ON PROBLEMS RELATED TO AN INEQUALITY OF DE LELLIS AND TOPPING

YUXIN GE, GUOFANG WANG, AND CHAO XIA

Abstract. In this paper we study various problems related to an inequality proved recently by De Lellis and Topping.

1. Introduction

In this paper we consider various problems related to a recent result of De Lellis and Topping about the Schur Lemma

Theorem A (Almost Schur Lemma [5]). For \(n \geq 3 \), if \((M^n, g)\) is a closed Riemannian manifold with non-negative Ricci tensor, then

\[
\int_M |\text{Ric} - \frac{R}{n} g|^2 dv(g) \leq \frac{n^2}{(n-2)^2} \int_M |\text{Ric} - \frac{R}{n} g|^2 dv(g),
\]

where \(R = \text{vol}(g)^{-1} \int_M R dv(g) \) is the average of the scalar curvature \(R \) of \(g \).

This result could be viewed as a quantitative version or a stability result of the Schur Lemma. Moreover, this result is optimal in the following sense: the constant in inequality (1) is the best and the non-negativity of the Ricci tensor can not be removed in general.

We observed in [8] that inequality (1) can be rewritten in terms of \(\sigma_k \)-scalar curvatures. Namely, it is equivalent to

\[
\left(\int_M \sigma_1(g) dv(g) \right)^2 \geq \frac{2n}{n-1} \text{vol}(g) \int_M \sigma_2(g) dv(g),
\]

where

\[
\sigma_1(g) = \frac{R_g}{2(n-1)} \quad \text{and} \quad \sigma_2(g) = \frac{1}{2(n-2)^2} \left\{ -|\text{Ric}|^2 + \frac{n}{4(n-1)} R^2 \right\}.
\]

For the definition of \(\sigma_k(g) \) scalar curvature for general \(k \) see below. With this observation and a nice argument of Gursky [15] we improved Theorem A in \(n = 4 \).

Theorem B [8] If \(n = 4 \), and if \((M^4, g)\) is a closed Riemannian manifold with non-negative scalar tensor, then (1) holds. Moreover, equality holds if and only if \((M^4, g)\) is an Einstein manifold.

The work of the second and third named authors are partly supported by SFB/TR-71 of DFG.
From Theorem B, one may naturally ask whether equality in (1) holds if and only if \((M, g)\) is Einstein. The first result of this paper gives a positive answer.

Theorem 1. Equality in Theorem A holds if and only if \((M^n, g)\) is an Einstein manifold.

With the observation mentioned above, it is natural to consider the following Yamabe type functional

\[
E(g) = \frac{\text{vol}(g) \int_M \sigma_2(g) dv(g)}{\left(\int_M \sigma_1(g) dv(g) \right)^2},
\]

at least for metrics with \(\int_M \sigma_1(g) dv(g) \neq 0\). For a metric \(g\) with nonnegative Ricci tensor

Theorem A implies that

\[
E(g) \leq \frac{n-1}{2n}.
\]

Theorem B implies that (4) holds for metrics with nonnegative scalar curvature, when \(n = 4\). We conjectured in [8] that (4) for metrics with nonnegative scalar curvature if \(n = 3\). However (4) is not true in general for metrics nonnegative scalar curvature if \(n > 4\). In fact we have

Theorem 2. If \(n > 4\), for any metric \(g_0\) with positive Yamabe constant, which is equivalent to the condition that there is a metric in \([g_0]\) with positive scalar curvature, we have

\[
\sup_{g \in [g_0] \cap C_1} E(g) = \infty
\]

and

\[
Y([g_0]) := \inf_{g \in [g_0] \cap C_1} E(g) < \frac{n-1}{2n},
\]

where \([g_0]\) is the conformal class of \(g_0\) and \(C_k = \{g | \sigma_j(g) > 0 \forall j \leq k\}\). Moreover, we have

\[
Y([g_0]) > -\infty.
\]

Furthermore, we have

\[
Y([g_0]) > 0
\]

if and only if

\[
C_2([g_0]) := [g_0] \cap C_2 \neq \emptyset.
\]

In view of Theorem 2 it is natural to ask

Problem. Is there a conformal metric \(g \in [g_0] \cap C_1\) achieving the infimum \(Y([g_0])\) in \([g_0] \cap C_1\), namely

\[
E(g) = \inf_{g \in [g_0] \cap C_1} E(g)?
\]

Or is there a metric \(g \in [g_0] \cap C_1\) which is a critical point of \(E\) in \([g_0]\)?
Note that for the standard sphere \((\mathbb{S}^n, g_{\mathbb{S}^n})\) we have \(E(g_{\mathbb{S}^n}) = \frac{n-1}{2n}\), but
\[
0 < Y([g_{\mathbb{S}^n}]) = \inf_{\mathcal{C}_1} E(g) < \frac{n-1}{2n}.
\]

It is easy to see that the standard round metric \(g_{\mathbb{S}^n}\) is a critical point of \(E\). It would be interesting to know the value of \(Y([g_{\mathbb{S}^n}])\).

We are also interested in the generalization of (2) to large \(k\). Let us use the convention \(\sigma_0 = 1\). Hence we can rewrite (2) as
\[
\left(\int_M \sigma_1(g) dv(g) \right)^2 \geq \frac{2n}{n-1} \int_M \sigma_0(g) dv(g) \int_M \sigma_2(g) dv(g).
\]

Note that the elementary symmetric functions \(\sigma_1\) and \(\sigma_2\) satisfy the Newton inequality \(\sigma_2 \geq \frac{2n}{n-1} \sigma_0 \sigma_2\). In general we have the Newton–MacLaurin formula for general \(k\)
\[
\sigma_k^2(\Lambda) \geq c(n,k) \sigma_{k-1}(\Lambda) \cdot \sigma_{k+1}(\Lambda),
\]
for \(\Lambda \in \Gamma_k^+ := \{\Lambda \in \mathbb{R}^n | \sigma_j(\Lambda) > 0 \forall j \leq k\}\). Here \(c(n,k) = (k+1)(n-k+1)/(n-k)k\)
and we used the convention that \(\sigma_k = 0\) if \(k < 0\) or \(k > n\). Inspired by Theorem A and Theorem B we would like to ask under which conditions there holds
\[
\left(\int_M \sigma_k(g) dv(g) \right)^2 \geq c(n,k) \int_M \sigma_{k-1}(g) dv(g) \int_M \sigma_{k+1}(g) dv(g).
\]

At least, if the underlying manifold \(M\) is locally conformally flat, we have a generalization of Theorem B.

Theorem 3. Let \(n \geq 3\) and \(k \in [n/2 - 1, n/2)\). When \((M^n, g)\) is locally conformally flat with \(g \in C_k\), then (11) holds. Moreover, equality holds if and only if \((M, g)\) is a space form.

Now one may ask if there is a De Lellis-Topping type result for a suitable “Ricci curvature” such that the corresponding Theorem B type result is Theorem 3. There are really such curvatures, the Lovelock curvatures, which were introduced by Lovelock, but at least went back to Lanczos [17] in 1938. For the definition, see [19] and Section 5 below. We remark here that the Lovelock curvatures are natural generalizations of the Einstein tensor, other than the Ricci tensor.

Theorem 4. Let \((M^n, g)\) be a closed Riemannian manifold with non-positive Ricci tensor and \(1 \leq k < n/2\). We have
\[
\int_M |R^{(k)} - \overline{R}^{(k)}|^2 dv(g) \leq \frac{4n(n-1)}{(n-2k)^2} \int_M |E^{(k)} + \frac{n-2k}{2n} R^{(k)} g|^2 dv(g),
\]
where \(\overline{R}^{(k)}\) is the average of \(R^{(k)}\). Here \(\text{tr}E^{(k)} = -\frac{n-2k}{2} \overline{R}^{(k)}\) is defined below.
When $k = 1$, Theorem 4 is just Theorem A. For a given $k > 1$, if $n = 2(k+1)$ and (M^n, g) is local conformally flat, then Theorem 3 is just Theorem 4 with a slightly different condition $g \in \Gamma_k^+$. Note that the condition $g \in \Gamma_k^+$ with $k \geq n/2$ implies the condition that g has non-negative Ricci curvature. See [12]. The condition $g \in \Gamma_k^+$ with $k < n/2$ is not stronger than the condition that g has non-negative Ricci curvature.

The paper is organized as follows. In Section 2 we prove the rigidity result, Theorem 1. In Section 3 we first recall the definition of σ_k-scalar curvature and then prove Theorem 2 by choosing the suitable test metrics. In the construction of such metrics we need to pay extra attention to assure that all test metrics have positive scalar curvature. In Section 4 we generalize Theorem B to large k. In Section 5 we recall the definition of generalized Einstein tensors and then prove a De Lellis-Topping type result for these Einstein tensors.

2. Rigidity

Proof of Theorem 1. Assume that the equality holds, or equivalently,

$$
\int_M |R - \bar{R}|^2 dv(g) = \frac{4n(n-1)}{(n-2)^2} \int_M |Ric - \frac{R}{n} g|^2 dv(g).
$$

Then from the proof of Theorem A in [5] we know there exists some $\lambda \in \mathbb{R} \cup \{\infty\}$

$$
Ric - \frac{R}{n} g = \lambda (\nabla^2 f - \frac{\Delta f}{n} g),
$$

and

$$
Ric(\nabla f, \nabla f) = 0,
$$

where $\Delta f = R - \bar{R}$ with $\int_M f = 0$. Here by $\lambda = \infty$ we mean $\nabla^2 f - \frac{\Delta f}{n} g = 0$. In this case, integrating this equality we obtain

$$
\int_M |\nabla^2 f|^2 - \frac{(\Delta f)^2}{n} dv(g) = 0.
$$

From (14) we have

$$
\int_M |\nabla^2 f|^2 dv(g) = \int_M |\Delta f|^2 dv(g) = \int_M (R - \bar{R})^2 dv(g).
$$

Therefore,

$$
0 = \int_M |\Delta f|^2 dv(g) = \int_M (R - \bar{R})^2 dv(g)
$$

which, together with (12), means that g is an Einstein metric.

Now we consider $\lambda \in \mathbb{R}$. In the following, we use the normal coordinates to calculate. Recall the fact the Ricci tensor is non-negative. From the Cauchy-Schwarz inequality and (14), for all $x \in M$ and all tangent vector $Y \in T_x M$,

$$
|Ric(\nabla f(x), Y)|^2 \leq Ric(\nabla f(x), \nabla f(x)) Ric(Y, Y) = 0,
$$

$$
Ric(\nabla f, \nabla f) = 0,
$$

and

$$
Ric(\nabla f, \nabla f) = 0.
$$

Therefore,

$$
0 = \int_M |\Delta f|^2 dv(g) = \int_M (R - \bar{R})^2 dv(g)
$$

which, together with (12), means that g is an Einstein metric.
that is, $\text{Ric}(\nabla f, \cdot) = 0$, or equivalently

(17) $R^i_j f_i = 0$.

Here we use Einstein summation convention. From (13), (17) and $R_{ij,j} = \frac{1}{2} R_i$, we have

$$
\frac{1}{2} R_i = \lambda (f_{ij} - \frac{\Delta f g_{ij}}{n})_j + (\frac{R g_{ij}}{n})_j = \lambda f_{ij} - \lambda (\frac{\Delta f}{n})_i + \frac{R}{n} \\
= \lambda f_{ij} - \lambda (\frac{\Delta f}{n})_i + \frac{R}{n} \\
= (\lambda + \frac{1 - \lambda}{n}) R_i,
$$

which implies that either $\lambda = \frac{n-2}{2(n-1)}$ or $\lambda \neq \frac{n-2}{2(n-1)}$ and $R_i = 0$. In the latter case, R is constant and it follows from (12) that g is an Einstein metric. Now we consider the former case, i.e. $\lambda = \frac{n-2}{2(n-1)}$. (13) will be read as

(18) $\text{Ric} = \frac{n-2}{2(n-1)} \nabla^2 f + R \frac{2}{2(n-1)} g + (\frac{n-2}{2n}) \frac{R}{g}$.

By differentiating (17) and using $R_{ij,j} = \frac{1}{2} R_i$ we have

(19) $\frac{1}{2} R^i_i + R^j_j f_i = 0$.

Combining (18) and (19) gives

(20) $\frac{1}{2} R^i_i + \frac{n-2}{2(n-1)} |\nabla^2 f|^2 + \frac{R (R - \frac{R}{2})}{2(n-1)} g + \frac{(n-2)(R - \frac{R}{2})}{2n(n-1)} = 0$.

Since M is compact, there exists some point $x_0 \in M$ such that $R(x_0) = \max R$. At this point, we have $R - \frac{R}{2} \geq 0$, $R \geq 0$, $\frac{R}{2} \geq 0$ and $R' = 0$. From (20) we have $\max R = \frac{R}{2}$, and hence $R \equiv \frac{R}{2}$. g is also an Einstein metric in this case.

Theorem A and Theorem 1 give a characterization of Einstein metrics. We remark that a metric g satisfying (13) is called an Ricci almost soliton in [21], which is a generalization of the Ricci soliton.

3. An equivalent inequality in terms of σ_k scalar

Let us first recall the definition of the k-scalar curvature, which was first introduced by Viaclovsky [24] and has been intensively studied by many mathematicians, see for example [10], [25] and the references in [6]. There are many geometric applications of analysis developed in the study of the k-scalar curvature. For example, a 4-dimensional sphere Theorem was proved in [4] (see also [3], a 3-dimensional sphere Theorem in [6] and [1], an eigenvalue estimates for the Dirac operator in [26] and various geometric inequalities in [14]). The results of this section and next section are also applications of this analysis. Let

$$
S_g = \frac{1}{n-2} \left(\text{Ric}_g - \frac{R_g}{2(n-1)} \cdot g \right)
$$
be the Schouten tensor of g. For an integer k with $1 \leq k \leq n$ let σ_k be the k-th elementary symmetric function in \mathbb{R}^n. The k-scalar curvature is

$$\sigma_k(g) := \sigma_k(\Lambda_g),$$

where Λ_g is the set of eigenvalue of the matrix $g^{-1} \cdot S_g$. In particular, $\sigma_1(g) = \text{tr} S$ and $\sigma_2 = \frac{1}{2}((\text{tr} S)^2 - |S|^2)$. It is trivial to see that

$$\sigma_1 = \frac{R}{2(n-1)},$$

$$\sigma_2 = \frac{1}{2(n-2)^2} \left\{ -|\text{Ric}|^2 + \frac{n}{4(n-1)}R^2 \right\},$$

$$\left| \text{Ric} - \frac{R}{n} g \right|^2 = |\text{Ric}|^2 - \frac{R^2}{n}.$$

From above it is easy to have the following observation.

Observation. ([8]) Inequality (1) is equivalent to (2).

In [8] we proved Theorem B, namely there is an inequality

(21)

$$\mathcal{E}(g) \leq \frac{n-1}{2n},$$

provided that g is a metric of non-negative scalar curvature and $n = 4$. We conjectured that this statement is true for $n = 3$. In this Section we show Theorem 2, namely this statement is not true for $n > 4$.

We first prove one part of Theorem 2 in

Proposition 1. Let $n > 4$ and $g_0 \in C_1$. Then we have (7). Moreover, (8) holds if and only if

$$\mathcal{C}_2([g_0]) := [g_0] \cap \mathcal{C}_2 \neq \emptyset.$$

Proof. Recall the ordinary Yamabe constant Y_1 and another Yamabe type constant $Y_{2,1}$ studied in [6]

$$Y_1([g_0]) := \inf_{g \in \mathcal{C}_1([g_0])} \frac{\int_M \sigma_1(g) dv(g)}{(vol(g))^{\frac{n-2}{n}}} \quad \text{and} \quad Y_{2,1}([g_0]) := \inf_{g \in \mathcal{C}_1([g_0])} \frac{\int_M \sigma_2(g) dv(g)}{(\int_M \sigma_1(g)dv(g))^{\frac{n-4}{n-2}}}.$$
By a direct computation we have in [6]
\[
2 \int \sigma_2(g) dv(g) = \frac{n-4}{2} \int \sigma_1(g) |\nabla u|^2 e^{2u} dv(g) + \frac{n-4}{4} \int |\nabla u|^{4} e^{4u} dv(g) \\
+ \int e^{2u} \sigma_1(g) \sigma_1(g) dv(g) - \int e^{4u} |S(g_0)|^2 dv(g) \\
+ (4-n) \int \sum_{i,j} S(g_0)^{ij} u_i u_j dv(g) + \int \sigma_1(g_0) |\nabla u|^2 e^{4u} dv(g) \\
+ \int e^{4u} (\nabla u, \nabla \sigma_1(g_0))_{g_0} dv(g).
\]
(22)

It follows that
\[
\int \sigma_2(g) dv(g) \geq \frac{n-4}{16} \int |\nabla u|^4_{g_0} e^{4u} dv(g) - c \int e^{4u} dv(g),
\]
provided that \(g \in \Gamma_1^+\). Moreover we have
\[
\int_M \sigma_1(g) dv(g) = \int \left(\frac{n-2}{2} |\nabla u|^2 + \sigma_1(g_0) \right) e^{2u} dv(g) \geq Y_1([g_0]) (\text{vol}(g))^{\frac{n-2}{n}}.
\]
(23)

From (23), (24) and Hölder’s inequality, we have
\[
\int \sigma_2(g) dv(g) - c' \int e^{4u} dv(g) \geq c(\int |\nabla u|^4_{g_0} e^{4u} dv(g) + \int e^{4u} dv(g)) \\
\geq c(\int_M \sigma_1(g) dv(g))^{2}(\text{vol}(g))^{-1}.
\]
(25)

so that
\[
\int \sigma_2(g) dv(g) \geq (c_1 - c_2 Y_1([g_0])^{-2}) (\int_M \sigma_1(g) dv(g))^{2}(\text{vol}(g))^{-1}.
\]

that is, \(Y([g_0]) \geq c_1 - c_2 Y_1([g_0])^{-2} > -\infty\). This proves (7).

Now we assume that (8) hold. Since \(g_0 \in C_1\) we have \(Y_1([g_0]) > 0\). It is clear that for \(g \in C_1([g_0])\)
\[
\left(\int_M \sigma_2(g) dv(g) \right)^{\frac{n-4}{n-2}} = \mathcal{E}(g) \left(\int_M \sigma_1(g) dv(g) \right)^{\frac{n}{n-2}} \geq Y([g_0]) (Y_1([g_0]))^{\frac{n}{n-2}}.
\]

It follows that \(Y_{2,1}([g_0]) > 0\), which is equivalent to the non-emptiness of \(C_2([g_0])\) by a
result in [6]. See also [23].

Now assume the non-emptiness of \(C_2([g_0])\). Let \(g \in C_1([g_0])\). First define a nonlinear
eigenvalue of \(\nabla^2 u + du \otimes du - \frac{|\nabla u|^2}{2} g_0 + S_{g_0}\) by
\[
\lambda(g_0, \sigma_2) := \inf_{g = e^{-2u} \in C_1([g_0])} \frac{\int \sigma_2(g) dv(g)}{\int e^{4u} dv(g)}.
\]
We have proved in [6] that \(\lambda(g_0, \sigma_2) > 0 \), i.e.,

\[
(26) \quad \int_M \sigma_2(g) \geq \lambda(g_0, \sigma_2) \int_M e^{4u} dv(g)
\]

for any \(g = e^{-2u}g_0 \in \Gamma_1^+ \).

From (23), (24), (26) and Hölder’s inequality, we deduce

\[
(27) \quad \int_M \sigma_2(g) dv(g) \geq c \left(\int_M |\nabla u|_{g_0}^4 e^{4u} dv(g) + \int_M e^{4u} dv(g) \right) \geq c \left(\int_M \sigma_1(g) dv(g) \right)^2 (\text{vol}(g))^{-1}.
\]

This is what we want to show.

Proposition 2. Let \(n \geq 3 \) and \(C_1([g_0]) \neq \emptyset \). Then there exist a metric \(g \in C_1([g_0]) \) with \(E(g) < \frac{n-2}{2n} \).

Proof. Let \(\tilde{g} \in C_1([g_0]) \) be a Yamabe solution, i.e., \(\sigma_1(\tilde{g}) = \text{const} \). From the Newton inequality \(\sigma_2(\Lambda) \leq \frac{n-2}{2n} \sigma_1^2(\Lambda) \) for any \(\Lambda \in \mathbb{R}^n \) and equality holds if and only if \(\Lambda = c(1,1,\cdots,1) \) for some \(c \in \mathbb{R} \), we have

\[
\int_M \sigma_2(\tilde{g}) dv(\tilde{g}) \leq \frac{n-2}{2n} \int_M \sigma_1(\tilde{g})^2 dv(\tilde{g}) = \frac{n-2}{2n} \left(\int_M \sigma_1(\tilde{g}) dv(\tilde{g}) \right)^2 \text{vol}(\tilde{g})^{-1}.
\]

Hence \(E(\tilde{g}) \leq \frac{n-2}{2n} \). From above it is easy to see that \(E(\tilde{g}) = \frac{n-2}{2n} \) if and only if \(\tilde{g} \) is an Einstein metric. In this case, it is clear that \(\text{Ric}(\tilde{g}) \) is positive definite. Then we choose a nearby, not Einstein metric \(\tilde{g}_1 \) with positive Ricci tensor. Then by Theorem 1, we have \(E(\tilde{g}_1) < \frac{n-2}{2n} \).

The proof is motivated by an argument of Gursky in [15].

Now we remain to prove

Proposition 3. Let \(n > 4 \) and \(C_1([g_0]) \neq \emptyset \). Then (5) holds. Namely

\[
\bar{Y}([g_0]) := \sup_{g \in [g_0] \cap C_1} E(g) = \infty.
\]
To prove the Proposition we use the gluing method developed by Gromov-Lawson [9] (see also [22]).

Improving slightly the construction given in [7], which is motivated by [9] and [22], we have

Lemma 1. Assume $n > 4$. Let g_0 be in Theorem 2. For any small constant $\delta, \lambda \in (0,1)$ such that $\frac{\lambda^2}{\delta} \gg \delta \gg \frac{1}{\delta}$, there exists a constant $\delta_1 > 0$ and a function $u : \mathbb{R}^n \to \mathbb{R}$ satisfying:

1. $\delta_1 = \lambda^{-1} \delta^3$, $\delta << \delta_1 << \frac{1}{\delta}$,
2. The metric $g = e^{-2u} g_0$ has positive scalar curvature in B_{δ_1},
3. $u = \log(\lambda + |x|^2) + b_0$ for $|x| \leq \delta$,
4. $u = \log |x|$ for $|x| \geq \delta_1$,
5. $\text{vol}(B_{\delta_1} \cup B_{\delta}, g) = O(\delta_1^n \delta^{-n})$, $\int_{B_{\delta_1} \setminus B_{\delta}} \sigma_1(g) dv(g) = O(\delta_1^{n-\frac{2}{3} \delta^2 - n})$ and $\int_{B_{\delta_1} \setminus B_{\delta}} \sigma_2(g) dv(g) = O(\delta_1^{n-4 \delta^2 - n})$, where $b_0 = -\log \delta_1 + O(1)$.

Lemma 2. Assume $n > 4$. Let g_0 be in Theorem 2. For any small constant $\delta, \lambda \in (0,1)$ such that $\frac{\lambda^2}{\delta} \gg \delta \gg \frac{1}{\delta}$, define a conformal metric $g = e^{-2u} g_0$ with $u(x) = \log(\lambda + |x|^2) + b_0$ in B_{δ}, where b_0 is some constant. Then g has positive scalar curvature in B_{δ} and we have the following

\begin{align*}
\text{vol}(B_{\delta}, g) &= e^{-nb_0} \lambda^{-\frac{n}{2}} [B + O(\lambda) + O((\lambda\delta^{-2}) \frac{n}{2})], \\
\int_{B_{\delta}} \sigma_1(g) dv(g) &= e^{(2-n)b_0} \lambda^{1-\frac{n}{2}} [2nB + O(\lambda) + O((\lambda\delta^{-2}) \frac{n}{2})], \\
\int_{B_{\delta}} \sigma_2(g) dv(g) &= e^{(4-n)b_0} \lambda^{2-\frac{n}{2}} [2n(n-1)B + O(\lambda) + O((\lambda\delta^{-2}) \frac{n}{2})].
\end{align*}

Here $B = \int_{\mathbb{R}^n} \frac{1}{(1+|x|^2)^n} dx$.

Lemma 3. Let g_0 be as in Theorem 2, $n > 4$ and B_{r_0} be a geodesic ball with respect to g_0 for some r_0. Then there exists a conformal metric $g = e^{-2u} g_0$ in $B_{r_0} \setminus \{0\}$ satisfying:

1. The metric $g = e^{-2u} g_0$ has positive scalar curvature in $B_{r_0} \setminus \{0\}$,
2. $u = \log |x|$ for $|x| \leq r_2$,
3. $u = b_1$ for $|x| \geq r_1$,

where $r_2 < r_1 < r_0$ and b_1 is a constant.

Proof of Proposition 3. Let $\{x_k\}_{k=1}^K$ be K points in M and $B_{r_0}(x_k)$ be disjoint geodesic balls centered as x_k with radius r_{0K}, where $r_{0K} \to 0$ as $K \to \infty$. For any $K \in \mathbb{N}$, we choose some $\delta = o(K^{-\gamma})$ such that $\delta_K := K^\gamma \delta \to 0$ as $K \to \infty$ for some γ chosen later.

For simplicity, set $\delta_k = \lambda_k^2$, which satisfies the assumption on δ, λ in Lemma 1 and define $\delta_{1k} = \lambda_k^{1-\delta} = \delta_1^2$ and b_{0k} as in Lemma 1. Also define $r_{1K}, r_{2K} \leq r_{0K}$ and b_{1K} as in Lemma 3 (independent of k). We point out that r_{1K} and r_{2K} can be chosen as small as we want. For sufficient small δ_k with $\delta_{1k} \leq r_{2K}$, define a sequence of metrics $g_K = e^{-2u_K} g_0$ as follows. In $M \setminus B_{r_{0K}}(x_k)$, $g = e^{-2b_{1K}} g_0$, where b_{1K} (independent of k) is given in Lemma
3. We define

\[
 u_K = \begin{cases}
 \log(\lambda_k + |x - x_k|^2) + b_0k, & x \in B_{\delta_k}(x_k) \\
 \log |x - x_k|, & x \in B_{r_{2K}}(x_k) \setminus B_{\delta_k}(x_k) \\
 b_1K, & x \in M \setminus \bigcup_{k=1}^K B_{r_{1K}}(x_k)
 \end{cases}
\]

(31)

and in $B_{\delta_k}(x_k) \setminus B_{\delta_k}(x_k)$, we define u_K as in Lemma 1, while in $B_{r_{1K}}(x_k) \setminus B_{r_{2K}}(x_k)$ we define u_K as in Lemma 3. From the construction in Lemma 1 and Lemma 3, we see that g_K is smooth and has positive scalar curvature. It follows directly from Lemma 1 and Lemma 2 that

\[
\begin{align*}
 \text{vol}(B_{\delta_k}(x_k), g_K) &= \delta_k^{-\frac{1}{2}n} [B + O(\delta_k^2) + O(\delta_k^n)], \\
 \int_{B_{\delta_k}(x_k)} \sigma_1(g_K) dv(g_K) &= \delta_k^{1 - \frac{1}{2}n} [2nB + O(\delta_k^2) + O(\delta_k^n)], \\
 \int_{B_{\delta_k}(x_k)} \sigma_2(g_K) dv(g_K) &= \delta_k^{-\frac{1}{2}n} [2n(n-1)B + O(\delta_k^2) + O(\delta_k^n)], \\
 \int_{B_{\delta_k}(x_k)} \sigma_1(g_K) dv(g_K) &= O(\delta_k^{-\frac{2}{n}}) = \delta_k^{-\frac{1}{2}n} O(\delta_k^{\frac{n}{2}}), \\
 \int_{B_{\delta_k}(x_k)} \sigma_2(g_K) dv(g_K) &= O(\delta_k^{-\frac{3}{n}}) = \delta_k^{-\frac{1}{2}n} O(\delta_k^{\frac{n-2}{2}}).
\end{align*}
\]

One can also choose r_{1K} and then r_{2K} sufficiently far away from δ_k for any $k = 1, \ldots, K$ such that

\[
\begin{align*}
 \text{vol}(B_{r_{2K}}(x_k) \setminus B_{\delta_k}(x_k), g_K) &= \delta_k^{-\frac{1}{2}n} O(\delta_k^{\frac{n}{2}}), \\
 \int_{B_{r_{2K}}(x_k) \setminus B_{\delta_k}(x_k)} \sigma_1(g_K) dv(g_K) &= \delta_k^{1 - \frac{1}{2}n} O(\delta_k^{\frac{n-2}{2}}), \\
 \int_{B_{r_{2K}}(x_k) \setminus B_{\delta_k}(x_k)} \sigma_2(g_K) dv(g_K) &= \delta_k^{-\frac{1}{2}n} O(\delta_k^{\frac{n-4}{2}}), \\
 \text{vol}(M \setminus \bigcup_{k=1}^K B_{r_{2K}}(x_k), g_K) &= f_0(r_{2K}) = \delta_k^{-\frac{1}{2}n} O(\delta_k^{\frac{n}{2}}), \\
 \int_{M \setminus \bigcup_{k=1}^K B_{r_{2K}}(x_k)} \sigma_1(g_K) dv(g_K) &= f_1(r_{2K}) = \delta_k^{1 - \frac{1}{2}n} O(\delta_k^{\frac{n-2}{2}}), \\
 \int_{M \setminus \bigcup_{k=1}^K B_{r_{2K}}(x_k)} \sigma_2(g_K) dv(g_K) &= f_2(r_{2K}) = \delta_k^{-\frac{1}{2}n} O(\delta_k^{\frac{n-4}{2}}).
\end{align*}
\]

for some functions f_i, $i = 0, 1, 2$. Combining all the above estimates and using $\delta_k = k^2 \delta$, we obtain
\[E(g_K) = \frac{\text{vol}(g_K) \int_M \sigma_2(g_K) dv(g_K)}{\left(\int_M \sigma_1(g_K) dv(g_K) \right)^2} = \sum_{k=1}^K k^{-\frac{1}{2}n\gamma} \sum_{k=1}^K k^{(2-\frac{1}{2}n)\gamma} \left[\frac{n-1}{2n} + o(1) \right]. \]

Choose \(\gamma \) such that \((1 - \frac{1}{2}n)\gamma = -1 - \beta \) with \(\beta \in (0, \frac{2}{n-2}) \). Then we have

\[-\frac{1}{2} n\gamma = \frac{n}{n-2}(-1 - \beta) < -1, \quad (2 - \frac{1}{2} n)\gamma = \frac{n-4}{n-2}(-1 - \beta) > -1. \]

Therefore, \(\sum_{k=1}^\infty k^{-\frac{1}{2}n\gamma} \) and \(\sum_{k=1}^\infty k^{(1-\frac{1}{2}n)\gamma} \) converge, meanwhile \(\sum_{k=1}^\infty k^{(2-\frac{1}{2}n)\gamma} \) diverges.

In view of (32), we see that \(E(g_K) \) can be made to be arbitrary large when \(K \) goes to infinity. Hence we finished the proof of (5).

Remark 1. Using Lemmas given above and an argument from Aubin, we can show a weaker form of (6).

\[Y([g_0]) := \inf_{g \in [g_0] \cap C_k} E(g) \leq \frac{n-1}{2n}. \]

This is an Aubin type inequality. Using the same gluing argument we can show the metrics constructed in Lemma 1 and Lemma 3 are in the class \(\Gamma_k^+ \), provided \(g_0 \in \Gamma_k^+ \) and \(k < n/2 \), and hence

\[\inf_{g \in [g_0] \cap C_k} E(g) \leq \frac{n-1}{2n}, \]

for any \(k < n/2 \), provided that \([g_0] \cap C_k \neq \emptyset \). We do not know if the inequality in (34) is strict, though we believe this. Similarly, one can show a slightly stronger form of (5)

\[\sup_{g \in [g_0] \cap C_k} E(g) = \infty, \]

for any \(k < n/2 \), provided that \([g_0] \cap C_k \neq \emptyset \). Comparing with the inequality of De Lellis-Topping (1), i.e.,

\[E(g) \leq \frac{n-1}{2n}, \quad \text{for any } g \text{ with } \text{Ric} \geq 0, \]

it indicates that the condition \(\text{Ric} \geq 0 \) is “stronger” than the condition \(g \in C_k \) with \(k < n/2 \). Remark that a metric \(g \in C_k \) with \(k \geq n/2 \) have positive Ricci tensor [12].

4. A geometric inequality for large \(k \)

In this Section, we will prove Theorem 3, namely

\[\left(\int_M \sigma_k(g) dv(g) \right)^2 \geq c(n, k) \int_M \sigma_{k-1}(g) dv(g) \int_M \sigma_{k+1}(g) dv(g) \]

\[\quad \left(\int_M \sigma_k(g) dv(g) \right)^2 \geq c(n, k) \int_M \sigma_{k-1}(g) dv(g) \int_M \sigma_{k+1}(g) dv(g) \]
holds if \((M, g)\) is locally conformally flat and \(g \in \Gamma_k^+\) with \(k \in [n/2 - 1, n/2)\). The constraint \(k \in [n/2 - 1, n/2)\) equals to

\[
k = \begin{cases}
 \frac{n-1}{2}, & \text{if } n \text{ is odd}, \\
 \frac{n}{2} - 1, & \text{if } n \text{ is even}.
\end{cases}
\]

Proof of Theorem 3. First all, we may assume that \(\int_M \sigma_{k+1}(g) dv(g) > 0\).

We first consider the case \(n\) is even and \(k = \frac{n}{2} - 1\). In this case we use the argument of Gursky [15] as in [8] and a following Yamabe problem

\[
Y_k([g]) := \inf_{\hat{g} \in C_k([g])} \frac{\int_M \sigma_k(\hat{g}) dv(\hat{g})}{\left(\int_M \sigma_{k-1}(\hat{g}) dv(\hat{g}) \right)^{n/(4(k-1))}},
\]

where \(C_k([g]) := [g] \cap \Gamma_k^+\), which was studied in [14]. Since \((M, g)\) is locally conformally flat, it was proved in [14] that \(Y_k\) is achieved by a conformal metric \(g_k \in C_k\) satisfying

\[
(37) \quad \frac{\sigma_k(g_k)}{\sigma_{k-1}(g_k)} = a_k,
\]

for some constant \(a_k > 0\), which implies that \(\int_M \sigma_k(g_k) dv(g_k) = a_k \int_M \sigma_{k-1}(g_k) dv(g_k)\).

Now by (10) we have

\[
\int_M \sigma_{k+1}(g_k) dv(g_k) \leq c(n, k) \int_M \frac{\sigma_k(g_k)^2}{\sigma_{k-1}(g_k)} dv(g_k) = c(n, k) a_k \int_M \sigma_k(g_k) dv(g_k) = c(n, k) \left(\int_M \frac{\sigma_k(g_k) dv(g_k)}{\left(\int_M \sigma_{k-1}(g_k) dv(g_k) \right)^{1/2}} \right)^2 = c(n, k) Y_k([g_k])^2,
\]

where we have used that \(k = n/2 - 1\). Since \(k + 1 = n/2\) and the manifold is locally conformally flat, we know that \(\int \sigma_{k+1}(g) dv(g)\) is constant in a given conformal class [24]. Hence we have

\[
\int_M \sigma_{k+1}(g) dv(g) = \int_M \sigma_{k+1}(g_k) dv(g_k) \leq c(n, k) Y_k([g_k])^2 \leq c(n, k) \left(\int_M \frac{\sigma_k(g) dv(g)}{\left(\int_M \sigma_{k-1}(g) dv(g) \right)^{1/2}} \right)^2.
\]
In the last inequality we have used that g_k achieves the minimum Y_k. From the proof it is clear that equality holds if and only if

$$\sigma_{k+1}(g)\sigma_{k-1}(g) = c(n, k)\sigma_k^2(g),$$

that is, g is an Einstein metric.

Now we consider the case that n is odd and $k = \frac{n-1}{2}$. In this case we consider the following Yamabe type problem.

Define

$$E_k(g) := \int_M \sigma_{k-1}(g)dv(g) \int_M \sigma_{k+1}(g)dv(g)\left(\int_M \sigma_k(g)dv(g)\right)^2$$

and

$$\tilde{Y}_k([g_0]) := \sup_{g \in \mathcal{C}_k([g_0])} E_k(g).$$

The Euler-Lagrange equation of (38) is a Yamabe type equation

$$\sigma_{k+1}(g) - 3r_k(g)\sigma_{k-1}(g) = -2s_k(g),$$

where $r_k(g)$ and $s_k(g)$ are two positive constants defined by

$$r_k(g) = \int_M \sigma_{k+1}(g)dv(g) \int_M \sigma_{k-1}(g)dv(g)$$

and

$$s_k(g) = \int_M \sigma_{k+1}(g)dv(g) \int_M \sigma_{k-1}(g)dv(g).$$

By the key Lemma in [6] we have: For $g_0 \in \Gamma_k^+$ Equation (39) is an elliptic and concave equation. We want to find the maximum of E_k, $\tilde{Y}_k([g_0])$. In order to do so, we consider a Yamabe type flow

$$-g^{-1} \cdot \frac{d}{dt} g = \frac{\sigma_{k+1}(g) - 3r_k(g)\sigma_{k-1}(g)}{\sigma_k(g)} + 2s_k(g).$$

Proposition 4. Flow (40) preserves $\int_M \sigma_k(g)dv(g)$, while it increases

$$\int_M \sigma_{k-1}(g)dv(g) \int_M \sigma_{k+1}(g)dv(g).$$

Proof. It is clear that the flow preserves $\int_M \sigma_k(g)dv(g)$. By a direct computation we have

$$\frac{d}{dt} \left(\int_M \sigma_{k-1}(g)dv(g) \int_M \sigma_{k+1}(g)dv(g) \right)$$

$$= -\frac{1}{2} \int_M \sigma_{k-1}(g)dv(g) \int_M (\sigma_{k+1}(g) - 3r_k(g)\sigma_{k-1}(g))g^{-1} \cdot \frac{d}{dt} g$$

$$= \frac{1}{2} \int_M \sigma_{k-1}(g)dv(g) \int_M \sigma_k(g) \left(\frac{\sigma_{k+1}(g) - 3r_k(g)\sigma_{k-1}(g)}{\sigma_k(g)} + 2s_k(g)\right)^2 \geq 0.$$
Proposition 5. Flow (40) is a parabolic equation.

Proof. See [6].

Since \((M, g)\) is locally conformally flat, we can use the argument in [13] to show that the flow converges to a solution of (39). This argument used a crucial argument in [28] for the ordinary Yamabe flow, to show that there is a uniform estimate for gradients. Here we will not repeat it. Hence for any \(g \in [g_0] \cap C_k\) by using flow (40) we find a \(\tilde{g} \in [g_0] \cap C_k\) satisfying (39). Since the flow increases \(E_k\) we have \(E_k(g) \leq E(\tilde{g})\). Now one can show that \(\tilde{g}\) is in fact a metric with constant sectional curvature.

Theorem 5. Let \(n\) be odd and \(k = (n - 1)/2\). If \((M, g)\) is a locally conformally flat with \(g \in \Gamma_k^+\) and \(\int_M \sigma_{k+1}(g)dv(g) > 0\), then there is a conformal metric \(g_1 \in [g]\) with constant sectional curvature.

Proof. The proof follows from the proof given in [6] directly. In fact the argument would imply the cone \(\Gamma^+_{k+1}\) is not empty. Then it follows from [12] \((M, g)\) has positive Ricci curvature. By Theorem of Myers, \(\pi_1(M)\) is finite. Hence the universal cover of \(M\) is compact and locally conformally flat and thus conformal to the standard \(n\)-sphere. The argument in [1] would also work. See also closely related results in [11] and [2].

By this Theorem 5, without loss of generality we may assume that \((M, g_0)\) is the standard round metric. Since \(\tilde{g}\) satisfies a conformal equation (39), the classification result in [18] implies that \(\tilde{g}\) is also a metric with constant sectional curvature, and hence \(\mathcal{E}(\tilde{g}) = c(n, k)\). Therefore we have proved

\[
\mathcal{E}_k(g) \leq \mathcal{E}(\tilde{g}) = c(n, k).
\]

Equality holds if and only if \(\mathcal{E}_k(g) = c(n, k)\), which means that \(g\) is a maximum of \(\mathcal{E}_k\) and hence satisfies (39). By Theorem 5 again, \((M, g)\) is a space form. Now we complete the proof of Theorem 3.

5. LOVELOCK

In this section, let us first recall the work of Lovelock [19] on generalized Einstein tensors. See also [20], [27] and [16].

Let

\[
E_{AB} = R_{AB} - \frac{1}{2}Rg_{AB}
\]

be the Einstein tensor. It is clear that \(g\) is an Einstein metric if and only if

\[
E_{AB} = \lambda g_{AB}.
\]

The Einstein tensor is very important in theoretical physics. It is a conversed quantity, i.e.,

\[
E^B_{A,B} = 0.
\]

It would be an interesting to generalize the Einstein tensor. In [19] Lovelock studied the classification of tensors \(A\) satisfying
(i) $A^i = A^j$, i.e., A is symmetric.
(ii) $A^i = A^j (g_{AB}, g_{AB,C}, g_{AB,CD})$.
(iii) $A^i j = 0$, i.e., A is divergence-free.
(iv) $A^i j$ is linear in the second derivatives of g_{AB}.

It is clear that the Einstein tensor satisfies all conditions. Lovelock classified all 2-tensors satisfying (i)–(iii). Let us first define

$$L_k = R^{(k)} := \frac{1}{2k} \delta^{i_1 j_1 \cdots i_2 j_2 \cdots i_{2k-1} j_{2k}} R_{i_1 i_2 \cdots j_1 j_2 \cdots j_{2k-1} j_{2k}}.$$

Here the generalized Kronecker delta is defined by

$$\delta_{i_1 j_1 \cdots i_r j_r} = \det\begin{pmatrix}
\delta_{j_1 i_1} & \delta_{j_2 i_1} & \cdots & \delta_{j_r i_1} \\
\delta_{j_1 i_2} & \delta_{j_2 i_2} & \cdots & \delta_{j_r i_2} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{j_1 i_r} & \delta_{j_2 i_r} & \cdots & \delta_{j_r i_r}
\end{pmatrix}.$$

L_k is called the Lovelock curvature. When $2k = n$, $R^{(k)}$ is the Euler density. We could check that $R^{(k)} = 0$ if $2k > n$. For $k < n/2$, $R^{(k)}$ is called the dimensional continued Euler density in Physics. Let us define a 2-tensor $E^{(k)}$ by

$$E^{(k)}_{i j} := \frac{1}{2k+1} g_{AB} \delta^{i_1 j_1 \cdots i_2 j_2 \cdots i_{2k-1} j_{2k}} R_{i_1 i_2 \cdots j_1 j_2 \cdots j_{2k-1} j_{2k}}$$

locally. It is clear that

$$\text{tr} E^{(k)} = -\frac{n - 2k}{2} R^{(k)}.$$

One can check that

$$E^{(k)}_{i j} j_i = 0,$$

i.e., $E^{(k)}$ satisfies (i)–(iii). Lovelock proved that any 2-tensor satisfying (i)–(iii) has the form

$$\sum_j \alpha_j E^{(j)}$$

with certain constants α_j, $j \geq 0$. Here we set $E^{(0)} = 0$. It is clear to see that $E^{(1)}$ is the Einstein tensor and

$$R^{(1)} = R,$$

which is the scalar curvature.

One can also check that

$$E^{(2)}_{\mu \nu} = 2 R_{\mu \nu} - 4 R_{\mu \alpha} R^\alpha \nu - 4 R_{\mu \alpha \beta \gamma} R^\alpha \beta \nu + 2 R_{\mu \alpha \beta} R_{\nu \beta \gamma} - \frac{1}{2} g_{\mu \nu} L_2$$

and

$$L_2 = \frac{1}{4} \delta^{i_1 j_1 i_2 j_2 i_3 j_3 i_4} R_{i_1 i_2 j_1 j_2} R_{i_3 i_4 j_3 j_4} R_{i_1 i_2 j_1 j_2} R_{i_3 i_4 j_3 j_4} = R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma} - 4 R_{\mu \nu} R^{\mu \nu} + R^2.$$
L_2 is called the Gauss-Bonnet term in Physics. A direct computation gives

\begin{align}
L_2 &= |W|^2 - 4 \frac{n-3}{n-2} |\text{Ric}|^2 + \frac{n(n-3)}{(n-1)(n-2)} R^2 \\
&= |W|^2 + \frac{n-3}{n-2} \left(\frac{n}{n-1} R^2 - 4 |\text{Ric}|^2 \right) \\
&= |W|^2 + 8(n-2)(n-3) \sigma_2.
\end{align}

When $n = 4$, L_2 is the Euler density and its integration is the Euler characteristic. It is clear that by definition $L_k = c \sigma_k(g)$ if (M, g) is locally conformally flat.

As a generalization of the Einstein metric, the solution of the following equation is called (string-inspired) Einstein-Gauss-Bonnet metric

$$E^{(2)}_{\mu\nu} = \lambda g_{\mu\nu}.$$

$E^{(2)}$ was already given by Lanczos [17] in 1938 and is called Lanczos tensor. If g is such a metric, it is clear that

$$\lambda = \frac{1}{n} g^{\mu\nu} E^{(2)}_{\mu\nu} = \frac{4-n}{2n} L_2 = \frac{4-n}{2n} \left(8(n-2)(n-3) \sigma_2(g) + |W|^2 \right).$$

Since $E^{(2)}$ is divergence free, namely

$$E^{(2)}_{\alpha \beta ; \beta} = 0,$$

it follows that λ must be constant.

It is naturally to consider the generalization of Einstein metrics for all $k < n/2$. We call a metric g is k-Einstein if

$$E^{(k)} = \lambda g,$$

with λ constant. Such metrics have been studied intensively in physical literatures and also by mathematicians. See for instance [20], [27] and [16]. One can show that if a metric g satisfies the property that its k-Einstein tensor proportional to itself pointwisely, ie.

$$E^{(k)} = \lambda g$$

for a function λ, then the λ is constant, which follows from the fact that $E^{(k)}$ is divergence free. This is a generalization of the Schur Lemma.

It is interesting to see if the almost Schur Lemma of De Lellis-Topping could be generalized. Theorem 4 gives an affirmative answer.

Proof of theorem 4. Let $R^{(k)} = L_k$. The proof is almost the same in [5]. Let f be the unique solution of

$$\Delta f = R^{(k)} - \overline{R}^{(k)},$$

with $\int f = 0$. Since $E^{(k)}$ is divergence-free, we have

$$dR^{(k)} = \frac{2n}{n-2k} \delta (E^{(k)}) + \frac{n-2k}{2n} R^{(k)} g.$$
Their argument shows that
\[
\int |R^{(k)} - \bar{R}^{(k)}|^2 \leq \frac{2n}{n-2k} \|E^{(k)}\| + \frac{n-2k}{2n} R^{(k)} g \|\nabla^2 f - \frac{\Delta f}{n} g\|_{L^2}.
\]
A Bochner formula gives
\[
\|\nabla^2 f - \frac{\Delta f}{n} g\|_{L^2}^2 = \frac{n-1}{n} \int |R^{(k)} - \bar{R}^{(k)}|^2 - \int \text{Ric}(\nabla f, \nabla f)
\]
Thus we have
\[
\int |R^{(k)} - \bar{R}^{(k)}|^2 \leq \frac{4n(n-1)}{(n-2k)^2} \int_M |E^{(k)}| + \frac{n-2k}{2n} R^{(k)} g \|\nabla^2 f - \frac{\Delta f}{n} g\|_{L^2}^2 dv(g).
\]

When $k = 1$ the inequality is equivalent to the almost Schur Lemma, Theorem A. If (M, g) is locally conformally flat, Theorems 3 and 4 are the same under slightly different conditions.

It is natural to ask the following Yamabe type problem.

Problem. Given a metric g_0 and an integer $k \in [2, n/2)$, is there a conformal metric $g \in [g_0]$ with
\[R^{(k)} = \text{const}. \]
Especially, when $k = 2$ and $n > 4$, is there a conformal metric $g \in [g_0]$ with
\[R^{(2)} = 8(n-2)(n-3)\sigma_2(g) + |W|^2 = \text{const}. \]

When (M, g_0) is locally conformally flat, $R^{(k)} = \sigma_k$. Thus, this problem is just the σ_k-Yamabe problem on a locally conformally flat manifold, which was solved already.

References

[27] A. Willa, Dimensionsabhängige Relationen für den Krümmungstensor und neue Klassen von Einstein- und Spureinsteinräumen, Diss ETH Nr. 14026, Zürich 2001

Laboratoire d’Analyse et de Mathématiques Appliquées, CNRS UMR 8050, Département de Mathématiques, Université Paris Est Créteil Val de Marne, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, FRANCE

E-mail address: ge@univ-paris12.fr

Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Eckerstr. 1, D-79104 Freiburg, Germany

E-mail address: guofang.wang@math.uni-freiburg.de

Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Eckerstr. 1, D-79104 Freiburg, Germany

E-mail address: chao.xia@math.uni-freiburg.de