F ijululij ≥
∑
i,j,l

F ijulwijl −
∑
i,j,l

F ij(uluiluj + uluiujl)

+
1

2

∑
i,j

F ij〈∇u,∇(|∇u|2)〉(g0)ij − C(1 + |∇u|2)
∑
i,j≥1
|F ij |.
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Combining (42) and (43), we deduce
(44) ∑

i,j≥1
F ij(u11ij + 2

∑
l≥1

(uliulj + ululij))

≥
∑
i,j≥1

F ij(wij11 + 2
∑
l≥1

wijlul) + 2
∑
i,j≥1

F ij
∑
l≥2

uliulj +
∑
i,j,l≥1

u21lF
ij(g0)ij

−
∑
i,j

F ij
[
(u11 + |∇u|2)iuj + ui(u11 + |∇u|2)j − 〈∇u,∇(u11 + |∇u|2)〉(g0)ij

]
−C(1 + |∇2u|+ |∇u|2)

∑
i,j≥1
|F ij |

≥
∑
i,j

F ij(wij11 + 2
∑
l

wijlul) + u211
∑
i,j

F ij(g0)ij

+
∑
i,j

F ij (ρiuj + ρjui − 〈∇ρ,∇u〉(g0)ij)
G

ρ2
− C(1 + |∇2u|+ |∇u|2)

∑
i,j≥1
|F ij |.

Now, we want to estimate
∑

i,j,l F
ijwijlul and

∑
i,j F

ijwij11 respectively. For the first

term
∑

i,j,l F
ijwijlul , we have

(45)

∑
i,j,l

F ijwijlul =
∑
l

Flul + h′(K1)
K

σ1(W )

∑
l

νlul + h′(K1)K1(2ε− 2)
∑
l

u2l .

For the second term
∑

i,j,l F
ijwij11, we have

(46) ∑
i,j

F ijwij11

= F11 −
∑
i,j,k,m

∂2F

∂wij∂wkm
wij1wkm1 − 2

∑
i,j

∂2F

∂wij∂u
wij1u1 − 2

∑
i,j

∂2F

∂wij∂ν
wij1ν1

−∂
2F

∂ν2
ν21 − 2

∂2F

∂ν∂u
ν1u1 −

∂2F

∂u2
u21 −

∂F

∂ν
ν11 −

∂F

∂u
u11

It follows from (21) that

(47) −
∑
i,j,k,m

∂2F

∂wij∂wkm
wij1wkm1 ≥ h

′
(K1)

Kν

σ31(W )

(∑
i

wii1

)2
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Using the facts (9) to (11), we can estimate successively

(48)

−2
∑
i,j

∂2F

∂wij∂u
wij1u1

≥ −2(2− 2ε)h
′
(K1)

Kν

σ21(W )

2σ1(W )u21 +
1

8σ1(W )

(∑
i

wii1

)2
 ,

(49)

−2
∑
i,j

∂2F

∂wij∂ν
wij1ν1

≥ −2h
′
(K1)

K

σ21(W )

σ1(W )

ν
ν21 +

ν

4σ1(W )

(∑
i

wii1

)2
 ,

(50)

−2
∂2F

∂ν∂u
ν1u1

≥ −2h
′
(K1)

Kν

σ1(W )
u21 − 2h

′
(K1)

K

νσ1(W )
ν21 ,

(51) −∂
2F

∂ν2
ν21 = h

′′
(K1)

K2

σ21(W )
ν21 ≥ −h

′
(K1)

K

σ21(W )
ν21 ,

(52) −∂
2F

∂u2
u21 ≥ 0

and

(53) 2h′(K1)
K

σ1(W )

∑
l

νlul ≥ −h′(K1)
K

σ1(W )

[
|∇ν|2

ν
+ ν|∇u|2

]
.
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These estimates, together with (45) and (46), imply

(54)

∑
i,j

F ij(wij11 + 2
∑
l

wijlul)

≥ (F11 +
∑
l

2Flul)− 11h
′
(K1)

Kν

σ1(W )
|∇u|2

−5h
′
(K1)

K

σ1(W )ν
|∇ν|2 − h′(K1)

K

σ21(W )
|∇ν|2

−4h
′
(K1)K1|∇u|2 + h

′
(K1)

K

σ1(W )
ν11 − (2− 2ε)h

′
(K1)K1u11

≥ F11 +
∑
l

2Flul − 15h
′
(K1)

Kν

σ1(W )
|∇u|2

−5h
′
(K1)

K

σ1(W )ν
|∇ν|2 − h′(K1)

K

σ21(W )
|∇ν|2

−C(1 + e(2ε−2)u)
G

ρ
+ h

′
(K1)

K

σ1(W )
ν11 − 2h

′
(K1)

Kν

σ1(W )
u11

Here we the fact u11 ≥ 0 at the point (x0, t0). Remark

(55)

∣∣∣∣∣∑
l

uilul

∣∣∣∣∣ =

∣∣∣∣∣∑
l

(
wil − uiul +

|∇u|2

2
(g0)il − (Sg0)il

)
ul

∣∣∣∣∣
≤

√
σ21(W )− 2σ2(W )|∇u|+ |∇u|

3

2
+ |Sg0 ||∇u|,

so that together with (34) and (41), there holds

(56)

h
′
(K1)

K

σ1(W )
ν11

= εh
′
(K1)

K

σ1(W )
(|∇u|2 +

2

n− 2− 4ε
σ1(g0))11

= εh
′
(K1)

K

σ1(W )

2
∑
l

−Gρlul
ρ2

− 2
∑
j

ujujlul + u21l

+O(|∇u|2 + 1)


≥ εh

′
(K1)

K

σ1(W )

[
−2G〈∇ρ,∇u〉

ρ2
− C|∇u|2|∇2u| − C(|∇u|4 + 1)

]
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Finally, we deduce that

(57)

∑
i,j

F ij(wij11 + 2
∑
l

wijlul)

≥ F11 + 2
∑
l

Flul − 15h
′
(K1)

Kν

σ1(W )
|∇u|2 − 5h

′
(K1)

K

σ1(W )ν
|∇ν|2

−2h
′
(K1)

Kν

σ1(W )
u11 − h

′
(K1)

K

σ21(W )
|∇ν|2

−C(1 + e(2ε−2)u)
G

ρ
− Cεh′(K1)

K

σ1(W )

[
G|∇u|
ρ3/2

+
G

ρ
(1 + |∇u|2)

]
.

Now we claim that there is a constant C > 0 independent of ε such that

(58) G ≤ C

1 +
√
ρ

(∑
i

F ii

)−1 (
1 + e(2ε−2)u

)
+ ερ

(
1 + e(2ε−2)u

) .
We divide the proof of the claim into two cases.

Case 1.
ν

σ1(W )
≥ 1.

It is clear that

(59) C ′ε(1 + |∇u|2) ≤ ν ≤ Cε(1 + |∇u|2)

and

(60) |∇ν|2 ≤ CενG
2

ρ2
,

for some positive constants C ′ and C with C ′ < C. Recall

(61)
∑
i

F ii = h′(
σ2(W )

σ1(W )
)

(
n− 1− nσ2(W )

σ21(W )

)
+ h′(K1)

nKν

σ21(W )

Thus, we can get that

(62)

h′(K1)
Kν

σ1(W )
|∇u|2 ≤

(∑
i

F ii

)
σ1(W )

n
|∇u|2 ≤

(∑
i

F ii

)
ν

n
|∇u|2

≤ Cε

(∑
i

F ii

)
G2

ρ2
,

(63) h′(K1)
Kν

σ1(W )
u11 ≤ Cε

(∑
i

F ii

)
G2

ρ2
,



ON A CONFORMAL QUOTIENT EQUATION. II 15

(64) h′(K1)
K

νσ1(W )
|∇ν|2 ≤ h′(K1)

K

σ21(W )
|∇ν|2 ≤ Cε

(∑
i

F ii

)
G2

ρ2
,

and

(65) Cεh
′
(K1)

K

σ1(W )

[
G|∇u|
ρ3/2

+
G(1 + |∇u|2)

ρ

]
≤ Cε

(∑
i

F ii

)[
G3/2

ρ2
+
G2

ρ2

]
.

Combining (57) and (62) to (65), we obtain

(66)

∑
i,j

F ij(wij11 + 2
∑
l

wijlul)

≥ F11 + 2
∑
l

Flul − Cε

(∑
i

F ii

)(
G

ρ

)2

− C(1 + e(2ε−2)u)
G

ρ
,

so that it follows from (36) to (38) and (44)

(67)

0 ≥ −C

(∑
i

F ii

)
G

ρ
+ ρu211

(∑
i

F ii

)
− C

(∑
i

F ii

)
G
√
G

ρ

−C

(∑
i

F ii

)
G− Cε

(∑
i

F ii

)
G2

ρ
− C(1 + e(2ε−2)u)G.

Therefore, we prove (58), provided ε is sufficiently small.

Case 2.
ν

σ1(W )
< 1.

We distingush two cases.

a) σ2(W ) ≥ 0.
Then from (55), we have

(68) |∇ν| ≤ Cε(σ1(W )|∇u|+ |∇u|3 + |∇u|+ 1).

In view of (59), we have
(69)

h′(K1)
Kν

σ1(W )
|∇u|2 + h′(K1)

K

σ1(W )ν
|∇ν|2 + h′(K1)

K

σ21(W )
|∇ν|2 + h′(K1)

Kν

σ1(W )
|u11|

≤ C
(

1 + e(2ε−2)u
) G
ρ
,

and

(70) Cεh
′
(K1)

K

σ1(W )

[
G|∇u|
ρ3/2

+
G

ρ
(1 + |∇u|2)

]
≤ C

(
1 + e(2ε−2)u

) G

ρ3/2
.

Hence, we infer also (58), provided ε is sufficiently small.
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b) σ2(W ) < 0.
We have also (70) and

(71)

h′(K1)
Kν

σ1(W )
|∇u|2 + h′(K1)

Kν

σ1(W )
|u11|

≤ C
(

1 + e(2ε−2)u
) G
ρ
,

Thanks of (55), we have

(72) |∇ν| ≤ Cε(
√
σ21(W )− 2σ2(W )|∇u|+ |∇u|3 + |∇u|+ 1)

so that together with (59) and (61) we obtain

(73)

h′(K1)
K

σ21(W )
|∇ν|2

≤ h′(K1)
K

σ1(W )ν
|∇ν|2

≤ Ch′(K1)Kε
2

(
σ21(W )− 2σ2(W )

σ1(W )ν
|∇u|2 +

|∇u|6 + 1

ν2

)
≤ C(1 + e(2ε−2)u)

G

ρ
+ CεKσ1(W )

(∑
i

F ii

)

≤ C(1 + e(2ε−2)u)
G

ρ

(
1 + ε

∑
i

F ii

)
,

Finally we imply that the claim (58) holds in this case, provided ε is sufficiently small. It

is easy to see from (9) that h
′
ε(2) is uniformly bounded from below by a positive constant

for all ε ∈ [0, 1/2]. Hence, we have

(74)

(∑
i

F ii

)−1
≤


C, if

σ2(W )

σ1(W )
≤ 2,

C

(
G

ρ

)ε/2
, if

σ2(W )

σ1(W )
≥ 2,

which, together with (58), implies that

(75) G ≤


C
(

1 + e(2ε−2)u
)
, if

σ2(W )

σ1(W )
≤ 2;

C

(
1 + e

(4ε−4)u
2−ε

)
, if

σ2(W )

σ1(W )
≥ 2.

Therefore, we have finished the proof of the Theorem.
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The same proof gives the local estimates for the elliptic equation (16).

Theorem 3. Assume n ≥ 3 and ε ∈ [0, ε0). Let u be a solution of (16) in a geodesic
ball Br for r < r0, the injectivity radius of M . There is a constant C depending only on
(Br, g0) (independent of ε) such that for any ε ∈ [0, ε0) and x ∈ Br/2
(76) |∇u|2 + |∇2u| ≤ C(1 + e−(2−2ε)infx∈Bru(x)).

4. A Sobolev inequality

The Sobolev inequality is a very important analytic tool in many problems arising from
analysis and geometry. It plays a crucial role in the resolution of the Yamabe problem,
which was solved completely by Yamabe [36], Trudinger [32], Aubin [1] and Schoen [29].
See various optimal Sobolev inequalities in [25]. In this section we are interested in a
similar type inequality for the class of a fully nonlinear conformal quotient operators. In
[20], [21], [12] and [17], the Sobolev inequality was generalized to the various fully nonlinear
operators.

In this section, we establish the Sobolev inequality relating
∫
M σ2(g)dvol(g) and∫

M σ1,ε(g)dvol(g) for a general manifold, which will be used in the next section.

Theorem 4. Let (M, g0) be a compact Riemannian manifold with g0 ∈ Γ+
2 and the di-

mension n > 4. Assume ε ∈ [0, 1/2]. Then there exists a positive constant C > 0
depending only on (M, g0) (and independent of ε) such that for any C2 function u with
e−2ug0 ∈ C1([g0]) we have

(77)

∫
M
σ2(e

−2ug0)dvol(e
−2ug0) ≥ C

(∫
M
e2εuσ1(e

−2ug0)dvol(e
−2ug0)

) n−4
n−2−2ε

.

Equivalently, for such a function u we have

(78)

∫
M
e(4−n)uσ2(∇2u+ du⊗ du− |∇u|

2

2
g0 + Sg0)dvol(g0)

≥ C

(∫
M
e(2+2ε−n)uσ1(∇2u+ du⊗ du− |∇u|

2

2
g0 + Sg0)dvol(g0)

) n−4
n−2−2ε

.

Proof. Let g = e−2ug0. We have shown in [11] the invariant Y2,1([g0]) > 0 and for any
e−2ug0 ∈ C1([g0])

(79)

∫
M
σ2(e

−2ug0)dvol(e
−2ug0) ≥ C1

∫
M
|∇u|4e(4−n)udvol(g0)− C

∫
M
e(4−n)udvol(g0),

(80)

∫
M
σ2(e

−2ug0)dvol(e
−2ug0) ≥ C1

∫
M
e(4−n)udvol(g0),

for some positive constants C1 > 0 and C > 0. Hence, we deduce

(81)

∫
M
σ2(e

−2ug0)dvol(e
−2ug0) ≥ C

∫
M
|∇u|4e(4−n)udvol(g0).
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It is easy to say that

(82)

∫
M
e2εuσ1(e

−2ug0)dvol(e
−2ug0)

=

∫ (
∆u− n− 2

2
|∇u|2 + σ1(g0)

)
e(2+2ε−n)udvol(g0)

=

∫ (
n− 2− 4ε

2
|∇u|2 + σ1(g0)

)
e(2+2ε−n)udvol(g0)

≤ n− 2− 4ε

2

(∫
|∇u|4e(4−n)udvol(g0)

∫
e(4ε−n)udvol(g0)

)1/2

+(supσ1(g0))

∫
e(2+2ε−n)udvol(g0).

Recall the definition of the conformal invariants [11]

(83) Y1([g0]) = inf
g∈C1([g0])

∫
σ1(g)dvol(g)

(vol(g))
n−2
n

.

and

(84)

(∫
M
dvol(e−2ug0)

)n−4
n

≤ (Y2,1([g0])Y1([g0])
n−4
n−2 )−1

∫
M
σ2(e

−2ug0)dvol(e
−2ug0).

By the Hölder inequality, we get for any α ∈ [0, n/2]

(85)

(∫
M
eαudvol(e−2ug0)

) n−4
n−α
≤ C

∫
M
σ2(e

−2ug0)dvol(e
−2ug0),

where C is a positive constant independent of α. (81), (82) and (85) imply

(86)

∫
M
e2εuσ1(e

−2ug0)dvol(e
−2ug0)

≤ C

[(∫
M
σ2(e

−2ug0)dvol(e
−2ug0))

)1/2(∫
M
σ2(e

−2ug0)dvol(e
−2ug0))

) n−4ε
2(n−4)

+

(∫
M
σ2(e

−2ug0)dvol(e
−2ug0))

)n−2−2ε
n−4

]

≤ C

(∫
M
σ2(e

−2ug0)dvol(e
−2ug0))

)n−2−2ε
n−4

.

We finish the proof of Theorem.

Remark 1. In [13], we proved the Sobolev inequality (77) in the cone C2([g0]) when the
conformal invariant Y2,1([g0]) > 0.
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5. Proof of Theorem 1 in the case n ≥ 5

Now we can prove that Yε is achived for any small ε > 0.

Proposition 2. For ε0 > ε > 0, flow (5) globally converges to a solution of (15). As a
direct appliaction, Yε is achieved by a function uε satisfying (15).

Proof. We divide the proof into 3 steps.

Step 1. For a fixed small number ε > 0, the solution u of flow (5) has a uniform C0

bound, which is independent of t.
The proof use the optimality of the local estimate (18). First all, since flow (5) does

not increase F2, F2(g) is bounded from above along the flow. By (84), we konw that∫
M dvol(g) is bounded from above. From the Hölder inequality, Vε(g) =

∫
M e2εudvol(g) is

also bounded.
Let T ∗ ∈ (0,∞] be the maximum of the existence of the flow. For any T ∈ [0, T ∗), set

m(T ) = min
(x,s)∈M×[0,T ]

u(x, s).

We show that there is a constant C0 > 0 independent of T (depending on ε) such that

(87) inf
T∈[0,T ∗)

m(T ) > −C0.

We assume by contradiction that inft∈[0,T ∗)m(t) = −∞. Let Ti be a sequence tending
to T ∗ with m(Ti) → −∞ as i → ∞. Let (xi, ti) ∈ M × [0, Ti] with u(xi, ti) = m(Ti). Fix

δ ∈ (25 ,
1
2), we consider ri =

ε

2
|m(Ti)|e(1−δε)m(Ti). Clearly, we have ri → 0. It follows from

Theorem 2 that for sufficiently large i and for any x ∈ Bri(xi)

u(x, ti) ≤ m(Ti) + ( sup
Bri (xi)

|∇u|)ri

≤ m(Ti) + Ce(
ε

2−ε−1)m(Ti) ε

2
|m(Ti)|e(1−δε)m(Ti)

= m(Ti) + C
ε

2
|m(Ti)|eε(

1
2−ε−δ)m(Ti)

≤ (1− κ)m(Ti),

for some κ ∈ (0, (δ − 2
n)ε). Note that δ − 2

n > 0, for n ≥ 5. Therefore, we obtain∫
B(xi,ri)

e2εudvol(g) ≥
∫
B(xi,ri)

e(2ε−n)m(Ti)(1−κ)dvol(g0) ≥ Ce(2ε−n)m(Ti)(1−κ)rni

≥ C
(
|m(Ti)|ε

2

)n
→∞.

where we have used n ≥ 5. Hence, this fact contradicts the boundedness of Vε. This proves
the claim. This claim, together with the local estimates and the fact F1,ε is preserved along
the flow, implies that ‖u(t)‖C2 has a unform bound.



20 YUXIN GE AND GUOFANG WANG

Step 2 There is a constant C0 > 0, independent of T ∈ [0, T ∗) such that σ1(g(x, t)) > C0

for any t ∈ [0, T ] and x ∈M .

¿From the Sobolev inequality and Lemma 2, the function rε(g(t)) is bounded from below
and from above by the positive constants. Recall

ν = ε(|∇u|2 + 2σ1(g0)/(n− 2− 4ε)),

W = (wij) = (∇2
iju+ uiuj −

|∇u|2

2
(g0)ij + (Sg0)ij),

K = rε(g(t))e(2ε−2)u, K1 = K

(
1 +

ν

σ1(W )

)
and

Fε(W, ν, u, t) = hε

(
σ2(W )

σ1(W )

)
− hε (K1) .

Let us consider a function Hε : M × [0, T ] defined by

Hε := Fε − e−u

= ut − sε(g)− e−u,

where ut denotes the derivative of u with respect to t. Without loss of generality, we
assume that the minimum of Hε is achieved at (x0, t0) ∈M × (0, T ] and at (x0, t0)

σ2(W )

σ1(W )
< 1.

Recall that hε(t) = t for t < 1. Hence, in a small neighborhood of (x0, t0)

Hε =
σ2(W )

σ1(W )
− hε(K1)− e−u.

Let us use O(1) denote terms with a uniform bound (perhaps depending on ε). Using
drε(g)
dt ≤ 0, we have near (x0, t0)

(88)

d

dt
Hε ≥ tr

(
A∇2

g(Hε + e−u)
)
− h′ε(K1)K

2ε〈∇g0u,∇g0(Hε + e−u)〉g0
σ1(W )

+kε(x, t)ut,

where

A :=
(σ21(W )− σ2(W ))I − σ1(W )W

σ21(W )
+ h′ε(K1)

KνI

σ21(W )

is positive definite and

kε(x, t) := e−u + (2− 2ε)h′ε(K1)K1

is a positive function and I denotes the identity matrix. To simplify the notations, we
drop the index ε as before. We prove first There is a constant C2 > 0, independent of
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T ∈ [0, T ∗) such that σ1(g(x0, t0)) > C2. Since (x0, t0) is the minimum of H in M × [0, T ],

at this point, we have
dH

dt
≤ 0, Hl = 0 ∀l and (Hij) is non-negative definite. Note that

(∇2
g)ijH = Hij + uiHj + ujHi −

∑
l

ulHlδij = Hij ,

at (x0, t0), where Hj and Hij are the first and second derivatives with respect to the
back-ground metric g0. From the positivity of A and (88), we have

(89)

0 ≥ Ht −
∑
i,j

AijHij

≥
∑
i,j

Aij{(e−u)ij + ui(e
−u)j + uj(e

−u)i −
∑
l

ul(e
−u)lδij}+ k(x, t)ut

= e−u
∑
i,j

Aij{−wij + S(g0)ij +
1

2
|∇u|2δij}+ k(x, t)ut

≥ e−u
∑
i,j

Aij(−wij + S(g0)ij) + k(x, t)ut.

Here we have ∑
i,j

Aijwij =
σ2(W )

σ1(W )
+ h′(K1)

Kν

σ1(W )
.

On the other hand, we have

(90)

∑
i,j

AijS(g0)ij =
σ1(g0)(σ

2
1(W )− σ2(W ))

σ21(W )
− 1

σ1(W )

∑
i,j

wijS(g0)ij

+h′(K1)
Kνσ1(g0)

σ21(W )

= −σ2(W )σ1(g0)

σ21(W )
+ h′(K1)

Kνσ1(g0)

σ21(W )

− 1

σ1(W )

∑
i,j

wijS(g0)ij + σ1(g0).

As W is bounded, we deduce that

(91)

∑
i,j

Aij(−wij + S(g0)ij) =

(
h′(K1)

Kνσ1(g0)

σ21(W )

−σ2(W )σ1(g0)

σ21(W )
+O(

1

σ1(W )
) +O(1)

)
.

(92) k(x0, t0) = (2− 2ε)h′(K1)
Kν

σ1(W )
+O(1).
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(93)

ut(x0, t0) = H(x0, t0) + sε(g(t0)) + e−u(x0,t0) ≥ H(x0, t0) +O(1)

=
σ2(W )

σ1(W )
− h(K1) +O(1)

We divide the proof into two cases.

Case 1. σ2(W ) ≥ 0.

It is clear

0 ≤ σ2(W ) ≤ 1

2
σ21(W )

Thus

(94) 0 ≥ e−uh′(K1)
Kνσ1(g0)

σ21(W )
− (2− 2ε)h(K1)h

′(K1)
Kν

σ1(W )
+O(1) +O(

1

σ1(W )
)

Assume that 1
σ1(W ) is sufficiently large. Then

(95) h′(K1)
Kνσ1(g0)

σ21(W )
≥ C3

σ
2−ε/2
1 (W )

and

(96) (2− 2ε)h(K1)h
′(K1)

Kν

σ1(W )
≤ C4

σ2−ε1 (W )

for some positive constants C3 and C4 independent of T . This implies boundness of σ1(W )
at the point (x0, t0) from below by some positive constant independent of T .

Case 2. σ2(W ) < 0.

In this case, (94) holds also since −σ1(g0)σ2(W )

σ21(W )
+k(x0, t0)

σ2(W )

σ1(W )
> 0, provided

1

σ1(W )
is sufficiently large. Hence, the desired result yields.

Now for any (x, t) ∈M × [0, T ] we have

(97) H(x, t) ≥ H(x0, t0) = O(1)

so that

(98) h(
σ2(W )

σ1(W )
)(x, t)− h(K1)(x, t) ≥ O(1)

Therefore, we infer

(99) −h
(
rε(g(t))e(2ε−2)u

(
1 +

ν

σ1(W )

))
(x, t) ≥ O(1)
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since we have always

(100)


h(
σ2(W )

σ1(W )
)(x, t) =

σ2(W )

σ1(W )
(x, t) < 0 if σ2(W )(x, t) < 0

σ2(W )

σ1(W )
(x, t) ≤ 1

2
σ1(W )(x, t) ≤ O(1) if σ2(W )(x, t) ≥ 0

Finally, K1(x, t) is bounded from above and yields that there exists C0 > 0 independent
of T such that σ1(W )(x, t) > C0.

Step 3. Now we can finish the proof of Proposition 2. From Step 2, we know that the
flow is uniformly parabolic. In view of Step 1, Krylov’s theory implies u(t) has a uniform
C2,α bound. Hence, T ∗ = ∞. One can also show that u(t) globally converges to u(∞),
which clearly is a solution of (15) for ε0 > ε > 0. From the local estimates, the set of
solutions of (15) for c = 1 with the uniform bounded energy functional F2 is bounded in
C2 norm. Since (16) is concave in W , from the Evans-Krylov theory, this set is compact
in C2,α norm. Now it is easy to show that Yε is achieved.

Proof of Theorem 1 in the case n ≥ 5. By Proposition 2, for small ε > 0 we have a solution
uε of (15) which has F̃2,ε(uε) = Yε. It is easy to show that

lim
ε→0

Yε = lim
ε→0

Ỹε = Y2,1.

If limε→0 minx∈M uε(x) > −∞, then local estimates imply that uε (taking a subsequence)
converges in C2,α to u, which is a solution of (3). We are done.

If limε→0 minx∈M uε(x) = −∞, we can use the local estimates and the classification of

solutions of (17) in the standard sphere to get a contradiction to the facts Ỹ2,1([g0]) ≤
Ỹ2,1(S

n) and equality holds if only if (M, [g0]) is the standard sphere. This so-called the
blow-up analysis for this class of fully nonlinear conformal equations becomes more or less
standard. Here we leave the proof to the interested reader.

Now Y2,1([g0]) is achieved by some g ∈ C1([g0]) which solves (17). Hence g ∈ C2([g0])
and yields that Y2,1([g0]) = Ỹ2,1([g0]).

6. Proof of Theorem 1 in the case n = 3

Now we want to consider the existence of the following equation

(101) Fε(g) =
σ2(g)− εe4u

σ1(g)
= constant,

with g = e−2ug0 for ε > 0 a positive number. In this paper we will choose ν as a small
positive constant. Following [20], [12] and [13] we will introduce a suitable Yamabe type
flow to study equation (101).
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For any ε ∈ (0,+∞) and for g = e−2ug0, consider the following perturbed functional

Eε(g) :=


2

n− 4

∫
M

(σ2(g)− εe4u)dvol(g), if n 6= 4,

−
∫ 1

0

∫
M

(σ2(gt)− 2εe4tu)udvol(gt)dt, if n = 4,

where gt = e−2tug0. When ε = 0, the functional was considered in [33], [5] and [4]. Recall

F1(g) =

∫
M
σ1(g)dvol(g) and F2(g) =

∫
M
σ2(g)dvol(g)

From the variational formula given in [33], [5] and [4], we have

(102)
d

dt
Eε(g) =

∫
(σ2(g)− εe4u)g−1 · d

dt
gdvol(g)

and

(103)
d

dt
F1(g) =

n− 2

2

∫
σ1(g)g−1 · d

dt
gdvol(g).

Now we introduce a Yamabe type flow, which non-increases Eε and preserves F1.

(104)
du

dt
= −1

2
g−1

d

dt
g = e−2u

σ2(g)− εe4u

σ1(g)
− rε(g)e−2u + sε(g),

where rε(g) and sε(g) are space constants, given by

(105) rε(g) :=
F2(g)−

∫
M εe4udvolg

F1(g)

and

(106)

∫
M
σ1(g)

{
e−2u

σ2(g)− εe4u

σ1(g)
− rε(g)e−2u + sε(g)

}
dvol(g) = 0.

We collect some basic facts proved in [11].

Lemma 5. Flow (104) preserves F1 and non-increases Eε. Hence when n ≥ 4, then rε is
non-increasing along the flow, and when n = 3, then rε is non-decreasing along the flow.

Given ε > 0, assume g0 ∈ C1([g0]). By Lemma 3, (104) is parabolic. By the standard
implicit function theorem we have the short-time existence result. Let T ∗ ∈ (0,∞] so that
[0, T ∗) is the maximum interval for the existence of the flow g(t) ∈ Γ+

1 .

Proposition 3. Assume that n ≥ 3, ε > 0 and g0 ∈ Γ+
1 . Let u be a solution of (104) in

a geodesic ball BR × [0, T ] for T < T ∗ and R < τ0, the injectivity radius of M .
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(1) Assume that ∀t ∈ [0, T ], there holds

rε(t) ≤ 0.

Then there is a constant C depending only on (BR, g0) (independent of ε and T )
such that for any (x, t) ∈ BR/2 × [0, T ]

(107) |∇u|2 + |∇2u| ≤ C.

(2) Assume that ∀t ∈ [0, T ], there holds

rε(t) > 0.

Then there is a constant C depending only on (BR, g0) (independent of ε and T )
such that for any (x, t) ∈ BR/2 × [0, T ]

(108) |∇u|2 + |∇2u| ≤ C(1 + sup
t∈[0,T ]

rε(t)× e−2 inf(x,t)∈BR×[0,T ] u(x,t)).

Now we define

(109) aε := inf
g∈C1([g0])

Eε(g)

(
∫
M σ1(g)dvol(g))

n−4
n−2

if n 6= 4;

If aε is achieved by a metric g = e−2ug0, the g satisfies

(110)
σ2(g)− εe4u

σ1(g)
= κ,

for some constant κ. Equivalently, we will consider the energy functional Eε on the nor-
malized cone C̃1([g0])

(111) C̃1([g0]) :=

{
g ∈ C1([g0]) |

∫
M
σ1(g)dvol(g) = 1

}
.

Using the same arguments as in Proposition 3, we have the following local estimate.

Proposition 4. Assume that n ≥ 3, ε > 0 and g0 ∈ Γ+
1 . Let u be a solution of (110) in

a geodesic ball BR × [0, T ] for T < T ∗ and R < τ0, the injectivity radius of M .

(1) Assume

κ ≤ 0.

Then there is a constant C depending only on (BR, g0) (independent of ν and T )
such that for any (x, t) ∈ BR/2 × [0, T ]

(112) |∇u|2 + |∇2u| ≤ C.
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(2) Assume
κ > 0.

Then there is a constant C depending only on (BR, g0) (independent of ε and T )
such that for any (x, t) ∈ BR/2 × [0, T ]

(113) |∇u|2 + |∇2u| ≤ C(1 + κ× e−2 inf(x,t)∈BR×[0,T ] u(x,t)).

Now we consider n = 3 and can prove that aε is achieved for any small ε > 0.

Proposition 5. Assume g0 ∈ Γ+
2 and n = 3. For 1

2 > ε > 0, flow (104) globally converges
to a solution of (110). As a direct appliaction, aε is achieved by a function uε satisfying
(110) for κ > 0, provided ε is suficiently small.

Proof. We divide the proof into 3 steps.

Step 1 There is a constant C0 > 0, independent of T ∈ [0, T ∗) such that

(114) ‖u(t)‖C2 ≤ C0.

Claim. There is a constant C > 0, independent of T ∈ [0, T ∗) such that

(115)

∫
M
e4u(t)dvol(g(t)) ≤ C.

Without loss of generality, we can suppose F1(g(t)) ≡ 1. Thus, we obtain

(116) ε

∫
M
e4u(t)dvol(g(t)) = F2(g(t))− rε(g(t)) ≤ F2(g(t)) ≤ Y2,1([g0]).

Thus, we prove the claim. As in [11], we have for all g ∈ C1([g0])

(117)

∫
σ2(g)dvol(g) ≤ − 1

16

∫
|∇u|4g0e

4udvol(g) + c

∫
e4udvol(g),

for some positive constant c > 0. Recall that Y2,1([g0]) is finite and
∫
σ2(g(t))dvol(g(t)) ≥

0, provided rε(g(0)) > 0, since rε(g(t)) is non-decreasing. Thus, we infer ∀t ∈ [0, T ∗)
(118)

256

∫
|∇e

u
4 |4g0dvol(g0) =

∫
|∇u|4g0e

4udvol(g) ≤ c
∫
e4udvol(g) ≤ c

∫
(eu/4)4dvol(g0),

which implies by the Sobolev’s embedding Theorem for all x, y ∈M

(119) |eu(x,t)/4 − eu(y,t)/4| ≤ c(
∫
e4udvol(g))1/4(dg0(x, y))1/4 ≤ c(dg0(x, y))1/4

where dg0(x, y) is the distance between x and y with respect to the metric g0. Set

(120) β(t) := eminM u(·,t) = eu(xt,t)

and

(121) β̃(t) := emaxM u(·,t) = eu(x̃t,t)

for some xt, x̃t ∈M . It follows from (119) that for any y ∈M

(122) e−u(y,t)/4 ≥ (β(t)1/4 + c(dg0(x, y))1/4)−1



ON A CONFORMAL QUOTIENT EQUATION. II 27

which implies

(123)

V ol(g(t)) =

∫
e−3u(t)dvol(g0) ≥

∫
(β(t)1/4 + c(dg0(x, y))1/4)−12dvol(g0)

≥ c

∫ R

0
(β(t)1/4 + cr1/4)−12r2dr ≥ −c lnβ(t),

provided β(t) < 1/2. On the other hand, we have always V ol(g(t)) ≤ (Y1([g0])F1(g(t)))3.
Thus the lower boundness of u(x, t) yields. Together with the local estimates and the fact
F1 is preserved along the flow, this implies that ‖u(t)‖C2 has a uniform bound.

Step 2. The flow preserves the positivity of the scalar curvature.

Proposition 6. There is a constant C0 > 0, independent of T ∈ [0, T ∗) such that
σ1(g(t)) > C0 for any t ∈ [0, T ].

Proof. Recall

W = (wij) = (∇2
iju+ uiuj −

|∇u|2

2
(g0)ij + (Sg0)ij).

Set

Fε(W ) =
σ2(W )− ε
σ1(W )

− αe−2u.

where α = 2Y2,1([g0]). Thus, Fε = ut + (rε(g(t)) − α)e−2u − sε(g(t)). Without loss of
generality, we assume that the minimum of Fε is achieved at (x0, t0) ∈M × (0, T ]. Let us
use O(1) denote terms with a uniform bound with respect to t (perhaps depending on ε).
It is clear that sε(g(t)) and rε(g(t)) are bounded. Near (x0, t0), we have

(124)
d

dt
Fε =

∑
ij

Aij
[
(∇2

g(Fε))ij − (rε(g)− α)(∇2
g(e
−2u))ij

]
+ 2αe−2uut,

where

Aij :=
(σ21(W )− σ2(W ) + ε)δij − σ1(W )W ij

σ21(W )

is positive definite. To simplify the notations, we drop the index ε as before. Since (x0, t0)

is the minimum of F in M × [0, T ], at this point, we have
dF

dt
≤ 0, Fl = 0 ∀l and

(Fij) is non-negative definite. Note that

(∇2
g)ijF = Fij + uiFj + ujFi −

∑
l

ulFlδij = Fij ,
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at (x0, t0), where Fj and Fij are the first and second derivatives with respect to the back-
ground metric g0. From the positivity of A and (124), we have
(125)

−2αe−2uut

= −2αe−2u
σ2(W )− ε
σ1(W )

+O(1)

≥ Ft −
∑
i,j

AijFij − 2αe−2uut

≥ (α− rε(g))
∑
i,j

Aij{(e−2u)ij + ui(e
−2u)j + uj(e

−2u)i −
∑
l

ul(e
−2u)lδij}

= (α− rε(g))e−2u
∑
i,j

Aij{−2wij + 2uiuj + 2S(g0)ij + |∇u|2δij}

≥ (α− rε(g))e−2u

(−2σ2(W )− 2ε

σ1(W )

)
+
∑
i,j

Aij(2uiuj + 2S(g0)ij + |∇u|2δij)

 .
Here we have used

∑
i,j

Aijwij =
σ2(W ) + ε

σ1(W )
. On the other hand, we have

(126)∑
i,j

AijS(g0)ij =
(σ21(W )− σ2(W ))σ1(g0)

σ21(W )
− 1

σ1(W )

∑
i,j

W ijS(g0)ij +
εσ1(g0)

σ21(W )
.

Going back to (125), we have

(127)

−2αe−2u
σ2(W )− ε
σ1(W )

+O(1)

≥ Ft −
∑
i,j

AijFij − 2αe−2uut

≥ (α− rε(g))e−2u
[
−2σ2(W )− 2ε

σ1(W )
+

2(σ21(W )− σ2(W ))σ1(g0)

σ21(W )

− 2

σ1(W )

∑
i,j

W ijS(g0)ij +
2εσ1(g0)

σ21(W )

 ,
since (Aij) is positive definite and α − rε(g) > Y2,1([g0]) is positive. One can check

σ2(g) = O(1) for ‖u‖C2 is uniformly bounded and
∑
i,j

W ijS(g0)ij = O(1). Also the term

σ21(W )− σ2(W ) is always non-negative. From (127), we conclude that there is a positive
constant C2 > 0 (independent of T ) such that

(128) σ1(W )(x0, t0) > C2 > 0.
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Now for any (x, t) ∈M × [0, T ], we have

σ2(W )(x, t)− ε
σ1(W )(x, t)

≥ O(1)

so that there is a positive constant C > 0, independent of T , such that

σ1(W )(x, t) ≥ C

since we have σ2(W ) ≤ 1
2σ

2
1(W ) provided σ2(W ) ≥ 0. This finishes the proof of the

Proposition.

Step 3. Now we can prove equation (110) admits a solution. From Steps 1 and 2, we
know that the flow is uniformly parabolic. And, Krylov’s theory implies u(t) has a uniform
C2,α bound. Hence, T ∗ = ∞. One can also show that u(t) globally converges to u(∞),
which clearly is a solution of (110) for k = rε(g(∞)). (Note that rε(g(t)) is monotone and

bounded so that rε(g(∞)) exists) (see [20]). So uε = u(∞)− 1

2
log |rε(g(∞))| solves (110)

for κ = 1 (resp. 0, 1) if rε(g(∞)) > 0 (resp. = 0, < 0). Now, if ε is sufficiently small, we
have rε(g(0)) > 0. Thus, there exists a minimizing solution to (110), that is, aε is achieved.

Proof of Theorem 1 in the case n = 3. Now let uε be a minimizing solution to (110) for

κ = 1. It is clear e−2uεg0 ∈ C2([g0]) and Ỹ2,1([g0]) ≥ aε. As aε → Y2,1([g0]), we infer

Ỹ2,1([g0]) ≥ Y2,1([g0]). On the other hand, Ỹ2,1([g0]) ≤ Y2,1([g0]) since C2([g0]) ⊂ C1([g0]).
Finally, Ỹ2,1([g0]) = Y2,1([g0]). This finishes the proof of Theorem.

References
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