ON PROBLEMS RELATED TO AN INEQUALITY OF DE LELLIS AND TOPPING

YUXIN GE, GUOFANG WANG, AND CHAO XIA

Abstract

In this paper we study various problems related to an inequality proved recently by De Lellis and Topping.

1. Introduction

In this paper we consider various problems related to a recent result of De Lellis and Topping about the Schur Lemma

Theorem A (Almost Schur Lemma [5]). For $n \geq 3$, if $\left(M^{n}, g\right)$ is a closed Riemannian manifold with non-negative Ricci tensor, then

$$
\begin{equation*}
\int_{M}\left|\operatorname{Ric}-\frac{\bar{R}}{n} g\right|^{2} d v(g) \leq \frac{n^{2}}{(n-2)^{2}} \int_{M}\left|\operatorname{Ric}-\frac{R}{n} g\right|^{2} d v(g), \tag{1}
\end{equation*}
$$

where $\bar{R}=\operatorname{vol}(g)^{-1} \int_{M} R d v(g)$ is the average of the scalar curvature R of g.
This result could be viewed as a quantitative version or a stability result of the Schur Lemma. Moreover, this result is optimal in the following sense: the constant in inequality (1) is the best and the non-negativity of the Ricci tensor can not be removed in general.

We observed in [8] that inequality (1) can be rewritten in terms of σ_{k}-scalar curvatures. Namely, it is equivalent to

$$
\begin{equation*}
\left(\int_{M} \sigma_{1}(g) d v(g)\right)^{2} \geq \frac{2 n}{n-1} \operatorname{vol}(g) \int_{M} \sigma_{2}(g) d v(g), \tag{2}
\end{equation*}
$$

where

$$
\sigma_{1}(g)=\frac{R_{g}}{2(n-1)} \quad \text { and } \quad \sigma_{2}(g)=\frac{1}{2(n-2)^{2}}\left\{-|R i c|^{2}+\frac{n}{4(n-1)} R^{2}\right\} .
$$

For the definition of $\sigma_{k}(g)$ scalar curvature for general k see below. With this observation and a nice argument of Gursky [15] we improved Theorem A in $n=4$.

Theorem B [8] If $n=4$, and if $\left(M^{4}, g\right)$ is a closed Riemannian manifold with nonnegative scalar tensor, then (1) holds. Moreover, equality holds if and only if $\left(M^{4}, g\right)$ is an Einstein manifold.

[^0]From Theorem B, one may naturally ask whether equality in (1) holds if and only if (M, g) is Einstein. The first result of this paper gives a positive answer.

Theorem 1. Equality in Theorem A holds if and only if $\left(M^{n}, g\right)$ is an Einstein manifold.
With the observation mentioned above, it is natural to consider the following Yamabe type functional

$$
\begin{equation*}
\mathcal{E}(g)=\frac{\operatorname{vol}(g) \int_{M} \sigma_{2}(g) d v(g)}{\left(\int_{M} \sigma_{1}(g) d v(g)\right)^{2}}, \tag{3}
\end{equation*}
$$

at least for metrics with $\int_{M} \sigma_{1}(g) d v(g) \neq 0$. For a metric g with nonnegative Ricci tensor Theorem A implies that

$$
\begin{equation*}
\mathcal{E}(g) \leq \frac{n-1}{2 n} \tag{4}
\end{equation*}
$$

Theorem B implies that (4) holds for metrics with nonnegative scalar curvature, when $n=4$. We conjectured in [8] that (4) for metrics with nonnegative scalar curvature if $n=3$. However (4) is not true in general for metrics nonnegative scalar curvature if $n>4$. In fact we have
Theorem 2. If $n>4$, for any metric g_{0} with positive Yamabe constant, which is equivalent to the condition that there is a metric in $\left[g_{0}\right]$ with positive scalar curvature, we have

$$
\begin{equation*}
\sup _{g \in\left[g_{0}\right] \cap \mathcal{C}_{1}} \mathcal{E}(g)=\infty \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
Y\left(\left[g_{0}\right]\right):=\inf _{g \in[g]_{\cap} \cap \mathcal{C}_{1}} \mathcal{E}(g)<\frac{n-1}{2 n}, \tag{6}
\end{equation*}
$$

where $\left[g_{0}\right]$ is the conformal class of g_{0} and $\mathcal{C}_{k}=\left\{g \mid \sigma_{j}(g)>0 \forall j \leq k\right\}$. Moreover, we have

$$
\begin{equation*}
Y\left(\left[g_{0}\right]\right)>-\infty . \tag{7}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
Y\left(\left[g_{0}\right]\right)>0 \tag{8}
\end{equation*}
$$

if and only if

$$
\mathcal{C}_{2}\left(\left[g_{0}\right]\right):=\left[g_{0}\right] \cap \mathcal{C}_{2} \neq \emptyset .
$$

In view of Theorem 2 it is natural to ask
Problem. Is there a conformal metric $g \in\left[g_{0}\right] \cap \mathcal{C}_{1}$ achieving the infimum $Y\left(\left[g_{0}\right]\right)$ in $\left[g_{0}\right] \cap \mathcal{C}_{1}$, namely

$$
\mathcal{E}(g)=\inf _{g \in[g 0] \cap \mathcal{C}_{1}} \mathcal{E}(g) ?
$$

Or is there a metric $g \in\left[g_{0}\right] \cap \mathcal{C}_{1}$ which is a critical point of \mathcal{E} in $\left[g_{0}\right]$?

Note that for the standard sphere $\left(\mathbb{S}^{n}, g_{\mathbb{S}^{n}}\right)$ we have $\mathcal{E}\left(g_{\mathbb{S}^{n}}\right)=\frac{n-1}{2 n}$, but

$$
0<Y\left(\left[g_{\mathbb{S}^{n}}\right]\right)=\inf _{g \in\left[g_{\mathbb{S}^{n}}\right] \cap \mathcal{C}_{1}} \mathcal{E}(g)<\frac{n-1}{2 n}
$$

It is easy to see that the standard round metric $g_{\mathbb{S}^{n}}$ is a critical point of \mathcal{E}. It would be interesting to know the value of $Y\left(\left[g_{\mathbb{S}^{n}}\right]\right)$.

We are also interested in the generalization of (2) to large k. Let us use the convention $\sigma_{0}=1$. Hence we can rewrite (2) as

$$
\begin{equation*}
\left(\int_{M} \sigma_{1}(g) d v(g)\right)^{2} \geq \frac{2 n}{n-1} \int_{M} \sigma_{0}(g) d v(g) \int_{M} \sigma_{2}(g) d v(g) \tag{9}
\end{equation*}
$$

Note that the elementary symmetric functions σ_{1} and σ_{2} satisfy the Newton inequality $\sigma_{1}^{2} \geq \frac{2 n}{n-1} \sigma_{0} \sigma_{2}$. In general we have the Newton-MacLaurin formula for general k

$$
\begin{equation*}
\sigma_{k}^{2}(\Lambda) \geq c(n, k) \sigma_{k-1}(\Lambda) \cdot \sigma_{k+1}(\Lambda) \tag{10}
\end{equation*}
$$

for $\Lambda \in \Gamma_{k}^{+}:=\left\{\Lambda \in \mathbb{R}^{n} \mid \sigma_{j}(\Lambda)>0 \forall j \leq k\right\}$. Here $c(n, k)=(k+1)(n-k+1) /(n-k) k$ and we used the convention that $\sigma_{k}=0$ if $k<0$ or $k>n$. Inspired by Theorem A and Theorem B we would like to ask under which conditions there holds

$$
\begin{equation*}
\left(\int_{M} \sigma_{k}(g) d v(g)\right)^{2} \geq c(n, k) \int_{M} \sigma_{k-1}(g) d v(g) \int_{M} \sigma_{k+1}(g) d v(g) \tag{11}
\end{equation*}
$$

At least, if the underlying manifold M is locally conformally flat, we have a generalization of Theorem B.

Theorem 3. Let $n \geq 3$ and $k \in[n / 2-1, n / 2)$. When $\left(M^{n}, g\right)$ is locally conformally flat with $g \in \mathcal{C}_{k}$, then (11) holds. Moreover, equality holds if and only if (M, g) is a space form.

Now one may ask if there is a De Lellis-Topping type result for a suitable "Ricci curvature" such that the corresponding Theorem B type result is Theorem 3. There are really such curvatures, the Lovelock curvatures, which were introduced by Lovelock, but at least went back to Lanczos [17] in 1938. For the definition, see [19] and Section 5 below. We remark here that the Lovelock curvatures are natural generalizations of the Einstein tensor, other than the Ricci tensor.

Theorem 4. Let $\left(M^{n}, g\right)$ be a closed Riemannnian manifold with non-positive Ricci tensor and $1 \leq k<n / 2$. We have

$$
\int_{M}\left|R^{(k)}-\bar{R}^{(k)}\right|^{2} d v(g) \leq \frac{4 n(n-1)}{(n-2 k)^{2}} \int_{M}\left|E^{(k)}+\frac{n-2 k}{2 n} R^{(k)} g\right|^{2} d v(g)
$$

where $\bar{R}^{(k)}$ is the average of $R^{(k)}$. Here $\operatorname{tr} E^{(k)}=-\frac{n-2 k}{2} R^{(k)}$ is defined below.

When $k=1$, Theorem 4 is just Theorem A. For a given $k>1$, if $n=2(k+1)$ and $\left(M^{n}, g\right)$ is local conformally flat, then Theorem 3 is just Theorem 4 with a slightly different condition $g \in \Gamma_{k}^{+}$. Note that the condition $g \in \Gamma_{k}^{+}$with $k \geq n / 2$ implies the condition that g has non-negative Ricci curvature. See [12]. The condition $g \in \Gamma_{k}^{+}$with $k<n / 2$ is not stronger than the condition that g has non-negative Ricci curvature.

The paper is organized as follows. In Section 2 we prove the rigidity result, Theorem 1. In Section 3 we first recall the definition of σ_{k}-scalar curvature and then prove Theorem 2 by choosing the suitable test metrics. In the construction of such metrics we need to pay extra attention to assure that all test metrics have positive scalar curvature. In Section 4 we generalize Theorem B to large k. In Section 5 we recall the definition of generalized Einstein tensors and then prove a De Lellis-Topping type result for these Einstein tensors.

2. Rigidity

Proof of Theorem 1. Assume that the equality holds, or equivalently,

$$
\begin{equation*}
\int_{M}|R-\bar{R}|^{2} d v(g)=\frac{4 n(n-1)}{(n-2)^{2}} \int_{M}\left|R i c-\frac{R}{n} g\right|^{2} d v(g) \tag{12}
\end{equation*}
$$

Then from the proof of Theorem A in [5] we know there exists some $\lambda \in \mathbb{R} \cup\{\infty\}$

$$
\begin{equation*}
R i c-\frac{R}{n} g=\lambda\left(\nabla^{2} f-\frac{\Delta f}{n} g\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Ric}(\nabla f, \nabla f)=0 \tag{14}
\end{equation*}
$$

where $\Delta f=R-\bar{R}$ with $\int_{M} f=0$. Here by $\lambda=\infty$ we mean $\nabla^{2} f-\frac{\Delta f}{n} g=0$. In this case, integrating this equality we obtain

$$
\int_{M}\left|\nabla^{2} f\right|^{2}-\frac{(\Delta f)^{2}}{n} d v(g)=0
$$

From (14) we have

$$
\begin{equation*}
\int_{M}\left|\nabla^{2} f\right|^{2} d v(g)=\int_{M}|\Delta f|^{2} d v(g)=\int_{M}(R-\bar{R})^{2} d v(g) \tag{15}
\end{equation*}
$$

Therefore,

$$
0=\int_{M}|\Delta f|^{2} d v(g)=\int_{M}(R-\bar{R})^{2} d v(g)
$$

which, together with (12), means that g is an Einstein metric.
Now we consider $\lambda \in \mathbb{R}$. In the following, we use the normal coordinates to calculate. Recall the fact the Ricci tensor is non-negative. From the Cauchy-Schwarz inequality and (14), for all $x \in M$ and all tangent vector $Y \in T_{x} M$,

$$
\begin{equation*}
|\operatorname{Ric}(\nabla f(x), Y)|^{2} \leq \operatorname{Ric}(\nabla f(x), \nabla f(x)) \operatorname{Ric}(Y, Y)=0, \tag{16}
\end{equation*}
$$

that is, $\operatorname{Ric}(\nabla f, \cdot)=0$, or equivalently

$$
\begin{equation*}
R_{j}^{i} f_{i}=0 \tag{17}
\end{equation*}
$$

Here we use Einstein summation convention. From (13), (17) and $R_{i j, j}=\frac{1}{2} R_{i}$, we have

$$
\begin{aligned}
\frac{1}{2} R_{i} & =\lambda\left(f_{i j}-\frac{\Delta f g_{i j}}{n}\right)_{j}+\left(\frac{R g_{i j}}{n}\right)_{j}=\lambda f_{i j j}-\lambda \frac{(\Delta f)_{i}}{n}+\frac{R_{i}}{n} \\
& =\lambda f_{j j i}-\lambda \frac{(\Delta f)_{i}}{n}+\frac{R_{i}}{n} \\
& =\left(\lambda+\frac{1-\lambda}{n}\right) R_{i}
\end{aligned}
$$

which implies that either $\lambda=\frac{n-2}{2(n-1)}$ or $\lambda \neq \frac{n-2}{2(n-1)}$ and $R_{i}=0$. In the latter case, R is constant and it follows from (12) that g is an Einstein metric. Now we consider the former case, ie. $\lambda=\frac{n-2}{2(n-1)}$. (13) will be read as

$$
\begin{equation*}
\text { Ric }=\frac{n-2}{2(n-1)} \nabla^{2} f+\frac{R}{2(n-1)} g+\frac{(n-2) \bar{R}}{2 n(n-1)} g \tag{18}
\end{equation*}
$$

By differentiating (17) and using $R_{i j, j}=\frac{1}{2} R_{i}$ we have

$$
\begin{equation*}
\frac{1}{2} R^{i} f_{i}+R^{i j} f_{i j}=0 \tag{19}
\end{equation*}
$$

Combining (18) and (19) gives

$$
\begin{equation*}
\frac{1}{2} R^{i} f_{i}+\frac{n-2}{2(n-1)}\left|\nabla^{2} f\right|^{2}+\frac{R(R-\bar{R})}{2(n-1)}+\frac{(n-2) \bar{R}(R-\bar{R})}{2 n(n-1)}=0 . \tag{20}
\end{equation*}
$$

Since M is compact, there exists some point $x_{0} \in M$ such that $R\left(x_{0}\right)=\max R$. At this point, we have $R-\bar{R} \geq 0, R \geq 0, \bar{R} \geq 0$ and $R^{i}=0$. From (20) we have $\max R=\bar{R}$, and hence $R \equiv \bar{R} . g$ is also an Einstein metric in this case.

Theorem A and Theorem 1 give a characterization of Einstein metrics. We remark that a metric g satisfying (13) is called an Ricci almost soliton in [21], which is a generalization of the Ricci soliton.

3. An equivalent inequality in terms of σ_{k} SCalar

Let us first recall the definition of the k-scalar curvature, which was first introduced by Viaclovsky [24] and has been intensively studied by many mathematicians, see for example [10], [25] and the references in [6]. There are many geometric applications of analysis developed in the study of the k-scalar curvature. For example, a 4 -dimensional sphere Theorem was proved in [4] (see also [3], a 3-dimensional sphere Theorem in [6] and [1], an eigenvalue estimates for the Dirac operator in [26] and various geometric inequalities in [14]). The results of this section and next section are also applications of this analysis.

Let

$$
S_{g}=\frac{1}{n-2}\left(R i c_{g}-\frac{R_{g}}{2(n-1)} \cdot g\right)
$$

be the Schouten tensor of g. For an integer k with $1 \leq k \leq n$ let σ_{k} be the k-th elementary symmetric function in \mathbb{R}^{n}. The k-scalar curvature is

$$
\sigma_{k}(g):=\sigma_{k}\left(\Lambda_{g}\right)
$$

where Λ_{g} is the set of eigenvalue of the matrix $g^{-1} \cdot S_{g}$. In particular, $\sigma_{1}(g)=\operatorname{tr} S$ and $\sigma_{2}=\frac{1}{2}\left((\operatorname{tr} S)^{2}-|S|^{2}\right)$. It is trivial to see that

$$
\begin{aligned}
\sigma_{1}(g) & =\frac{R}{2(n-1)} \\
\sigma_{2}(g) & =\frac{1}{2(n-2)^{2}}\left\{-|R i c|^{2}+\frac{n}{4(n-1)} R^{2}\right\} \\
\mid \text { Ric }-\left.\frac{R}{n} g\right|^{2} & =\mid \text { Ric }\left.\right|^{2}-\frac{R^{2}}{n}
\end{aligned}
$$

From above it is easy to have the following observation.
Observation. ([8]) Inequality (1) is equivalent to (2).
In [8] we proved Theorem B, namely there is an inequality

$$
\begin{equation*}
\mathcal{E}(g) \leq \frac{n-1}{2 n} \tag{21}
\end{equation*}
$$

provided that g is a metric of non-negative scalar curvature and $n=4$. We conjectured that this statement is true for $n=3$. In this Section we show Theorem 2, namely this statement is not true for $n>4$.

We first prove one part of Theorem 2 in
Proposition 1. Let $n>4$ and $g_{0} \in \mathcal{C}_{1}$. Then we have (7). Moreover, (8) holds if and only if

$$
\mathcal{C}_{2}\left(\left[g_{0}\right]\right):=\left[g_{0}\right] \cap \mathcal{C}_{2} \neq \emptyset .
$$

Proof. Recall the ordinary Yamabe constant Y_{1} and another Yamabe type constant $Y_{2,1}$ studied in [6]

$$
Y_{1}\left(\left[g_{0}\right]\right):=\inf _{g \in \mathcal{C}_{1}\left(\left[g_{0}\right]\right)} \frac{\int_{M} \sigma_{1}(g) d v(g)}{(\operatorname{vol}(g))^{\frac{n-2}{n}}} \quad \text { and } \quad Y_{2,1}\left(\left[g_{0}\right]\right):=\inf _{g \in \mathcal{C}_{1}\left(\left[g_{0}\right]\right)} \frac{\int_{M} \sigma_{2}(g) d v(g)}{\left(\int_{M} \sigma_{1}(g) d v(g)^{\frac{n-4}{n-2}}\right.}
$$

By a direct computation we have in [6]

$$
\begin{align*}
2 \int \sigma_{2}(g) d v(g)= & \frac{n-4}{2} \int \sigma_{1}(g)|\nabla u|_{g_{0}}^{2} e^{2 u} d v(g)+\frac{n-4}{4} \int|\nabla u|_{g_{0}}^{4} e^{4 u} d v(g) \\
& +\int e^{2 u} \sigma_{1}(g) \sigma_{1}\left(g_{0}\right) d v(g)-\int e^{4 u}\left|S\left(g_{0}\right)\right|_{g_{0}}^{2} d v(g) \tag{22}\\
& +(4-n) \int \sum_{i, j} S\left(g_{0}\right)^{i j} u_{i} u_{j} d v(g)+\int \sigma_{1}\left(g_{0}\right)|\nabla u|_{g_{0}}^{2} e^{4 u} d v(g) \\
& +\int e^{4 u}\left\langle\nabla u, \nabla \sigma_{1}\left(g_{0}\right)\right\rangle_{g_{0}} d v(g)
\end{align*}
$$

It follows that

$$
\begin{equation*}
\int \sigma_{2}(g) d v(g) \geq \frac{n-4}{16} \int|\nabla u|_{g_{0}}^{4} e^{4 u} d v(g)-c \int e^{4 u} d v(g) \tag{23}
\end{equation*}
$$

provided that $g \in \Gamma_{1}^{+}$. Moreover we have

$$
\begin{equation*}
\int_{M} \sigma_{1}(g) d v(g)=\int\left(\frac{n-2}{2}|\nabla u|^{2}+\sigma_{1}\left(g_{0}\right)\right) e^{2 u} d v(g) \geq Y_{1}\left(\left[g_{0}\right]\right)(\operatorname{vol}(g))^{\frac{n-2}{n}} \tag{24}
\end{equation*}
$$

From (23), (24) and Hölder's inequality Hölder's inequality, we have

$$
\begin{align*}
\int \sigma_{2}(g) d v(g)-c^{\prime} \int e^{4 u} d v(g) & \geq c\left(\int|\nabla u|_{g_{0}}^{4} e^{4 u} d v(g)+\int e^{4 u} d v(g)\right) \\
& \geq c\left(\int_{M} \sigma_{1}(g) d v(g)\right)^{2}(\operatorname{vol}(g))^{-1} \tag{25}
\end{align*}
$$

so that

$$
\int \sigma_{2}(g) d v(g) \geq\left(c_{1}-c_{2} Y_{1}\left(\left[g_{0}\right]\right)^{-2}\right)\left(\int_{M} \sigma_{1}(g) d v(g)\right)^{2}(v o l(g))^{-1}
$$

that is, $Y\left(\left[g_{0}\right]\right) \geq c_{1}-c_{2} Y_{1}\left(\left[g_{0}\right]\right)^{-2}>-\infty$. This proves (7).
Now we assume that (8) hold. Since $g_{0} \in \mathcal{C}_{1}$ we have $Y_{1}\left(\left[g_{0}\right]\right)>0$. It is clear that for $g \in \mathcal{C}_{1}\left(\left[g_{0}\right]\right)$

$$
\frac{\int_{M} \sigma_{2}(g) d v(g)}{\left(\int_{M} \sigma_{1}(g) d v(g)\right)^{\frac{n-4}{n-2}}}=\mathcal{E}(g)\left(\frac{\int_{M} \sigma_{1}(g) d v(g)}{(\operatorname{vol}(g))^{\frac{n-2}{n}}}\right)^{\frac{n}{n-2}} \geq Y\left(\left[g_{0}\right]\right)\left(Y_{1}\left(\left[g_{0}\right]\right)\right)^{\frac{n}{n-2}}
$$

It follows that $Y_{2,1}\left(\left[g_{0}\right]\right)>0$, which is equivalent to the non-emptiness of $\mathcal{C}_{2}\left(\left[g_{0}\right]\right)$ by a result in [6]. See also [23].

Now assume the non-emptiness of $\mathcal{C}_{2}\left(\left[g_{0}\right]\right)$. Let $g \in \mathcal{C}_{1}\left(\left[g_{0}\right]\right)$. First define a nonlinear eigenvalue of $\nabla^{2} u+d u \otimes d u-\frac{|\nabla u|^{2}}{2} g_{0}+S_{g_{0}}$ by

$$
\lambda\left(g_{0}, \sigma_{2}\right):=\inf _{g=e^{-2 u} g_{0} \in \mathcal{C}_{1}\left(\left[g_{0}\right]\right)} \frac{\int \sigma_{2}(g) d v(g)}{\int e^{4 u} d v(g)} .
$$

We have proved in [6] that $\lambda\left(g_{0}, \sigma_{2}\right)>0$, i.e.,

$$
\begin{equation*}
\int_{M} \sigma_{2}(g) \geq \lambda\left(g_{0}, \sigma_{2}\right) \int_{M} e^{4 u} d v(g) \tag{26}
\end{equation*}
$$

for any $g=e^{-2 u} g_{0} \in \Gamma_{1}^{+}$.
From (23), (24), (26) and Hölder's inequality, we deduce

$$
\begin{align*}
\int \sigma_{2}(g) d v(g) & \geq c\left(\int|\nabla u|_{g_{0}}^{4} e^{4 u} d v(g)+\int e^{4 u} d v(g)\right) \\
& \geq c\left(\int_{M} \sigma_{1}(g) d v(g)\right)^{2}(\operatorname{vol}(g))^{-1} \tag{27}
\end{align*}
$$

This is what we want to show.
We in fact proved that the following four statements are equivalent for a conformal class $\left[g_{0}\right]$ with $\mathcal{C}_{1} \neq \emptyset(n>4)$.
(i) $\mathcal{C}_{2}\left(\left[g_{0}\right]\right) \neq \emptyset$,
(ii) $Y_{2,1}\left(\left[g_{0}\right]\right)>0$,
(iii) $Y\left(\left[g_{0}\right]\right)>0$,
(iv) $\lambda\left(g_{0}, \sigma_{2}\right)>0$.

Proposition 2. Let $n \geq 3$ and $\mathcal{C}_{1}\left(\left[g_{0}\right]\right) \neq \emptyset$. Then there exist a metric $g \in \mathcal{C}_{1}\left(\left[g_{0}\right]\right)$ with

$$
\mathcal{E}(g)<\frac{n-2}{2 n}
$$

Proof. Let $\tilde{g} \in \mathcal{C}_{1}\left(\left[g_{0}\right]\right)$ be a Yamabe solution, ie. $\sigma_{1}(\tilde{g})=$ const. From the Newton inequality $\sigma_{2}(\Lambda) \leq \frac{n-2}{2 n} \sigma_{1}^{2}(\Lambda)$ for any $\Lambda \in \mathbb{R}^{n}$ and equality holds if and only if $\Lambda=$ $c(1,1, \cdots 1)$ for some $c \in \mathbb{R}$, we have

$$
\begin{aligned}
\int_{M} \sigma_{2}(\tilde{g}) d v(\tilde{g}) & \leq \frac{n-2}{2 n} \int_{M} \sigma_{1}(\tilde{g})^{2} d v(\tilde{g}) \\
& =\frac{n-2}{2 n} \frac{\left(\int_{M} \sigma_{1}(\tilde{g}) d v(\tilde{g})\right)^{2}}{\operatorname{vol}(\tilde{g})}
\end{aligned}
$$

Hence $\mathcal{E}(\tilde{g}) \leq \frac{n-2}{2 n}$. From above it is easy to see that $\mathcal{E}(\tilde{g})=\frac{n-2}{2 n}$ if and only if \tilde{g} is an Einstein metric. In this case, it is clear that $\operatorname{Ric}(\tilde{g})$ is positive definite. Then we choose a nearby, not Einstein metric \tilde{g}_{1} with positive Ricci tensor. Then by Theorem 1, we have $\mathcal{E}\left(\tilde{g}_{1}\right)<\frac{n-2}{2 n}$.

The proof is motivated by an argument of Gursky in [15].
Now we remain to prove
Proposition 3. Let $n>4$ and $\mathcal{C}_{1}\left(\left[g_{0}\right]\right) \neq \emptyset$. Then (5) holds. Namely

$$
\bar{Y}\left(\left[g_{0}\right]\right):=\sup _{g \in\left[g_{0}\right] \cap \mathcal{C}_{1}} \mathcal{E}(g)=\infty
$$

To prove the Proposition we use the gluing method developed by Gromov-Lawson [9] (see also [22]).

Improving slightly the construction given in [7], which is motivated by [9] and [22], we have

Lemma 1. Assume $n>4$. Let g_{0} be in Theorem 2. For any small constant $\delta, \lambda \in(0,1)$ such that $\lambda^{\frac{3}{8}} \gg \delta \gg \lambda^{\frac{1}{2}}$, there exists a constant $\delta_{1}>0$ and a function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying:
(i) $\delta_{1}=\lambda^{-1} \delta^{3}, \delta \ll \delta_{1} \ll \delta^{\frac{1}{3}}$,
(ii) The metric $g=e^{-2 u} g_{0}$ has positive scalar curvature in $B_{\delta_{1}}$,
(iii) $u=\log \left(\lambda+|x|^{2}\right)+b_{0}$ for $|x| \leq \delta$,
(iv) $u=\log |x|$ for $|x| \geq \delta_{1}$,
(v) $\operatorname{vol}\left(B_{\delta_{1} \backslash} \backslash B_{\delta}, g\right)=O\left(\delta_{1}^{n} \delta^{-n}\right), \int_{B_{\delta_{1}} \backslash B_{\delta}} \sigma_{1}(g) d v(g)=O\left(\delta_{1}^{n-2} \delta^{2-n}\right)$ and $\int_{B_{\delta_{1}} \backslash B_{\delta}} \sigma_{2}(g) d v(g)=$ $O\left(\delta_{1}^{n-4} \delta^{4-n}\right)$, where $b_{0}=-\log \delta_{1}+O(1)$.

Lemma 2. Assume $n>4$. Let g_{0} be in Theorem 2. For any small constant $\delta, \lambda \in(0,1)$ such that $\lambda^{\frac{3}{8}} \gg \delta \gg \lambda^{\frac{1}{2}}$, define a conformal metric $g=e^{-2 u} g_{0}$ with $u(x)=\log (\lambda+$ $\left.|x|^{2}\right)+b_{0}$ in B_{δ}, where b_{0} is some constant. Then g has positive scalar curvature in B_{δ} and we have the following

$$
\begin{align*}
v o l\left(B_{\delta}, g\right) & =e^{-n b_{0}} \lambda^{-\frac{n}{2}}\left[B+O(\lambda)+O\left(\left(\lambda \delta^{-2}\right)^{\frac{n}{2}}\right)\right] \tag{28}\\
\int_{B_{\delta}} \sigma_{1}(g) d v(g) & =e^{(2-n) b_{0}} \lambda^{1-\frac{n}{2}}\left[2 n B+O(\lambda)+O\left(\left(\lambda \delta^{-2}\right)^{\frac{n}{2}}\right)\right] \tag{29}\\
\int_{B_{\delta}} \sigma_{2}(g) d v(g) & =e^{(4-n) b_{0}} \lambda^{2-\frac{n}{2}}\left[2 n(n-1) B+O(\lambda)+O\left(\left(\lambda \delta^{-2}\right)^{\frac{n}{2}}\right)\right] \tag{30}
\end{align*}
$$

Here $B=\int_{\mathbb{R}^{n}} \frac{1}{\left(1+|x|^{2}\right)^{n}} d x$.
Lemma 3. Let g_{0} be as in Theorem 2, $n>4$ and $B_{r_{0}}$ be a geodesic ball with respect to g_{0} for some r_{0}. Then there exists a conformal metric $g=e^{-2 u} g_{0}$ in $B_{r_{0}} \backslash\{0\}$ satisfying:
(i) The metric $g=e^{-2 u} g_{0}$ has positive scalar curvature in $B_{r_{0}} \backslash\{0\}$,
(ii) $u=\log |x|$ for $|x| \leq r_{2}$,
(iii) $u=b_{1}$ for $|x| \geq r_{1}$,
where $r_{2}<r_{1}<r_{0}$ and b_{1} is a constant.
Proof of Proposition 3. Let $\left\{x_{k}\right\}_{k=1}^{K}$ be K points in M and $B_{r_{0 K}}\left(x_{k}\right)$ be disjoint geodesic balls centered as x_{k} with radius $r_{0 K}$, where $r_{0 K} \rightarrow 0$ as $K \rightarrow \infty$. For any $K \in \mathbb{N}$, we choose some $\delta=o\left(K^{-\gamma}\right)$ such that $\delta_{K}:=K^{\gamma} \delta \rightarrow 0$ as $K \rightarrow \infty$ for some γ chosen later. For simplicity, set $\delta_{k}=\lambda_{k}^{\frac{3}{7}}$, which satisfies the assumption on δ, λ in Lemma 1 and define $\delta_{1 k}=\lambda_{k}^{-1} \delta_{k}^{3}=\delta_{k}^{\frac{2}{3}}$ and $b_{0 k}$ as in Lemma 1. Also define $r_{1 K}, r_{2 K} \leq r_{0 K}$ and $b_{1 K}$ as in Lemma 3 (independent of k). We point out that $r_{1 K}$ and $r_{2 K}$ can be chosen as small as we want. For sufficient small δ_{k} with $\delta_{1 k} \leq r_{2 K}$, define a sequence of metrics $g_{K}=e^{-2 u_{K}} g_{0}$ as follows. In $M \backslash B_{r_{0 K}}\left(x_{k}\right), g=e^{-2 b_{1 K}} g_{0}$, where $b_{1 K}$ (independent of k) is given in Lemma
3. We define

$$
u_{K}= \begin{cases}\log \left(\lambda_{k}+\left|x-x_{k}\right|^{2}\right)+b_{0 k}, & x \in B_{\delta_{k}}\left(x_{k}\right) \tag{31}\\ \log \left|x-x_{k}\right|, & x \in B_{r_{2 K}}\left(x_{k}\right) \backslash B_{\delta_{1 k}}\left(x_{k}\right) \\ b_{1 K}, & x \in M \backslash \bigcup_{k=1}^{K} B_{r_{1 K}}\left(x_{k}\right)\end{cases}
$$

and in $B_{\delta_{1 k}}\left(x_{k}\right) \backslash B_{\delta_{k}}\left(x_{k}\right)$, we define u_{K} as in Lemma 1, while in $B_{r_{1 K}}\left(x_{k}\right) \backslash B_{r_{2 K}}\left(x_{k}\right)$ we define u_{K} as in Lemma 3. From the construction in Lemma 1 and Lemma 3, we see that g_{K} is smooth and has positive scalar curvature. It follows directly from Lemma 1 and Lemma 2 that

$$
\begin{aligned}
\operatorname{vol}\left(B_{\delta_{k}}\left(x_{k}\right), g_{K}\right) & =\delta_{k}^{-\frac{1}{2} n}\left[B+O\left(\delta_{k}^{\frac{7}{3}}\right)+O\left(\delta_{k}^{\frac{n}{6}}\right)\right], \\
\int_{B_{\delta_{k}}\left(x_{k}\right)} \sigma_{1}\left(g_{K}\right) d v\left(g_{K}\right) & =\delta_{k}^{1-\frac{1}{2} n}\left[2 n B+O\left(\delta_{k}^{\frac{7}{3}}\right)+O\left(\delta_{k}^{\frac{n}{6}}\right)\right], \\
\int_{B_{\delta_{k}}\left(x_{k}\right)} \sigma_{2}\left(g_{K}\right) d v\left(g_{K}\right) & =\delta_{k}^{2-\frac{1}{2} n}\left[2 n(n-1) B+O\left(\delta_{k}^{\frac{7}{3}}\right)+O\left(\delta_{k}^{\frac{n}{6}}\right)\right], \\
\operatorname{vol}\left(B_{\delta_{1 k}}\left(x_{k}\right) \backslash B_{\delta_{k}}\left(x_{k}\right), g_{K}\right)=O\left(\delta_{k}^{\frac{-n}{3}}\right) & =\delta_{k}^{-\frac{1}{2} n} O\left(\delta_{k}^{\frac{n}{6}}\right), \\
\int_{B_{\delta_{1 k}}\left(x_{k}\right) \backslash B_{\delta_{k}}\left(x_{k}\right)} \sigma_{1}\left(g_{K}\right) d v\left(g_{K}\right)=O\left(\delta_{k}^{\frac{2-n}{3}}\right) & =\delta_{k}^{1-\frac{1}{2} n} O\left(\delta_{k}^{\frac{n-2}{6}}\right), \\
\int_{B_{\delta_{1 k}}\left(x_{k}\right) \backslash B_{\delta_{k}}\left(x_{k}\right)} \sigma_{2}\left(g_{K}\right) d v\left(g_{K}\right)=O\left(\delta_{k}^{\frac{4-n}{3}}\right) & =\delta_{k}^{2-\frac{1}{2} n} O\left(\delta_{k}^{\frac{n-4}{6}}\right) .
\end{aligned}
$$

One can also choose $r_{1 K}$ and then $r_{2 K}$ sufficiently far away from δ_{k} for any $k=1, \cdots, K$ such that

$$
\begin{aligned}
v o l\left(B_{r_{2 K}}\left(x_{k}\right) \backslash B_{\delta_{1 k}}\left(x_{k}\right), g_{K}\right) & =\delta_{k}^{-\frac{1}{2} n} O\left(\delta_{k}^{\frac{n}{6}}\right), \\
\int_{B_{r_{2 K}}\left(x_{k}\right) \backslash B_{\delta_{1 k}}\left(x_{k}\right)} \sigma_{1}\left(g_{K}\right) d v\left(g_{K}\right) & =\delta_{k}^{1-\frac{1}{2} n} O\left(\delta_{k}^{\frac{n-2}{6}}\right), \\
\int_{B_{r_{2 K}}\left(x_{k}\right) \backslash B_{\delta_{1 k}}\left(x_{k}\right)} \sigma_{2}\left(g_{K}\right) d v\left(g_{K}\right) & =\delta_{k}^{2-\frac{1}{2} n} O\left(\delta_{k}^{\frac{n-4}{6}}\right), \\
\operatorname{vol}\left(M \backslash \bigcup_{k=1}^{K} B_{r_{2 K}}\left(x_{k}\right), g_{K}\right) & =f_{0}\left(r_{2 K}\right)=\delta_{k}^{-\frac{1}{2} n} O\left(\delta_{k}^{\frac{n}{6}}\right), \\
\int_{M \backslash \bigcup_{k=1}^{K} B_{r_{2 K}}\left(x_{k}\right)} \sigma_{1}\left(g_{K}\right) d v\left(g_{K}\right) & =f_{1}\left(r_{2 K}\right)=\delta_{k}^{1-\frac{1}{2} n} O\left(\delta_{k}^{\frac{n-2}{6}}\right), \\
\int_{M \backslash \bigcup_{k=1}^{K} B_{r_{2 K}}\left(x_{k}\right)} \sigma_{2}\left(g_{K}\right) d v\left(g_{K}\right) & =f_{2}\left(r_{2 K}\right)=\delta_{k}^{2-\frac{1}{2} n} O\left(\delta_{k}^{\frac{n-4}{6}}\right) .
\end{aligned}
$$

for some functions $f_{i}, i=0,1,2$. Combining all the above estimates and using $\delta_{k}=k^{\gamma} \delta$, we obtain
(32) $\mathcal{E}\left(g_{K}\right)=\frac{\operatorname{vol}\left(g_{K}\right) \int_{M} \sigma_{2}\left(g_{K}\right) d v\left(g_{K}\right)}{\left(\int_{M} \sigma_{1}\left(g_{K}\right) d v\left(g_{K}\right)\right)^{2}}=\frac{\sum_{k=1}^{K} k^{-\frac{1}{2} n \gamma} \sum_{k=1}^{K} k^{\left(2-\frac{1}{2} n\right) \gamma}}{\left(\sum_{k=1}^{K} k^{\left(1-\frac{1}{2} n\right) \gamma}\right)^{2}}\left[\frac{n-1}{2 n}+o(1)\right]$.

Choose γ such that $\left(1-\frac{1}{2} n\right) \gamma=-1-\beta$ with $\beta \in\left(0, \frac{2}{n-4}\right)$. Then we have

$$
-\frac{1}{2} n \gamma=\frac{n}{n-2}(-1-\beta)<-1, \quad\left(2-\frac{1}{2} n\right) \gamma=\frac{n-4}{n-2}(-1-\beta)>-1 .
$$

Therefore, $\sum_{k=1}^{\infty} k^{-\frac{1}{2} n \gamma}$ and $\sum_{k=1}^{\infty} k^{\left(1-\frac{1}{2} n\right) \gamma}$ converge, meanwhile $\sum_{k=1}^{\infty} k^{\left(2-\frac{1}{2} n\right) \gamma}$ diverges. In view of (32), we see that $\mathcal{E}\left(g_{K}\right)$ can be made to be arbitrary large when K goes to infinity. Hence we finished the proof of (5).

Remark 1. Using Lemmas given above and an argument from Aubin, we can show a weaker form of (6).

$$
\begin{equation*}
Y\left(\left[g_{0}\right]\right):=\inf _{g \in[g] \cap \mathcal{C}_{1}} \mathcal{E}(g) \leq \frac{n-1}{2 n} . \tag{33}
\end{equation*}
$$

This is an Aubin type inequality. Using the same gluing argument we can show the metrics constructed in Lemma 1 and Lemma 3 are in the class Γ_{k}^{+}, provided $g_{0} \in \Gamma_{k}^{+}$and $k<n / 2$, and hence

$$
\begin{equation*}
\inf _{g \in\left[g g_{0}\right] \mathcal{C}_{k}} \mathcal{E}(g) \leq \frac{n-1}{2 n}, \tag{34}
\end{equation*}
$$

for any $k<n / 2$, provided that $\left[g_{0}\right] \cap \mathcal{C}_{k} \neq \emptyset$. We do not know if the inequality in (34) is strict, though we believe this. Similarly, one can show a slightly stronger form of (5)

$$
\begin{equation*}
\sup _{g \in\left[g_{0}\right] \cap \mathcal{C}_{k}} \mathcal{E}(g)=\infty, \tag{35}
\end{equation*}
$$

for any $k<n / 2$, provided that $\left[g_{0}\right] \cap \mathcal{C}_{k} \neq \emptyset$. Comparing with the inequality of De LellisTopping (1), i.e.,

$$
\mathcal{E}(g) \leq \frac{n-1}{2 n}, \quad \text { for any } g \text { with Ric } \geq 0
$$

it indicates that the condition Ric ≥ 0 is "stronger" than the condition $g \in \mathcal{C}_{k}$ with $k<n / 2$. Remark that a metric $g \in \mathcal{C}_{k}$ with $k \geq n / 2$ have positive Ricci tensor [12].

4. A GEOMETRIC INEQUALITY FOR LARGE k

In this Section, we will prove Theorem 3, namely

$$
\begin{equation*}
\left(\int_{M} \sigma_{k}(g) d v(g)\right)^{2} \geq c(n, k) \int_{M} \sigma_{k-1}(g) d v(g) \int_{M} \sigma_{k+1}(g) d v(g) \tag{36}
\end{equation*}
$$

holds if (M, g) is locally conformally flat and $g \in \Gamma_{k}^{+}$with $k \in[n / 2-1, n / 2)$. The constraint $k \in[n / 2-1, n / 2)$ equals to

$$
k= \begin{cases}\frac{n-1}{2}, & \text { if } n \text { is odd } \\ \frac{n}{2}-1, & \text { if } n \text { is even }\end{cases}
$$

Proof of Theorem 3. First all, we may assume that $\int \sigma_{k+1}(g) d v(g)>0$.
We first consider the case n is even and $k=\frac{n}{2}-1$. In this case we use the argument of Gursky [15] as in [8] and a following Yamabe problem

$$
Y_{k}([g]):=\inf _{\tilde{g} \in \mathcal{C}_{k}([g])} \frac{\int_{M} \sigma_{k}(\tilde{g}) d v(\tilde{g})}{\left(\int_{M} \sigma_{k-1}(\tilde{g}) d v(\tilde{g})\right)^{\frac{n-2 k}{n-2(k-1)}}}
$$

where $\mathcal{C}_{k}([g]):=[g] \cap \Gamma_{k}^{+}$, which was studied in [14]. Since (M, g) is locally conformally flat, it was proved in [14] that Y_{k} is achieved by a conformal metric $g_{k} \in \mathcal{C}_{k}$ satisfying

$$
\begin{equation*}
\frac{\sigma_{k}\left(g_{k}\right)}{\sigma_{k-1}\left(g_{k}\right)}=a_{k} \tag{37}
\end{equation*}
$$

for some constant $a_{k}>0$, which implies that $\int_{M} \sigma_{k}\left(g_{k}\right) d v\left(g_{k}\right)=a_{k} \int_{M} \sigma_{k-1}\left(g_{k}\right) d v\left(g_{k}\right)$. Now by (10) we have

$$
\begin{aligned}
\int_{M} \sigma_{k+1}\left(g_{k}\right) d v\left(g_{k}\right) & \leq c(n, k) \int_{M} \frac{\sigma_{k}\left(g_{k}\right)^{2}}{\sigma_{k-1}\left(g_{k}\right)} d v\left(g_{k}\right) \\
& =c(n, k) a_{k} \int_{M} \sigma_{k}\left(g_{k}\right) d v\left(g_{k}\right) \\
& =c(n, k)\left(\frac{\int_{M} \sigma_{k}\left(g_{k}\right) d v\left(g_{k}\right)}{\left(\int_{M} \sigma_{k-1}\left(g_{k}\right) d v\left(g_{k}\right)\right)^{1 / 2}}\right)^{2}=c(n, k) Y_{k}\left(\left[g_{k}\right]\right)^{2}
\end{aligned}
$$

where we have used that $k=n / 2-1$. Since $k+1=n / 2$ and the manifold is locally conformally flat, we know that $\int \sigma_{k+1}(g) d v(g)$ is constant in a given conformal class [24]. Hence we have

$$
\begin{aligned}
\int_{M} \sigma_{k+1}(g) d v(g) & =\int_{M} \sigma_{k+1}\left(g_{k}\right) d v\left(g_{k}\right) \leq c(n, k) Y_{k}\left(\left[g_{k}\right]\right)^{2} \\
& \leq c(n, k)\left(\frac{\int_{M} \sigma_{k}(g) d v(g)}{\left(\int_{M} \sigma_{k-1}(g) d v(g)\right)^{1 / 2}}\right)^{2}
\end{aligned}
$$

In the last inequality we have used that g_{k} achieves the minimum Y_{k}. From the proof it is clear that equality holds if and only if

$$
\sigma_{k+1}(g) \sigma_{k-1}(g)=c(n, k) \sigma_{k}^{2}(g)
$$

that is, g is an Einstein metric.
Now we consider the case that n is odd and $k=\frac{n-1}{2}$. In this case we consider the following Yamabe type problem.

Define

$$
\begin{equation*}
\mathcal{E}_{k}(g):=\frac{\int_{M} \sigma_{k-1}(g) d v(g) \int_{M} \sigma_{k+1}(g) d v(g)}{\left(\int_{M} \sigma_{k}(g) d v(g)\right)^{2}} \tag{38}
\end{equation*}
$$

and

$$
\tilde{Y}_{k}\left(\left[g_{0}\right]\right):=\sup _{g \in \mathcal{C}_{k}\left(\left[g_{0}\right]\right)} \mathcal{E}_{k}(g) .
$$

The Euler-Lagrange equation of (38) is a Yamabe type equation

$$
\begin{equation*}
\frac{\sigma_{k+1}(g)-3 r_{k}(g) \sigma_{k-1}(g)}{\sigma_{k}(g)}=-2 s_{k}(g) \tag{39}
\end{equation*}
$$

where $r_{k}(g)$ and $s_{k}(g)$ are two positive constants defined by

$$
r_{k}(g)=\frac{\int_{M} \sigma_{k+1}(g) d v(g)}{\int_{M} \sigma_{k-1}(g) d v(g)} \quad \text { and } \quad s_{k}(g)=\frac{\int_{M} \sigma_{k+1}(g) d v(g)}{\int_{M} \sigma_{k}(g) d v(g)}
$$

By the key Lemma in [6] we have: For $g_{0} \in \Gamma_{k}^{+}$Equation (39) is an elliptic and concave equation. We want to find the maximum of $\mathcal{E}_{k}, Y_{k}\left(\left[g_{0}\right]\right)$. In order to do so, we consider a Yamabe type flow

$$
\begin{equation*}
-g^{-1} \cdot \frac{d}{d t} g=\frac{\sigma_{k+1}(g)-3 r_{k}(g) \sigma_{k-1}(g)}{\sigma_{k}(g)}+2 s_{k}(g) \tag{40}
\end{equation*}
$$

Proposition 4. Flow (40) preserves $\int_{M} \sigma_{k}(g) d v(g)$, while it increases

$$
\int_{M} \sigma_{k-1}(g) d v(g) \int_{M} \sigma_{k+1}(g) d v(g) .
$$

Proof. It is clear that the flow preserves $\int_{M} \sigma_{k}(g) d v(g)$. By a direct computation we have

$$
\begin{aligned}
& \frac{d}{d t}\left(\int_{M} \sigma_{k-1}(g) d v(g) \int_{M} \sigma_{k+1}(g) d v(g)\right) \\
= & -\frac{1}{2} \int_{M} \sigma_{k-1}(g) d v(g) \int_{M}\left(\sigma_{k+1}(g)-3 r_{k}(g) \sigma_{k-1}(g)\right) g^{-1} \cdot \frac{d}{d t} g \\
= & \frac{1}{2} \int_{M} \sigma_{k-1}(g) d v(g) \int_{M} \sigma_{k}(g)\left(\frac{\sigma_{k+1}(g)-3 r_{k}(g) \sigma_{k-1}(g)}{\sigma_{k}(g)}+2 s_{k}(g)\right)^{2} \geq 0 .
\end{aligned}
$$

Proposition 5. Flow (40) is a parabolic equation.
Proof. See [6].
Since (M, g) is locally conformally flat, we can use the argument in [13] to show that the flow converges to a solution of (39). This argument used a crucial argument in [28] for the ordinary Yamabe flow, to show that there is a uniform estimate for gradients. Here we will not repeat it. Hence for any $g \in\left[g_{0}\right] \cap \mathcal{C}_{k}$ by using flow (40) we find a $\tilde{g} \in\left[g_{0}\right] \cap \mathcal{C}_{k}$ satisfying (39). Since the flow increases \mathcal{E}_{k} we have $\mathcal{E}_{k}(g) \leq \mathcal{E}(\tilde{g})$. Now one can show that \tilde{g} is in fact a metric with constant sectional curvature.
Theorem 5. Let n be odd and $k=(n-1) / 2$. If (M, g) is a locally conformally flat with $g \in \Gamma_{k}^{+}$and $\int_{M} \sigma_{k+1}(g) d v(g)>0$, then there is a conformal metric $g_{1} \in[g]$ with constant sectional curvature.

Proof. The proof follows from the proof given in [6] directly. In fact the argument would imply the cone Γ_{k+1}^{+}is not empty. Then it follows from [12] (M, g) has positive Ricci curvature. By Theorem of Myers, $\pi_{1}(M)$ is finite. Hence the universal cover of M is compact and locally conformally flat and thus conformal to the standard n-sphere. The argument in [1] would also work. See also closely related results in [11] and [2].

By this Theorem 5, without loss of generality we may assume that $\left(M, g_{0}\right)$ is the standard round metric. Since \tilde{g} satisfies a conformal equation (39), the classification result in [18] implies that \tilde{g} is also a metric with constant sectional curvature, and hence $\mathcal{E}(\tilde{g})=c(n, k)$. Therefore we have proved

$$
\mathcal{E}_{k}(g) \leq \mathcal{E}(\tilde{g})=c(n, k) .
$$

Equality holds if and only if $\mathcal{E}_{k}(g)=c(n, k)$, which means that g is a maximum of \mathcal{E}_{k} and hence satisfies (39). By Theorem 5 again, (M, g) is a space form. Now we complete the proof of Thereom 3.

5. Lovelock

In this section, let us first recall the work of Lovelock [19] on generalized Einstein tensors. See also [20], [27] and [16].

Let

$$
E_{A B}=R_{A B}-\frac{1}{2} R g_{A B}
$$

be the Einstein tensor. It is clear that g is an Einstein metric if and only if

$$
\begin{equation*}
E_{A B}=\lambda g_{A B} \tag{41}
\end{equation*}
$$

The Einstein tensor is very important in theoretical physics. It is a conversed quantity, i.e.,

$$
E_{A, B}^{B}=0
$$

It would be an interesting to generalize the Einstein tensor. In [19] Lovelock studied the classification of tensors A satisfying
(i) $A^{i j}=A^{j i}$, ie, A is symmetric.
(ii) $A^{i j}=A^{i j}\left(g_{A B}, g_{A B, C}, g_{A B, C D}\right)$.
(iii) $A^{i j}{ }_{j}=0$, ie. A is divergence-free.
(iv) $A^{i j}$ is linear in the second derivatives of $g_{A B}$.

It is clear that the Einstein tensor satisfies all conditions. Lovelock classified all 2-tensors satisfying (i)-(iii). Let us first define

$$
L_{k}=R^{(k)}:=\frac{1}{2^{k}} \delta_{j_{1} j_{2} \cdots j_{2 k-1} i_{2 k}}^{i_{1} i_{2} \cdots i_{2 k-1} i_{2 k}} R_{i_{11} i_{2}}^{j_{1} j_{2}} \cdots R_{i_{2 k-1} i_{2 k}}{ }^{j_{2 k-1} j_{2 k}} .
$$

Here the generalized Kronecker delta is denied by

$$
\delta_{i_{1} i_{2}, \ldots i_{r}}^{j_{1} j_{2} \ldots j_{r}}=\operatorname{det}\left(\begin{array}{cccc}
\delta_{i_{1}}^{j_{1}} & \delta_{i_{1}}^{j_{2}} & \cdots & \delta_{i_{1}}^{j_{r}} \\
\delta_{i_{2}}^{j_{1}} & \delta_{i_{2}}^{j_{2}} & \cdots & \delta_{i_{2}}^{j_{r}} \\
\vdots & \vdots & \vdots & \vdots \\
\delta_{i_{r}}^{j_{1}} & \delta_{i_{r}}^{j_{2}} & \cdots & \delta_{i_{r}}^{j_{r}}
\end{array}\right) .
$$

L_{k} is called the lovelock curvature. When $2 k=n, R^{(k)}$ is the Euler density. We could check that $R^{(k)}=0$ if $2 k>n$. For $k<n / 2, R^{(k)}$ is called the dimensional continued Euler density in Physics. Let us define a 2 -tensor $E^{(k)}$ by

$$
E^{(k)}{ }_{i j}:=-\frac{1}{2^{k+1}} g_{\alpha i} \delta_{j j_{1} j_{2} \cdots j_{2 k-1} i_{2 k}}^{\alpha i_{1} i_{2} \cdots j_{2 k-1} i_{2 k}} R_{i_{1} i_{2}}{ }^{j_{1} j_{2}} \cdots R_{i_{2 k-1} i_{2 k}}{ }^{j_{2 k-1} j_{2 k}}
$$

locally. It is clear that

$$
\operatorname{tr} E^{(k)}=-\frac{n-2 k}{2} R^{(k)} .
$$

One can check that

$$
E^{(k)^{i}}{ }_{j, i}=0,
$$

ie, $E^{(k)}$ satisfies (i)-(iii). Lovelock proved that any 2-tensor satisfying (i)-(iii) has the form

$$
\sum_{j} \alpha_{j} E^{(j)}
$$

with certain constants $\alpha_{j}, j \geq 0$. Here we set $E^{(0)}=0$. It is clear to see that $E^{(1)}$ is the Einstein tensor and

$$
R^{(1)}=R,
$$

which is the scalar curvature.
One can also check that

$$
E_{\mu \nu}^{(2)}=2 R R_{\mu \nu}-4 R_{\mu \alpha} R^{\alpha}{ }_{\nu}-4 R_{\alpha \beta} R^{\alpha}{ }_{\mu}{ }^{\beta}{ }_{\nu}+2 R_{\mu \alpha \beta \gamma} R_{\nu}{ }^{\alpha \beta \gamma}-\frac{1}{2} g_{\mu \nu} L_{2}
$$

and

$$
L_{2}=\frac{1}{4} \delta_{j_{1} j_{2} j_{3} j_{4}}^{i_{2} i_{3} i_{4}} R^{j_{1} j_{2}}{ }_{i_{1} i_{2}} R^{j_{3} j_{4}}{ }_{i_{3} i_{4}}=R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-4 R_{\mu \nu} R^{\mu \nu}+R^{2} .
$$

L_{2} is called the Gauss-Bonnet term in Physics. A direct computation gives

$$
\begin{align*}
L_{2} & =|W|^{2}-4 \frac{n-3}{n-2}|R i c|^{2}+\frac{n(n-3)}{(n-1)(n-2)} R^{2} \\
& =|W|^{2}+\frac{n-3}{n-2}\left(\frac{n}{n-1} R^{2}-4|R i c|^{2}\right) \tag{42}\\
& =|W|^{2}+8(n-2)(n-3) \sigma_{2} .
\end{align*}
$$

When $n=4, L_{2}$ is the Euler density and its integration is the Euler characteristic. It is clear that by definition $L_{k}=c \sigma_{k}(g)$ if (M, g) is locally conformally flat.

As a generalization of the Einstein metric, the solution of the following equation is called (string-inspired) Einstein-Gauss-Bonnet metric

$$
E_{\mu \nu}^{(2)}=\lambda g_{\mu \nu}
$$

$E^{(2)}$ was already given by Lanczos [17] in 1938 and is called Lanczos tensor. If g is such a metric, it is clear that

$$
\lambda=\frac{1}{n} g^{\mu \nu} E_{\mu \nu}^{(2)}=\frac{4-n}{2 n} L_{2}=\frac{4-n}{2 n}\left(8(n-2)(n-3) \sigma_{2}(g)+|W|^{2}\right)
$$

Since $E^{(2)}$ is divergence free, namely

$$
E_{\alpha \beta}^{(2), \beta}=0
$$

it follows that λ must be constant.

It is naturally to consider the generalization of Einstein metrics for all $k<n / 2$. We call a metric g is k-Einstein if

$$
E^{(k)}=\lambda g
$$

with λ constant. Such metrics have been studied intensively in physical literatures and also by mathematicians. See for instance [20], [27] and [16]. One can show that if a metric g satisfies the property that its k-Einstein tensor proportional to itself pointwisely, ie.

$$
E^{(k)}=\lambda g
$$

for a function λ, then the λ is constant, which follows from the fact that $E^{(k)}$ is divergence free. This is a generalization of the Schur Lemma.

It is interesting to see if the almost Schur Lemma of De Lellis-Topping could be generalized. Theorem 4 gives an affirmative answer.

Proof of theorem 4. Let $R^{(k)}=L_{k}$. The proof is almost the same in [5]. Let f be the unique solution of

$$
\Delta f=R^{(k)}-\bar{R}^{(k)}
$$

with $\int f=0$. Since $E^{(k)}$ is divergence-free, we have

$$
d R^{(k)}=\frac{2 n}{n-2 k} \delta\left(E^{(k)}+\frac{n-2 k}{2 n} R^{(k)} g\right)
$$

Their argument shows that

$$
\int\left|R^{(k)}-\bar{R}^{(k)}\right|^{2} \leq \frac{2 n}{n-2 k}\left\|E^{(k)}+\frac{n-2 k}{2 n} R^{(k)} g\right\|_{L^{2}}\left\|\nabla^{2} f-\frac{\Delta f}{n} g\right\|_{L^{2}}
$$

A Bochner formula gives

$$
\left\|\nabla^{2} f-\frac{\Delta f}{n} g\right\|_{L^{2}}^{2}=\frac{n-1}{n} \int\left|R^{(k)}-\bar{R}^{(k)}\right|^{2}-\int \operatorname{Ric}(\nabla f, \nabla f)
$$

Thus we have

$$
\int\left|R^{(k)}-\bar{R}^{(k)}\right|^{2} \leq \frac{4 n(n-1)}{(n-2 k)^{2}} \int_{M}\left|E^{(k)}+\frac{n-2 k}{2 n} R^{(k)} g\right|^{2} d v(g)
$$

When $k=1$ the inequality is equivalent to the almost Schur Lemma, Theorem A. If (M, g) is locally conformally flat, Theorems 3 and 4 are the same under slightly different conditions.

It is natural to ask the following Yamabe type problem.
Problem. Given a metric g_{0} and an integer $k \in[2, n / 2)$, is there a conformal metric $g \in\left[g_{0}\right]$ with

$$
R^{(k)}=\text { const.? }
$$

Especially, when $k=2$ and $n>4$, is there a conformal metric $g \in\left[g_{0}\right]$ with

$$
R^{(2)}=8(n-2)(n-3) \sigma_{2}(g)+|W|^{2}=\text { const.? }
$$

When $\left(M, g_{0}\right)$ is locally conformally flat, $R^{(k)}=\sigma_{k}$. Thus, this problem is just the σ_{k}-Yamabe problem on a locally conformally flat manifold, which was solved already.

References

[1] G. Catino and Z. Djadli, Conformal deformations of integral pinched 3-manifolds, Advances in Mathematics, 223 (2010), 393-404
[2] G. Catino, Z. Djadli and C. B. Ndiaye, A sphere theorem on locally conformally flat even dimensional manifolds, preprint
[3] A. Chang, M. Gursky and P. Yang, An equation of Monge-ampère type in conformal geometry, and four manifolds of positive Ricci curvature, Ann. of Math. 155 (2002) 709-787
[4] A. Chang, M. Gursky and P. Yang, A conformally invariant sphere theorem in four dimensions, Publ. Math. Inst. Hautes Études Sci. 98 (2003) 105-143
[5] C. De Lellis and P. Topping, Almost Schur Theorem, Arxiv 1003.3527.
[6] Y. Ge, C.-S. Lin and G. Wang, On σ_{2}-scalar curvature, J. Diff. Geom., 84 (2010), 45-86.
[7] Y. Ge and G. Wang, On a fully nonlinear Yamabe problem, Ann. Sci. École Norm. Sup. 39 (2006) 569-598
[8] Y. Ge and G. Wang, An almost Schur Theorem on 4-dimensional manifolds, preprint 2010
[9] M. Gromov and H.B. Lawson The classification of simply connected manifolds of positive scalar curvature, Ann. of Math., (2) 111 (1980) 423-434.
[10] P. Guan, Topics in Geometric Fully Nonlinear Equations, Lecture Notes, http://www.math.mcgill.ca/guan/notes.html
[11] P. Guan, C.-S. Lin and G. Wang, Application of The Method of Moving Planes to Conformally Invariant Equations, Math. Z. 247 (2004) 1-19
[12] P. Guan, J. Viaclovsky and G. Wang, Some properties of the Schouten tensor and applications to conformal geometry, Trans. Amer. Math. Soc. 355 (2003) 925-933
[13] P. Guan and G. Wang, A fully nonlinear conformal flow on locally conformally flat manifolds, J. Reine Angew. Math. 557 (2003) 219-238
[14] P. Guan and G. Wang, Geometric inequalities on locally conformally flat manifolds. Duke Math. J. 124 (2004), 177-212.
[15] M. Gursky, The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, Comm. Math. Phys. 207 (1999), 131-143.
[16] M.L. Labbi, Variational properties of the Gauss-Bonnet curvatures, Calc. Var. Partial Differential Equations 32 (2008) 175-189.
[17] C. Lanczos, A remarkable property of the Riemann-Christoffel tensor in four dimensions. Ann. of Math. (2) 39 (1938), 842-850
[18] A. Li and Y.Y. Li, On some conformally invariant fully nonlinear equations. II. Liouvil le, Harnack and Yamabe, Acta Math., 195 (2005) 117-154.
[19] D. Lovelock, The Einstein Tensor and Its Generalizations, J. Math. Phys., 12 (1971), 498-501
[20] E.M. Patterson, A class of critical Riemannian metrics, J. London Math. Soc. (2) 23 (1981) 349-358.
[21] S. Pigola, M. Rigoli, M. Rimoldi, Ricci almost solitons, arXiv 1003.2945
[22] J. Rosenberg and S. Stolz, Metrics of positive scalar curvature and connections with surgery, Surveys on surgery theory Vol. 2, 353-386, Ann. of Math. Stud., 149, Princeton Univ. Press, Princeton, NJ, 2001,
[23] W. Sheng, Admissible metrics in the σ_{k}-Yamabe equation. Proc. Amer. Math. Soc. 136 (2008), 17951802.
[24] J. Viaclovsky, Conformal geometry, contact geometry, and the calculus of variations, Duke Math. J., 101 (2000), 283-316.
[25] J. Viaclovsky, Conformal geometry and fully nonlinear equations, Inspired by S. S. Chern, 435-460, Nankai Tracts Math. 11 World Sci. Publ., Hackensack, NJ, 2006
[26] G. Wang, σ_{k}-scalar curvature and eigenvalues of the Dirac operator, Ann. Global Anal. Geom. 30 (2006) 65-71
[27] A. Willa, Dimensionsabhängige Relationen für den Krümmungstensor und neue Klassen von Einsteinund Spuereinsteinräumen, Diss ETH Nr. 14026, Zürich 2001
[28] R. Ye, Global existence and convergence of Yamabe flow, J. Diff. Geom., 39 (1994), 35-50.
Laboratoire d'Analyse et de Mathématiques Appliquées, CNRS UMR 8050, Département de Mathématiques, Université Paris Est-Créteil Val de Marne,, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France

E-mail address: ge@univ-paris12.fr
Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Eckerstr. 1, D-79104 Freiburg, Germany

E-mail address: guofang.wang@math.uni-freiburg.de
Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Eckerstr. 1, D-79104 Freiburg, Germany

E-mail address: chao.xia@math.uni-freiburg.de

[^0]: The work of the second and third named authors are partly supported by SFB/TR-71 of DFG.

