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Abstract. In this work, we study critical points of the generalized Ginzburg-Landau equations
in dimensions n ≥ 3 which satisfy a suitable energy bound, but are not necessarily energy-
minimizers. When the parameter in the equations tend to zero, such solutions are shown to
converge to singular n-harmonic maps into spheres, and the convergence is strong away from a
finite set consisting 1) of the infinite energy singularities of the limiting map, and 2) of points
where bubbling off of finite energy n-harmonic maps could take place. The latter case is specific
to dimensions greater than 2. We also exhibit a criticality condition satisfied by the limiting
n-harmonic maps which constrains the location of the infinite energy singularities. Finally we
construct an example of non-minimizing solutions to the generalized Ginzburg-Landau equations
satisfying our assumptions.

1. Introduction

Let Ω ⊂ Rn be a bounded smooth domain. Given g : ∂Ω → Sn−1 a smooth prescribed map
with the degree d = deg(g, ∂Ω,Sn−1), we consider the functional

(1.1) Eε(u,Ω) =

∫
Ω

[
|∇u|n

n
+

1

4εn
(
1− |u|2

)2]
dx

for u ∈W 1,n
g (Ω,Rn) =

{
w ∈W 1,n (Ω,Rn) : w|∂Ω = g

}
.

In the case of n = 2, the minimizers and critical points of this functional were studied by
F.Bethuel, H.Brezis and F.Hélein [3] and many authors after them. In this case the critical
points satisfy the so called Ginzburg-Landau system

(1.2)

{
−∆uε = 1

ε2

(
1− |uε|2

)
uε in Ω

uε = g on ∂Ω .

A theorem from [3] is

Theorem (BBH1). Assume that Ω is star-shaped, and that d 6= 0, then there exists a sub-
sequence of εk → 0, exactly |d| distinct points a1, a2, · · · , a|d|, and a harmonic map u∗ ∈
C∞(Ω \

{
a1, a2, · · · , a|d|

}
) with boundary value g such that

uεn → u∗ in Ck
loc(Ω \ ∪i {ai}) for ∀k and in C1,α

loc (Ω̄ \ ∪i {ai}) for ∀α < 1.

In addition, each singularity has degree sign(d).

The infinite energy singularities a1, a2, · · · , a|d| of the S1-valued harmonic map u∗ are not
arbitrarily located. Given any configuration b = (b1, b2, · · · , b|d|) of distinct points in Ω, its
renormalized energy is defined in [3] as

W (b, d, g) := −π
∑
i 6=j

ln |bi − bj |+
1

2

∫
∂Ω

Φ(g × gτ )− π
|d|∑
i=1

R(bi)

1
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where Φ is the solution of the linear Neumann problem

(1.3)


∆Φ = 2π

|d|∑
i=1

δbi in Ω,

∂Φ

∂ν
= g × gτ on ∂Ω

where ν is the unit outward normal to ∂Ω, τ is a unit tangent vector to ∂Ω and

R(x) = Φ(x)−
|d|∑
i=1

ln |x− bi| .

Then the following holds.

Theorem (BBH2). With the assumptions and notations of Theorem (BBH1), the following
holds.

(1) The configuration {a1, a2, · · · , a|d|} minimizes b→W (b, d, g).
(2) (Vanishing gradient property)

Near each singularity aj,

(1.4) u∗(z) =
z − aj
|z − aj |

eiHj(z),

where Hj is a real harmonic function such that

(1.5) Hj(z) = Hj(aj) +O(|z − aj |2), as z → aj .

In other words,

(1.6) ∇Hj(aj) = 0.

In the case n ≥ 3, the minimizers of Eε(u,Ω), and more generally critical points, satisfy

(1.7)

{
−div

(
|∇uε|n−2∇uε

)
= 1

εn

(
1− |uε|2

)
uε in Ω

uε = g on ∂Ω .

Several authors have studied the sequences of minimizers of Eε in the case n ≥ 3, namely
P.Strzelecki [30], M-C.Hong [18] and Z-C.Han and Y-Y.Li [11]. Let us recall the main results in
[11]. For convenience, we define a constant

(1.8) κn =
1

n
(n− 1)

n
2 ωn

where ωn = |Sn−1|.

Theorem (HL). Assume d 6= 0, n ≥ 3. For any sequence εk → 0, let {uk} ⊂ W 1,n
g (Ω,Rn)

be the corresponding sequence of minimizer for Eεk . Then there exists a subsequence {uk′}, a
collection of |d| distinct points {a1, a2, · · · , a|d|} ⊂ Ω, and an n-harmonic map u∗ : Ω\∪i {ai} →
Sn−1 such that

uk′ → u∗ strongly in W1,n
loc (Ω̄ \ ∪i {ai} ;Rn),(1.9)

uk′ → u∗ in C0
loc(Ω̄ \ ∪i {ai} ;Rn),(1.10)

uk′ → u∗ strongly in W1,p(Ω;Rn) for all 1 ≤ p < n.(1.11)

Furthermore, deg(u∗, ∂Bσ, Sn−1) = sign(d) for all 1 ≤ j ≤ |d| and σ > 0 small enough.
When d = 0, uk′ converges to u∗ strongly in W1,n ∩C0.
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From now on, we assume without loss of generality that the degree d > 0 is positive and the
dimension n ≥ 3.

Our first result is an analogue of Theorem(BBH2), i.e. the proof that the singularities of u∗
minimize a renormalized energy as well. This renormalized energy was actually introduced by
R.Hardt, F-H.Lin and C-Y.Wang [16] as follows.

Given d distinct points in Ω denoted a = {a1, a2, · · · , ad}, and for δ > 0, let

Ωa,δ = Ω \ ∪di=1Bδ(ai).

Then define for any δ small enough

Wa,δ =
{
w ∈W 1,n(Ωa,δ;Sn−1) : w|∂Ω = g,deg(w, ∂Bδ(ai)) = 1 for all i

}
.

The renormalized energy of a = {a1, a2, · · · , ad} is defined to be

(1.12) Wg(a) := lim
δ→0

(
min

w∈Wa,δ

En(w,Ωa,δ)− dκn| ln δ|
)
,

where

En(w,Ωa,δ) =

∫
Ωa,δ

|∇w|n

n
dx.

In particular, it is proved in [16] that the limit defining Wg exists, and is even increasing as
δ → 0.

We have the following result.

Theorem 1.1. Let a = {ai}di=1 be the limiting singular points of Theorem (HL), then

Eε(uε,Ω) = dκn| ln ε|+Wg(a) + dγ + o(1) as ε→ 0,

where γ is a constant defined in Section 2.1 below by (2.4). Moreover, the configuration {ai}di=1
minimizes Wg.

The results above deal only with sequences of energy-minimizers. The ones below deal with
limits of solutions to the system (1.7).

Theorem 1.2. Assume that for each ε > 0 the map uε, is a critical point of Eε and that for
some M > 0 independent of ε it holds that

(1.13) Eε(uε,Ω) ≤ dκn |ln ε|+M.

Then there exists a subsequence {ε} tending to zero, a collection of d distinct points {a1, a2, · · · , ad}
⊂ Ω, a finite subset S1 of Ω̄, and a stationary n-harmonic map u0 : Ω0 := Ω\{a1, a2, · · · , ad} →
Sn−1, such that

uε → u0 strongly in W1,n
loc (Ω0 \ S1,Rn)

and for any 1 ≤ p < n
uε ⇀ u0 weakly in W1,p(Ω,Rn).

Furthermore, deg(u0, ∂Bσ(aj),Sn−1) = 1, for 1 ≤ j ≤ d and any small enough σ > 0.

It was proved by R. Jerrard in [19] that the upper bound condition (1.13) is sufficient to
guarantee the local weak convergence in Ω0 of a subsequence. Here we improve this to strong
convergence for solutions of the system (1.7). However, contrary to the case n = 2 we need to
remove a finite set S corresponding to the bubbling-off of nontrivial finite energy n-harmonic
maps from Rn to Sn−1 which do not exist when n = 2.

In the case n = 3 an example of such a map is the Hopf fibration, and recently T.Rivïı¿1
2re in

[24] showed that there exists in fact many of them. This multiplicity arises in particular from
a richer topology, due to the non-trivial fundamental group π3(S2), for which the Hopf map is
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a generator. This hints at the fact that the moduli space of critical points of the generalized
Ginzburg-Landau equations for small parameter ε could be quite rich too. For n > 3 the same
situation is expected because of homotopy groups of the spheres, for example, π7(S4), π15(S8),
or other topological invariants.

Theorem 1.2 contains a criticality condition satisfied by the points {a1, a2, · · · , ad} hidden in
the word “stationary n-harmonic map” that we now define.

Definition 1.3. Let u : Ω0 → Sn−1 be an n-harmonic map, where Ω0 = Ω \ {a1, a2, · · · , ad}.
We say u is a stationary n-harmonic map if its stress-energy tensor

Ti,j := |∇u|n−2 〈∂iu, ∂ju〉 −
1

n
|∇u|n δi,j

satisfies ∑
i

∂iTi,j = 0

in Ω0, and if for any 1 ≤ k ≤ d and ρ > 0 such that ∂Bρ(ak) ⊂ Ω0 it holds that

(1.14)

∫
∂Bρ(ak)

∑
i

Ti,jνi = 0,

where ν = (ν1, · · · , νn) is the outward-pointing normal to ∂Bρ(ak).
When both conditions are satisfied we say that Tij is divergence free in Ω0.

The following proposition links the property of being a stationary n-harmonic map with the
vanishing gradient property (1.6). Unfortunately it is not clear yet whether its assumptions are
satisfied for the stationary n-harmonic maps arising as limits of critical points of the Ginzburg-
Landau functional in dimension n.

Proposition 1.4. Assume u : Ω0 ⊂ Rn → Sn−1 is a stationary n−harmonic map in the above
sense, where Ω0 = Ω\({a1, · · · , ad}, and that deg(u, ak) = 1 . Assume that around each singular
point ak, one has the asymptotic expansion

u(x) = eBk(x) x− ak
|x− ak|

where Bk(x) ∈ so(n) is an antisymmetric matrix satisfying Bk(ak) = 0 and such that x→ Bk(x)
is C1 in a neighborhood of ak. Then

(1.15)
n∑
i=1

∂iBk(ak)ei = 0,

where (e1, · · · , en) is the canonical basis in Rn. Equivalently, we have the expansion

(1.16) u(x) =
x− ak
|x− ak|

+
Qk(x− ak)
|x− ak|

+O(|x− ak|2),

where Qk(x) is a harmonic polynomial of degree 2. In particular, when n = 2, we have Bk(x) =

O(|x− ak|2).

Finally we will construct an example of a sequence of non-minimizing critical points satisfying
the hypothesis of Theorem 1.2.

Theorem 1.5. Let n = 3. There exists a domain Ω ⊂ R3, a boundary map g : ∂Ω→ Sn−1, and
for every small enough ε > 0 a non minimizing critical point uε of the functional Eε(u,Ω) such
that the energy bound (1.13) holds.
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The paper is organized as follows. In Section 2, we prove Theorem 1.1. In Section 3 we prove
the Pohozaev inequality. Section 4 is devoted to the proof of Theorem 1.2 and of Proposition
1.4. Theorem 1.5 is proved in the last section.

2. Renormalized Energy

In this section, we study the renormalized energy for minimizers of n-dimensional Ginzburg-
Landau type functional. We show that it coincides with the renormalized energy for n-harmonic
maps. The proof of Theorem 1.1 mimics the strategy in [3]. It can be divided into the following
two lemmas.

Lemma 2.1. Let ā = {ā1, ā2, · · · , ād} be any configuration of d distinct points in Ω. Then there
exists ε0 > 0 such that for any ε ∈ (0, ε0), we have

Eε(uε,Ω) ≤ dκn| ln ε|+Wg(ā) + dγ + o(1).

where γ is the constant defined in (2.4).

Lemma 2.2. With the notations of Theorem (HL), assume {ε} converges to zero and that uε
converges to the Sn−1-valued n-harmonic map u∗ strongly in W1,n

loc (Ω̄ \ ∪i {ai} ;Rn). Then

Eε(uε,Ω) ≥ dκn| ln ε|+Wg(a) + dγ − o(1),

where a = {a1, a2, · · · , ad}.

2.1. Estimates when Ω = BR and g(x) = g0 = x
|x| . We begin by introducing quantities wich

are the counterparts to those introduced in[3] for the case n = 2. Let

(2.1) I(ε,R) = min
u(x) = x/|x| on ∂BR

Eε(u,BR).

A scaling argument shows that

I(ε,R) = I(1, R/ε) = I(ε/R, 1).

Lemma 2.3. Let I(t) = I(t, 1). Then the function t → I(t) + κn ln(t) is increasing on (0, 1),
where κn is defined by in (1.8), and has a limit as t↘ 0.

Proof. Assume 0 < t1 < t2 < 1 and let ut be the minimizer of I(1, 1
t ). Let

(2.2) v(x) =

{
ut2 if |x| < 1

t2
,

x
|x| if 1

t2
≤ |x| ≤ 1

t1
.

Then by the definition of I(t), we have

(2.3)

I(t1) = I(1, t−1
1 ) ≤ E1(v,B1/t1)

= I(t2) +

∫
B
t−1
1
\B

t−1
2

1

n

∣∣∣∣∇( x

|x|

)∣∣∣∣n dx = I(t2) +

∫ t−1
1

t−1
2

(n− 1)
n
2

n · r
· ωn d r

= I(t2) +
(n− 1)

n
2

n
ωn · ln

t2
t1

In view of (1.8), this proves that t→ I(t) + κn ln(t) is increasing on (0, 1).
Then, by using Theorem 1.1 of [19], there exists a constant C > 0 such that if u ∈W 1,n (B1,Rn)

and u(x) = x/|x| on the boundary, then

Eε(u,B1) ≥ κn |ln(ε)| − C.
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This implies that I(t) + κn ln(t) is bounded below on (0, 1) and then, using the monotonicity,
that the limit exists as t↘ 0. �

We may now define the constant γ:

(2.4) γ := lim
t→0
{I(t) + κn ln(t)}.

Note that — due to the invariance of Eε under isometries of the target — if we replace x/|x|
in the definition of I(t) by Rx/|x|, where R ∈ O(n), the function I and thus the constant γ are
unchanged.

2.2. Proof of Lemma 2.1. We construct a comparison map which is in W 1,n
g (Ω,Rn) to obtain

the upper bound.
Let ā = {ā1, ā2, · · · , ād} be any configuration of d distinct points in Ω. For any 1

2 > δ > 0
such that the balls B(āi, 4δ) are disjoint and included in Ω, let wā,δ denote a minimizer for En,
that is, En(wā,δ,Ωā,δ) = minw∈Wa,δ

En(w,Ωa,δ). Then, from Lemma 9.1 in [16], for any µ > 0
there exists δ0 > 0 such that for any δ < δ0 there exists rotations {Ri}1≤i≤d such that for any
1 ≤ i ≤ d

(2.5) ‖wā,δ(āi + 4δ·)−Ri‖C1(B1\B1/2) < µ/3d.

Now, from (1.12), for any µ > 0 and any δ > 0 small enough depending on µ, we have

(2.6) Eā,δ(wā,δ) ≤Wg(ā) + dκn |ln δ|+ µ/3.

We choose such a δ so that (2.5) holds, and we define the comparison map u ∈W 1,n
g (Ω,Rn) by

letting

(2.7) u(x) =

 wā,δ if x ∈ Ωā,4δ,
vi(x) if x ∈ B4δ(āi) \B2δ(āi) 1 ≤ i ≤ d
Riu2δ(x− ai) if x ∈ B2δ(āi) 1 ≤ i ≤ d,

where u2δ is the minimizer for I(ε, 2δ) (see (2.1)) and for 1 ≤ i ≤ d, vi(x) is the interpolation
map

vi =
v∗i
|v∗i |

, v∗i (ai + y) =

(
2− |y|

2δ

)
Ri

y

|y|
+

(
|y|
2δ
− 1

)
wā,δ(ai + y).

From (2.5) it is not difficult to show that for 1 ≤ i ≤ d

(2.8)

∫
B4δ(āi)\B2δ(āi)

|∇vi|n

n
dx ≤ κn ln 2 + Cµ/d,

where C > 0 is some positive constant independent of µ.
To compare the energy of u with that of wā,δ on B4δ(ai) \ Bδ(ai) we need an energy lower

bound for the latter, provided by the following well known Lemma (see [16] or [19] or [11])

Lemma 2.4 (Annulus estimate). If 0 < r < s <∞, v ∈W 1,n(Bs\Br, Sn−1), and deg(v, ∂Bρ) =
D 6= 0 for almost all ρ ∈ (r, s), then

(2.9)

∫
Bs\Br

1

n
|∇u|n dx ≥ |D|

n
n−1κn ln

s

r
.

From (2.9) we obtain

Eε (wā,δ, B4δ(ai) \Bδ(ai)) ≥ κn ln 4.
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Together with (2.6) this yields

(2.10)
Eε(u,Ωā,4δ) =

∫
Ωā,δ

1

n
|∇wā,δ|n dx−

∫
∪i(B4δ(āi)\Bδ(āi))

1

n
|∇wā,δ|n dx

≤Wg(ā)− dκn log 4 + µ/3 + dκn| log δ|.

In the balls B2δ(āi), there exists a constant ε0 > 0 such that for any ε < ε0

(2.11) Eε(u2δ, B2δ) = I(ε, 2δ) = I(ε/(2δ), 1) ≤ γ + κn |ln(ε/(2δ))|+ µ/3d.

Combining (2.8),(2.10) and (2.11) we have the desired upper bound

(2.12)

Eε(uε,Ω) ≤ Eε(u,Ω)

= Eε(u,Ωā,4δ) +

d∑
i=1

∫
B4δ(āi)\B2δ(āi)

1

n
|∇vi|n dx+

d∑
i=1

Eε(u2δ, B2δ)

≤Wg(ā) + dκn |ln ε|+ dγ + µ(C + 2/3).

Since this bound is true for any µ > 0, this concludes the proof of Lemma 2.1.

2.3. Proof of Lemma 2.2. Let a = {a1, a2, · · · , ad} be the singularities of u∗, which are distinct
and belong to Ω. From the convergence uε → u∗, we have a lower bound for Eε(uε) away from
the singularities. Then we need to prove that for ρ > 0 small enough, and for any 1 ≤ i ≤ d, as
ε→ 0,

(2.13) Eε(uε, Bρ(ai)) ≥ I(ε, ρ) + o(1).

In order to prove (2.13), we need the following equivalent of (2.5) for u∗.

Lemma 2.5. The limiting map u∗ is in C1,α(Ω\{a1, a2, · · · , ad}). The restriction of u∗ on any
small sphere around ai has degree equal to 1.
Moreover, letting ui,r(x) := u∗(ai+rx), we have the following result: For any i = 1, · · · , d, there
exists a decreasing sequence σk → 0, and rotations Ri,k such that

(2.14) lim
k
‖ui,σk(·)−Ri,k‖W 1,n(Sn−1,Rn) = 0.

Proof. Since u∗ is an n-harmonic map into the sphere which is locally minimizing in Ω \
{a1, a2, · · · , ad}, the regularity theory of [13] insures that it is in C1,α in this set.

To prove the remaining statements, we begin by proving a basic fact. Let {fk} be a sequence
of maps in ⊂W 1,n(Sn−1, Sn−1) with degree greater than or equal to 1. Then

lim
k

∫
Sn−1

|∇tanfk|n dHn−1 = nκn

if and only if there exists a sequence of rotations Rk such

lim
k
‖fk −Rk‖W 1,n(Sn−1,Rn) = 0.

Here ∇tanf is the gradient of f on the sphere.
The reverse implication is clear. For the direct implication note that there is a compact

embedding of W 1,n(Sn−1, Rn) into C0(Sn−1, Rn). Thus the degree is conserved under the weak
convergence in W 1,n. Then any weak limit of fk has degree at least one and n-energy no greater
than nκn, thus its energy is exactly nκn, its degree is one, and it is a rotation. Moreover the
convergence is strong since we have weak convergence and convergence of the energies, using
Brezis-Lieb’s Lemma, which proves the statement.
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We now argue by contradiction. Assume the lemma were false, then there would exist an
index i, and positive numbers η, σ̄ such that, for any ρ < σ̄,

ρ

∫
∂Bρ(ai)

|∇tanu∗|n dHn−1 ≥ n(κn + η).

This would imply that for any σ < σ̄

(2.15)

∫
Bσ̄(ai)

\Bσ(ai)

1

n
|∇u∗|n dx ≥ (κn + η) ln

σ̄

σ
.

But, from Theorem 1.2 of [19] or Proposition 3.8 in [11]), we have

(2.16) Eε(uε, Bσ(ai)) ≥ κn ln
σ

ε
− C(n,Ω, g)

where C(n,Ω, g) is a constant independent of ε.
Then for ε small enough, say ε < ε1, (2.15) and (2.16 ) would imply

(2.17) Eε(uε,∪Bσ̄(ai)) ≥ dκn ln
σ̄

ε
+ η ln

σ̄

σ
− C(n,Ω, g),

since

lim inf
ε→0

∫
∪(Bσ̄(ai)\Bσ(ai))

|∇uε|n ≥
∫
∪(Bσ̄(ai)\Bσ(ai))

|∇u∗|n.

This contradicts the upper bound (2.12) if σ̄/σ is chosen large enough. This completes the proof
of the lemma. �

Remark 2.6. We could actually prove a stronger result modeled after (2.5) by the method of
[16]: Given i, for any µ > 0, there exists a positive δ0 such that if δ < δ0, then

‖ui,δ −Ri,δ‖C1(B1\B1/2) < µ

for some rotation Ri,δ.

We now complete the proof of Lemma 2.2. For any µ > 0, from the definition of Wg, there
exists δ0 > 0 such that for any δ < δ0, we have

(2.18) Ea,δ(wa,δ,Ωa,δ) ≥Wg(a) + dκn |ln δ| − µ/6.

Then, from Lemma 2.5, for any i there exists a sequence (σk) converging to 0 and a sequence of
rotations Ri,k such that

(2.19) ‖ui,σk(·)−Ri,k‖W 1,n(Sn−1,Rn) < µ,

where ui,σk = u∗(ai + σkx). We may choose for each i some k such that σk < δ0/2. Let us fix
some i and let ρ = σk and R = Ri,k. We define ũε on B2ρ(ai) as follows.

On Bρ(ai), we let ũε = uε, while on B2ρ(ai)\Bρ(ai) we interpolate between uε and the rotation

R by letting, for any σ ∈ Sn−1 and any r ∈ [ρ, 2ρ]

|ũε|(ai + rσ) =
r − ρ
ρ

+
2ρ− r
ρ
|uε(ai + ρσ)|,

ũε
|ũε|

(ai + rσ) =
v

|v|
(rσ),

where

v(rσ) =
r − ρ
ρ

Rσ +
2ρ− r
ρ

uε(ai + ρσ).
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It is not difficult to check, using on the one hand (2.19) and on the other hand the uniform
convergence of |uε| to 1 on B2ρ(ai) \Bρ(ai), that

ũε
|ũε|
−R

(
· − ai
| · −ai|

)
→ 0

in W 1,n(B2ρ \Bρ). Also, again using the uniform convergence of |uε|, we find that pointwise

|∇|uε|| − |∇|ũε|| ≥ −cε,
where cε → 0 as ε→ 0.

Finally we note that |ũε| is closer to 1 pointwise than |uε|, which together with the two
previous bounds and the fact that ũε = uε on Bρ yields

(2.20) lim sup
ε→0

(
Eε(ũε, B2ρ(ai))−Eε(uε, B2ρ(ai))

)
≤ 0.

On the other hand, since ũε is a rotation on ∂B2ρ(ai), we have

(2.21) Eε

(
ũε, B2ρi(ai)

)
≥ I(ε, 2ρi).

Then, from the strong convergence of uε to u∗ on Ω2ρ := Ω \ ∪iB2ρi(ai) we have

(2.22) lim inf
ε→0

Eε(uε,Ω2ρ) ≥
1

n

∫
Ω2ρ

|∇u∗|n .

To estimate the right-hand side we may use Lemma 2.5 again to construct for any small enough
η > 0 a comparison map v : Ω \ ∪iBη(ai)→ Sn−1 such that v is a rotation on ∂Bη(ai) for each
i, such that v = u∗ on Ω2ρ and such that on each annulus B2ρi(ai) \Bη(ai) the n-energy of v is
µ/d-close to κn log(2ρi/η).

Then the n-energy of v on Ωη is bounded below by the n-energy of wa,η, which itself is
µ/d-close to Wg(a) + dκn| log η| if η is small enough. It follows that

(2.23)
1

n

∫
Ω2ρ

|∇u∗|n ≥Wg(a) + κn
∑
i

log
1

2ρi
− 2µ.

Putting Together (2.20), (2.21), (2.22) and (2.23) we deduce that

Eε(uε,Ω) ≥Wg(a) +
∑
i

(
κn log

1

2ρi
+ I(ε, 2ρi)

)
− Cµ− o(1).

In view of (2.4), this completes the proof of Lemma 2.2.

2.4. Proof of Theorem 1.1. Applying Lemma 2.1, we obtain

lim sup
ε→0

Eε(uε,Ω) ≤ dκn| ln ε|+Wg(ā) + dγ

which implies

(2.24) lim sup
ε→0

Eε(uε,Ω) ≤ dκn| ln ε|+ minWg(ā) + dγ

Let {ε} be sequence tending to 0 such that uε converges to the Sn−1-valued n-harmonic map u∗
in Ω \ {a1, . . . , ad}. Then by Lemma 2.2, we get

lim inf
ε→0

Eε(uε,Ω) ≥ dκn| ln ε|+Wg(a) + dγ

which implies

(2.25) lim inf
ε→0

Eε(uε,Ω) ≥ dκn| ln ε|+ minWg(ā) + dγ

Gathering (2.24) and (2.25), Theorem 1.1 is proved.



10 YUXIN GE, ETIENNE SANDIER, AND PENG ZHANG

3. Divergence Free Stress-Energy Tensor and Pohozaev Inequality

In this section we introduce the stress-energy tensor for critical points of Eε and derive the
corresponding Pohozaev identity.

3.1. Stress-Energy Tensor. The derivation of the fact that the stress-energy tensor of a so-
lution of (1.7) is divergence free is not trivial because of the a priori insufficient regularity of
solutions. We prove it through a regularization procedure. Note that from [11], a solution of
(1.7) which is in W 1,n is in C1,α for some α ∈ (0, 1).

We start with the following well-known fact.

Lemma 3.1. Let uε ∈ W 1,n
g (Ω,Rn) be a solution of equations (1.7), where g : ∂Ω → Sn−1.

Then we have |uε| ≤ 1 in Ω.

Proof. Assuming uε is a solution of (1.7), we have

(3.1)

1

2
div
(
|∇uε|n−2∇ |uε|2

)
=
〈

div
(
|∇uε|n−2∇uε

)
, uε

〉
+ |∇uε|n

=

〈
1

εn
(
|uε|2 − 1

)
uε, uε

〉
+ |∇uε|n

=
1

εn
(
|uε|2 − 1

)
|uε|2 + |∇uε|n .

Multiplying by (|uε|2− 1)+ and integrating by parts we find, using the fact that |uε| = 1 on the
boundary, that

(3.2) −1

2

∫
Ω+

|∇uε|n−2
∣∣∣∇ |uε|2∣∣∣2 =

∫
Ω+

1

εn
(
|uε|2 − 1

)2 |uε|2 + |∇uε|n (|uε|2 − 1),

where Ω+ = {|uε| > 1}.
It follows that the right-hand side is equal to zero, and therefore that Ω+ = ∅. �

The stress-energy tensor for equation (1.7) is defined, for any u ∈W 1,n by

(3.3) Ti,j(u) = |∇u|n−2 〈∂iu, ∂ju〉 −
(

1

n
|∇u|n +

1

4εn
(1− |u|2)2

)
δi,j .

We have

Lemma 3.2. For any solution uε of (1.7) and any j = 1, · · · , n

(3.4)
n∑
i=1

∂iTi,j(uε) = 0.

In particular, for any C1 vector field Y = (Y1, · · · , Yn) ∈ C1(Ω̄,Rn), there holds

(3.5)
∑
i,j

∫
∂Ω
Ti,jYjνi =

∑
i,j

∫
Ω
Ti,j∂iYj .

Proof. We consider, given a ball B ⊂ Ω and δ ≥ 0 the following functional

Fδ(w) :=
1

n

∫
B

(|∇w|2 + δ2)n/2 dx−
∫
B
f(uε)w dx, where f(uε) =

uε
εn

(1− |uε|2),

defined on the space

W =
{
w ∈W 1,n(B,Rn) | w = uε on ∂B

}
.
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Note that for any fixed ε we have f(uε) ∈ W 1,n ∩ L∞. This functional is coercive and strictly
convex, thus it has a unique minimizer wδ. Then, for any smooth compactly supported vector
field X : B → Rn we may define a family of smooth diffeomorphisms of B by letting ϕt(x) =
x+ tX(x), and the minimality of wδ implies, if the derivative exists, that

d

dt |t=0
Fδ(wδ ◦ ϕt) = 0.

A standard computation shows that indeed the derivative exists — this is where the regulariza-
tion by δ is important — and that its vanishing is equivalent to

(3.6)

∫
B
T δi,j(wδ)∂iX

j = −
∫
B

(X · ∇f(uε)) · wδ,

where

T δi,j(wδ) = (|∇wδ|2 + δ2)
n−2

2 ∂iwδ∂jwδ − δijfδ(wδ)
and

fδ(w) :=
1

n
(|∇w|2 + δ2)n/2 − f(uε) · w.

Now we wish to pass to the limit as δ → 0 in (3.6). Let us assume for a moment that the
following holds

(3.7) wδ → uε strongly in W 1,n as δ → 0.

Then passing to the limit in (3.6) yields

(3.8)

∫
B
Ti,j(uε)∂iX

j = −
∫
B

(
X · ∇(1− |uε|2)uε

εn

)
· uε,

where

Ti,j(uε) = |∇uε|n−2 ∂iuε∂juε −
(

1

n
|∇uε|n −

1

εn
(1− |uε|2)|uε|2

)
δij .

Then we note that

− ∂j
(

1

εn
(1− |uε|2)|uε|2

)
+ ∂j

(
1

εn
(1− |uε|2)uε

)
· uε =

= − 1

εn
(1− |uε|2)uε · ∂juε =

1

4εn
∂j(1− |uε|2)2.

Inserting in (3.8) then proves (3.4) and the lemma.
It remains to prove (3.7). First we note that {wδ}δ>0 is a bounded family in W 1,n. Indeed

any fixed test-function in W 1,n provides an upper bound for Fδ(wδ) independent of δ, using the
embedding of W 1,n in L1 and the fact that f(uε) ∈ L∞. Using again the pointwise bound of
f(uε) and Poincar̈ı¿1

2 ’s inequality this upper bound implies easily that {wδ}δ>0 is a bounded

family in W 1,n. We consider a weakly converging subsequence, which is strongly convergent in
any Lp, and denote by w0 its weak limit.

Then w0 = uε, because w0 is a minimizer of F0, but F0 is convex and therefore has a unique
minimizer, which must be uε because it satisfies the corresponding Euler-Lagrange equation.
Now we clearly have by lower semicontinuity

(3.9)

∫
B
|∇uε|n ≤ lim inf

δ→0

∫
B
|∇wδ|n .
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On the other hand, from the minimality of wδ we have Fδ(wδ) ≤ Fδ(uε). Passing to the limit
we find

(3.10) lim sup
δ→0

∫
B
|∇wδ|n ≤

∫
B
|∇uε|n ,

where we have used the strong convergence in Lp to pass to the limit in f(uε)wδ. Comparing
(3.9) and (3.10) we deduce the strong convergence of wδ to uε. �

From Lemma 3.2 we derive the following Pohozaev Inequality.

Proposition 3.3. Let D ⊂ Rn be a bounded strictly star-shaped domain with respect to x0 ∈ D,
and α > 0 be such that (x− x0) · ν ≥ α diam(D) for all x ∈ ∂D.

Then there exists a constant C depending only on n, α such that, for any solution uε of (1.7),

(3.11)

∫
D

1

4εn
(
1− |uε|2

)2
+ α diam(D)

∫
∂D
|∇uε|n−2 |∂νuε|2

≤ C(n, α) diam(D)

∫
∂D

1

n
|∇uε|n−2 |∇τuε|2 +

1

4εn
(
1− |uε|2

)2
,

where |∇τuε|2 = |∇uε|2 − |∂νuε|2 and C(n, α) = 2 + n2(n−1)
2(n−2)α .

Proof. Let Y (x) = x− x0, then ∂i(Yj) = δij . From (3.5) we obtain by choosing as our basis an
orthonormal frame ν, τ1, . . . , τn−1, where ν is the outward pointing normal to D and τ1, . . . , τn−1

is an orthonormal basis of tangent vectors to ∂D,

(3.12)

∫
∂D
〈Y, ν〉

(
|∇uε|n−2 |∂νuε|2 −

1

n
|∇uε|n −

1

4εn
(
1− |uε|2

)2)
+

+
n−1∑
k=1

∫
∂D
〈Y, τk〉 |∇uε|n−2 〈∂νuε, ∂τkuε〉 = − n

4εn

∫
D

(
1− |uε|2

)2
.

For each k = 1, . . . , n− 1 we have

|〈∂νuε, ∂τkuε〉| ≤
1

2

(
α(n− 2)

n(n− 1)
|∂νuε|2 +

n(n− 1)

(n− 2)α
|∇τuε|2

)
.

Together with (3.12) this implies, using the bounds

〈Y, τk〉 ≤ diam(D), α diam(D) ≤ 〈Y, ν〉 ≤ diam(D),

that∫
D

n

4εn
(
1− |uε|2

)2
+ α diam(D)

∫
∂D

(
n− 1

n
− n− 2

2n

)
|∇uε|n−2 |∂νuε|2 ≤

≤ diam(D)

∫
∂D

1

n
|∇uε|n−2 |∇τuε|2 +

1

4εn
(
1− |uε|2

)2
+

1

2

n(n− 1)

(n− 2)α
|∇uε|n−2 |∇τuε|2 ,

where we have used |∇τuε|2 =
∑

k |∂τkuε|
2. We deduce

n

2εn

∫
D

(
1− |uε|2

)2
+ α diam(D)

∫
∂D
|∇uε|n−2 |∂νuε|2 ≤

diam(D)

∫
∂D

1

2

(
1

n
+

n(n− 1)

2α(n− 2)

)
|∇uε|n−2 |∇τuε|2 +

1

2εn
(
1− |uε|2

)2
,
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which proves (3.11) with a suitable constant C(n, α). �

4. Proof of Theorem 1.2 and of Proposition 1.4

In this section, we analyze the behavior of critical points uε to the equations (1.7) which satisfy
the energy upper bound (1.13). For this we combine the ball construction of R.Jerrard (see [19])
with the use of the Pohozaev identity above. We recall the main result of [19], expressed in a
form suitable for us. Below we use the notation r(B) for the radius of a ball and deg(B, uε) or
simply deg(B) for the degree of the map uε/|uε| : ∂B → Sn−1.

Proposition 4.1. Assume that uε ∈W 1,n
g (Ω,Rn) is such that for some β ∈ (0, 1)

(4.1) [uε]Cβ(Ω̄) ≤ Cε−β,

and let

(4.2) Sε :=

{
x ∈ Ω : |uε| <

1

2

}
.

Then, there exists a constant C ′ depending only on C and the dimension n such that for
any t ≥ C ′ε |log ε| there exists a finite collection of disjoint balls {Bt

i}i∈It such that ∪i∈ItBt
i is

increasing with respect to t and such that for any i ∈ It

Bt
i ∩ Sε 6= ∅, Eε(uε, B

t
i) ≥ r(Bt

i)
Λε(t)

t
, r(Bt

i) ≥ |di|t,

where di = deg(Bt
i , uε) if Bt

i ⊂ Ω and di = 0 otherwise, and where Λε is a function defined on
R+ such that

Λε(t)

t
is decreasing on R+ and ∀t ≥ ε, Λε(t) ≥ κn log

t

ε
− C ′.

Note that in this proposition, the map uε is not assumed to solve (1.7) or to satisfy an energy
bound. The above statement differs from the equivalent in [19] in that the latter does not require
(4.1) but then requires to distinguish among essential and non-essential connected components
of Sε. We do not give details but it is well-known in the case n = 2 (see for instance [27]) that
this distinction can be removed by assuming (4.1), and the case of general n is identical.

4.1. Weak convergence. We now begin to prove Theorem 1.2. It is well known, this is proved
in [19], that under the hypothesis of the theorem {uε}ε converges weakly in W 1,n

loc (Ω \ S), where
S is a finite set. It is to be noted that the energy bound is sufficient for this to hold (see [19]).
This begins with the following consequence of Proposition 4.1.

Proposition 4.2. There exists constants C, ε0 depending only on Ω, g,M such that the following
holds.

Assume that 0 < ε < ε0, that uε ∈W 1,n
g (Ω,Rn) solves (1.7) and that Eε(uε) ≤ κnd |log ε|+M ,

where d = deg(g). Then for any Cε
1
4 < σ < 1/C there exists a collection of points {xi}i∈I in

Ω, where the cardinal of I is bounded by a number depending only on Ω, g, M , such that

(4.3) Eε (uε,Ω \ ∪i∈IB(xi, σ)) ≤ κnd log
1

σ
+ C.

Proof. First we extend uε to a δ-neighbourhood Ωδ of Ω, with δ > 0 by letting on uε(x) = g(πx)
for any x ∈ Ωδ \ Ω, where π is the nearest point projection to ∂Ω. If δ is small enough, this
extension is well defined and such that

(4.4) Eε (uε,Ωδ \ Ω) ≤ C, |uε| = 1 on Ωδ \ Ω.
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Since uε solves (1.7) the bound (4.1) holds (see [11]) and therefore we may apply Proposi-
tion 4.1 to find that for any t > Cε |log ε|, there exists a finite collection of disjoint balls {Bt

i}i∈It
covering Sε and such that for any i ∈ It

(4.5) Bt
i ∩ Sε 6= ∅, Eε(uε, B

t
i) ≥ r(Bt

i)
Λε(t)

t
, r(Bt

i) ≥ |di|t,

where di = deg(Bt
i , uε) if Bt

i ⊂ Ω and di = 0 otherwise.

If t > Cε
1
4 (which is greater than Cε |log ε| if ε is small enough) we have Λε(t) ≥ 1

C |log ε| if
ε is small enough, therefore the energy bound for uε implies that for every i ∈ It
(4.6) r(Bt

i) ≤ Ct.

In turn, since Bt
i ∩ Ω 6= ∅, this implies that if t < 1/C, then Bt

i ⊂ Ωδ and therefore

(4.7) Eε(uε, B
t
i) ≥

∣∣deg(Bt
i , uε)

∣∣Λε(t) ≥ κn ∣∣deg(Bt
i , uε)

∣∣ (log
t

ε
− C

)
.

We change variables by letting σ = Ct, and denoting {xj}j∈J the centers of the balls for
which deg(Bt

i , uε) 6= 0 we have by comparing (4.7) and the energy upper bound for uε that the
cardinal of J is bounded above independently of ε. Moreover

Eε (uε,∪i∈jB(xj , σ)) ≥ κn

(∑
i

∣∣deg(Bt
i , uε)

∣∣)(log
t

ε
− C

)
.

Since the balls Bt
i are included in Ωδ, the sum of the degrees must be d so that

Eε (uε,∪i∈jB(xj , σ)) ≥ κnd log
σ

ε
− C.

Using (4.4) and the energy bound for uε we deduce (4.3). �

We are ready to prove

Proposition 4.3. Under the assumptions of Theorem 1.2, there exists a subsequence {uε}ε, d
distinct points {a1, a2, · · · , ad} ⊂ Ω, and an Sn−1-valued map u0 : Ω \ {a1, a2, · · · , ad} → Sn−1

such that, as ε→ 0,

(4.8) uε ⇀ u0 weakly in W1,n
loc (Ω \ {a1, a2, · · · , ad},Rn)

and for any 1 ≤ p < n

(4.9) uε ⇀ u0 weakly in W1,p(Ω,Rn).

Moreover, deg(u0, ∂Bσ(aj), Sn−1) = 1, for 1 ≤ j ≤ d and for any small enough σ > 0.

Step 1. Assuming the hypothesis of Theorem 1.2 are satisfied, then using Proposition 4.2 and
extracting subsequences as in [19], Proposition 5.1, there exists a finite subset S = {a1, . . . , a`}
of Ω such that uε converges to u0 weakly in W 1,n

loc (Ω \ {a1, . . . , a`}).
Another consequence of Proposition 4.2 is that for any p < n, {uε}ε is bounded in W 1,p.

Indeed, proceeding as in [29], we decompose Ω as follows. For any integer k we let ωk =

∪i∈IkB(xki , 2
kCε

1
4 ), where the xki are provided by Proposition 4.2 applied with σk = 2kCε

1
4 .

Choosing K such that 2KCε
1
4 ∈ [1/2, 1], we have Ω = ∪kΩk, where k = 0, . . . ,K + 1 and

Ω0 = ω0, ΩK+1 = Ω \ ωK , and Ωk = ωk \ ωk−1 if 1 ≤ k ≤ K.
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Then, from (4.3) and Hölder’s inequality∫
Ω
|∇uε|p dx ≤

K+1∑
k=0

∫
Ωk

|∇uε|p dx

≤
K+1∑
k=0

|Ωk|1−p/n
(∫

Ωk

|∇uε|n dx

)p/n

≤ |Ω0|1−p/nEε(uε) + C
K+1∑
k=1

σ
2(1−p/n)
k |log σk| .

Since σk is a geometric progression the sum is bounded independently of ε. The first term is

bounded as well since |Ω0| ≤ Cε
1
2 . It follows that {uε}ε is bounded in W 1,p.

Step 2. We now prove that the points {a1, . . . , a`} actually belong to Ω, and that the degree of
u0 around each of them is equal to one.

As before we extend uε to a δ-neighbourhood Ω̂δ of Ω by letting on uε(x) = g(πx) for any

x ∈ Ω̂δ \ Ω, where π is the nearest point projection to ∂Ω so that (4.4) holds.
To prove that the degrees are equal to 1 we argue by contradiction. Using the annulus estimate

(2.9), we find that

(4.10)
1

n

∫
Ωσ
|∇u∗|n ≥ κn

∑̀
i=1

|di|
n
n−1 log

η

σ
,

for any 0 < σ < η such that the annuli Bη(ai) \ Bσ(ai) are disjoint and included in Ω̂δ, where

Ωσ is the complement in Ω̂δ of the union ∪iBσ(ai).
From Proposition 4.2, and given a small enough δ > 0 there are points {xi,ε}i such that for

each ε > 0 small enough (4.3) holds. Passing to a subsequence, we may assume these points
converge to some points {x∗j}, and clearly we must have for ε small enough that

(4.11)
1

n

∫
Ω̂δ\∪jB2σ(x∗j )

|∇u∗|n ≤ κnd log
1

σ
+ C.

this implies in particular that for every 1 ≤ i ≤ ` we have ai ∈ ∪jB2σ(x∗j ). But then

Ω3σ ⊂ Ω̂δ \ ∪jB2σ(x∗j ),

and thus, if ∑̀
i=1

|di|
n
n−1 > d,

then (4.10) and (4.11) contradict each by fixing η > 0 small enough and letting σ tend to 0.
The proof that the points lie in the interior is similar, except that it relies on the following

boundary version of Lemma 2.4.

Lemma 4.4 (Boundary annulus estimate). Let a ∈ ∂Ω. Assume there are µ0 ∈ (1
2 , 1), µ1 > 1

and σ1 > 0 such that for any r < σ1, there holds

|∂Ω ∩Br(a)| ≤ µ1ωnr
n−1 and |Ω ∩ ∂Br(a)| ≤ ωnµ0r

n−1.

Given 0 < r < s < σ1, assume u ∈ W 1,n(Bs(a) \ Br(a), Sn−1), and letting g be the restriction
of u to ∂Ω ∩ (Bs(a) \ Br(a)), that g is Lipschitz and deg u|∂(Ω∩Bρ(a)) = j 6= 0 for almost all
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ρ ∈ (r, s). Then

(4.12)

∫
Ω∩(Bs(a)\Br(a))

|∇u|n

n
dx ≥ µ

− 1
n−1

0 |j|
n
n−1κn ln

s

r
− 4|j|µ1‖g‖n−1

Lip

sn − rn

n
.

Proof. Using Lemma 1.4 in [16], we have for any ρ ∈ (r, s)∫
Ω∩∂Bρ(a)

|∇tanu|n dHn−1 ≥ µ
− 1
n−1

0 |j|
n
n−1κnnρ

−1 − 4|j|µ1κnn‖g‖n−1
Lip ρ

n−1

Integrating it over (r, s), we deduce the desired inequality. �

Then we argue by contradiction. Using (4.12), we find as above that

(4.13)
1

n

∫
Ωσ

|∇u∗|n ≥ κnD log
η

σ
− C,

where, denoting by k the number of points belonging to ∂Ω,

D = kµ0
− 1
n−1 + (d− k),

for some µ0 ∈ (1/2, 1) which depends only on Ω, g. The important point is that if indeed some
point is on the boundary, i.e. k 6= 0, then D > d, which we now assume.

But now (4.13) contradicts (4.11) again by letting σ tend to 0, which proves that the points
a1, . . . , ad belong to Ω. �

4.2. Improved convergence, u0 is n-harmonic. We now wish to prove that the limit u0 in
Proposition 4.3 is n-harmonic. This requires some improved convergence estimates, which in
turn require to use the Pohozaev identity in a suitable way. We use the method in [4, 29, 11].
For any x0 ∈ Ω, ρ > 0, we define

f(x0, ρ) = ρ

∫
∂Bρ(x0)

⋂
Ω

|∇uε|n

n
+

1

4εn
(
1− |uε|2

)2
.

Then we have a “Courant-Lebesgue lemma” type result (see Lemma 2.3 in [29] and Lemma 3.5
in [11]).

Lemma 4.5. Assume uε is a solution of (1.7). Then the following holds
(i) If the upper bound (1.13) holds, then for any point x0 ∈ Ω, and 0 < ε ≤ e−1, we have

inf
ε1/2≤ρ≤ε1/4

f(x0, ρ) ≤ 4Eε(uε,Ω ∩Bε1/4(x0))

|ln ε|
≤ C1 := 4dκn + 4M

and

inf
5ε1/4≤ρ≤5ε1/8

f(x0, ρ) ≤ 8Eε(uε,Ω ∩B5ε1/8(x0))

|ln ε|
≤ 2C1.

(ii). There exists γ and ε0 depending on Ω, g, such that for 0 < ε < ε0 and ε1/2 ≤ ρ ≤ 5ε
1/8
0

f(x0, ρ) ≤ γ =⇒ inf
Bρ

⋂
Ω
|uε| ≥ 1/2.

Proof of the lemma. (i). For 0 < ε ≤ e−1, we have

1

4
|ln ε| inf

ε1/2≤ρ≤ε1/4
f(x0, ρ) ≤

∫ ε1/4

ε1/2
f(x0, ρ)

1

ρ
dρ ≤ Eε(uε,Ω ∩Bε1/4(x0)) ≤ Eε(uε,Ω),

proving the first estimate in (i). The second inequality in (i) is similar.
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(ii). From Proposition 3.3 in [11] we know that uε is Hölder continuous, and more precisely
for any β ∈ (0, 1)

[uε]Cβ(Ω̄) ≤ C2ε
−β,

where C2 is a positive constant independent of ε.
Fix β = 1

2 and assume without loss of generality that C2 >
√

5. Since Ω is a smooth bounded
domain, there exists ρ0(Ω) > 0 such that ∀ρ ∈ (0, ρ0(Ω)) and for all x0 ∈ Ω, D = Bρ(x0)

⋂
Ω is

strongly star-shaped w.r.t. some y0 ∈ D and (x− y0) · ν ≥ 1

4
ρ for ∀x ∈ ∂D. We assume ε < ρ.

Now assume by contradiction that y ∈ D is such that |uε(y)| ≤ 1

2
, then

|x− y| ≤ ε

(4C2)
1
β

, =⇒ |uε(x)| ≤ 3

4

and it easily follows that there exists a constant C3 > 0 independent of ε such that

(4.14)

∫
D

1

4εn
(
1− |uε|2

)2 ≥ C3.

Using the Pohozaev inequality (3.11) which holds in D with α = 1
4 , we find

(4.15)∫
D

1

4εn
(
1− |uε|2

)2
+
ρ

4

∫
∂D
|∇uε|n−2 |∂νuε|2 ≤ C

(
f(x0, ρ) + ρ

∫
∂D∩∂Ω

|∇uε|n−2 |∇τg|2

n

)
.

To conclude we need to absorb the integral on the right-hand side with the left-hand side. For
this we note that |∇uε|2 = |∂νuε|2 + |∇τg|2, hence it follows from Young’s inequality that

(4.16) |∇uε|n−2 |∇τg|2 ≤ 2
n−2

2 (|∂νuε|n−2 |∇τg|2 + |∇τg|n) ≤ 1

4C
|∂νuε|n + C ′ |∇τg|n ,

where C ′ is some positive constant depending on n. On the other hand, recall that g is smooth.
Combining (4.15) and (4.16), we infer

(4.17)

∫
D

1

4εn
(
1− |uε|2

)2
+
ρ

4

∫
∂D
|∇uε|n−2 |∂νuε|2

≤ C

[
f(x0, ρ) + ρC ′

∫
Bρ(x0)∩∂Ω

|∇τg|n

n

]
+

ρ

4n

∫
Bρ(x0)∩∂Ω

|∂νuε|n

≤ Cf(x0, ρ) + C4(n,Ω, g, α)ρn +
ρ

4n

∫
∂D
|∂νuε|n

≤ Cf(x0, ρ) + C4(n,Ω, g, α)ρn +
ρ

4

∫
∂D
|∇uε|n−2 |∂νuε|2 .

Now we choose ε0 < min(e−1, (ρ0(Ω)/5)8) satisfying C4(n,Ω, g, α)5nε
n/8
0 < C3

2 and γ such that

Cγ < C3
2 . Then (4.17) contradicts (4.14), which proves (ii). �

From this lemma we deduce improved convergence estimates.

Lemma 4.6. For any K ⊂⊂ Ω̄ \ {a1, · · · , ad}, we have

(a) |uε| −→ 1 uniformly in K, as ε −→ 0,

(b)
1

εn

∫
K

(
1− |uε|2

)2
+

∫
K
| ∇uε |n−2 |∇|uε||2 −→ 0, as ε −→ 0,
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(c)
(1− |uε|2)|uε|2

εn
is bounded in L1(K) independently of ε.

Proof of (a). We argue by contradiction. If the result were false there would exist δ > 0, and for
ε > 0 arbitrarily small there would exist yε ∈ K such that |uε(yε)| ≤ 1 − δ. From Proposition
4.2, we know that if η > 0 is chosen small enough then E(uε, Bη(yε)) is bounded independently
of ε.

On the other hand, using |uε(yε)| ≤ 1− δ and Lemma 4.5, (ii), we have for every ε
1
2 < ρ < ε

1
4

f(yε, ρ) ≥ γδ > 0,

where γδ is independent of ε. Integrating f(yε, ρ)/ρ with respect to ε
1
2 < ρ < ε

1
4 would then

imply that E(uε, Bη(yε)) ≥ 1
4 |log ε| γδ, contradicting the boundedness of E(uε, Bη(yε)). �

Proof of (b). As K is compact, we can cover it with finitely many balls {Br(xi)}i∈I of radius
r such that the concentric balls of radius 2r that we denote B2r(xi) do not touch S. Then
Eε(uε,Ω∩∪iAi) is bounded independently of ε, where Ai is the annulus B2r(xi) \Br(xi). Using
Fubini’s theorem, there must therefore exist for each ε a radius rε ∈ (r, 2r) such that

(4.18)
∑
i

∫
Ω∩∂Brε (xi)

1

n
|∇uε|n +

1

4εn
(1− |uε|2)2 ≤ C.

Now taking the scalar product of (1.7) with uε
1− |uε|2

4|uε|2
— recall that now we know that |uε| → 1

locally uniformly outside the points {ai}1≤i≤d —- and integrating on Di := Ω ∩Brε(xi) we get∫
Di

1

4εn
(1− |uε|2)2 = −

∫
∂Di

|∇uε|n−2 1− |uε|2

4|uε|
∂ν |uε|+

+

∫
Di

|∇uε|n−2∇uε · ∇
(
uε

1− |uε|2

4|uε|2

)
,

and then

(4.19)

∫
Di

1

4εn
(1− |uε|2)2 +

∫
Di

|∇uε|n−2 |∇|uε||2

2|uε|2
=

=

∫
Di

|∇uε|n
1− |uε|2

4|uε|2
−
∫
∂Di

|∇uε|n−2 1− |uε|2

4|uε|
∂ν |uε|.

From (4.18) and using Hölder’s inequality, we have

(4.20)

∫
Ω∩∂Di

|∇uε|n−2 1− |uε|2

4|uε|
∂ν |uε| ≤ Cε,

while the integrand vanishes on ∂Ω ∩ ∂Di since |uε| = 1 there. On the other hand from the
uniform convergence of |uε| to 1 on ∪iDi and the boundedness of uε in W 1,n(∪iDi) we have

lim
ε→0

∫
Di

|∇uε|n
1− |uε|2

4|uε|2
= 0.

Together with (4.20) and (4.19), this implies that

lim
ε→0

(∫
Di

1

4εn
(1− |uε|2)2 +

∫
Di

|∇uε|n−2 |∇|uε||2

2|uε|2

)
= 0,

which finishes the proof since K ⊂ ∪i∈IDi, and I is independent of ε. �
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Proof of (c). The proof is similar to that of (b). Again we cover K with balls {Br(xi)}i∈I such
that B2r(xi) doesn’t touch S. Then {uε}ε is bounded in W 1,n hence also W 1,n−1 on ∪iAi, where
Ai = B2r(xi) \Br(xi), and thus there exists for each ε > 0 a radius rε ∈ (r, 2r) such that

(4.21)
∑
i

∫
Ω∩∂Brε (xi)

1

n
|∇uε|n−1 ≤ C.

Now taking the scalar product of (1.7) with uε and integrating on Di := Ω ∩Brε(xi) we find

(4.22)

∫
Di∩Ω

(1− |uε|2) |uε|2

εn
= −

∫
∂Di

|∇uε|n−2∂νuε · uε +

∫
Di

|∇uε|n .

Because |uε| ≤ 1 in Ω and |uε| = 1 on the boundary we have

|∇uε|n−2∂νuε · uε ≥ 0, on ∂Di ∩ ∂Ω,

and from (4.21) we deduce ∫
Ω∩∂Di

|∇uε|n−2∂νuε · uε ≤ C.

Inserting in (4.22) we find that∫
Di∩Ω

(1− |uε|2) |uε|2

εn
≤ C +

∫
Di

|∇uε|n ,

which finishes the proof since {uε}ε is bounded in W 1,n(∪iDi) and K ⊂ ∪iDi. �

We now recall the following result from [15].

Lemma 4.7 (Theorem [15] ). Assume 1 < p <∞ and for each i = 1, 2, · · · , let ui ∈W 1,p(Ω,Rn)
be a weak solution of the following equation

div
(
|∇ui|p−2∇ui

)
+ fi = 0

with K := supi ‖ui‖W 1,p + supi ‖fi‖L1 <∞. If ui ⇀ u weakly in W 1,p, then ui → u strongly in
W 1,q whenever 1 < q < p.

We may now state

Proposition 4.8. Assuming the hypothesis of Theorem 1.2 are satisfied, the map u0 is an
Sn−1-valued n-harmonic map in Ω \ {a1, . . . , ad}.

Proof. It follows from Lemma 4.6, (c) and Lemma4.7 that for any 1 < q < n

uε → u0 strongly in W 1,q
loc (Ω \ {a1, · · · ad},Rn).

From Equation (1.7) , we have

div(|∇uε|n−2∇uε ∧ uε) = 0 in D′(Ω).

By the strong convergence in W 1,q
loc (Ω \ {a1, · · · ad},Rn) for any q < n, we may pass to the limit

above to find

div(|∇u0|n−2∇u0 ∧ u0) = 0 in D′(Ω \ {a1, · · · ad}).
It is well-known (see [5, 25, 28]) that a map u ∈ W 1,n(Ω \ {a1, · · · ad}),Sn−1) is n−harmonic if
and only if it satisfies the above equation. Therefore u0 is n−harmonic map and the proposition
is proved. �
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4.3. η−Regularity. We now wish to prove the strong convergence of {uε}ε outside a finite set,
which is needed to pass to the limit in the stationarity condition (3.4). However, as already
mentionned in the introduction, strong convergence should not be expected to hold outside of
S in general, because of bubbling. What we will prove though is that there may only be a finite
number of bubbles, just as it is the case for Palais-Smale sequences of n-harmonic maps (see
[22]).

The goal is thus to prove compactness under a small energy hypothesis. This is done by
proving that a Campanato-space type estimate

(4.23) osc(uε, x, ρ) :=

∫
Ω∩B(x,ρ)

|uε − (uε)x,ρ|n ≤ Cρn+δ

holds for any x ∈ Ω \ {a1, . . . , ad}, where δ > 0 and C do not depend on x, ρ or ε, and where
(uε)x,ρ denotes the average of uε on B(x, ρ).

We distinguish the case where where ρ is much smaller than ε, which is easy, from the case
where ρ is much larger than ε.

Lemma 4.9. Assume uε ∈W 1,n
g is a solution of (1.7). Then, given β > 1, there exists δ, C > 0

depending only on β,Ω, g such that for any x ∈ Ω and any ρ ∈ (0, εβ) the estimate (4.23) holds.

Proof. From [11], Proposition 3.3 we have that the C0, 1
2 norm of uε is bounded by Cε−

1
2 ,

therefore on B(x, ρ) we have

|uε − (uε)x,ρ| ≤ C
(ρ
ε

) 1
2
,

and then

osc(uε, x, ρ) ≤ ρnρ(1− 1
β

)n
2 ,

which finishes the proof. �

To prove the estimate for larger balls, we begin by rewriting (1.7) in terms of the modulus
and “phase” of uε. Let

(4.24) ρε = |uε|, θε =
uε
|uε|

.

Then uε = ρεθε and thus, from (1.7), we have

−div(|∇uε|n−2 (ρε∇θε + θε∇ρε)) =
1

εn
(1− |uε|2)uε,

and then

−div(|∇uε|n−2∇ρε) θε − 2 |∇uε|n−2∇θε · ∇ρε − div(| ∇uε |n−2 ∇θε)ρε =
1

εn
(1− ρ2

ε)uε.

Taking the scalar product with θε, we infer

−div(|∇uε|n−2∇ρε)− 0− div(|∇uε|n−2∇θε)ρε · θε =
1

εn
(1− ρ2

ε)ρε,

where we have used the fact that θε · ∇θε = 0. This same fact implies that

−div(|∇uε|n−2∇θε) · θε = |∇uε|n−2 |∇θε|2 ,

and therefore

(4.25) −div(|∇uε|n−2∇ρε) + |∇uε|n−2 |∇θε|2 ρε =
1

εn
(1− ρ2

ε)ρε.
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Now recall that θε =
uε
|uε|

, thus ∇θε = −∇ρε
uε

|uε|2
+
∇uε
ρε

. Hence, from (4.25), straightforward

calculations yield

−div( |∇uε|n−2 ρ2
ε∇θε) = div[|∇uε|n−2 (uε∇ρε − ρε∇uε)]

= div(|∇uε|n−2∇ρε)uε + |∇uε|n−2∇uε · ∇ρε − div(|∇uε|n−2∇uε)ρε − |∇uε|n−2∇uε · ∇ρε

=| ∇uε |n−2 ρ2
ε | ∇θε |2 θε −

1

εn
(1− ρ2

ε)ρ
2
εθε +

1

εn
(1− ρ2

ε)ρ
2
εθε

= |∇uε|n−2 ρ2
ε |∇θε|

2 θε.

Finally, we get the system

− div (|∇uε|n−2∇ρε) + |∇uε|n−2|∇θε|2ρε =
1

εn
(1− ρ2

ε)ρε,(4.26)

− div (|∇uε|n−2ρ2
ε∇θε)− |∇uε|n−2ρ2

ε|∇θε|2θε = 0.(4.27)

Lemma 4.10. Let x ∈ Ω̄ and r > ε such that Br(x) ∩ Ω ⊂ {x ∈ Ω| |uε(x)| ≥ 1
2}. Then there

exists some positive constant C > 0 depending only on Ω and n but independent of ε such that∫
Br/2(x)∩Ω

|∇uε|n−2|∇ρε|2 +
(1− ρε)2

εn
≤ C‖1− ρε‖

n−3
n−1
∞

∫
Br(x)∩Ω

|∇uε|n,

provided that ‖1− ρε‖∞ is sufficiently small.

Proof. Let ξ be a smooth function compactly supported in Br(x) and such that 0 ≤ ξ ≤ 1,
ξ|Br/2(x) ≡ 1, and |∇ξ| ≤ 2

r . Taking (1− ρε)ξ2 as a test function in (4.26), we find

(4.28)

∫
Br(x)∩Ω

ξ2|∇uε|n−2|∇ρε|2 + ρε
(1− ρ2

ε)(1− ρε)ξ2

εn
=∫

Br(x)∩Ω
|∇uε|n−2|∇θε|2ρε(1− ρε)ξ2 + 2|∇uε|n−2(1− ρε)ξ∇ρε · ∇ξ,

where we have used the fact that ξ(1− ρε) = 0 on ∂(Br(x) ∩ Ω).
To estimate the right-hand side we first note that

(4.29)

∫
Br(x)∩Ω

|∇uε|n−2|∇θε|2ρε(1− ρε)ξ2 ≤ C‖1− ρε‖∞
∫
Br(x)∩Ω

|∇uε|n.

To deal with the second term we bound the integrand using Young’s inequality, after noting
that |∇ξ| < 2/r, to find

|∇uε|n−2|∇ρε|
ξ(1− ρε)

r
≤ C|∇uε|n(1− ρε)

n−3
n−1 + C

ξn(1− ρε)3

rn
.

The integral of the second term on the right-hand side may be absorbed by the left-hand side
of (4.28) if ‖1− ρε‖∞ is small enough, since r > ε, and we deduce that∫

Br/2(x)∩Ω
|∇uε|n−2|∇ρε|2 +

(1− ρε)2

εn
≤ C‖1− ρε‖

n−3
n−1
∞

∫
Br(x)∩Ω

|∇uε|n,

proving the lemma. �
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4.3.1. Large interior balls. Here we adapt the proof of [23] to obtain (4.23). Letting

(4.30) e(x, r, uε) :=

∫
Br(x)∩Ω

|∇uε|n,

we wish to prove that for some θ ∈ (0, 1), the inequality eε(x, r/2, uε) ≤ θeε(x, r, uε) holds
uniformly with respect to x, r, ε. This is well known to imply (4.23).

First we recall some definitions of the Hardy space H1(Rn) and the BMO(Rn) and their
basic properties. Let Ψ ∈ C∞0 (Rn) be a function satisfying

∫
Rn Ψ = 1. For each t > 0,

set Ψt(x) = t−nΨ(xt ). The Hardy space H1(Rn) is the set of all functions g ∈ L1(Rn) such

that the maximal function f∗(x) := supt>0 |Ψt ∗ f(x)| ∈ L1(Rn). The Hardy space H1(Rn) is
equipped with the norm ‖f‖H1(Rn) := ‖f‖L1(Rn) + ‖f∗‖L1(Rn). The Space BMO(Rn) is the sub-

set of functions f ∈ L1
loc(Rn) with bounded mean oscillations in the sense that ‖f‖BMO(Rn) :=

supx∈Rn,t>0

∫
−Bt(x) |f − fx,t| <∞, where fx,t :=

∫
−Bt(x) f is the average of f on Bt(x).

The famous theorem of Fefferman and Stein in [9] states.

Theorem. H1(Rn)∗ = BMO(Rn). That is, there is a constant C = C(n) such that for all
f ∈ H1(Rn)

⋂
C∞ and g ∈ BMO(Rn) there holds∣∣∣∣∫

Rn
f · g

∣∣∣∣ ≤ C ||f ||H1(Rn) ||g||BMO(Rn) .

In our paper, functions are defined on Ω. When we say a function f ∈ H1
loc(Ω), we mean that

in each relatively compact domain U ⊂⊂ Ω, f agrees with a function in H1(Rn). And we define

||f ||H1(U) = inf{||g||H1(Rn) : f |U = g|U}.

We recall a result in [6] (see also [23]).

Lemma 4.11. Assume u ∈ W 1,p
0 (Br(0)) and E ∈ Lp′(Br(0),Rn) with 1

p + 1
p′ = 1, p > 1 and

p′ > 1. If E is divergence free in Br(0), then ∇u · E ∈ H1
loc(Br(0)) and there holds

‖∇u · E‖H1(Br/2(0)) ≤ C‖∇u‖Lp(Br(0))‖E‖Lp′ (Br(0))

where C > 0 is some constant independent of u, E and r. In particular, when x ∈ Ω and
u ∈W 1,p

0 (Ω), we have

‖∇u · E‖H1(Br/2(x)∩Ω) ≤ C‖∇u‖Lp(Br(x)∩Ω)‖E‖Lp′ (Br(x)∩Ω)

Proof. The first part is in [6]. For the second part, if B3r/4(x) ⊂ Ω, it is done in [23]. Otherwise,

we fix a cut-off function ξ ∈ C1
0 (Br(x)) such that ξ|Br/2(x) ≡ 1 and ‖∇ξ‖∞ ≤ 3

r . By Poincaré’s

inequality, we have
‖∇(ξu)‖Lp(Br(x)∩Ω) ≤ C‖∇u‖Lp(Br(x)∩Ω).

Therefore, the desired result follows from the first part. �

The main step in proving (4.23) for larger balls is the following

Proposition 4.12. Assume {uε}ε satisfy the hypothesis of Theorem 1.2, and that uε ⇀ u0 in

W 1,n
loc (Ω \ ∪1≤i≤d{ai}). Then there exist η > 0, θ̄ ∈ (0, 1) such that the following holds.
For any compact subset K of Ω \ {ai}1≤i≤d and any ε > 0 small enough depending on K, if

e(x, r, uε) ≤ η and Br(x) ⊂ K, then∫
Br/4(x)

ρ2
ε|∇uε|n−2|∇θε|2 ≤ θ̄‖∇uε‖nLn(Br(x)).
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Proof. We first estimate the norm of |∇uε|n−2 ρ2
ε |∇θε|

2 θε in the Hardy space H1(Br/2(x)).
Using the fact |θε| = 1, we have

∂iθε · θε = 0

so that we can write

(4.31)

|∇uε|n−2ρ2
ε|∇θε|2θkε = |uε|n−2 ρ2

ε(
∑
i,j

∂iθ
j
ε∂iθ

j
εθ
k
ε )

= |uε|n−2 ρ2
ε[
∑
i,j

∂iθ
j
ε(∂iθ

j
εθ
k
ε − ∂iθkεθjε)].

Let

Bj = ∇θjε, Ejk = |∇uε|n−2 ρ2
ε(∇θjεθkε −∇θkεθjε).

Then clearly Ejk ∈ L
n
n−1 (Br(x)) and Bj ∈ Ln(Br(x)). Moreover Bj is a gradient hence curlBj =

0. It also holds that divEjk = 0. Indeed, using (4.27) and (4.31), for any Ω′ ⊂ Ω \ {a1, · · · , ad},
and φ ∈W 1,n

0 (Ω′,R), we have

(4.32)

∫
Ω′

divEjk · φ = −
∫

Ω′
|∇uε|n−2 ρ2

ε(∇θjεθkε ) · ∇φ+

∫
Ω′
|∇uε|n−2 ρ2

ε(∇θkεθjε) · ∇φ

= −
∫

Ω′
|∇uε|n−2 ρ2

ε∇θjε · ∇(φθkε ) +

∫
Ω′
|∇uε|n−2 ρ2

ε∇θkε · ∇(φθjε)

= −
∫

Ω′
|∇uε|n−2 ρ2

ε |∇θε|
2 φθjεθ

k
ε +

∫
Ω′
|∇uε|n−2 ρ2

ε |∇θε|
2 φθkεθ

j
ε

= 0.

It follows from Lemma (4.11) that Ejk ·Bj ∈ H1(Br/2(x)) and

||Ejk ·Bj ||H1(Br/2(x)) ≤ C ||Ejk||L n
n−1 (Br(x))

||Bj ||Ln(Br(x)) .

Together with (4.31), we deduce

(4.33) ‖|∇uε|n−2ρ2
ε|∇θε|2θε‖H1(Br/2(x)) ≤ C‖∇uε‖n−2

Ln(Br(x))‖∇θε‖
2
Ln(Br(x)),

since 0 ≤ ρε < 1. Let ξ ∈ C1
0 (Br(x)) be a non-negative cut-off function satisfying ξ|Br/4(x) ≡ 1,

ξ|Rn\Br/2(x) ≡ 0 and |∇ξ| ≤ 5
r . We let

θ̄ε,x,r =
∫
−

Br/2(x)\Br/4(x)
θε(x) dx

be the average of θε on the annulus Br/2(x) \ Br/4(x). Set ψ = ξ(θε − θ̄ε,x,r). Using again
Poincaré’s inequality, we have∫

Br(x)
|∇ψ|n =

∫
Br/4(x)

|∇θε|n +

∫
Br/2(x)\Br/4(x)

|∇ψ|n

≤
∫
Br/4(x)

|∇θε|n + 2n
∫
Br/2(x)\Br/4(x)

|∇θε|n +
5n

rn
|θε − θ̄ε,x,r|n

≤
∫
Br/4(x)

|∇θε|n + C

∫
Br/2(x)\Br/4(x)

|∇θε|n

≤ C
∫
Br(x)

|∇θε|n
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Again from Poincaré’s inequality and Hölder’s inequality, we have ∀z ∈ Rn and ∀s > 0

∫
−

Bs(z)
|ψ − ψ̄z,s| ≤ Cs1−n

∫
Bs(z)

|∇ψ| ≤ C

(∫
Bs(z)

|∇ψ|n
)1/n

≤ C‖∇θε‖Ln(Br(x)),

which implies

(4.34) ‖ψ‖BMO(Rn) ≤ C‖∇θε‖Ln(Br(x)),

Here ψ̄z,s is the average of function ψ on the ball Bs(z). Taking ψ as a test function in (4.27)
and using (4.33) and (4.34) , we obtain

(4.35)

∫
Br(x)

|∇uε|n−2ρ2
ε∇θε · ∇ψ =

∫
Br(x)

|∇uε|n−2ρ2
ε|∇θε|2θε · ψ

≤ C‖|∇uε|n−2ρ2
ε|∇θε|2θε‖H1(Br/2(x))‖ψ‖BMO(Rn)

≤ C1‖∇uε‖n−2
Ln(Br(x))‖∇θε‖

3
Ln(Br(x))

On the other hand, it follows from Poincaré’s inequality and Hölder’s inequality that
(4.36)∫

Br/4(x)
|∇uε|n−2ρ2

ε|∇θε|2

≤
∫
Br(x)

|∇uε|n−2ρ2
ε∇θε · ∇ψ +

∣∣∣∣∣
∫
B r

2
(x)\B r

4
(x)
|∇uε|n−2ρ2

ε|∇θε||∇ξ||θε − θ̄ε,x,r|

∣∣∣∣∣
≤
∫
Br(x)

|∇uε|n−2ρ2
ε∇θε · ∇ψ + C‖∇uε‖n−2

Ln(B r
2

(x)\B r
4

(x))‖∇θε‖
2
Ln(B r

2
(x)\B r

4
(x))

≤
∫
Br(x)

|∇uε|n−2ρ2
ε∇θε · ∇ψ + C2‖∇uε‖nLn(B r

2
(x)\B r

4
(x)),

Adding C2‖∇uε‖nLn(B r
4

(x) to both sides we find

(1 + C2)

∫
Br/4(x)

ρ2
ε|∇uε|n−2|∇θε|2 ≤

∫
Br(x)

|∇uε|n−2ρ2
ε∇θε · ∇ψ + C2‖∇uε‖nLn(Br/4(x)).

Then, using (4.35) and Hölder’s inequality to bound the right-hand side,

(4.37)

∫
Br/4(x)

|∇uε|n−2ρ2
ε|∇θε|2 ≤

(
C1

1 + C2
‖∇uε‖Ln(Br(x)) +

C2

1 + C2

)
‖∇uε‖nLn(Br(x)).

Now we can choose η > 0 such that

α :=
C1

1 + C2
η

1
n +

C2

1 + C2
< 1,

and from the uniform convergence of ρε to 1 on K we know that, if ε is small enough depending
on K, then α/ρε

2 is smaller on Br(x) than θ̄ := (1 + α)/2, which is less than 1. For this choice
of η the hypothesis of the proposition then imply, for small enough ε and in view of (4.37) that∫

Br/4(x)
|∇uε|n−2ρ2

ε|∇θε|2 ≤ θ̄‖∇uε‖nLn(Br(x)),

where θ̄ < 1. �

Using Lemmas 4.10 and 4.6, Proposition 4.12 implies the following (Note that we need to
assume that r > ε so that the hypothesis of Lemma 4.10 are satisfied.)
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Corollary 4.13. Under the hypothesis of Proposition 4.12, there exist η > 0, τ ∈ (0, 1) such
that the following holds.

For any compact subset K of Ω \ {ai}1≤i≤d there exist ε0 > 0, r0 > 0 depending on K such
that

ε < ε0, x ∈ K, r < r0, and e(x, r, uε) ≤ η, =⇒ e(x, r/4, uε) ≤ τe(x, r, uε).

Now we are ready to prove interior η-regularity, putting together the estimate on small balls
and large balls.

Theorem 4.14. Assume {uε}ε satisfy the hypothesis of Theorem 1.2, and that uε ⇀ u0 in

W 1,n
loc (Ω \ ∪1≤i≤d{ai}). Then there exist η > 0, α > 0 such that the following holds.
For any compact subset K of Ω \ {ai}1≤i≤d there exist ε0 > 0, r0 > 0 depending on K such

that if x ∈ K, ε ∈ (0, ε0), r ∈ (0, r0) and e(x, r, uε) ≤ η then we have

(4.38) ‖uε‖Cα(Br/2(x)) ≤ C.

where C is some positive constant independent of ε.

Proof. First we recall the property of Campanato spaces that given an open set U , the Cα norm
on U is equivalent to

‖f‖C = sup
x∈U

ρ<diam(U)

1

ρα

(∫
−
U
|f − f̄U∩Bρ(x)|n

) 1
n

,

where f̄A denotes the average of f on A.
Therefore, proving (4.38) amounts to proving that for any y ∈ Br/2(x) and any ρ < r it holds

that

(4.39) osc(uε, y, ρ) ≤ Cρnρnα,

In view of Poincar̈ı¿1
2 ’s inequality we may alternatively show that

(4.40) e(y, ρ, uε) ≤ Cρnα.

We choose some β > 1. In the case where y ∈ Br/2(x) and ρ < εβ, Lemma 4.9 provides the

desired estimate, with exponent α1 = 1
2(1− 1

β ).

In the case where ρ ≥ ε, we use Corollary 4.13 to deduce that

e(y, ρ, uε) ≤ θ̄e(y, 2ρ, uε) ≤ · · · ≤ (θ̄)ne(y, r, uε) ≤ η(θ̄)n,

where n is the integer part of log2(r/ρ). It follows by straightforwardly that

e(y, ρ, uε) ≤ Cρnδ, δ = − 1

n

log θ̄

log 2
,

note that δ > 0 since θ̄ < 1.
Finally, in the case where εβ ≤ ρ ≤ ε we simply use the above bound, noting that ε ≤ ρ1/β

to find

e(y, ρ, uε) ≤ e(y, ε, uε) ≤ Cεnδ ≤ Cρ
nδ
β .

Therefore, choosing α = min(α1, δ/β), either estimate (4.39) or (4.40) is satisfied for any y ∈
Br/2(x) and any ρ < r. �
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4.3.2. Boundary η-regularity. The boundary version of Proposition 4.12 is

Proposition 4.15. Assume {uε}ε satisfy the hypothesis of Theorem 1.2, and that uε ⇀ u0 in

W 1,n
loc (Ω \ ∪1≤i≤d{ai}). Assume moreover that Ω has C2 boundary and that the boundary data

g : ∂Ω → Sn−1 is C1. Then there exist C, η, ε0, r0 > 0 and θ̄ ∈ (0, 1) such that if r < r0, if
ε < ε0 and if x ∈ ∂Ω then

(4.41) e(x, r, uε) < η =⇒
∫
Br/4(x)∩Ω

|∇uε|n−2|∇θε|2 ≤ Crn + θ̄

∫
Br(x)∩Ω

|∇uε|n.

If, moreover, we assume that r > ε then,

(4.42) e(x, r/4, uε) ≤
θ̄ + 1

2
e(x, r, uε) + Crn.

Proof. Denote by v a C1 extension of the boundary map g, and let

B1
j = ∇(θjε − vj), B2

j = ∇vj , Ejk = |∇uε|n−2 ρ2
ε(∇θjεθkε −∇θkεθjε).

Then

|∇uε|n−2ρ2
ε|∇θε|2θkε =

∑
j

Ejk(B
1
j +B2

j ) = F k1 + F k2 ,

where F k1 =
∑

j Ejk ·B1
j and similarly for F k2 .

We estimate the Hardy norm of F1 as in Proposition 4.12, and the Lebesgue norm of F2 using
Hölder’s inequality to find

‖F 1‖H1(Br/2(x)∩Ω) ≤ C‖∇uε‖n−1
Ln(Br(x)∩Ω)‖∇(θε − v)‖Ln(Br(x)∩Ω),(4.43)

‖F 2‖
L

n
n−1 (Br(x)∩Ω)

≤ C‖∇uε‖n−1
Ln(Br(x)∩Ω).(4.44)

Then let ψ = ξ(θε − v), where ξ is cut-off function defined as in Proposition 4.12. Noting that
θε − v vanishes on ∂Ω we may use Poincaré’s inequality as in Proposition 4.12 and find that

(4.45) ‖ψ‖BMO(Rn) ≤ C‖∇(θε − v)‖Ln(Br(x)∩Ω),

Using ψ as a test function in (4.27) we have as before∫
Br(x)∩Ω

|∇uε|n−2ρ2
ε∇θε · ∇ψ =

∫
Br(x)∩Ω

|∇uε|n−2ρ2
ε|∇θε|2θε · ψ,

and we estimate the latter using (4.43) and (4.45), to get,
(4.46)∫
Br(x)∩Ω

|∇uε|n−2ρ2
ε∇θε·∇ψ ≤ C

(
‖∇uε‖nLn(Br(x)∩Ω)‖∇(θε − v)‖Ln(Br(x)∩Ω) + ‖∇uε‖n−1

Ln(Br(x)∩Ω)r
)
,

where we have used Hı̈¿1
2 lder’s inequality and the fact that

‖∇(θε − v)‖Ln(Br(x)∩Ω) ≤ Cr + ‖∇uε‖Ln(Br(x)∩Ω).

Let us denote by Dr the set Br(x) ∩ Ω. We estimate∫
D r

4

|∇uε|n−2ρ2
ε|∇θε|2 ≤

∫
Dr

|∇uε|n−2ρ2
εξ|∇θε|2,
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and note that |∇θε|2 ≤ 2∇θε · ∇(θε − v) + |∇v|2 to deduce, using Hı̈¿1
2 lder’s and Poincar̈ı¿1

2 ’s
inequalities together with (4.46), that

∫
D r

4

|∇uε|n−2ρ2
ε|∇θε|2

≤2

∫
Dr

|∇uε|n−2ρ2
ε∇θε · ∇ψ +

∫
D r

2

|∇uε|n−2|∇v|2 +
C

r

∫
D r

2
\D r

4

|∇uε|n−2|∇θε||θε − v|

≤C
(
r2‖∇uε‖n−2

Ln(Dr)
+ r‖∇uε‖n−1

Ln(Dr)
+ ‖∇uε‖nLn(Dr)

‖∇(θε − v)‖Ln(Dr)

)
+ C

(∫
D r

2
\D r

4

|∇uε|n
)n−1

n
(∫

D r
2
\D r

4

|∇(θε − v)|n
) 1

n

≤C1

(
r2‖∇uε‖n−2

Ln(Dr)
+ r‖∇uε‖n−1

Ln(Dr)
+ ‖∇uε‖nLn(Dr)

(‖∇uε‖Ln(Dr) + r)
)

+

∫
D r

2
\D r

4

|∇uε|n.

(4.47)

Adding C1‖∇uε‖nLn(D r
4

) on both side and dividing by C1 + 1 we get∫
D r

4

|∇uε|n−2ρ2
ε|∇θε|2 ≤ ‖∇uε‖nLn(Dr)

(
C1
C1+1

) (
‖∇uε‖Ln(Dr) + r + 1

)
+C

(
r2‖∇uε‖n−2

Ln(Dr)
+ r‖∇uε‖n−1

Ln(Dr)

)
.

But, given any small γ > 0 there exists a constant C such that r2an−2 + ran−1 ≤ C(an + rn)
for any a > 0. Inserting above we deduce∫

D r
4

|∇uε|n−2ρ2
ε|∇θε|2 ≤ ‖∇uε‖nLn(Dr)

(
C1

C1 + 1

)(
‖∇uε‖Ln(Dr) + r + 1 + Cγ + Crn

)
,

and we may choose η > 0 and γ > 0 small enough so that the right-hand side is bounded
by Crn + θ̄‖∇uε‖nLn(Dr)

for some θ̄ ∈ (0, 1). Then (4.42) follows using Lemmas 4.6 and 4.10,

possibly modifying the constants θ̄ and C. �

We can now state the boundary η-regularity result.

Theorem 4.16. Assume {uε}ε satisfy the hypothesis of Theorem 1.2, and that uε ⇀ u0 in

W 1,n
loc (Ω \ ∪1≤i≤d{ai}). Assume moreover that the domain Ω is C2 and that the boundary data

g : ∂Ω → Sn−1 is C1. Then there exist C, η, ε0, r0 > 0 and θ̄ ∈ (0, 1) such that if r < r0, if
ε < ε0 and if x ∈ ∂Ω then

(4.48) e(x, r, uε) ≤ η =⇒ ‖uε‖Cα(Br(x)∩Ω) ≤ C,

where C is independent of ε.

Proof. It follows from Lemma 4.9 and Proposition 4.15. The proof is similar to the one of
Theorem 4.14. We leave the details to the interested reader. �

4.4. Strong convergence. The only statements in Theorem 1.2 remaining to be proved are
first that there exists a finite set S1 such that for any compact subset K of Ω \ (S1 ∪ {ai}1≤i≤d)
we have

(4.49) lim
ε→0
‖∇(uε − u0)‖Ln(K) = 0,
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and second that the limiting map u0 is stationary. In this section we prove (4.49), the stationarity
will follow easily.

We define S1 as follows.

(4.50) S1 =
⋂
r>0

{
x ∈ Ω̄ \ {a1, a2, · · · , ad}

∣∣ lim inf
ε−→0

∫
Br(x)∩Ω

|∇uε|n >
η

2

}
where η is the constant in Theorems 4.14 and 4.16.

The set S1 is finite because of our assumption of the upper bound for the energy. Indeed fix
σ > 0 and recall Ωσ = Ω\∪1≤i≤dBσ(ai). Then if there are k distinct points in S1∩Ω2σ we must
have

lim inf
ε→0

Eε(uε,Ωσ) ≥ kη
2

+
1

n

∫
Ωσ

|∇u0|n ≥ k
η

2
+ κnd log

1

σ
− C,

where C is independent of σ. Using Proposition 4.2 we have that

lim sup
ε

Eε(uε,Ωσ) ≤ κnd log
1

σ
+ C,

and we deduce a bound on k, hence on the cardinal of S1.
Now fix a compact subset K ⊂⊂ Ω̄ \ ({a1, a2, · · · , ad} ∪ S1). Then for any x ∈ K, by the

definition of S1, there exists r, such that

lim inf
ε→0

∫
Br(x)∩Ω

|∇uε|n ≤
η

2
.

Applying Theorems 4.14 and 4.16, up to a subsequence , uε is a bounded family in Cα(Br(x)∩Ω̄)
for some α > 0. Since K is compact, by a covering argument, up to a subsequence, uε is a
bounded family in Cα(K1) where K1 is some relatively compact neighborhood of K. Therefore,
it follows from Arzela-Ascoli theorem that there is a subsequence — still denoted {uε} —such

that uε → u0 in Cα′(K1) for any α′ < α.

If Br is any ball of radius r such that Br ∩ ({a1, a2, · · · , ad} ∪ S1) = ∅ then Proposition 4.2,
implies that {uε}ε is a bounded sequence in W 1,n(Br ∩ Ω) and from Lemma 4.6 we have

(4.51) lim
ε→0
‖ρε − 1‖L∞(Br∩Ω) = 0, lim

ε→0

∫
Br∩Ω

|∇uε|n−2|∇ρε|2 = 0.

which implies in particular that limε ‖∇ρε‖Ln(Br∩Ω) = 0 and, from the boundness of ‖∇uε‖Ln(Br∩Ω)

and Hı̈¿1
2 lder’s inequality, that for any γ ∈ (0, n)

(4.52) lim
ε→0

∫
Br∩Ω

|∇uε|n−γ |∇ρε|γ = 0.

Let ξ a smooth positive function compactly supported in Br and such that ξ|Br/2 ≡ 1 and

|∇η| ≤ 3
r . Taking ξ(uε − uε′) as a test function in (4.27) for uε and uε′ respectively, we have

(4.53)

∫
Br

[|∇uε|n−2 ρ2
ε∇θε − |∇uε′ |

n−2 ρ2
ε′∇θε′ ] · ∇[(uε − uε′)ξ]

=

∫
Br

[|∇uε|n−2 ρ2
ε |∇θε|

2 θε − |∇uε′ |n−2 ρ2
ε′ |∇θε′ |

2 θε′ ] · [(uε − uε′)ξ]

≤max
Br
|uε − uε′ |

∫
Br

(|∇uε|n + |∇uε′ |n) = o(1), .
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Then we recall for any a, b ∈ Rn and any p ≥ 2, we have

(4.54) |a− b|p ≤ 2p−2(|a|p−2 + |b|p−2) |a− b|2 ≤ 2p−1(|a|p−2 a− |b|p−2 b) · (a− b).

Since ‖uε − u0‖L∞(Br∩Ω) = 0. Using (4.54), (4.51) to (4.53) and Hölder’s inequality, we have∫
Br/2∩Ω

|∇uε −∇uε′ |n ≤ C
∫
Br∩Ω

[|∇uε|n−2∇uε − |∇uε′ |n−2∇uε′ ] · [ξ∇(uε − uε′)]

≤C
∫
Br∩Ω

[|∇uε|n−2 ρ2
ε∇θε − |∇uε′ |

n−2 ρ2
ε′∇θε′ ] · [∇(ξ(uε − uε′))− (uε − uε′)∇ξ]

+ C

∫
Br∩Ω

(|1− ρε||∇uε|n−1 + |1− ρε′ ||∇uε′ |n−1)|∇(uε − uε′)|

+ C

∫
Br∩Ω

(|∇ρε||∇uε|n−2 + |∇ρε′ ||∇uε′ |n−2)|∇(uε − uε′)|

≤C
∫
Br∩Ω

∣∣∣[|∇uε|n−2ρ2
ε∇θε − |∇uε′ |

n−2 ρ2
ε′∇θε′ ] · [(uε − uε′)∇ξ]

∣∣∣+ o(1)

≤C(‖∇uε‖n−1
Ln(Br∩Ω) + ‖∇uε′‖n−1

Ln(Br∩Ω))‖uε − uε′‖Ln(Br∩Ω) + o(1) = o(1).

(4.55)

In the last inequality we used the compact Sobolev embedding to deduce that ‖uε−uε′‖Ln(Br∩Ω) →
0 as ε, ε′ → 0.

The strong convergence uε → u0 in W1,n(Br ∩ Ω) thus holds, hence (4.49) by a finite
covering argument.

4.5. stationarity of u0. In this section we conclude the proof of Theorem 1.2 by showing that
the limiting map u0 is a stationary n-harmonic map in the sense of Definition 1.3.

First we recall from [23] that if u : Ω0 = Ω \ {a1, a2, · · · , ad} → Sn−1 is a n-harmonic map

and if we know that u ∈W1,n
loc (Ω0), then u ∈ C1,α

loc (Ω0) for some α ∈ (0, 1).
By Lemma 3.4, Ti,j(uε) is divergence free. Thus, for any ball Br(y) ⊂ Ω, and j = 1, . . . , n we

have ∫
Br(y)

∑
i

∂iTi,j(uε) =

∫
∂Br(y)

∑
i

νiTi,j(uε) = 0.

As a consequence, on any annulus BR(y) \Br(y) ⊂ Ω0 \ S1, we have∫
BR(y)\Br(y)

∑
i

xi − yi
|x− y|

Ti,j(uε) = 0.

Letting ε→ 0 and applying Lemma 4.6 and Theorem 1.2 we find∫
BR\Br

∑
i

xi − yi
|x− y|

· Ti,j(u0) = 0.

Recall that u0 ∈ C1,α(Ω0), therefore for every y ∈ Ω and s > 0 with ∂Bs(y) ⊂ Ω0 we get

(4.56)

∫
∂Bσ(y)

∑
i

Ti,j(u0)νi = 0.

On the other hand, we know from Lemma 3.4 that
∑

i ∂iTi,j(uε) = 0 in Ω. Again from Lemma
4.6 and Theorem 1.2, it follows that∑

i

∂iTi,j(u0) = 0, in Ω0 \ S1.
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By the regularity of u0 in Ω0, we deduce that the above identity is also true in Ω0. Hence u0 is
a stationary n-harmonic map and Theorem 1.2 is proved.

4.6. Proof of Proposition 1.4. We now assume that u : Ω \ {a1, . . . , ad} ⊂ Rn → Sn−1 is
a stationary n−harmonic map such that deg(u, ai) = 1, and that in a neighbourhood of each
singular point ai we have

u(x) = eB(x) x− ai
|x− ai|

,

where B(x) ∈ so(n) is antisymmetric matrix satisfying B(ai) = 0 which is C1 w.r.t. x.
We start by proving (1.15). Without loss of generality, we assume ai = 0. Then, letting

r = |x| and ν = x
|x| , we have

(4.57) ∂ju(x) = eB(x) (∂jB(x)ν + ∂jν) , ∂jν =
1

r
(ej − 〈ej , ν〉ν) .

Recall that eB(x) is an orthogonal matrix, hence

〈∂iu, ∂ju〉 = 〈∂iB ν, ∂jB ν〉+ 〈∂iB ν, ∂jν〉+ 〈∂jB ν, ∂iν〉+ 〈∂iν, ∂jν〉.

= 〈∂iν, ∂jν〉+ (〈∂iB(0)ν, ∂jν〉+ 〈∂jB(0) ν, ∂iν〉) + o

(
1

r

)
.

(4.58)

In the above, the derivatives of ν are of order 1/r, and the other terms are of order 1. We

deduce easily the leading order term in the expansion w.r.t. r of |∇u|n−2, |∇u|n and since these
expansions contain only even powers, we find that

(4.59) |∇u|n−2 =
(n− 1)

n−2
2

rn−2
+O

(
1

rn−4

)
, |∇u|n =

(n− 1)
n
2

rn
+O

(
1

rn−2

)
.

From (4.58) and (4.59) we deduce that for every j∑
i

νiTi,j(u0) =
(n− 1)

n−2
2

rn−2

(
〈∂νν, ∂jν〉+ 〈∂νν, ∂jB(0)ν〉+ 〈

∑
i

νi∂iB(0)ν, ∂jν〉

)
−

− (n− 1)
n
2

nrn
νj + o

(
1

rn−1

)
= −(n− 1)

n
2

nrn
νj +

(n− 1)
n−2

2

rn−2
〈
∑
i

νi∂iB(0)ν, ∂jν〉+ o

(
1

rn−1

)
,

where we have used the fact that ∂νν = 0. Since the integral of νj on ∂Br is equal to 0 we
deduce that, as r → 0,

(4.60)

∫
∂B(0,r)

∑
i

νiTi,j(u0) =
(n− 1)

n−2
2

rn−2

∫
∂B(0,r)

〈
∑
i

νi∂iB(0)ν, ∂jν〉+ o(1).

From the antisymmetry of ∂iB(0) we have 〈∂iB(0)ν, ν〉 = 0 so that, in view of (4.57),

〈∂iB(0)ν, ∂jν〉 = 〈∂iB(0)ν,
1

r
ej〉.

Now we write ν(x), ∂jν(x) in terms of the coordinates x1, . . . , xn and get∑
i

〈νi∂iB(0)ν, ∂jν〉 =
∑
i,k

xixk

r3
〈∂iB(0)ek, ej〉.
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Since the integral of xixk on ∂Br is equal to αrn+1δik for some strictly positive α and replacing
in (4.60) we finally obtain from (1.14) that∫

∂B(0,r)

∑
i

νiTi,j(u0) = α(n− 1)
n−2

2 〈
∑
i

∂iB(0)ei, ej〉+ o(1) = 0,

which proves (1.15) since the equality holds for j = 1, . . . , n.
To prove (1.16) we use Taylor’s expansion B(x) =

∑
i ∂iB(0)xi +O(|x|2) to obtain

u(x) = ν + |x| ∂νB(0)ν +O(|x|2).

Therefore, it follows from
∑

i ∂iB(0)ei = 0 that

∆ |x|2 ∂νB(0)ν = 2
n∑
i=1

∂iB(0)ek = 0.

Hence, the quadratic Q(x) = |x|2 ∂νB(0)ν is harmonic. When n = 2, we write

(4.61) B(x) =

(
0 α(x)

−α(x) 0

)
The above condition (1.6) is equivalent to ∇α(0) = 0. Hence B(x) = O(|x|2). This concludes
the proof of Proposition 1.4.

5. Construction of non-minimizing sequence of critical points

In this section, we prove Theorem 1.5.
Let n = 3 and x = (x′, x3) with x′ ∈ R2. We consider a domain

Ω = C ∪D+ ∪D−
consisting of a long cylinder C = {x ∈ R3| |x′| ≤ 1, |x3| ≤ L} of radius 1 and length 2L plus two
spherical caps at each end D+ = B(P, 1) ∩ {x3 ≥ L} and D− = B(Q, 1) ∩ {x3 ≤ −L}, where
P = (0, 0, L) and Q = (0, 0,−L).

We define a boundary map g : ∂Ω→ S2 of degree one defined on the spherical caps by

g(x) =
x− P
|x− P |

on ∂D+ ∩ ∂Ω, g(x) =
x−Q
|x−Q|

on ∂D− ∩ ∂Ω.

On the cylindrical part of the boundary we let, choosing an arbitrary h > 0,

g(x) =

√
1

1 + h2
(x′,−h) if 1 ≤ x3 ≤ L− 1, g(x) =

√
1

1 + h2
(x′, h) if −L+ 1 ≤ x3 ≤ −1,

and the boundary map interpolates between these on the remaining part of the boundary, namely
for x3 ∈ [L− 1, L] ∪ [−L, 1− L] ∪ [−1, 1]. We also require that the interpolation be such that

g ◦ S = S ◦ g, where S(x′, x3) = (x′,−x3)

and for any θ ∈ R, identifying R2 with C,

g ◦Rθ = Rθ ◦ g, where Rθ(z, x3) = (eiθz, x3).

We define the sobolev spaces of equivariant maps by

W̄ (Ω,R3) = {u ∈W 1,3
g (Ω,R3) | u ◦ S = S ◦ u, u ◦Rθ = Rθ ◦ u,∀θ},

and W̄ (Ω,S2) = {u ∈ W̄ (Ω,R3) | |u| = 1 a.e.}.
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Let Eε be the Ginzburg-Landau functional. What we will do now is to show that there exists
C > 0 such that if ε > 0 is small enough, then

(5.1) min
u∈W 1,3

g (Ω,R3)
Eε(u) < min

u∈W̄ (Ω,R3)
Eε(u) ≤ κn |log ε|+ C

This will prove Theorem 1.5 since a minimizer uε for min W̄ (Ω,R3) is a solution to (1.7) by the
symmetric criticality principle, and if ε is small enough, using (5.1), it is nonminimizing and
satisfies the bound (1.13). It remains thus to prove (5.1).

Upper bound for minu∈W̄ (Ω,R3) Eε(u). Let B(0, 1
2) = {x ∈ R3, |x| ≤ 1

2} be the ball with center

0 and radius equal to 1
2 and v ∈ W̄ (Ω \ B(0, 1

2),R3) be some given equivariant map satisfying

v = g on ∂Ω and v(x) = x
|x| for all x ∈ ∂B(0, 1

2). Define for any x ∈ B(0, 1
2)

uε(x) = ρε(|x|)
x

|x|
, ρε(r) = min

((
r − ε
ε

)
+

, 1

)
and for any x ∈ Ω \B(0, 1

2)

uε(x) = v(x)

Then uε is clearly equivariant and thus we have

(5.2) min
u∈W̄ (Ω,R3)

Eε(u) ≤ Eε(uε) = Eε(v,Ω \B(0,
1

2
)) + Eε(uε, B(0,

1

2
)) ≤ κn |log ε|+ C,

since Eε(uε, B(0, 1
2)) = κn |log ε|+O(1) and Eε(v,Ω \B(0, 1

2)) = O(1). Here C is some constant
depending on Ω.

Upper bound for min
u∈W 1,3

g (Ω,R3)
Eε(u). This upper bound is more delicate. Let D denote

the unit disc in R2. The large spherical cap is defined to be

A =
{

(x′, x3) ∈ S2 |, x3 ≥ −δ
}
, where δ =

h√
1 + h2

.

and the small spherical cap is B = S2 \A.
Define gB : ∂D→ S2 by gB(x) = ( x√

|x|2+δ2
,−δ) and let

(5.3) b := min{1

3

∫
D
|∇u|3 | u : D→ S2, u|∂D = gB},

Then a minimizer exists, and we claim that it is unique and satisfies u3
B ≤ −δ. Indeed if

uB = (u1
B, u

2
B, u

3
B) is a minimizer then u′B = (u1

B, u
2
B,−|u3

B|) is another minimizer, and since

−div (|∇u′B|∇u′B
3
) = |∇u′B|3u′B

3 ≤ 0,

the maximum principle implies that u′B
3 ≤ −δ in D. Since u′B

3 = −|u3
B|, it follows that u3

B ≤ −δ,
hence uB takes values into B, and from [8, 10, 26], the minimizer uB is in fact unique.

Now we may define a “large” 3-harmonic map uA : D → S2 — following the strategy of
[2], but here no bubbling can occur — by minimizing the three energy over the set of maps
u : D→ S2 agreeing with gB on the boundary and such that

Q(u) =

∫
D
u · ∂xu ∧ ∂yu = |A|,

where |A| denotes the surface area of the large cap A. The minimizer exists and belongs to the
same class, because Q(u) is well known to be continuous with respect to weak convergence in
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W 1,3, moreover it is a 3-harmonic map because Q(u) is a null-lagrangian, and is distinct from
uB because Q(uB) = −|B|. Therefore

(5.4) b < a :=
1

3

∫
D
|∇uA|3 = min{1

3

∫
D
|∇u|3 | u : D→ S2, u|∂D = gB, Q(u) = |A|}.

We claim that

(5.5) min
W 1,3
g (Ω,R3)

Eε ≤ κ3 |ln ε|+ L(a+ b) + C,

where C does not depend on ε or L.
To prove this, we define a test map uε as follows. For any x ∈ D we let

uε(x
′, x3) = gB(x′) if x3 ∈ [1, L− 1], uε(x

′, x3) = −gA(x′) if x3 ∈ [−1, 1− L],

and we extend uε on D× [−1, 1] so that it is a finite 3-energy S2-valued map, which is possible
since the boundary map is of degree zero. Similarly we may define uε on Ω ∩ {x3 ≤ 1 − L} as
a finite 3-energy S2-valued map. It remains to define uε on U := Ω ∩ {x3 ≥ L − 1}. For this
purpose, we do this first in the ball B(P, 1) by letting for any x ∈ B(P, 1)

uε(x) = ρε(|x− P |)
x− P
|x− P |

, ρε(r) = min

((
r − ε
ε

)
+

, 1

)
,

and extend uε on U \ B(P, 1) by taking some finite 3-energy S2-valued map as above since the
boundary map is of degree zero.

Then it is straightforward to check that Eε(uε, U) ≤ κ3 |log ε|C, and we have

Eε(uε,D× [1, L− 1]) = (L− 2)b, Eε(uε,D× [1− L,−1]) = (L− 2)a.

On the rest of Ω, the energy of uε is clearly independent of ε, L thus (5.5) is proved.

Lower bound for minW̄ (Ω,R3) Eε. Now we claim that

(5.6) min
u∈W̄ (Ω,R3)

Eε(u) ≥ κ3 |ln ε|+ 2La− C,

where C is independent of ε, L.
Here the equivariance of maps in W̄ plays a role. Denote by uε the minimizer of the functional

Eε over W̄ (Ω,R3) and u0 its limit given by Theorem 1.2, which applies because of (5.2). The
map u0 has a single singularity of degree 1, but it is also equivariant and therefore this singularity
must be located at the origin. Since u0 is 3-harmonic and minimizing away from the origin, it
has C1,α bounds away from the origin and the boundary which are independent of L (see [13]).
It follows straightforwardly from this — we omit the lengthy details — that

(5.7) Eε(uε, B(0, 1/2)) ≥ κ3 |ln ε| − C.
Moreover, since u0 is in C1,α(Ω \ {0},S2), for any t ∈ (1, L− 1) the degree of u0 on (∂Ω∩ {x3 ≥
t}) ∪ (Ω ∩ {x3 = t}) is equal to 0. Therefore we have for any t ∈ (1, L− 1) that

Q(u0|{x3=t}) = |A|,
and therefore

1

3

∫
{x3=t}∩Ω

|∇u0|3 ≥ a,

which implies

(5.8)
1

3

∫
{x3≥1}∩Ω

|∇u0|3 ≥ La+O(1).
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Similarly, we get

(5.9)
1

3

∫
{x3≤−1}∩Ω

|∇u0|3 ≥ La+O(1).

Applying Theorem 1.2, uε → u0 weakly in W 1,n outside the origin, therefore (5.7), (5.8) and
(5.9) imply (5.6).

Conclusion. We have proved (5.2), (5.5) and (5.6), from which (5.1) follows easily in view of
(5.4), if we choose ε > 0 small enough and L > 0 large enough. As already explained, this proves
Theorem 1.5.
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