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ABSTRACT. In this work, we study critical points of the generalized Ginzburg-Landau equations
in dimensions n > 3 which satisfy a suitable energy bound, but are not necessarily energy-
minimizers. When the parameter in the equations tend to zero, such solutions are shown to
converge to singular n-harmonic maps into spheres, and the convergence is strong away from a
finite set consisting 1) of the infinite energy singularities of the limiting map, and 2) of points
where bubbling off of finite energy n-harmonic maps could take place. The latter case is specific
to dimensions greater than 2. We also exhibit a criticality condition satisfied by the limiting
n-harmonic maps which constrains the location of the infinite energy singularities. Finally we
construct an example of non-minimizing solutions to the generalized Ginzburg-Landau equations
satisfying our assumptions.

1. INTRODUCTION

Let Q € R” be a bounded smooth domain. Given g : 9Q — S"~! a smooth prescribed map
with the degree d = deg(g, 99, S" 1), we consider the functional

(1.1) E.(u,Q) = /Q I:’VUVL + e (1-— ]u\2)2 dz

n

for u e W, ™ (Q,R") = {we Wbt (Q,R™) : wlsg =g} -

In the case of n = 2, the minimizers and critical points of this functional were studied by
F.Bethuel, H.Brezis and F.Hélein [3] and many authors after them. In this case the critical
points satisfy the so called Ginzburg-Landau system

1 .
(1.2) —Au. = = (1 — ]uglz) Ug in Q
Us = g on 0N .
A theorem from [3] is
Theorem (BBH1). Assume that Q is star-shaped, and that d # 0, then there exists a sub-

sequence of e — 0, ezactly |d| distinct points ay,ag,- - sajg|, and a harmonic map u. €
C>(Q\ {al, ag, -+ ,a|d|}) with boundary value g such that

us, = ux in CE(Q\U;{a;}) for Yk andin loc YQ\U;{a;}) for Va<1.
In addition, each singularity has degree sign(d).

The infinite energy singularities a1,az,- - ,a)q of the S'-valued harmonic map u, are not
arbitrarily located. Given any configuration b = (by,bg, - ybjg)) of distinct points in Q, its
renormalized energy is defined in [3] as

|d|

W(b,d, g) :—WZIIl]b—b|+ / ®(g % gr) —FZR
i#]
1
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where @ is the solution of the linear Neumann problem

|d|
AD = ZWZ&,Z. in Q,
(1.3) i=1
0P
— =g XxXgr on 02
ov
where v is the unit outward normal to 02, 7 is a unit tangent vector to 0f) and

|d|

R(z) = ®(z) — > In|o —b.
=1

Then the following holds.

Theorem (BBH2). With the assumptions and notations of Theorem (BBH1), the following
holds.
(1) The configuration {a1,az,- - ,a,q} minimizes b — W (b,d, g).
(2) (Vanishing gradient property)
Near each singularity a;,

zZ—a;
1.4 Ue(2) = J elHi(Z),
(14) ()=

where Hj is a real harmonic function such that

(1.5) Hj(2) = Hj(aj) + O(|z — a;%), as z — a;.
In other words,
(1.6) VHj(aj) = 0.
In the case n > 3, the minimizers of E.(u, {2), and more generally critical points, satisfy
(1.7) —div <\Vu5|n72 Vug> = L (1—|ue®) ue in
Ue = ¢ on 012 .

Several authors have studied the sequences of minimizers of E. in the case n > 3, namely
P.Strzelecki [30], M-C.Hong [18] and Z-C.Han and Y-Y.Li [11]. Let us recall the main results in
[11]. For convenience, we define a constant

1 .
1. n=—(n—1)%w,
(1.8) i = —(n—1)2w

where w, = [S"71|.

Theorem (HL). Assume d # 0, n > 3. For any sequence €, — 0, let {u} C ng’" (Q,R")
be the corresponding sequence of minimizer for E., . Then there exists a subsequence {ui}, a

collection of |d| distinct points {a1,az, -+ ,aq} C 8, and an n-harmonic map ux : Q\U; {a;} —
S~ such that

(1.9) up — uy  Strongly in WIIOZ(Q \ U {a;}; R™),

(1.10) Uy — Us in Cl.(Q\U; {a;};R"Y),

(1.11) g — uy  strongly in - WHP(Q; R™) for alll < p < n.

Furthermore, deg(us, 0By, S" 1) = sign(d) forall 1<j<|d| and o >0 small enough.
When d = 0, uy converges to u, strongly in Wm0 CP,
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From now on, we assume without loss of generality that the degree d > 0 is positive and the
dimension n > 3.

Our first result is an analogue of Theorem(BBH2), i.e. the proof that the singularities of w.
minimize a renormalized energy as well. This renormalized energy was actually introduced by
R.Hardt, F-H.Lin and C-Y.Wang [16] as follows.

Given d distinct points in €2 denoted a = {ay, a9, - ,aq}, and for § > 0, let

Qa5 = Q\ UL Bs(ay).
Then define for any § small enough
Was = {w € W (Q4,5:8" 1) : w|0Q = g, deg(w, dBs(a;)) = 1for alli } .

The renormalized energy of a = {aj,as,--- ,aq} is defined to be
1.12 =i in F Q — 1
(112) Wy(a) = tim  min B, 20g) — diy 123]).
where —_
En(waQa,(S) :/ | w| dz.
Qa,é n

In particular, it is proved in [16] that the limit defining W, exists, and is even increasing as
0 —0.
We have the following result.

Theorem 1.1. Let a = {ai}?zl be the limiting singular points of Theorem (HL), then
E.(u:,Q) = dkp|Ine| + Wy(a) + dy + o(1) ase — 0,

where 7y is a constant defined in Section 2.1 below by (2.4). Moreover, the configuration {ai}?zl
minimizes Wy.

The results above deal only with sequences of energy-minimizers. The ones below deal with
limits of solutions to the system (1.7).

Theorem 1.2. Assume that for each € > 0 the map ue, is a critical point of E. and that for
some M > 0 independent of € it holds that

(1.13) E.(us, Q) < dky |Ine| + M.
Then there exists a subsequence {€} tending to zero, a collection of d distinct points {a1,az, -+ ,aq}
C Q, a finite subset Sy of ), and a stationary n-harmonic map ug : Qp := Q\{a1, a2, - ,aq} —

S*1, such that
us — ug  strongly in Wllo’Z(Qo \ S1,R"™)
and for any 1 <p<n
Us — ug  weakly in Wl’p(Q,R”).

Furthermore, deg(ug, 0By (a;),S*™1) =1, for 1 < j < d and any small enough o > 0.

It was proved by R. Jerrard in [19] that the upper bound condition (1.13) is sufficient to
guarantee the local weak convergence in {2y of a subsequence. Here we improve this to strong
convergence for solutions of the system (1.7). However, contrary to the case n = 2 we need to
remove a finite set S corresponding to the bubbling-off of nontrivial finite energy n-harmonic
maps from R™ to S”~! which do not exist when n = 2.

In the case n = 3 an example of such a map is the Hopf fibration, and recently T.Rivi'ig)%re in
[24] showed that there exists in fact many of them. This multiplicity arises in particular from
a richer topology, due to the non-trivial fundamental group 73(S?), for which the Hopf map is
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a generator. This hints at the fact that the moduli space of critical points of the generalized
Ginzburg-Landau equations for small parameter € could be quite rich too. For n > 3 the same
situation is expected because of homotopy groups of the spheres, for example, m7(S*), 715(S?),
or other topological invariants.

Theorem 1.2 contains a criticality condition satisfied by the points {a1,ag,- - , a4} hidden in
the word “stationary m-harmonic map” that we now define.

Definition 1.3. Let u : Qy — S"! be an n-harmonic map, where Qo = Q\ {a1, a2, - ,aq}.
We say u is a stationary n-harmonic map if its stress-energy tensor

1
Ty ;= V"> (dyu, Oju) — - (V™ 6

> 0T =0
in Qo, and if for any 1 <k < d and p > 0 such that 0B,(ay) C Qg it holds that

(1.14) / T, jv; = 0,
OB, () Z !

where v = (v1,- -+ ,vyp) is the outward-pointing normal to 0B,(ay).
When both conditions are satisfied we say that T;; is divergence free in .

satisfies

The following proposition links the property of being a stationary n-harmonic map with the
vanishing gradient property (1.6). Unfortunately it is not clear yet whether its assumptions are
satisfied for the stationary n-harmonic maps arising as limits of critical points of the Ginzburg-
Landau functional in dimension n.

Proposition 1.4. Assume u : Qy C R — S* ! is a stationary n—harmonic map in the above
sense, where Qo = Q\ ({a1,--- ,aq}, and that deg(u, ar) =1 . Assume that around each singular
point ai, one has the asymptotic expansion
u(z) = eBk(l‘)m
|z — ag|
where By (z) € so(n) is an antisymmetric matriz satisfying By (ar) = 0 and such that x — By(x)
is C1 in a neighborhood of aj,. Then

n
(1.15) Z@ZBk(ak)ez = 0,
i=1
where (e1,- -+ ,en) is the canonical basis in R™. Equivalently, we have the expansion
z—ar | Qr(r —ag) 2
1.16 u(x) = + + O(|lz — ag|”),
(116) (@) = et + S 1 O — i)

where Qi(x) is a harmonic polynomial of degree 2. In particular, when n = 2, we have Bi(z) =

O(|z — ax]?).

Finally we will construct an example of a sequence of non-minimizing critical points satisfying
the hypothesis of Theorem 1.2.

Theorem 1.5. Let n = 3. There exists a domain Q C R3, a boundary map g : 09 — S"1, and
for every small enough € > 0 a non minimizing critical point u. of the functional E.(u, Q) such
that the energy bound (1.13) holds.
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The paper is organized as follows. In Section 2, we prove Theorem 1.1. In Section 3 we prove
the Pohozaev inequality. Section 4 is devoted to the proof of Theorem 1.2 and of Proposition
1.4. Theorem 1.5 is proved in the last section.

2. RENORMALIZED ENERGY

In this section, we study the renormalized energy for minimizers of n-dimensional Ginzburg-
Landau type functional. We show that it coincides with the renormalized energy for n-harmonic
maps. The proof of Theorem 1.1 mimics the strategy in [3]. It can be divided into the following
two lemmas.

Lemma 2.1. Let a = {aj,a9, - ,aq} be any configuration of d distinct points in Q. Then there
exists €9 > 0 such that for any € € (0,¢p), we have

E.(uc, Q) < dkp|Ine| + Wy(a) + dy + o(1).
where 7 is the constant defined in (2.4).

Lemma 2.2. With the notations of Theorem (HL), assume {€} converges to zero and that u.
converges to the S" ' -valued n-harmonic map u, strongly in W, (Q\ U; {a;} ;R™). Then

loc
E.(u, Q) > dkp|Ine| + Wy(a) + dy — o(1),
where a = {ay,as, -+ ,aq}.

2.1. Estimates when 2 = Bi and ¢g(z) = gy = I%I We begin by introducing quantities wich

are the counterparts to those introduced in[3] for the case n = 2. Let

2.1 I(e,R) = min E.(u, BR).
( ) ( ) u(z) = z/|z| on OBR 8( R)

A scaling argument shows that

I(e,R) =1(1,R/e) =1(¢/R,1).
Lemma 2.3. Let I(t) = I(t,1). Then the function t — I(t) + kp In(t) is increasing on (0,1),
where Ky, is defined by in (1.8), and has a limit as t \ 0.

Proof. Assume 0 < t; < ty < 1 and let u; be the minimizer of I(1, %) Let

ug, if |z < L,
(22 o) = { P
|£t| to — — t1°

Then by the definition of I(t), we have
I(t;) =I(1,t;") < E1(v, By yy)

—1)> t
= I(ts) + uwn n 2
n tl

In view of (1.8), this proves that ¢t — I(t) + Ky, In(¢) is increasing on (0, 1).
Then, by using Theorem 1.1 of [19], there exists a constant C' > 0 such that if u € W1 (By, R")
and u(x) = z/|x| on the boundary, then

E.(u, B1) > fin [In(e)] — C.

B

1
cwpdr

ndx:I(t2)+/tl_ (n—1)2

t2_1 n-r
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This implies that I(t) + &, In(¢) is bounded below on (0,1) and then, using the monotonicity,
that the limit exists as ¢ \ 0. U

We may now define the constant ~:
(2.4) v = lIm{I(t) + Ky, In(t)}.
t—0

Note that — due to the invariance of E. under isometries of the target — if we replace x/|x|
in the definition of I(¢) by Rz/|z|, where R € O(n), the function I and thus the constant v are
unchanged.

2.2. Proof of Lemma 2.1. We construct a comparison map which is in ng ™ (Q,R™) to obtain
the upper bound.

Let a = {a1,as,-- ,aq} be any configuration of d distinct points in Q. For any % >d>0
such that the balls B(a;,46) are disjoint and included in €2, let wg s denote a minimizer for E,,
that is, Ep(was,as) = mingew, ; En(w,Qq5). Then, from Lemma 9.1 in [16], for any p > 0
there exists 6y > 0 such that for any § < ¢y there exists rotations {R;}i<i<q such that for any
1<i<d

(2.5) lwa,s (@i + 46-) — Riller(s\B, ) < #/3d.
Now, from (1.12), for any x> 0 and any ¢ > 0 small enough depending on p, we have
(2.6) Egs(was) < Wo(a) + dbn [In 6] 4 p/3.

We choose such a § so that (2.5) holds, and we define the comparison map u € ng ™ (Q,R") by
letting

Wa,§ it x € Qg 45,
(2.7) U(IL’) = Uz(l’) ifx e B45(C_Li) \ng((_ll') 1<¢<d
Riuss(x —a;) if x € Bos(a;) 1<i<d,

where ugs is the minimizer for I(e,2d) (see (2.1)) and for 1 < ¢ < d, v;(z) is the interpolation

map
*

V; = |Zi|a Uf(ai+y)=< —’y|>R| |+<\y| )wa,d(ai+y)‘

From (2.5) it is not difficult to show that for 1 <i<d

n

(2.8) / [Ved dr < kp,In2+ Cp/d,
B46(az)\326(a’z)

where C' > 0 is some positive constant independent of .
To compare the energy of u with that of wgs on Bys(a;) \ Bs(a;) we need an energy lower
bound for the latter, provided by the following well known Lemma (see [16] or [19] or [11])

Lemma 2.4 (Annulus estimate). If0 < r < s < oo, v € Wh"(B,\ B,,S" 1), and deg(v, dB,) =
D # 0 for almost all p € (r,s), then

(2.9) / |Vu\ dz > \D|" TKp, lnf
B\B, M

From (2.9) we obtain
Ec (wa,s, Bas(ai) \ Bs(ai)) > #ipInd.
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Together with (2.6) this yields

1
E.(u,Q45.45) —/ — Vwa75|nda:—/ — ]Vwag\ dz
(2.10) Qa5 T Ui(Bus(@i)\Bs(a)) ™

< Wy(a) — dkplog4 + p1/3 + dky|log d|.
In the balls Bsg(a;), there exists a constant ep > 0 such that for any € < ¢q
(2.11) Ec(ugs, Bas) = 1(e, 20) = I(¢/(26),1) < + ki [In(e/(26))| + p/3d.
Combining (2.8),(2.10) and (2.11) we have the desired upper bound
Ec(ue, Q) < Ec(u, Q)

(2.12) umﬁ+2/ ]WAM+ZEWMM
B

46(@:)\B2s(a:) i=1

< Wy(a) + dky [Ine| + dy + p(C +2/3).
Since this bound is true for any u > 0, this concludes the proof of Lemma 2.1.
2.3. Proof of Lemma 2.2. Let a = {aj, a9, - ,aq} be the singularities of u., which are distinct
and belong to . From the convergence u. — u,, we have a lower bound for E_(u.) away from

the singularities. Then we need to prove that for p > 0 small enough, and for any 1 <i < d, as
e —0,

(2.13) Ec(ue, By(ai)) = I(e, p) + o(1)

In order to prove (2.13), we need the following equivalent of (2.5) for w,.

Lemma 2.5. The limiting map u, is in C1*(Q\ {a1,as, - ,aq}). The restriction of us on any
small sphere around a; has degree equal to 1.
Moreover, letting u; ,(x) := us(a; +7z), we have the following result: For anyi =1,--- ,d, there

exists a decreasing sequence oy, — 0, and rotations R;y such that

Proof. Since u, is an m-harmonic map into the sphere which is locally minimizing in Q \
{a1,az, -+ ,aq}, the regularity theory of [13] insures that it is in C1* in this set.

To prove the remaining statements, we begin by proving a basic fact. Let {fx} be a sequence
of maps in € W1 (S*~1,S"~1) with degree greater than or equal to 1. Then

lirn/ |VianSfe|" dH" ™ = nky,

k S§n—1

if and only if there exists a sequence of rotations Ry such
liml| fy — Rllw1ngn-1,gm) = 0.

Here Vi f is the gradient of f on the sphere.

The reverse implication is clear. For the direct implication note that there is a compact
embedding of W™ (S"~1 R") into C°(S"~!, R™). Thus the degree is conserved under the weak
convergence in W1, Then any weak limit of fj, has degree at least one and n-energy no greater
than nk,, thus its energy is exactly nk,, its degree is one, and it is a rotation. Moreover the
convergence is strong since we have weak convergence and convergence of the energies, using
Brezis-Lieb’s Lemma, which proves the statement.
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We now argue by contradiction. Assume the lemma were false, then there would exist an
index ¢, and positive numbers 7, & such that, for any p < &,

p/ |Viantts]" dH" ™1 > n(k, +1n).
8Bp(ai)
This would imply that for any ¢ < &

. _
(2.15) / = V" da > (kn +n)In 2.
Bg(a;)\Bo(a:) o

n

But, from Theorem 1.2 of [19] or Proposition 3.8 in [11]), we have

(2.16) Ex(us, By(a:)) = K ln~ — C(n, 2, 9)
€

where C'(n, (2, g) is a constant independent of ¢.
Then for € small enough, say € < €1, (2.15) and (2.16 ) would imply

2.17 E.(u., UB5(a; denlng—i—nlng—Cn,Q,g,
€
o

since

liminf/ V] 2/ V"
e=0 JU(Bs(ai)\Bo(as)) U(Bs(ai)\Bo(a:))

This contradicts the upper bound (2.12) if /o is chosen large enough. This completes the proof
of the lemma. O

Remark 2.6. We could actually prove a stronger result modeled after (2.5) by the method of
[16]: Given i, for any p > 0, there exists a positive 0y such that if 6 < &g, then
luis — Risllermi\g, ) < H

for some rotation R;s.

We now complete the proof of Lemma 2.2. For any ;1 > 0, from the definition of Wy, there
exists dg > 0 such that for any § < Jg, we have

(2.18) E,5(was,Qa5) > Wyla) + dky [Ind| — p/6.

Then, from Lemma 2.5, for any 7 there exists a sequence (o) converging to 0 and a sequence of
rotations R;j such that

(2.19) ts () = Riellwron gt amy < i

where u; », = u(a; + oxz). We may choose for each i some k such that oy, < dp/2. Let us fix
some ¢ and let p = o, and R = R; ;. We define u. on By,(a;) as follows.

On B,(a;), we let e = u., while on By (4, \ By(a;) we interpolate between u. and the rotation
R by letting, for any o € S"~! and any r € [p, 2p]

r—p 2p—r

|te|(a; +ro) = + |ue(a; + po)|,
Ug v
—(a; +ro —(ro),
ug,( 7 ) "U’( )
where 0
v(ro) = ; PRo + Pp— us(ai + po).
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It is not difficult to check, using on the one hand (2.19) and on the other hand the uniform
convergence of |uc| to 1 on By, \ By(a;), that

%—R<'_ai>—>0
[t |- —ail

in Whn(By, \ B,). Also, again using the uniform convergence of |u.|, we find that pointwise
[V]uel| = [Vlue|| = =,

where ¢, — 0 as € — 0.
Finally we note that |u.| is closer to 1 pointwise than |u.|, which together with the two
previous bounds and the fact that u. = u. on B, yields

(2.20) lim sup (Es(ﬂg, Bapa;)) — Be(ue, BQP(C%'))) <0.

e—0

On the other hand, since . is a rotation on dBg,(a;), we have

(2.21) Ec (te, Bop,(a)) = 1(e,2pi).

Then, from the strong convergence of ue to u, on g, := Q\ U; By, (a;) we have
1

(2.22) lim inf E. (ue, Q2,) > / |Vug|™.
nJao

e—0 20

To estimate the right-hand side we may use Lemma 2.5 again to construct for any small enough
n > 0 a comparison map v : Q \ U; By (a;) — S"~! such that v is a rotation on 0B, (a;) for each
i, such that v = u, on €y, and such that on each annulus Bs,(a;) \ By(a;) the n-energy of v is

w/d-close to kylog(2pi/n).
Then the n-energy of v on €2, is bounded below by the n-energy of wg,, which itself is
p/d-close to Wy(a) + dky,|logn| if n is small enough. It follows that
1

1
2.23 / Vul™ > W,(a) + kp, log — — 2pu.
229) AR

Putting Together (2.20), (2.21), (2.22) and (2.23) we deduce that
1
E.(ue, Q) > Wy(a) + Z <mn log oo + I(e, Qpi)> — Cu—o(1).

In view of (2.4), this completes the proof of Lemma 2.2.

2.4. Proof of Theorem 1.1. Applying Lemma 2.1, we obtain
lim sup E.(ue, Q) < dky|Ine| + Wy(a) + dy

e—0
which implies
(2.24) lim sup E (ue, Q) < dky|Ine| + min Wy(a) + dy

e—0

Let {e} be sequence tending to 0 such that u. converges to the S"~!-valued n-harmonic map u.
in 2\ {ai1,...,a4}. Then by Lemma 2.2, we get

limionfEE(ue, Q) > drp|Ine| + Wy(a) + dy
e—

which implies
(2.25) lim iglf E.(ue, Q) > drp|Ine| + min Wy(a) + dy
E—

Gathering (2.24) and (2.25), Theorem 1.1 is proved.
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3. DIVERGENCE FREE STRESS-ENERGY TENSOR AND POHOZAEV INEQUALITY

In this section we introduce the stress-energy tensor for critical points of E. and derive the
corresponding Pohozaev identity.

3.1. Stress-Energy Tensor. The derivation of the fact that the stress-energy tensor of a so-
lution of (1.7) is divergence free is not trivial because of the a priori insufficient regularity of
solutions. We prove it through a regularization procedure. Note that from [11], a solution of
(1.7) which is in W is in C% for some « € (0, 1).

We start with the following well-known fact.

Lemma 3.1. Let u. € W, (Q,R™) be a solution of equations (1.7), where g : dQ — S"L.
Then we have |us| <1 in Q.

Proof. Assuming u, is a solution of (1.7), we have

Sty (V"2 uef?) = (div (190" Vi) ) + V]

1 n
(3.1) = <E” (]ugyz — 1) ug,u€> + |Vug|

(Jue* = 1) e + |Vue|™.

1
Toen
Multiplying by (|Juc|? — 1)+ and integrating by parts we find, using the fact that |us| = 1 on the
boundary, that

1 _ 2 1 2
G2 =5 [ Vel Tl = [ (P - 1 el 9 (e - D),
2 Qy Qy en
where Q4 = {|u.| > 1}.
It follows that the right-hand side is equal to zero, and therefore that 2, = @. O
The stress-energy tensor for equation (1.7) is defined, for any u € W1 by
_ 1 1
(33 Ti0) = (Va2 00y — (3 (9" + (0 2 i
We have
Lemma 3.2. For any solution ue of (1.7) and any j =1,---,n

n
(3.4) > T, ;(ue) = 0.
i=1
In particular, for any C! vector field Y = (Y3,---,Y,) € C1(Q,R"), there holds

(3.5) Z/ TijYjvi = Z/ Ti,j0iYj.
ij o0 ij Q

Proof. We consider, given a ball B C Q2 and § > 0 the following functional
1
F(w) = > [ (Vuf+ )2 ds = [ fluwds, where f(uc) = 25(1 - fucf),
nJp B

defined on the space
W ={weW"(B,R") | w=u.on0B}.
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Note that for any fixed ¢ we have f(u.) € W™ N L. This functional is coercive and strictly
convex, thus it has a unique minimizer ws. Then, for any smooth compactly supported vector
field X : B — R™ we may define a family of smooth diffeomorphisms of B by letting o;(x) =

x 4+ tX(z), and the minimality of ws implies, if the derivative exists, that
d
—  Fs(wso =0.
dt |t=0 5(ws 1)

A standard computation shows that indeed the derivative exists — this is where the regulariza-
tion by d is important — and that its vanishing is equivalent to

(3.6) /lgﬂ‘fj(w(;)ain:—/B(X-Vf(ug))'wa,

where

Tfj(w(s) _ (\ng\Q + 52)%31"[1)5(%"11}5 — 5ijf6(w6)

and
falw) i= Z(Vul + 822 = fu) v,

Now we wish to pass to the limit as 6 — 0 in (3.6). Let us assume for a moment that the
following holds

(3.7) ws — ue strongly in W™ as § — 0.

Then passing to the limit in (3.6) yields

— |Ue 2 Ue
(3.8) [ Tisturoxs = [ (X'VW> e,

where

1

- 1
Tivj(u€) = [Vue[" 2 DiueOjue — (n |Vue|™ — en

uw%ﬁuﬁ)%-
Then we note that

1 1
=0y (o= fu ) 05 (0= ey ) e =

1 1
= (= fuePue Oy =
Inserting in (3.8) then proves (3.4) and the lemma.

It remains to prove (3.7). First we note that {ws}s=o is a bounded family in W1, Indeed
any fixed test-function in W™ provides an upper bound for Fs(ws) independent of &, using the
embedding of W1 in L! and the fact that f(u.) € L°°. Using again the pointwise bound of
f(ue) and Poincari; 5’s inequality this upper bound implies easily that {ws}s~0 is a bounded

0;(1 — Juel*)?.

family in W™, We consider a weakly converging subsequence, which is strongly convergent in
any LP, and denote by wq its weak limit.

Then wy = u,, because wy is a minimizer of Fy, but Fy is convex and therefore has a unique
minimizer, which must be u. because it satisfies the corresponding Euler-Lagrange equation.
Now we clearly have by lower semicontinuity

(3.9) /\vugw gnminf/ V|
B 6—0 B
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On the other hand, from the minimality of ws we have Fs(ws) < Fs(u.). Passing to the limit
we find

(3.10) limsup/ ]ng]"ﬁ/ [Vu|™,
0—0 B B

where we have used the strong convergence in LP to pass to the limit in f(uc)ws. Comparing
(3.9) and (3.10) we deduce the strong convergence of ws to u.. O

From Lemma 3.2 we derive the following Pohozaev Inequality.

Proposition 3.3. Let D C R" be a bounded strictly star-shaped domain with respect to xy € D,
and o > 0 be such that (x — xy) - v > adiam(D) for all x € OD.
Then there exists a constant C' depending only on n,« such that, for any solution u. of (1.7),

1

2 . e
/ 1o (1 — Jue®)” + adlam(D)/ (Ve 2 0, ue|?
(3.11) D¢ oD

1 1
< Cn,a) diam(D)/ L 2 (Ve L (1 uef?)?
op M 4em

where |Vrue|* = |[Vue|* — [9,uc|* and C(n,a) =2+ ;(Qrgﬁg)lo)z

Proof. Let Y (x) = x — ¢, then 0;(Y;) = d;;. From (3.5) we obtain by choosing as our basis an
orthonormal frame v, 71, ..., T,_1, where v is the outward pointing normal to D and 71, ..., 71
is an orthonormal basis of tangent vectors to 9D,

1 1
(3.12) / (Y,v) <|Vua|n2 |81,u5]2 — = |Vue|* = — (1 - |u5|2)2) +
aD n 4em

n—1
Y. n—2 , : _ _n 1_ 2 2.
+ ;/{9/3( L) | Vue|" 7 (Opue, Or ue) el ( ue| )

Foreach k=1,...,n — 1 we have
1 fan—2
|(Opue, Or ue)| < 3 ((_1;

Together with (3.12) this implies, using the bounds
(Y, 1) < diam(D), «diam(D) < (Y,v) < diam(D),

2, n(n—1) 2
n(n |0y ue|” + =2 |V ue| ) .

that
/ 1 \2)2—|—adiam(D)/ ol 2N G2 o <
D46n £ oD n 2n 3 v e —
. 1 _ 1 2 1Inn-1 _
< diam(D) /{m - |V |2 |Vue|* + e (1—Ju?)” + 2(75_2)61 Ve |" 2 |Vyue |,
where we have used |V, u.|> = 3, |85, uc|>. We deduce
n (1- ]u5]2)2 + adiam(D)/ IVue|" "2 |0, ue* <
2en oD
. 1 1 n(n — 1) -9 2 1 2\ 2
diam(D) [ (=4 "2+ (1 - ,
(D) [ (% ) [l Vol + o (1 )
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which proves (3.11) with a suitable constant C(n, «). O

4. PROOF OF THEOREM 1.2 AND OF PROPOSITION 1.4

In this section, we analyze the behavior of critical points u. to the equations (1.7) which satisfy
the energy upper bound (1.13). For this we combine the ball construction of R.Jerrard (see [19])
with the use of the Pohozaev identity above. We recall the main result of [19], expressed in a
form suitable for us. Below we use the notation r(B) for the radius of a ball and deg(B,u.) or
simply deg(B) for the degree of the map wu./|uc| : 0B — S*~1.

Proposition 4.1. Assume that u. € W;’"(Q,R”) is such that for some € (0,1)

(4.1) [US]CB(Q) < Ce P,
and let

1
(4.2) Se = {xEQ:uE<2}.

Then, there exists a constant C' depending only on C and the dimension n such that for
any t > C'e|loge| there exists a finite collection of disjoint balls {B!}ier, such that User, Bl is
increasing with respect to t and such that for any i € I,

A
BINS. #, E.(u,Bl)>r(B Et(t), r(BY) > |dilt,

where d; = deg(B!, u.) if Bf C Q and d; = 0 otherwise, and where A. is a function defined on
R such that

A(t t
at( ) is decreasing on Ry and Vt > &, A(t) > kyplog— — C'.
5

Note that in this proposition, the map u,. is not assumed to solve (1.7) or to satisfy an energy
bound. The above statement differs from the equivalent in [19] in that the latter does not require
(4.1) but then requires to distinguish among essential and non-essential connected components
of S.. We do not give details but it is well-known in the case n = 2 (see for instance [27]) that
this distinction can be removed by assuming (4.1), and the case of general n is identical.

4.1. Weak convergence. We now begin to prove Theorem 1.2. It is well known, this is proved
in [19], that under the hypothesis of the theorem {u.}. converges weakly in Wﬁ):(Q \ S), where
S is a finite set. It is to be noted that the energy bound is sufficient for this to hold (see [19]).
This begins with the following consequence of Proposition 4.1.

Proposition 4.2. There exists constants C, ¢ depending only on ), g, M such that the following
holds.

Assume that 0 < € < gq, that u. € ng’n(Q,R”) solves (1.7) and that Ee(u:) < knd |loge|+M,
where d = deg(g). Then for any Cei <o < 1/C there exists a collection of points {x;}ier in
Q, where the cardinal of I is bounded by a number depending only on 2, g, M, such that

1
(4.3) E: (ue, 2\ UjerB(wi,0)) < kpdlog - +C.

Proof. First we extend u. to a d-neighbourhood Qs of , with § > 0 by letting on u.(z) = g(nx)
for any = € Qs \ Q, where 7 is the nearest point projection to 9. If ¢ is small enough, this
extension is well defined and such that

(4.4) E. (us, 5\ Q) <O, |uc| =1 on Q5 \ Q.
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Since u. solves (1.7) the bound (4.1) holds (see [11]) and therefore we may apply Proposi-
tion 4.1 to find that for any ¢t > Ce |log ¢], there exists a finite collection of disjoint balls { B! };c7,
covering S; and such that for any i € I;

Ac(t)

+ T(Bf) > |di’t’

(4.5) BINS. #@, Ec(u,Bl)>r(Bl)

i

where d; = deg(B!, uc) if B! C Q and d; = 0 otherwise.
If t > Cet (which is greater than Ce [loge] if € is small enough) we have Ac(t) > & [loge] if
¢ is small enough, therefore the energy bound for wu. implies that for every i € I;

(4.6) r(Bl) < Ct.
In turn, since B! N Q # @, this implies that if ¢ < 1/C, then B! C Qs and therefore

(4.7) E.(u., B!) > |deg(B!, u:)| Ac(t) > Ky |deg(BY, ue)| <logz - C> :

We change variables by letting o = Ct, and denoting {x;};c; the centers of the balls for
which deg(B!,u.) # 0 we have by comparing (4.7) and the energy upper bound for u. that the
cardinal of J is bounded above independently of €. Moreover

E: (ue, Uie; B(zj,0)) > ki, (Z ‘deg(Bf,ug)’) <logz - C’) .

7

Since the balls B! are included in €5, the sum of the degrees must be d so that
E. (uc,Uie;B(zj,0)) > mndlogg - C.
Using (4.4) and the energy bound for u. we deduce (4.3). O

We are ready to prove

Proposition 4.3. Under the assumptions of Theorem 1.2, there exists a subsequence {uc}c, d

distinct points {a1,az, -+ ,aq} C Q, and an S"'-valued map ug : Q\ {a1,a9, - ,aq} — S*1
such that, as € — 0,
(4.8) ue — ug weakly in Wllog(Q \ {ai,a2, -+ ,aq},R")

and for any 1 <p<n
(4.9) ue — ug  weakly in - WHP(Q,R").
Moreover, deg(ug, By (a;),S" 1) =1, for 1 < j <d and for any small enough o > 0.

Step 1. Assuming the hypothesis of Theorem 1.2 are satisfied, then using Proposition 4.2 and
extracting subsequences as in [19], Proposition 5.1, there exists a finite subset S = {a1,...,as}
of Q such that u. converges to ug weakly in Wlif(Q \ {a1,...,ar}).

Another consequence of Proposition 4.2 is that for any p < n, {u.}. is bounded in WP,
Indeed, proceeding as in [29], we decompose 2 as follows. For any integer k we let wyp =
Uie]kB(l‘f,2kCE%), where the :cf are provided by Proposition 4.2 applied with o5 = k(e
Choosing K such that 9K (et € [1/2,1], we have Q = Uy, where £ =0,..., K + 1 and

Q():OJD, QK+1:Q\WK, anko:wk\wk_liflgkgK.
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Then, from (4.3) and Holder’s inequality
K+1

/|Vu€|pdx§ Z/ |Vu.|P dzx
Q o

K+1

p/n
< il ([ uda)
k=0 Qi

K+1
< Q0P E () + C Z Ji(lfp/n) llog oy .
k=1
Since o is a geometric progression the sum is bounded independently of €. The first term is
1
bounded as well since || < Ce2. It follows that {uc} is bounded in WhP.

Step 2. We now prove that the points {a,...,as} actually belong to €2, and that the degree of
ug around each of them is equal to one.

As before we extend wu. to a d-neighbourhood Qs of Q by letting on u.(z) = g(mz) for any
z € Qs \ Q, where 7 is the nearest point projection to 9 so that (4.4) holds.

To prove that the degrees are equal to 1 we argue by contradiction. Using the annulus estimate
(2.9), we find that

1 ¢ n_ |

4.10 - T d;| "7 log —,
(410) o o 19l 2 Dl o ]
for any 0 < o < 1 such that the annuli By (a;) \ By(a;) are disjoint and included in s, where
Q7 is the complement in Qs of the union U; B, (a;).

From Proposition 4.2, and given a small enough 6 > 0 there are points {x;.}; such that for
each £ > 0 small enough (4.3) holds. Passing to a subsequence, we may assume these points
converge to some points {x;‘}, and clearly we must have for € small enough that

1

1
(4.11) / [Vu,|" < kpdlog — + C.
n Qg\UjBQU(SL‘;) o

this implies in particular that for every 1 < i < ¢ we have a; € Ungg(x;f). But then
(95 C Q(; \ UjBQU(x;),
and thus, if

l
> |di|7 T > d,
=1

then (4.10) and (4.11) contradict each by fixing n > 0 small enough and letting o tend to 0.
The proof that the points lie in the interior is similar, except that it relies on the following
boundary version of Lemma 2.4.

Lemma 4.4 (Boundary annulus estimate). Let a € 9. Assume there are py € (%, 1), pp >1
and o1 > 0 such that for any r < o1, there holds

102N By(a)| < prwnr™ ' and Q2N OB.(a)] < woper™ L.

Given 0 < r < s < 01, assume u € WV(Bs(a) \ By(a),S"1), and letting g be the restriction
of u to 9N (Bs(a) \ By(a)), that g is Lipschitz and degulpanp,(a)) = J # 0 for almost all
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p € (r,s). Then

[Vul" §

_rn

L n S . 19
(4.12) da > iy 317 R o~ = 4l gl

/Qﬂ(Bs(a)\Br(a)) n
Proof. Using Lemma 1.4 in [16], we have for any p € (r,s)

i, 4 o
/ Vianu|" dH" ™ > g " i1 T kanp ™t — 4l mranllgly 0"
QNOB,(a)

Integrating it over (r, s), we deduce the desired inequality. O

Then we argue by contradiction. Using (4.12), we find as above that

1
(4.13) / |Vus|" > k,Dlog 7 C,
Qo o

n

where, denoting by k the number of points belonging to 912,
D = kuy T + (d — k),

for some pp € (1/2,1) which depends only on €2, g. The important point is that if indeed some
point is on the boundary, i.e. k # 0, then D > d, which we now assume.

But now (4.13) contradicts (4.11) again by letting o tend to 0, which proves that the points
ai,-..,aq belong to €. O

4.2. Improved convergence, 1 is n-harmonic. We now wish to prove that the limit ug in
Proposition 4.3 is n-harmonic. This requires some improved convergence estimates, which in
turn require to use the Pohozaev identity in a suitable way. We use the method in [4, 29, 11].
For any zg € 2, p > 0, we define

|Vu5|n 1 N2
f(xo, p ——p/ +—(1—|u .
( ) OB, (z0) Q2 n 4e ( | 8| )

Then we have a “Courant-Lebesgue lemma” type result (see Lemma 2.3 in [29] and Lemma 3.5
in [11]).

Lemma 4.5. Assume u. is a solution of (1.7). Then the following holds
(i) If the upper bound (1.13) holds, then for any point xg € Q, and 0 < & < e~ !, we have

f(ﬂ) p) < 4E€(UE,QHB€1/4($O))

inf < C) :=4dky, +4M
el/2<p<el/A IInel

and
8Ec(ue, QN Bs_1/s(0))

IInel

f(l'o,/)) < < 201.

inf
551/4§P§581/8

(ii). There exists v and €y depending on 2, g, such that for 0 < e < gy and el2<p< 56(1]/8

faop) <7 = ol 2 1/2

Proof of the lemma. (i). For 0 < ¢ < e~ !, we have

cl/4

1
jimel | int | fGeop) < [

1
—-dp < E QONAB <E Q
el/2<p<el/4 cl/2 f(xo,p)p p= 8<u£, el/4 (1‘0)) — 5(u5? )7

proving the first estimate in (i). The second inequality in (i) is similar.
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(ii). From Proposition 3.3 in [11] we know that u. is Holder continuous, and more precisely
for any 5 € (0,1)
[uel sy < Coe™”,
where (s is a positive constant independent of €.

Fix g = % and assume without loss of generality that Cy > /5. Since € is a smooth bounded
domain, there exists po(€2) > 0 such that Vp € (0, po(£2)) and for all g € Q, D = B,(x) () is

strongly star-shaped w.r.t. some yo € D and (x — yg) - v > 17 for YV € 0D. We assume ¢ < p.

1
Now assume by contradiction that y € D is such that |uc(y)| < 2 then

€ 3
p-yls ——, = |u(@)l<]

(4C9)"
and it easily follows that there exists a constant C3 > 0 independent of € such that
1 2\ 2
(4.14) /D e (1= Juel?)” > Cs.
Using the Pohozaev inequality (3.11) which holds in D with o = i, we find
(4.15)

1 2 e Vue|" 2 |V,g|*
[ 0wl o8 [ wup o <o (s, [ VeIV,
p 4 4 Jop aDNA0 n

To conclude we need to absorb the integral on the right-hand side with the left-hand side. For
this we note that |Vue|* = |9,uc|® + |V-g|?, hence it follows from Young’s inequality that

_ n—2 _ 1
(4-16) |vu€|n 2 |V7—g|2 <272 (|al/u€|n 2 |VT9|2 =+ |v79|n) < 1 ‘8uus|n + ' |v7—g|n>

where C’ is some positive constant depending on n. On the other hand, recall that g is smooth.
Combining (4.15) and (4.16), we infer

1 n2 P n—2 2

Vgl .
gcpmm+wj‘ 'm+”/ D]
B 4n JB,(z0)non

p(Io)ﬁ({’Q n
< Cf(ao.p) + Coln Qg + Lo [ Jo,ul”
n Jop

(4.17)

< Cf(xo,p) + Ca(n, 2, g,a)p" + g /a (Ve |" %0, u]*.
D

Now we choose g9 < min(e™!, (po(€2)/5)) satisfying Cy(n, Q,g,a)5"58/8 < % and 7 such that
Cy < <. Then (4.17) contradicts (4.14), which proves (ii). O
From this lemma we deduce improved convergence estimates.

Lemma 4.6. For any K CC Q\ {ai,--- ,aq}, we have
(a) |us| — 1 uniformly in K, as e — 0,

1
(b) n/ (1 - |“€|2)2 +/ | Ve "2 ]V|u5||2 — 0, as e — 0,
g K K
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2
M is bounded in L'(K) independently of ¢.

(c)

Proof of (a). We argue by contradiction. If the result were false there would exist ¢ > 0, and for
e > 0 arbitrarily small there would exist y. € K such that |u.(y:)| < 1 — 0. From Proposition
4.2, we know that if > 0 is chosen small enough then E(u., B;(y)) is bounded independently
of .

On the other hand, using |us(ye)| < 1—0 and Lemma 4.5, (ii), we have for every £ < p < el

f(y87p) 2 ’75 > 07

where 5 is independent of €. Integrating f(ye, p)/p with respect to £ < p < 1 would then
imply that E(uc, By(y:)) > § |loge| vs, contradicting the boundedness of E(ug, By(ye)). O

Proof of (b). As K is compact, we can cover it with finitely many balls {B,(x;)};cs of radius
r such that the concentric balls of radius 2r that we denote Bs,(x;) do not touch S. Then
E. (ue, 2NU;A;) is bounded independently of e, where A; is the annulus By, (z;) \ Br(z;). Using
Fubini’s theorem, there must therefore exist for each € a radius r. € (r,2r) such that

4.18 / Vu —|——1—u <C.
(4.18) D (Va1 )

1— 2
Now taking the scalar product of (1.7) with Ua4||u|52|
Ue

locally uniformly outside the points {a;}1<i<4 — and integrating on D; := QN B,_(z;) we get

1 1 — Juel?
1— =— Vu[""? =0
I e e B e e A

1— 2
+/ ’vuelnizvue -V <Ua ’u52’ > )

— recall that now we know that |u;| — 1

and then

1 _o|V]ue|[?
4.1 1-— Vu.|" 2 =
( 9) /Dl 4€n( |u£| ) ‘/;z‘ u€| 2|u€|2

1- ‘Ue‘Q / ol — ‘UE‘Q
= Vu|"——————— — Vu. " *—0 .
/Di' el e~ S, Vel gy Ol

From (4.18) and using Holder’s inequality, we have

n— 21 |u~€|2
(4.20) VP22l ) < C,
QNOD; 4fue|

while the integrand vanishes on 02 N 0D; since |u;| = 1 there. On the other hand from the
uniform convergence of |u.| to 1 on U;D; and the boundedness of u. in Wl’"(UZ-Di) we have

=0.

lim |Vu€|”Lu€|2
e—0 4|u5|2

Together with (4.20) and (4.19), this 1mphes that

: 1 o |V]uel]?
1 1_ n—2 _
i (], et~ 17 ) =0

which finishes the proof since K C U;erD;, and I is independent of e. g
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Proof of (¢). The proof is similar to that of (b). Again we cover K with balls {B,(z;)}ics such
that Ba,(x;) doesn’t touch S. Then {u.}. is bounded in W™ hence also W'"~! on U; A;, where
A; = Bay(z;) \ Br(x;), and thus there exists for each € > 0 a radius r. € (r,2r) such that

1 )
(4.21) / = |Vu " < C.
zi: QﬂaBTE (l’l) n :
Now taking the scalar product of (1.7) with u. and integrating on D; := QN B,_(z;) we find
1— lul? 2
(4.22) / (= Juel ) Juel” _ _/ Ve |20, . - ue +/ V|
D;NQ € aD; D;

7

Because |u:| <1 in Q and |u.| =1 on the boundary we have
\Vua|"728yu5 -ue >0, on dD; N O,
and from (4.21) we deduce
/ V| 20,ue - u. < C.
QNOD;

Inserting in (4.22) we find that

1— 2 2
D;NQ € D;

which finishes the proof since {u.} is bounded in W' (U;D;) and K C U;D;. O

We now recall the following result from [15].

Lemma 4.7 (Theorem [15] ). Assume 1 < p < 0o and for eachi =1,2,---, let u; € WIP(Q,R")
be a weak solution of the following equation

div (|Vui]p_2 Vui) +fi=0
with K := sup; ||ui||y1e +sup; || fillpr < 0o. If u; — u weakly in WYP, then u; — u strongly in
Wha whenever 1 < q < p.
We may now state

Proposition 4.8. Assuming the hypothesis of Theorem 1.2 are satisfied, the map ug is an
S"~1-valued n-harmonic map in Q\ {a1,...,aq}.

Proof. Tt follows from Lemma 4.6, (c) and Lemmad4.7 that for any 1 < ¢ <n
ue — ug strongly in Wo9(Q\ {ay, - - aq}, R™).
From Equation (1.7) , we have
div(|Vue " ? Vue: Auz) =0 in D'(Q).

By the strong convergence in I/Vli’cq(Q \ {a1,---aq},R™) for any ¢ < n, we may pass to the limit
above to find

div(|Vuo|™ 2 Vug Aug) = 0 in D'(Q\ {ay, - ag}).
It is well-known (see [5, 25, 28]) that a map u € W1m(Q\ {a1,---aq}),S" 1) is n—harmonic if
and only if it satisfies the above equation. Therefore ug is n—harmonic map and the proposition
is proved. O
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4.3. n—Regularity. We now wish to prove the strong convergence of {u.}. outside a finite set,
which is needed to pass to the limit in the stationarity condition (3.4). However, as already
mentionned in the introduction, strong convergence should not be expected to hold outside of
S in general, because of bubbling. What we will prove though is that there may only be a finite
number of bubbles, just as it is the case for Palais-Smale sequences of n-harmonic maps (see
22).

The goal is thus to prove compactness under a small energy hypothesis. This is done by
proving that a Campanato-space type estimate

(4.23) 0sc(Ug, T, p) 1= / e — (Ue)ap|™ < Cpnte
QNB(z,p)
holds for any € Q\ {a1,...,aq}, where § > 0 and C do not depend on z, p or &, and where
(ue)z,p denotes the average of u. on B(z, p).
We distinguish the case where where p is much smaller than e, which is easy, from the case
where p is much larger than e.

Lemma 4.9. Assume u. € ng’” is a solution 0L(1.7). Then, given 8 > 1, there exists 0,C > 0
depending only on 3,9, g such that for any x € Q and any p € (0,°) the estimate (4.23) holds.

Proof. From [11], Proposition 3.3 we have that the C%2 norm of ue is bounded by Cs_%,
therefore on B(x, p) we have

1

2

p
e = (ue)epl < O (£

N——

and then

|3

1
osc(ue, z, p) < p"p(lfﬁ) ,

which finishes the proof. 0

To prove the estimate for larger balls, we begin by rewriting (1.7) in terms of the modulus
and “phase” of u.. Let

(4.24) pe = |uel, 6=

Then u. = p:f. and thus, from (1.7), we have
. _ 1
—div(|Vaue|" 2 (p- Vb, + 0-Vp.)) = (- e )ue,
and then
. - - . _ 1
—div(|Vue|" "2 Vpe) 0. — 2 |Vue "2 V0, - Vp. — div(| Vue "2 V0,.)p. = (1= 02 )te.

Taking the scalar product with ., we infer

. _ ) _ 1

—div(|Vue|" 2 Vo) —0—div(|Vue|" 2 Voe)pe - 0. = 87(1 — p2)pe,
where we have used the fact that 6. - V6. = 0. This same fact implies that
—div(|Vue "2 V6.) - 0. = |Vu|" " ? V6|,

and therefore

. n— e 1
(4.25) ~div(|Vue"7 Vpe) + [Vue "™ [0 pe = (1= p2)pe.
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v
E, thus VO, = —Vpsi2 + Ue

Now recall that 6, =
"UJe’ ’u5’ Pe

. Hence, from (4.25), straightforward
calculations yield
—div(|[Vue|"™? p2V0.) = div]|Vue|" 7 (u:Vpe — p-Vue)]
= div(|Vue|" "> Vp)ue + [Vue|" 7 Ve - Voo — div(|Vue[* > Vo) pe — [Vue|" 7 Vg - V.
= Ve "2 2| V0. 6 — (1= )62 + 2 (1 p2)p20
= |Vu[""? p2 V6| 6..

Finally, we get the system

: n— n— 1
(4.26) — div (|Vue["?Vp2) + [Vue|[**| VO [*pe = 57(1 — p2)pe,
(4.27) — div (|Vue|"2p2V0.) — |Vue | 2p2|VO|*0- = 0.

Lemma 4.10. Let z € Q and r > ¢ such that B,(z) NQ C {z € Q| |uc(z)| > 1}. Then there
exists some positive constant C > 0 depending only on Q and n but independent of € such that

_ 1—p.)? =
[ wurar e S cop- & [
By ()N € B, (z)NQ

provided that |1 — pe||oo is sufficiently small.

Proof. Let £ be a smooth function compactly supported in B,(z) and such that 0 < ¢ < 1,
€lB, 5(x) = 1, and [V < 2. Taking (1 — p.)€? as a test function in (4.26), we find

2 o 2
(4.28) / 52‘vu€‘n—2‘vp€’2 +P5(1 ps)(l Pa)§ —
B, (z)NQ

ETL
/ Ve 2|0 2o (1 — po)€2 + 2 Vue"2(1 — p)EVp. - VE,
By (z)NQ

where we have used the fact that (1 — p:) = 0 on 9(B,(z) N ).
To estimate the right-hand side we first note that

(4.20) / Ve 2|0 2p-(1 — p)€2 < CII1 - pelloo / V|
B, (z)NQ Q

r ()N
To deal with the second term we bound the integrand using Young’s inequality, after noting
that |V¢| < 2/r, to find

€n<1 - P6)3
rn '

f(l - ps)

n—3
|Vue|" 2|V .| < C|Vue"(1 = p)n—1 + C

The integral of the second term on the right-hand side may be absorbed by the left-hand side
of (4.28) if ||1 — pe||oo is small enough, since r > €, and we deduce that

- 1—p.)? =t
[ wurver s S cop-p & [
B ja(z)NQ € B, (z)NQ

proving the lemma. O
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4.3.1. Large interior balls. Here we adapt the proof of [23] to obtain (4.23). Letting
(4.30) e(x,r, ue) ::/ |Vue|",
Br(z)NQ

we wish to prove that for some 6 € (0,1), the inequality e-(z,7/2,u.) < fes(x,r, u:) holds
uniformly with respect to x, r, €. This is well known to imply (4.23).

First we recall some definitions of the Hardy space H!(R") and the BMO(R") and their
basic properties. Let ¥ € Cg°(R") be a function satisfying [, ¥ = 1. For each t > 0,
set Wy(x) = ¢t "W¥(%). The Hardy space H'(R™) is the set of all functions g € L*(R"™) such
that the maximal function f*(x) := sup,~q|¥; * f(x)| € L}(R"). The Hardy space H!(R") is
equipped with the norm || f |1 (®ny = || fllz1@®n) + | f*[| L1 (mn)- The Space BMO(R™) is the sub-
set of functions f € Li (R™) with bounded mean oscillations in the sense that || f|| paromn) =
SUDgeRn 50 th(x) |f — fat| < 0o, where fp;:= th(Z,) f is the average of f on By(x).

The famous theorem of Fefferman and Stein in [9] states.

Theorem. H!'(R")* = BMO(R"). That is, there is a constant C = C(n) such that for all
f e HYR")NC>™ and g € BMO(R") there holds

[ -9 < Clllaen lolwora

In our paper, functions are defined on 2. When we say a function f € Hi (), we mean that
in each relatively compact domain U CC 2, f agrees with a function in !(R"). And we define

||f||H1(U) = inf{HgHHl(Rn) : flo = glu}.
We recall a result in [6] (see also [23]).
Lemma 4.11. Assume u € Wol’p(Br(O)) and E € L¥ (B,(0),R") with 1% +Z% =1,p>1and
p' > 1. If E is divergence free in B,(0), then Vu - E € Hi (B-(0)) and there holds
IVu - Ellag (s, 0 < ClIVulles,0o)1Ell o 5,0y
where C' > 0 is some constant independent of u, E and r. In particular, when x € € and
u € Wol’p(Q), we have
HVU ’ EHHl(BT/Q(x)mQ) < CHVUHLP(BT(.%)QQ)HEHLP/(BT(x)ﬁQ)

Proof. The first part is in [6]. For the second part, if By, /4(x) C €2, it is done in [23]. Otherwise,
we fix a cut-off function ¢ € C(B,(x)) such that €lB, )5(2) = 1 and [[VE][o < 3. By Poincaré’s
inequality, we have
IV (W) e (B, (2)n0) < ClIVUllLr(B,(2)n0)-
Therefore, the desired result follows from the first part. O
The main step in proving (4.23) for larger balls is the following

Proposition 4.12. Assume {u.}. satisfy the hypothesis of Theorem 1.2, and that us — ugy in
VV&)’?(Q \ Ur<i<a{ai}). Then there exist n > 0,0 € (0,1) such that the following holds.

For any compact subset K of Q\ {a;}1<i<q and any € > 0 small enough depending on K, if
e(z,r,u:) <n and B,(z) C K, then

/ 2| Vue|"2VO? < 0| Vue|in (s, ()
Br/4 T
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Proof. We first estimate the norm of |Vu|" 2 p2|V6.|? 6. in the Hardy space H( B, 2()).
Using the fact |6;] = 1, we have
0i0: - 6. =0
so that we can write
(Ve |"2p2| V0|20 = Juc|" 2 p?( Zaeﬁaamk)
(4.31) ) .
= |ue|" % p2| Zaeﬂ D;070F — 9;0%67)].

Let
B; =Vl Ej,=|Vu|" 2 p2(VeI6E — vorel).

Then clearly Ej;;, € L (Br(x)) and Bj € L"(B;(x)). Moreover Bj is a gradient hence curlB; =
0. It also holds that divEj; = 0. Indeed, using (4.27) and (4.31), for any Q' C Q\ {a1,--- ,aq},
and ¢ € W, ™ (,R), we have

/ B¢ == / Vel "™ p2(V0265) - v¢+/ Vue"2 p2(V06D) - Vo
Q' o
=— n—2 j . k n=2 2ok 7
(4.32) - |V“e| pEVOL -V (905) + /Q Ve[ p2V6E -V (960)
/ |Vue|" ™2 2 |V, |* ¢939§+/ V"2 p2 |V6.|* ¢646
Q/

It follows from Lemma (4.11) that Ej; - Bj € H'(B,5(x)) and

1Eji - Billan (s, p@y) < C N1 Esll 721 5, () 1Bill im0 -
Together with (4.31), we deduce

(4.33) 1V ue "2 P21V 020 I35, o)) < ClVUell T, o) | VO T (5, ()

r/2

since 0 < p. < 1. Let £ € C}(B,(x)) be a non-negative cut-off function satisfying &8, /u(z) = 1,
£|Rn\BT/2(x) =0 and \V{] < % We let

Ocwr = 0-(x) dx
r/2( )f r/a(@)

be the average of 6. on the annulus B, 5(z) \ B,4(z). Set ¢ = £(6- — f.4,). Using again
Poincaré’s inequality, we have

[ o= e[ vyl
r(z) Brya(@) Br2(@)\By/4(z)
S/ ‘va6’n+2n/ VO |" + *‘9 8:67"”
BT/4(I) r/Q(I)\Br/él(I)

< / V6. " +c/ V. "
7‘/4(x 7‘/2 \BT‘/4 )

<C/ A
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Again from Poincaré’s inequality and Hoélder’s inequality, we have Vz € R™ and Vs > 0

1/n
f =4 < Csln/ Vy| < C (/ |V¢|n> < C|Vell (B, ()
Bs(z) Bs(2) Bs(z)

which implies
(4.34) [l Bro®ny < ClIVO:lLr (B, (2)),

Here 1), ¢ is the average of function ¢ on the ball Bs(z). Taking v as a test function in (4.27)
and using (4.33) and (4.34) , we obtain

/ |Vu5|"—2p§v95-v¢:/ (Ve "2 p2| V0|26, - 1
B (x) B (x)

< CH|V’%!”72 2IVO20e 31 (B, o (a) V] BrMIORR)
< C1|[Vuel[7n n( B (@) )HVQEH%”(B,.(z))

On the other hand, it follows from Poincaré’s inequality and Holder’s inequality that
(4.36)

(4.35)

|Vue ’niQPE‘V‘ga‘Q
B’V‘/4(x)

g/ (Ve | 2p2V0. - Vip +
By ()

/B Ve 02 V6.] Ve |6 —

%(1‘) B‘Zf x

S/ ( )|VU5|n 2 V9 V¢+CHVU5H ()\By (z))va HL” (B (2)\Bz (x)

< / Vue|"2p2V0e - Vi + Col | Vel 2n 5, (2B (2
Br(a?) 2 T

Adding CQHVUEHLn (z) to both sides we find

Br

q;

(1+Cy) P2 V"2V |? < Vue["?p2V0. - Vi) + Co|| Vel fnis,(a))-
B,/s(@ By(x) /e

Then, using (4.35) and Hoélder’s inequality to bound the right-hand side,

C Co
4. n=2,2 2 < L n n .
s[RI < (g o * 1 ) 19l

Now we can choose n > 0 such that

C1 1 Co
ne +
1+ Cy 14 Cs
and from the uniform convergence of p. to 1 on K we know that, if € is small enough depending

on K, then a/p.? is smaller on B, (z) than § := (1 + «)/2, which is less than 1. For this choice
of n the hypothesis of the proposition then imply, for small enough ¢ and in view of (4.37) that

/ Ve "2 2V 0.2 < 0V 5, 00
r/4\T

o= <1,

where 0 < 1. O

Using Lemmas 4.10 and 4.6, Proposition 4.12 implies the following (Note that we need to
assume that 7 > € so that the hypothesis of Lemma 4.10 are satisfied.)
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Corollary 4.13. Under the hypothesis of Proposition 4.12, there exist n > 0,7 € (0,1) such
that the following holds.

For any compact subset K of Q\ {a;}1<i<d there exist g > 0,19 > 0 depending on K such
that

e<ep, z€ K, r<rg, ande(x,r,u:) <n, = e(x,r/4,us) <Te(x,r ue).

Now we are ready to prove interior n-regularity, putting together the estimate on small balls
and large balls.

Theorem 4.14. Assume {u.}. satisfy the hypothesis of Theorem 1.2, and that u. — ug in
VV;;:(Q \ Ui<i<a{ai}). Then there exist 1 > 0, a > 0 such that the following holds.

For any compact subset K of Q\ {a;}1<i<a there exist eg > 0,79 > 0 depending on K such
that if v € K, € € (0,e9), r € (0,79) and e(z,r,us) < n then we have

(4.38) lucllcas, () < C-
where C' is some positive constant independent of e.

Proof. First we recall the property of Campanato spaces that given an open set U, the C“ norm
on U is equivalent to

1 - n\ "
fle=swp = (f1f = Fonnol”)
p<diam(U)

where f4 denotes the average of f on A.
Therefore, proving (4.38) amounts to proving that for any y € B, »(z) and any p < r it holds
that

(4.39) osc(ue, y, p) < Cp"p"®,
In view of Poincari’;}%’s inequality we may alternatively show that
(4.40) e(y, p,us) < Cp™*.

We choose some 8 > 1. In the case where y € B,./5(x) and p < €8, Lemma 4.9 provides the
desired estimate, with exponent a; = (1 — %)
In the case where p > ¢, we use Corollary 4.13 to deduce that

e(y, p,ue) < Oe(y,2p,ue) < -+ < (0)"e(y, r,ue) < n(0)",
where n is the integer part of logy(r/p). It follows by straightforwardly that

llogé
nlog?2’

e(y, pyus) < Cp™, &=

note that ¢ > 0 since 6 < 1.
Finally, in the case where e® < p < ¢ we simply use the above bound, noting that ¢ < p'/#
to find

nd
e(y, pus) < e(y,e,ue) < Ce™ < Cp 7.

Therefore, choosing a = min(a;y,d/f3), either estimate (4.39) or (4.40) is satisfied for any y €
B, j2(x) and any p < 7. O
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4.3.2. Boundary n-regularity. The boundary version of Proposition 4.12 is

Proposition 4.15. Assume {u.}. satisfy the hypothesis of Theorem 1.2, and that ue — ug in

bc "\ Ur<i<a{ai}). Assume moreover that Q has C? boundary and that the boundary data
g:0Q — S ! is Ct. Then there exist C,n,e9,m0 > 0 and 0 € (0,1) such that if r < ro, if
€ < eg and if x € 09 then

(4.41) e(r,ryue) <n = / |Vue|"2|VO:|*> < Cr" 40 |Vue|".
7 /a(@)NS Br(x)NQ

If, moreover, we assume that r > € then,

0+1
2

(4.42) e(z,r/4,u:) < e(x,r,us) + Cr".

Proof. Denote by v a C! extension of the boundary map ¢, and let
Bj =V(0I —v7), BZ=Vvl, Ej, =|Vu|"?p2(V0I0F — Vore?).
Then
|V "2 p2| V6. |26F = Z (B} + B?) = F + F},

where Ff =3 i Ejk - le- and similarly for F¥.

We estimate the Hardy norm of Fj as in Proposition 4.12, and the Lebesgue norm of F3 using
Holder’s inequality to find
(4.43) 1F 2015 (B, ja(2)nQ) < CHVUsHLn B, @)y IV (0 = V)l (B, (@)n0)

2
(4.44) IF21 w2t 5, oy < CIVUel T, e

Then let ¢ = £(0: — v), where ¢ is cut-off function defined as in Proposition 4.12. Noting that
0. — v vanishes on 02 we may use Poincaré’s inequality as in Proposition 4.12 and find that

(4.45) 1Yl Brro®ny < ClIV(0: = v)|ln(B, (2)ne)

Using v as a test function in (4.27) we have as before

/ \Vue|"2p2V0. - Vi = [Vue|" 22|V 0 [*6c - ¥,

Br(z) B, (z)NQ

and we estimate the latter using (4.43) and (4.45), to get,

(4.46)

[ 9ul 2990 < (9l s, o 196 = D)ooy + [Vl o)
B (z)N2

where we have used Hi'g)%lder’s inequality and the fact that

V(0 — ) n(B,2)n0) < CT + Vel pn(B, (2)n)-
Let us denote by D, the set B,(z) N ). We estimate

/ Ve 22| V0.2 < / Ve 22 V0. 2,
Dr D,

4
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and note that [V6.|> < 2V, - V(6. — v) + [Vv|? to deduce, using Hijjlder’s and Poincari;}’s
inequalities together with (4.46), that
(4.47)

/D Ve 22| V0. ?

N

C
<2/ |Vue|"2p2 V0. - v¢+/ (Ve "2 Vol + / |Vue|"2|Vo.||0. — v
Dr Dy 5\Pg

7 Jp
<C (7”2||VU5||Z;(2DT) + THVUEHQZ(IDT) + HVUEWLLn(DT)HV(HE - U)HL”(Dr))

n—1

1
+C (/ ]Vug\n> (/ |V(0: — U)\")
D \Dr Dr\Dr
21 21

<Ci T2H ;Ue”z;i)r + 7l CUEHZZIDT + | CUEH’En D, (I CUEHL"(DT) +7)) + |Vaue|™.
(Dr) (Dr) (Dr)
Dy\Dx

Adding ClHVusH’zn(D ) on both side and dividing by C1+ 1 we get

T
4

| 19ur 22196 < IVl (c5) (IVuclin, + 7+ 1)

1

+C (rQHVue\ Tniony iVl 75(1&)) :

But, given any small v > 0 there exists a constant C such that 72a"~2 + ra"~ ! < C(a™ + ")
for any a > 0. Inserting above we deduce

n— n c n
[l RV < 19l (G ) (Il 14 €y €

2
and we may choose n > 0 and v > 0 small enough so that the right-hand side is bounded
by Cr" + 0||Vuel|}np, ) for some 6 € (0,1). Then (4.42) follows using Lemmas 4.6 and 4.10,

possibly modifying the constants § and C. O
We can now state the boundary n-regularity result.

Theorem 4.16. Assume {uc}. satisfy the hypothesis of Theorem 1.2, and that u. — wugy in
VV&)’?(Q \ Ur<i<a{ai}). Assume moreover that the domain §) is C? and that the boundary data
g:0Q — S 1 is Ct. Then there exist C,n,e0,m0 > 0 and 6 € (0,1) such that if r < ro, if
€ < eg and if x € 0F) then

(4.48) ez, ruc) <n = uellcos, (2)ne) < G

where C' is independent of €.

Proof. It follows from Lemma 4.9 and Proposition 4.15. The proof is similar to the one of
Theorem 4.14. We leave the details to the interested reader. O

4.4. Strong convergence. The only statements in Theorem 1.2 remaining to be proved are
first that there exists a finite set S; such that for any compact subset K of Q\ (S1 U {ai}1<i<a)
we have

(4.49) lim ||V (ue — uo)[| () = 0,
e—0
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and second that the limiting map g is stationary. In this section we prove (4.49), the stationarity
will follow easily.
We define S; as follows.

= . n
(4.50) S1 = x € Q\{a,ag, - ,aq} hmlnf/ [Vue|™ > =
7Q) ‘ e—0 JB.(x)nQ © 2
where 7 is the constant in Theorems 4.14 and 4.16.

The set 57 is finite because of our assumption of the upper bound for the energy. Indeed fix
o > 0 and recall Q, = Q\ Uj<;<¢Bs(a;). Then if there are k distinct points in S; N, we must
have

1 1
liminf E. (ue, 0,) > k1 + / Vuo|™ > k1 4 wndlog L — C,
e—0 2 nJq, 2 o)
where C' is independent of . Using Proposition 4.2 we have that

1
lim sup E. (ue, Q) < kpdlog — + C,
e o
and we deduce a bound on k, hence on the cardinal of 5.

Now fix a compact subset K CC Q\ ({a1,a2, -+ ,aq} U S1). Then for any = € K, by the
definition of S7, there exists r, such that

liminf/ [Vu|" <
=0 JB,.(x)nQ

Applying Theorems 4.14 and 4.16, up to a subsequence , u, is a bounded family in C%(B,(x)NQ)
for some a > 0. Since K is compact, by a covering argument, up to a subsequence, u. is a
bounded family in C*(K7) where K is some relatively compact neighborhood of K. Therefore,
it follows from Arzela-Ascoli theorem that there is a subsequence — still denoted {u.} —such
that u. — ug in C* (K) for any o/ < ov.

N3

If B, is any ball of radius r such that B, N ({a1,az,--- ,aq} US1) = & then Proposition 4.2,
implies that {u.}. is a bounded sequence in W' (B, N Q) and from Lemma 4.6 we have

4.51 li — 1|70 = li n—2 2-0.
(451) lim loe = Ulzeoinny =0, lim [ Vae" Vel = 0

which implies in particular that lim. |V pc || »(B,nq) = 0 and, from the boundness of || Vue || 7n (B, na)
and HIL%lder’s inequality, that for any v € (0,n)

(4.52) lim IVue|"~7|Vp.|" = 0.
e—0 B.NQ

Let § a smooth positive function compactly supported in B, and such that §p_ 2 = 1 and

|Vn| < 2. Taking &(u. — uo/) as a test function in (4.27) for u. and u. respectively, we have

/ Hvufln_Q nges - |Vu€’|n_2 pg’ves/] - V(ue — uer)E]

T

(4.53) :/ [|Vu6|n_2 Pg |V95‘2 0 — |vus/|n_2 Pg’ |V95/]2 O] - [(ue — uer)E]

T

SH]lSaXWs — ugr| / (|Vue|™ + [Vua ™) = o(1),.
[ Br
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Then we recall for any a,b € R and any p > 2, we have
(4.54) la — P <207 2(lalP 7 + |bP?) |a — b|* < 227 (jafP P a — [bP72b) - (a — b).
Since [|ue — uo|| g (B,n0) = 0. Using (4.54), (4.51) to (4.53) and Hélder’s inequality, we have
/ |Vue — Vuu|" < C'/ (| Ve "2 Ve — [Vua|" 2 Vue] - [EV (ue — ue)]
T-/QOQ BN
<C | (VU™ p2V0e — [Vua " 2 V0] - [V (€ (ue — uer) — (ue — uer) V]
BNQ

+C (11 = pel[Vae|"7F 4 [1 = per | [Vuer ") |V (ue — uer)|
(4.55) B:NQ : : )

" C/ (IVpel Ve |" 72 4+ |V per [V [*72) [V (ue — uer)|
B.NQ

<C [ [1Vuel" 2620, — [Vus " 02 V6] - (e - ue) V]| + o)
BrNQ

<C(”vus”m(3 nQ) + [V HLn (BrNQ) Mue — uf—:’HL”(BrﬂQ) +o(1) = o(1).

In the last inequality we used the compact Sobolev embedding to deduce that ||u:—u|| 1 (B,n0) —
0ase, e —0.

The strong convergence u. — ug in  WU"(B, N Q) thus holds, hence (4.49) by a finite
covering argument.

4.5. stationarity of ug. In this section we conclude the proof of Theorem 1.2 by showing that
the limiting map wug is a stationary n-harmonic map in the sense of Definition 1.3.

First we recall from [23] that if u : Qg = \ {a1,a9, - ,aq} — S"! is a n-harmonic map
and if we know that u € VV10C (Qp), then u € C10C (Qp) for some a € (0,1).

By Lemma 3.4, T; j(u.) is divergence free. Thus, for any ball B,(y) C Q, and j =1,...,n we

have
0T i (u :/ vili j(us) =
/BT@)Z@: i{ue) 9B, (y Z rilte)

As a consequence, on any annulus Bg(y) \ B(y) C Qg \ Si1, we have

u = 0.
/BR@)\B,« Z\fc—y! pilue)

Letting ¢ — 0 and applying Lemma 4.6 and Theorem 1.2 we find

, uo 0.
/BR\BTZ \I—y\ T )=

Recall that ug € CH*(€)), therefore for every y € Q and s > 0 with 9B;(y) C Qo we get

( ) 0B, (y) EZ: ’

On the other hand, we know from Lemma 3.4 that >, 0,T; j(u:) = 0 in Q. Again from Lemma
4.6 and Theorem 1.2, it follows that

Z(‘%Ti’j(uO) = 0, in Qo \ Sl.



30 YUXIN GE, ETIENNE SANDIER, AND PENG ZHANG

By the regularity of ug in g, we deduce that the above identity is also true in 2y. Hence ug is
a stationary n-harmonic map and Theorem 1.2 is proved.

4.6. Proof of Proposition 1.4. We now assume that v : Q\ {a1,...,aq4} C R* — S" ! is
a stationary n—harmonic map such that deg(u,a;) = 1, and that in a neighbourhood of each
singular point a; we have

B(z) Tr — a;

u(z) =e T —ail’

where B(z) € so(n) is antisymmetric matrix satisfying B(a;) = 0 which is C! w.r.t. x.

We start by proving (1.15). Without loss of generality, we assume a; = 0. Then, letting
r=|z| and v = fa7» We have

1
(4.57) dju(x) = eB@ (8;B(x)v + dv), v = (e = (e v)v).
Recall that eP(*) is an orthogonal matrix, hence
(Oju, Oju) = (0;B v,0;B v) + (0; B v,0jv) + (0;B v,0;v) + (O;v, 0jv).

(4.58) 1
= <8Z'V, 6j1/) + (<8¢B(0)l/, 8jl/> + (@B(O) v, 8ll/>) +o ; .

In the above, the derivatives of v are of order 1/r, and the other terms are of order 1. We
deduce easily the leading order term in the expansion w.r.t. r of [Vu|" 2, |Vu|™ and since these
expansions contain only even powers, we find that

459)  |[vup2==D 7 +O< n14) Cpwur = DR O( n12) |
T r r r

From (4.58) and (4.59) we deduce that for every j

ZV’TM (ug) = (n;nl);z <<8VV, o;v) + (0, 0; B(0)v) + <Z V'9; B(0)v, 8jy>> -

(n—1)2 1
T ) o

(n—1)% . (n—1)"7

S v 2 <ZZ: v'0; B(0)v, 0;v) 4+ o <r"1> ,

where we have used the fact that 9, = 0. Since the integral of v/ on 0B, is equal to 0 we
deduce that, as r — 0,

n—2
2

T4 (u :7(71_1) V0, v, 0;V o
(4.60) /8 B(O,T>;Vﬂ’3( 0) =% /a BM@; 0:B(0)v, d;v) + o(1).

From the antisymmetry of 9;B(0) we have (0;B(0)v,v) = 0 so that, in view of (4.57),
1
<8¢B(0)I/, (9jV> = <8¢B(0)I/, ;€j>.

Now we write v(z), d;v(x) in terms of the coordinates z!,... 2" and get
1.k

S (oBOYw, o) = %(&-B(O)ek, e;).

% i,k
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Since the integral of z’z* on 9B, is equal to ar™t15;, for some strictly positive o and replacing
in (4.60) we finally obtain from (1.14) that

/ ZVTZJUO =an—-1)"7 Z@B (0)e;,e5) +o(1) =0,
OB(0,r)

which proves (1.15) since the equality holds for j =1,...,n. '
To prove (1.16) we use Taylor’s expansion B(z) =Y, 8;B(0)z" + O(|z|?) to obtain

u(z) = v+ |z 8,B(0)v + O(|z[*).
Therefore, it follows from ). 9;B(0)e; = 0 that

Alz?0,B(0)y =2 0;B(0)ey, = 0.
i=1
Hence, the quadratic Q(z) = |z|* 8, B(0)v is harmonic. When n = 2, we write
0 oz
(4.61) B(z) = (—a(x) (() )>

The above condition (1.6) is equivalent to Va(0) = 0. Hence B(z) = O(|x|?). This concludes
the proof of Proposition 1.4.

5. CONSTRUCTION OF NON-MINIMIZING SEQUENCE OF CRITICAL POINTS

In this section, we prove Theorem 1.5.
Let n =3 and = (2, 23) with 2’ € R?. We consider a domain

Q - C U D+ U D_
consisting of a long cylinder C' = {z € R?||2/| < 1, |x3] < L} of radius 1 and length 2L plus two
spherical caps at each end Dy = B(P,1) N {z3 > L} and D_ = B(Q,1) N {x3 < —L}, where
= (0,0,L) and @ = (0,0, —L).
We define a boundary map g : 92 — S? of degree one defined on the spherical caps by

_r—P = Q
g(a:)—m on 0D, NN, g¢g(z) = 2= Q]

On the cylindrical part of the boundary we let, choosing an arbitrary h > 0,

1 1
g(m)zm(x’,—h)iflﬁxsﬁL—L g(x) = \/1+h2($ h)if =L +1 <3< -1,

and the boundary map interpolates between these on the remaining part of the boundary, namely
forx3 € [L—1,L]U[—L,1 — LJU[—1,1]. We also require that the interpolation be such that

on 0D_ N oN.

goS==Sog, where S(z’,23)=(2/,—x3)
and for any # € R, identifying R? with C,
goRg=Rygog, where Ry(z,x3)= (eiez,azg).
We define the sobolev spaces of equivariant maps by
W(QR?) = {ue WP(QR?) [uoS=SouuoRy=Rgou,Vo},
and W(Q,S?) = {u € W(Q,R3) | |u| =1 a.e.}.
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Let E. be the Ginzburg-Landau functional. What we will do now is to show that there exists
C > 0 such that if € > 0 is small enough, then

(5.1) min  E.(u) < min E.(u) <ky,|loge|+C
ueW, 3 (Q,R3) ueW (Q,R3)

This will prove Theorem 1.5 since a minimizer u. for min W (£, R?) is a solution to (1.7) by the
symmetric criticality principle, and if ¢ is small enough, using (5.1), it is nonminimizing and
satisfies the bound (1.13). It remains thus to prove (5.1).

Upper bound for min, ¢y o sy E:(u). Let B(0, 1) = {z € R, |z| < 3} be the ball with center
0 and radius equal to 3 and v € W(Q\ B(0, 3), R?) be some given equivariant map satisfying
v=gon 00 and v(z) = & for all z € B(0, 3). Define for any = € B(0, 3)

e

wele) = pelel) 2, pelr) = min ( (5 5)+ 1)
and for any = € Q\ B(0,1)

Ue(x) = U(:E)
Then u, is clearly equivariant and thus we have
1 1
(5.2) min  E.(u) < E.(u:) = E.(v,Q\ B(0, 2)) + Ec(ue, B(0, 2)) < kp |loge| + C,
ueW (,R3) 2 2

since E(uc, B(0, §)) = kn [loge|+O(1) and Ec(v, 2\ B(0, 3)) = O(1). Here C is some constant
depending on ().

Upper bound for min Ec(u). This upper bound is more delicate. Let D denote

ueW, (Q,R3)
the unit disc in R?. The large spherical cap is defined to be
h

A:{(x/,x3)€S2 |,$3Z—6}, where 62@

and the small spherical cap is B = S? \ A.

Define gp : 0D — S? by gp(x) = (\/ﬁ, —6) and let
1
(53) b:= mln{g/ ‘VU|3 | u:D — S27“|8D = 93}7
D

Then a minimizer exists, and we claim that it is unique and satisfies u?jg < —6. Indeed if
up = (uh, u%,uy) is a minimizer then u)y = (uk, u%, —|u}|) is another minimizer, and since

—div (|Vulp|Vul®) = [V Pu” <0,

the maximum principle implies that u’B3 < =4 in D. Since ujg?’ = —|u}], it follows that u3, < -,
hence up takes values into B, and from [8, 10, 26], the minimizer up is in fact unique.

Now we may define a “large” 3-harmonic map u, : D — S? — following the strategy of
[2], but here no bubbling can occur — by minimizing the three energy over the set of maps
u: D — S? agreeing with gg on the boundary and such that

Q(u) :/ u- Opu A Oyu = | A,
D

where |A| denotes the surface area of the large cap A. The minimizer exists and belongs to the
same class, because Q(u) is well known to be continuous with respect to weak convergence in
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W13, moreover it is a 3-harmonic map because Q(u) is a null-lagrangian, and is distinct from
up because Q(up) = —|B|. Therefore

1 .1
(5.4) b<a:= 3/13 |Vual> = m1n{3/D Vul? | u:D — S? ulop = g5, Q(u) = |A|}.

We claim that

(5.5) min  E. < kg|lne|+ L(a+b) + C,
Wy (QR?)
where C does not depend on ¢ or L.
To prove this, we define a test map u. as follows. For any x € D we let

ue(2,23) = gp(a’) if g € [I, L — 1], we(a',23) = —ga(a) if z3 € [-1,1 — L],

and we extend u. on D x [—1,1] so that it is a finite 3-energy S?-valued map, which is possible
since the boundary map is of degree zero. Similarly we may define u. on QN {z3 < 1— L} as
a finite 3-energy S?-valued map. It remains to define u. on U := QN {z3 > L — 1}. For this
purpose, we do this first in the ball B(P, 1) by letting for any = € B(P, 1)

) = pello = P po(r) = min (<)+1) 7

€

and extend u. on U \ B(P,1) by taking some finite 3-energy S2-valued map as above since the
boundary map is of degree zero.

Then it is straightforward to check that E.(u.,U) < k3 |loge| C, and we have
E:(ue, D x [1,L —1]) = (L — 2)b, E:(us,D x[1—L,—1]) = (L — 2)a.
On the rest of Q, the energy of u. is clearly independent of ¢, L thus (5.5) is proved.

Lower bound for miny g gs) E.. Now we claim that

(5.6) min  E.(u) > k3|lne| 4+ 2La — C,
ueW (,R3)

where C is independent of ¢, L.

Here the equivariance of maps in W plays a role. Denote by u. the minimizer of the functional
E. over W(Q,R3) and wuyg its limit given by Theorem 1.2, which applies because of (5.2). The
map ug has a single singularity of degree 1, but it is also equivariant and therefore this singularity
must be located at the origin. Since ug is 3-harmonic and minimizing away from the origin, it
has C1% bounds away from the origin and the boundary which are independent of L (see [13]).
It follows straightforwardly from this — we omit the lengthy details — that

(5.7) E.(u., B(0,1/2)) > k3 |lne| — C.
Moreover, since ug is in C1%(Q\ {0}, S?), for any ¢ € (1, L — 1) the degree of up on (92N {x3 >
tH U Q2N {x3 =t}) is equal to 0. Therefore we have for any ¢ € (1, L — 1) that

Q(uol{zs=ry) = 4],

and therefore )

/ Vol > a,
3 J{zs=t}n0

which implies

(5.8)

Wl =

/ |Vug|® > La + O(1).
{z3>1}NQ
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Similarly, we get

1

(5.9) / Vuol® > La + O(1).
3 Jzs<—1}n0

Applying Theorem 1.2, u. — ug weakly in W™ outside the origin, therefore (5.7), (5.8) and
(5.9) imply (5.6).

Conclusion. We have proved (5.2), (5.5) and (5.6), from which (5.1) follows easily in view of
(5.4), if we choose € > 0 small enough and L > 0 large enough. As already explained, this proves
Theorem 1.5.
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