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ABSTRACT. We consider the problem Au+ |u] ﬁu =01in Q¢, u = 0 on 09,
where Q. := Q\ {B(a,¢) | B(b,¢)}, with Q a bounded smooth domain in RY,
N > 3, a # b two points in , and ¢ is a positive small parameter. As ¢ goes
to zero, we construct sign changing solutions with multiple blow up both at a
and at b.
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1. INTRODUCTION

Let D be a smooth bounded domain in RV, N > 3. Consider the following nonlinear
elliptic problem

Au+|u|ﬁu:0 in D, u=0 on ID. (1.1)

It is well know that the Sobolev embedding H} (D) — L% (D) is not compact and
for this reason solvability of (1.1) is a quite delicate issue. Pohozaev’s identity [33]
shows that problem (1.1) has only the trivial solution if the domain D is assumed
to be strictly starshaped. On the other hand, if D is an annulus then (1.1) has a
(unique) positive solution in the class of functions with radial symmetry [22]. In the
nonsymmetric case, Coron [13] found via variational methods that (1.1) is solvable
under the assumption that D is a domain exhibiting a small hole. Substantial
improvement of this result was obtained by Bahri and Coron [4], showing that if
some homology group of D with coefficients in Zs is not trivial, then (1.1) has at
least one positive solution (see also [3, 8, 10, 19, 28, 25, 35] for related results). If
the domain D has several holes, then a multiplicity result for positive solutions to
(1.1) is obtained in [34]. On the other hand, in [12] the authors found a second
solution in Coron’s setting (one small hole), but they were unable to say if the
second solution was positive or changed sign. Existence and qualitative behavior
of sign changing solutions for elliptic problems with critical nonlinearity have been
investigated by several authors in the last years (see [5, 6, 9, 11, 20, 21, 26, 27]). A
large number of sign changing solutions to (1.1) in the presence of a single hole has
been proved in [29)].
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More precisely, in [29] the authors assume that D = Q\ B(0,¢), where 2 is a
bounded domain, which contains the origin and is symmetric with respect to the
origin. They prove the existence of an arbitrary number of sign changing solutions
for (1.1), if the radius € of the removed ball is small enough. The shape of such
solution is a superposition of blowing up bubbles with alternate sign concentrating
around the center 0 of the removed ball B(0,¢).

A bubble is a function defined in RY of the form

N-—2

/LL 2
U ele)=an [ —F 1.2
hf() N(N2+|$_§|2> ( )
where ay = [N(N — 2)]¥, it is any positive parameter and ¢ a point in RV,

These functions are all and the only positive bounded solutions of problem (1.1) in
the whole space RY [1, 36].

The result in [29], as well as in other related problems where construction of tower
of bubbles is obtained [14, 15, 16, 32], rely strongly on the assumption of symmetry
of the domain. On the other hand, even if delicate, removing the symmetry as-
sumption can be done. The first contribution in this direction is due to [17], where
the authors generalize the construction of tower of bubbles for the slightly super
critical Brezis-Nirenberg problem obtained in [14] for a general non symmetric do-
main. They obtained this result under a further non degeneracy condition: if &, is
a non degenerate critical point of the Robin’s function of the domain it is possible
to construct a tower of bubbles concentrating at &,. Even if generic, this non de-
generacy assumption is hard to check: the only result about that is contained in
[18], where the author shows that the origin is a non degenerate critical point of the
Robin’s function if the domain is convex and axially symmetric with respect to the
origin. Let us mention that recently in [31] the authors drop both the assumptions
of symmetry of the domain and of non degeneracy of the Robin’s function. The
proof in [17] uses a gluing technique developed in [23] in some other context. The
proof in [31] is based on the use of a Liapunov-Schmidt reduction.

The aim of the present work is to remove the assumption of symmetry on the
pierced domain ). Let us be more precise.

Let Q be a bounded domain with smooth boundary and a be a given point in €.
Given a parameter £ > 0 small, we remove from {2 the ball centered at a with radius
rq€. Here 7, is a positive fixed number. We are interested in constructing solutions
with the shape of a tower of bubbles around the removed ball for the problem at
the critical exponent

Au+|u\ﬁu:0 in Q\ B(a,r.¢),
u=0 on 0(Q\ B(a,rq.e)) .

The result we prove is the following

(1.3)

Theorem 1.1. For any integer k > 1, there exists € > 0 such that for any
e € (0,er) there exists a pair of solutions ue and —u. to problem (1.3) such that
N-—2

k 271—1 2
i M;e 2
@) = o 3 (1) (M ) +0,(a).

i=1 s + |£C — a|2

where My, ..., My, are positive constants depending only on N and k and ||Oc |1 o\ B(a,r,e)) —
0ase—0.
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The second result we get reads as follows. Let a, b be two given points in 2 with
a # b. Given a parameter € > 0 small, we remove from ) two balls of centers a
and b and radius respectively r,e and r,e. Here r, and r, are two positive fixed
numbers. We construct solutions with the shape of two towers of bubbles around
the removed balls for the problem at the critical exponent
Au+ |u|¥2 u =0 in Q\ { B(a,rqee) UB(b,m¢) }, 14
u=0 on 0 (Q\ {B(a,rqee) UB(b,1e) }) . .

The result we prove is the following

Theorem 1.2. For any integer k > 1, there exists € > 0 such that for any
e € (0,ex) there exists a pair of solutions us and —u. to problem (1.4) such that

N-—-2

k M,e25 2
ug(m) =Qan Z(_l)H_l <M2€22i1 )

Py % + |z — al?

N—-2

k Ne“s :
CS T (—1y = + 0. (),
;( : <N3522;;1 +|x—b|2> )

where My, ..., My, Ni,..., N are positive constants depending only on N and k
and ||®5‘|H(l)(Q\{B(a,’raa)UB(b,rbg)}) — 0 ase—0.

Observe that in the above construction, the first elements in the two towers have
opposite sign. On the other hand, in case that the two towers are build upon
bubbles of the same sign, an extra condition on the position of the centers a and b
of the holes is required. This condition is on the sign of a certain combination of the
Green function of 2 and its regular part. We thus need to recall their definitions.
We denote by G(z,y) the Green function of the Laplace operator in Q with zero
Dirichlet boundary condition and we denote by H(x,y) its regular part, namely

1
G(x,y) =~ <xy|N2 - H(%ZJ)) ) (1.5)
with vy = m, where |0B] denotes the surface area of the unit sphere in
RY. Thus for all y € Q, H(x,y) satisfies
1
—AH(z,y)=0 in Q, H(z,y)= ——— x €K (1.6)

|z —y[N 2
The Robin’s function is defined as H(z, z), x € Q.

Our last result is the following

Theorem 1.3. Assume

HY2(a,a)HY?(b,b) — G(a,b) > 0. (1.7)
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For any integer k > 1, there exists e, > 0 such that for any e € (0,ey) there exists
a pair of solutions ue and —u. to problem (1.4) such that
N-—2

k s 2
ue(z) = an Z(,l)z‘ﬂ ( {Eia % >

A2e2%5 4|z —af?

i=1
N-—2
k . B»s% ?
+) (=)™ 1+ 0.(x),
g B2 4 | — b2 )
where Aq,..., A, Bi,...,By are positive constants depending only on N and k

and ||@s\|Hg)(Q\{B(a,ras)uB(b,rhe)}) — 0 ase— 0.

Theorem 1.2 and Theorem 1.3 extend the results obtained in [34] and in [30] in the
case of two holes when k£ = 1: our results claim that on top of solutions found in
[34] and [30] one can put two towers of sign changing bubbles.

Let us mention that natural extensions of the results obtained in Theorems 1.2 and
1.3 can be obtained in the case of several holes removed.

We will prove our results with the aim of a Liapunov-Schmidt reduction, which we
describe, together with the scheme of the proof, in Section 2.

2. PROOF OF THEOREM 1.2, THEOREM 1.3 AND THEOREM 1.1

We will describe the steps of the proof of Theorem 1.2. The proof of Theorem 1.3

and Theorem 1.1 can be carried out in a similar way.

For any € > 0 fixed, set . := Q\{ B(a,r,e) U B(b,1¢) } . Let H(£2:) be the usual

Sobolev space equipped with the scalar product < u,v >= f VuVb, which induces
Qc

the norm [Ju| = ([, [Vul? dz)z. Let L9(€.) be the space equipped with the norm
lulg = ([ |ul? dx)% By Sobolev Embedding Theorem we have the existence of a
positive constant S, depending only on N, such that |u|137§2 < Slu|| forall u €
H}(9.). Consider now the adjoint operator of the above embedding i : Hg () —
L%(Qs)7 namely the map @* : L%(QE) — H}(Q.) defined as follows: if w €
L+ (92¢) then u = i* (w) in H} () is the unique solution of the equation —Au = w
in Q., u = 0 on 0€).. We have the existence of a positive constant ¢, which depends
only on the dimension IV, such that

I ()] < elw| g for all w e L¥H2 (2). (2.1)
Using the above definitions and notations, problem (1.4) can be re-written as follows
u=13"[f(u)], wu€ HiQ.), (2.2)

where f(u) == |u[P~'u and p = {2

We next describe the shape of the solutions we are looking for. We start with the
definition of the two towers, centered respectively around a and b. We define

k k
Va(@) = (=17 ujalz),  Valz) =Y (=1)7 () (2.3)
j=1 j=1
where
Uja(l') = PEUHja,aja (LL'), ujb(w) = P€U5ja,bja ({,C) (24)
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In (2.4) P. denotes the projection onto Hj (£2.), namely for a given function defined
on all RY, P.u is the unique solution in of the problem AP.u = Aw in £, and
P.u =0 on 9. Furthermore, in (2.4) we assume that

2j—1 2j—1
Wje =€ 2k lij and 6jg = €T5j (25)
for some positive numbers ; and d;, and
Qje = @+ [jeTj and bje =b+ 6j60j (26)

for some points 7; and o; in RY. We will assume the following bounds on the
parameters and points appearing in (2.5) and (2.6): given § > 0 small

n< g, 0 <nt |l ol <n forallj=1,...,k. (2.7)
To refer to the parameters above, we will use the compact notation
F=(r,...,7%), &=(01,...,0%) € RV* and
a=(p1y.-y pg), 5:(51,...,(&)6]1%’1. (2.8)
The solution predicted by Theorem 1.2 has the form
u(z) =V(z)+ ¢(z), where V(zx)=V,(z)— V,(z). (2.9)

Here the term ¢ has to be thought as a smaller perturbation of V.

We next describe the term ¢ in (2.9). To do so, let us recall (see [7]) that, for all
§ >0 and ¢ € RY, every bounded solution to the linear equation

—AyY = ' (Usc) v in RN

is a linear combination of the functions

j N-_2 T —C» )
Zg,g(m) =0, Usc(x) = an(N —2)0"2 e |;3 — CJ\Q)N/27 j=1,...,N

and ) )
N-2 ~va |z—(*-9

0 — — 2

Z&,((x) 1= 0sUs¢c(7) = an 2 o (62 + |z — C|2)N/2'

We define the subspace of HE(Q.)

HjesQje

K := span {PEZh P.ZE i h=0,1,.. N, j=1,.. k} :
where P. is the projection onto Hg(€.) as defined before, and
K= {o e H() : (6, PZ o) = (6, P2} ) =0,
h=0,1,...,N, j=1,....k}.
Let I : H}(Q.) — K and IT* : H}(Q.) — K be the orthogonal projections.
In order to solve problem (1.4) we will solve the couple of equations

I {V+¢—i* [f(V+¢)]} =0 (2.10)
I{V +¢—i*[f(V+¢)]} =0. (2.11)
Given 7, &, fi and 0 (see (2.8)) whose components satisfy conditions (2.7), one can

solve uniquely equation (2.10) in ¢ € K+. This solution ¢ is the lower order term
in the description of the ansatz (2.9). This is the content of
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Proposition 2.1. For any n > 0, there exists g > 0 and ¢ > 0 such that for any
7,6 € RVE for any i, 5 € Ri, satisfying (2.7) and for any € € (0,e0) there exists
a unique ¢ = ¢(7,5,[i,6) € K+ which solves equation (2.10). Moreover

N—-2p
ce 2 2 4f N >17,
6]l < { e = |Ine| if N =6, (2.12)
ce’T if 3 < N <5.
Finally, (7,5, [1,0) — ¢(7,5,[1,0) is a C'—map.
Roughly speaking, the solution ¢ to (2.10) is found with a fixed point argument,
which works thanks to two fundamental ingredients: the existence and estimates

of the inverse of the linear operator obtained linearizing problem (1.4) around V' in
the space K+ (see Section 5) and the study of the error term

R:=TI"{i* [f (V)] - V}. (2.13)
This last estimate is carried out in Section 6.

We are left now to solve equation (2.11), more precisely to find points 7, & in RVF,
and parameters fi, & in RY so that (2.11) is satisfied. It happens that this problem
has a variational structure, in the sense that solving (2.11) reduces to find critical
points to some given explicit finite dimensional functional. Let us introduce the
energy associated to problem (1.4)

1 1
J.(u)== [ |Vu|*d ——/ Pl 2.14
(u) 2/Qg|u| R Q5|u| (2.14)
Furthermore, we define the function ja (REN ¢ RFN R’j_ X ]R’j_ — R by
Je(7,0,11,0) == J (V + ). (2.15)

Next result contains two fundamental statements to conclude the proof of our The-
orem 1.2. First it states that solving equation (2.11) is equivalent to finding critical
points (7., e, Jic,6.) of the finite dimensional function defined in (2.15). Second
it computes the asymptotic expansion, as € — 0, of the function :7;(7-, a, i, 6), for
points and parameters satisfying (2.7). More precisely, in the above region the
function j;(%,&,ﬂ,g) is uniformly close, together with its derivatives, to J.(V).
The proof of these facts are contained in Section 7. Furthermore, we can expand
explicitly J.(V) and prove that it is closed in a C! sense to a constant plus an
function ¥ (7,7, f, 5)5% plus a lower order term 0(8%). This fact is proved in
section 3.

In the whole paper we will use the notation O(1) or o(1) to denote a continuous
function of the parameters p;, d;, 7; and o, which is bounded or approaching to
zero as € goes to zero uniformly in the range described by constraint (2.7).

Proposition 2.2. The following facts hold.

Part 1. If (7.,6., fic,0-) is a critical point ofje, then the function V+¢ is a solution
to problem (1.4).

Part 2. For any n > 0, there exists g > 0 such that for any e € (0,&p) it holds
- p+1 p+1

Jo(7,,71,8) = 20, Xk + “H—W(7, 0, i, )= 7 (1 +0(1), (2.16)
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C'—uniformly with respect to points and parameters 7,7, [,0 satisfying
(2.7). The functions U is defined as follows

U(7,6,[1,0) = ¢z [H(a, a)N "2+ H(b,b)5N 2 + 2G(a, b)ulT_élT_}

T(7%) ’I“N_2 T(ok) ry 2
(1 )T T (o) T
22 S\
+2Z [ <M3+1) +T(0;) (?1) ] . (2.17)
Hj j
Here
/ - / L 4 (2.18)
1= —————dz, 2= ———dz. .
Sy WHEPY T ey (14 o)
and F : RN — R is the smooth function defined by
1 1 N
I(x):= / T 7I|2)N;2 2 dy, zeR". (2.19)

RN
We have now all the tools to give the

Proof of Theorem 1.2. In virtue of (i) of Proposition 4.1 there exists a nondegener-
ate critical point (0, 0, fig, &) of the function ¥ introduced in (2.17), which is stable
with respect to C'—perturbation. Therefore, taking into account the expansion
(2.16) in Proposition 2.2, Part 2, we deduce that if ¢ is small enough the function
J. (see (2.15)) has a critical point (7, &, fic, 0.) such that 7.,5. — 0, fi. — fip and
5. — 0o as € goes to 0. Finally, from Proposition 2.2, Part 1, and from formula
(?7), it follows that V + ¢, where V is defined in (2.9) and ¢ is the function whose
existence is guaranteed by Proposition 2.1, is the solution predicted by Theorem
1.2. O

Proof of Theorem 1.3. We look for a solution to (1.4) of the form u(x) = W(z) +
¢(x) where W(z) = V,(z) + Vu(z) (instead of V,(z) — Vi(x)). Here V,,V, are
defined as in (2.3) and satisfy (2.5), (2.6), (2.7). The rest term ¢ is a lower order
term which is constructed exactly as in Proposition 2.1. Arguing as in the proof
of Theorem 1.2 we are lead to find a critical point of the reduced energy, whose
expansion is given in (2.16) where in this case the function ¥ = ¥* becomes

(7,0, 1,0) = & [H(a, @) 2 + H(b,)5) 2 = 2G(a, b)p, * 6,7 |

(%) TN 2 (o) l])V 2

U+l 7 (o) 6
N-2 5 N-2
+2Zl (“”1) +F(aj)( J(;_”) ] (2.20)
Hj j
Let us point out that in this case the interaction between the first two bubbles of
the towers is negative and is given by —2G(a, b), while in the case of Theorem 1.2

it is positive and is given by +2G(a,b). Finally, using (ii) of Proposition 4.1, the
proof follows the same argument of the proof of Theorem 1.2. O
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Proof of Theorem 1.1. We look for a solution to (1.3) of the form u(z) = V,(z) +
¢(z), where V, is defined as in (2.3) and satisfy (2.5), (2.6), (2.7). The rest term ¢
is a lower order term which is constructed exactly as in Proposition 2.1. Arguing
as in the proof of Theorem 1.2 we are lead to find a critical point of the reduced
energy, whose expansion is given in (2.16) where in this case the function ¥ reduces
to

N—-2

W) = et a4 LIRS (tae)
T, ) = catl(a,a)py = — Tj

R R T = AN
Arguing as in Proposition 4.1, we can prove that ¢ has a non degenerate critical

point (0, fig). Finally, the proof follows the same argument of the proof of Theorem
1.2. O

3. EXPANSION OF THE ENERGY FUNCTIONAL

This section is devoted to the computation of the expansion of J.(V'), where J. is
the functional defined in (2.14) and V is defined in (2.9).
The main result of this section is contained in the following

Theorem 3.1. For anyn > 0, there exists g > 0 and ¢ > 0 such that for any 7,0
in RV* and any [1,6 in RY satisfying (2.7) and for any € € (0,20), we have

ap+1
Jo(Va = Vo) = 201k
ap+1 N2
+ 2 {ez [Ha, )l = + H(b, )31~ +2G(a,6) (u161) 2
L(r) )2 L Dlow ry
I+ )= ™2 (4 |ow) = &7
k—1 ‘ N2—2 5 N2—2
+2> 0 |T(ry) (”J“) +r(aj)( J“) £ %
= 1 9

+0(5%) ) (3.1)

C'—uniformly with respect to u;, 8;, T; and oj, satisfying (2.7). Here the positive
constants ¢1 and ¢y are given in (2.18) and the function F is defined in (2.19).

Of fundamental importance to carry out the proof of the above expansion are the
two Lemmas that follows. The first one gives a description of the basic element of
each one of our towers, namely the projection onto H}(€2.) of the standard bubble
Us,¢, for proper election of § and £. The second Lemma is a direct consequence of
the first one.

We start with

Lemma 3.1. Assume that & = a + ut, with p — 0 as e — 0 and € = o(u) as
€ — 0. Then, if we define

R(z) i= P.U¢(x) = Upe(a) +axp = H(a,€) +a ! (rae)™
: elu,g M€ N ) Nu¥(1+ |7_|2)N2—2 \x—a\N—Q’




SIGN CHANGING TOWER OF BUBBLES 9

there exists a positive constant ¢ such that for any x € Q\ (B(a,rq.e) U B(b,1¢))

v [eN72(1 fep Nt £ N_
R < s | S e ()72 (32)
Noa [eNT2(1 e N €\N—
o) <o’ [T d T v Ov 2] )
v [eN72(1 +ep™N) gN—2
ol < et | TS e S (3.4)

Proof. We scale as follows: R(y) = u’¥a;,1R(rasy +a). Thus —AR =0 in €0,

where b, — (ﬂ—“)\<3(0,1)u3(b_a’%))'

Ta€ Te€ Tq

It is easy to check that Q. — RN \ B(0,1) as ¢ — 0, and that if y € dB(0,1)

. 1 1
R(y) = — T H(rasy + aa’g) + —
PR+ BaEy — 7)) PR (L [7[2) 7

: Q—a
and if Y < 0 ('raie)
Rly) 1 n 1 n 1
Yy)=- = - = :
(42 + [racy = pr2) 72" Irasy = p7IN72 0N =2 (1 [7[2) 57 fy V2

Thus we get the estimates

|R(y)| < C(1+ for all y € 9B(0,1),

)
N2

and

A 2 (E\N-2 Q-a
R < 002+ ()N tor auyea( )

A comparison argument for harmonic functions implies that
. 1+ept=N EN_
|MM<C‘774*+f+%W2~

This fact gives (3.2).
Let us now denote by R, (z) = d,R(z) and define R, (y) = p= T R(reey +a). A
direct computation shows that

N 1
|R.(y)| < C(1+ N2 i) for all y € 0B(0,1),

and

R0 < €2+ (V) forall y€ (Q‘) |

This fact gives (3.3).
Finally, let R;(z) = 8,,R(z) and R;(y) = =2 Ri(rqecy + a). We get the following
estimates

|Ri(y)| < C(1+ ,UiN) for all y € 0B(0,1),

and
N-2

. Q—a
2
|Ri(y)| < C(p” + MN_l) forally € 0 ( e ) .
This fact gives (3.4).
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O

Lemma 3.2. Under the same assumption of Lemma 3.1 we have the validity of
the following estimate

/Ufz (PUpe —Une)’ =0 (N + (/w)N) if N>5,
Qe
= O (p*log p| + (¢/w)*|log(e/m)l) if N =4,

=0 (W +(g/p)?) if N=3.
Proof. As direct consequence of Lemma 3.1, we have to estimate

/ 12 N £2N=2) ~(N=2) "
(7 + e —€Pp o —ap®a )
Q

€

Now, we have if N > 5

p 2 1
— r  ___dz=0 —d
/(u2+|w—§|2)2 s /|x—a|4 !
Q Q

=

and if N = 3 (setting = — £ = py)

p? 1
—__dr =0 ——d
/ (W +1e— PP “R[ T+ g2

=

Moreover, we have if N > 5 (setting z — a = ey)

M2 1 ~(N—4),, 2 1
(EFle— g e —apm V| e
Q. {lyl=1}

and if N = 3 (setting z — £ = py)

/ (2 1 0 71/ 1 1

=0 p y
(7 + o = €PP o = aP A+ PP Iy =P
QE RN

The case N = 4 can be treated in a similar way.
Collecting all the previous estimates, the claim follows.

O
Proof of Theorem 3.1. .
We write
T (Vo = V) = J. (Vo) + Jo(Vp) 4 J&° (3.5)
where

1
T = — / VV,VV; — ﬁ/ (IVa = VB[P = [Vo[P*E — (W3 [P+Y) dae. (3.6)
QE QE

We start to estimate J. (V) in (3.5). In a very similar way, the estimate of the term
J:(Vp) will follow.
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Recall that V,(z) = Z?zl(fl)j“uja(x). For simplicity of notation, while comput-

ing the expansion of J.(V,), we will write u; instead of uj,. Then, using the fact
that [, Vu;Vu;de = [, u?u;dz, we have

Te(Va) =3 Je(ug) + J2 (3.7)
j=1
where
1 k , k .
Thm g IS g e = 3 g = (1) Y1)l | d
e j=1 j=1 1>
(3.8)
Let us fix j in {1,...,k}. To simplify again the notation, we will use U; to denote

the function Uy, 4;.. Since Au; = UJP in Q. and u; = 0 on 0f)., we see that, for
some 0 < s<1,

oL ptl 1 Ply: — U, b |p+1 _ et
Js(u])N/QEUj dm+2/QEUj(u] Uj)dx P Q[|uj| Ui ] dx

1 1 _
:—/ UP+1d:1777/ Up(ujij)dmfp/ [U; + s(uj — U)P~ uy — U;)% dae
N Ja. ’ 2Ja. Q.

It is useful to point out that ., #= = O <€i) , because of (2.5).

First we observe that Lemma 3.2 implies that
N—-2
[ :0(57). (3.10)
If we perform the change of variables © —a = ;. 2, the domain Q. gets transformed
into a0\ {a)
~ a o€ Tpe
Q. = B(0, — Bba,). 3.11
= () (B0 U s -0 ) (3.11)
Since fﬁ — 0 as € — 0, the set (). converges to the whole space RY and we get

1 o0 1 2j-1 .
A]:NOCI])V /RNWCZZ‘FO(E 2k )7 forallj:L...,k. (312)

We observe for later purpose that ‘E%]\q < ez,
Using the notations introduced in Lemma 3.1, we write

1
Bj = i(le + Bj2 + ng) (313)
where
N+2
. 2
By = ot ,NEZ/ ( Hje > H(z,a;.)dz 3.14
31 N Hje a. ,U/jag + ‘J} — aj£|2 ( JE) ( )
_N-2 N+2
B‘z:oszrlTNszN i / < o > 2 : — dx
PEIN A ) Ja \m e —ageP) e —alV2
(3.15)
and
Ni2

Kje 2
By = —alt! / ( ) R(z) dx. (3.16)
! N Jo \wje? + |z — ajef?
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Using again the change of variables x — a = p;.2, the domain ). gets transformed
into Q. (3.11) and we get

N+2

1 N -2
B fOé;fVJrl,UjsN 2/(2 <1+|Z+TJ|2) H(a+ﬂjsz,a+ﬂjs7'j)dz
1 i1
= a?v“(/RN e dz) H(a,a) p¥ 2750 V=2 (1 4 0(1))  (3.17)
z 2
and
N-2_N-2 N2
r € 1 N-2 1
By = a2t a = / ( ) dz 3.18)
BN Lt ) o \Tr ) T (
N—2 1 E(N_2)(§§_2j+l)
- ap+170‘177(/ dz) (1+ o(1)).
L) ey V2 e ) o
Finally, using the result in Lemma 3.1, we have
|Bjs| = o(e 5 (V=2 4 V=225 o an =1,k (3.19)
Thus we conclude from (3.9)—(3.19) that
k p+1 p+1 N-2
(6% (0% _ Ta F(Tk) 1 N-—2
D Je(ws) = her—p—+=3 lCQH(a’a)NiV | © T ()
Jj=1

(3.20)
Next we estimate the term J! (3.8) in (3.7). Assume B(a, p) () B(b, p) = () for some
p > 0. Thus we write

—(p+1)J! = (/ +/ )GL(2) du, (3.21)
QE\B(G:P) QEﬂB(a,p)

with

k k
D e = 3 g = (4 1) Y (1) b
j=1

j=1 >

The first integral in (3.21) is lower order respect to the first one. Indeed we have

p+1 Pr7.
<C Z/Q\BapU +Z/ Uru;

ij Qe \Bla:p)

—2 N
<C ZNJE +Z,U'ze 2 Hje 2 20(5%)-

i#]

To deal with the second integral in (3.21), we will decompose the set Q. () B(a, p) =
B(a, p)\B(a,r.¢) into the union of non—overlapping annuli. More precisely, we write

Bl(a, p) \ B(a,rqe UAZ (3.22)

where for alll =1,...,k,
Ap = B(a, /puepu—1c) \ B(a, \/tzftiy1e)-

with oe := pi. p? and prpie = py r2e?.
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Thus we write
k

Gidr = G5 dx (3.23)
/szsnma,p) ; A

Fix now [. We write
p+1

GSdx = / Z(fl)jﬂuj —uP — (p+1u Z 1)y,
.Al -AL

7 i#l

_Z/ p+1 p+1)/ Z( 1 “”upuj—ul Z v+l

il A [ i>5 il

Now we further decompose the last integral above as follows

SO N SEIET D R
A

1>] 17l
) |- [t 30 0 [
3>l >4, A

=0+ 1) [0 [ e S0 [ - upu) - by - )
j>l

i>l
j+1 P
DI C Ay
i>j, il A

Summarizing the above information and putting in evidence the principal term, we
write

Gide=(p+1)Y (1) / UPU; dx + 1 (3.24)
A 3>l A
where r; = Z?zl rj; with
p+1
R I ) S e B e R D C
A, j i#l
- Z/ pH1
i#l
ra=(p+1) > (=17 [ {[(Wf = UP)U] + [uf (u; — U]},
J>1 Ai
rg = (p+1) Z (_1)j+i/ uj .
i>j, il Ai

We first deal with the main term in (3.24), namely (p+1) E;>l 1)+ f Uru; du.
Hence we are interested in computing [, UfU;dx forl =1,. k: 1. Tn the region
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A; we perform the change of variables x —a = p.z. Thus the transformed domains

are
Al={zeR" : ‘/‘““Eq | < JH= 15} if l=1,... k-1

It is immediate to see that (2.5) gives that the transformed domain A; converges
to the whole space RN as ¢ — 0.
With this in mind and using the fact that j >l and [ =1,...,k — 1, we have

i % P+1 1

g

/ UlpUjd:c<J) / ON e HE HE ~ dz
A fie A (L4 |2 =) 3 [(522)2 + |2 — bz ) 5

1 Bi\ 2 e2G-n
_ ! / dz) <J> e 3% 1+o0(1)). (3.25)
N ( RN |Z‘N_2(1+ |Z_Tl|2)N;2 1 ( ( (

Since e T Tt = 5%, we thus conclude that, forall [ =1,... .,k —1,
N-2
. 2
2(71)”]/ UPU;jde = o' T () (*”“) s (140(1),  (3.26)
=i Ay I

where F is defined in 2.19. To get the estimate of [ A, G5 dx we are left to show
that the term r; in (3.24) is negligible. We claim that this fact will be consequence
of two fundamental computations

/A Urtlde = 0 (sﬂ) for all j # 1, (3.27)
1
/ UPU,dz = O (eﬂ) forall j £1, forallil, (3.28)
Ay
and
/ UPUdz = O (57”‘”2(5‘”) for all j # 1. (3.29)
A

To get (3.27), we perform the change of variable z — a = p;.z to get

UP+1 1

Tdr = ——v d2.
/A J N VI (14 |2 — 752)N
! Ty <lzl< e J

If j > [ then 7%“:*“ — oo and so, for some positive constant C,

N
UP+1 dx<C/ t_N‘ldt:C(MjE) = 0(e).
’ | m VHieiy1e =

If 5 <[ then 7“”;”:“5 — 0 and so, for some positive constant C,
N N
| UJp+1 d$|§ C <\/,Uflsﬂl15 B \/Mls,u'quls) <C (\/Mlsﬂlls) _ O(E%)
A Hje Hje Hje

These facts give the validity of (3.27).
Estimate (3.28) is a direct consequence of (3.27) and Holder inequality, since

/ UlpUj dx
A

1
p+1 P+T
§</ Uf“dz> </ U;?“dx> < CO(e7).
.Al -Al
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Finally (3.29) is a direct consequence of the computations contained in (3.25) when

j > 1. Assume now that j < [. Perform the change of variable z — a = p.2, one
gets

» N—2 N-2 a‘;’VJrl 1
_ 3 3
/A UyUjdx =, e / 75 " dz
1

A (T+]z—m?)™2 [M?a + ez — ,ujsTjP}

N—2

p+1 = v
= (/ N N2 dZ) (M) E(N 22)"(1 2
RN |z =[N 72(1 + |z — 75%) 2 My
-0 (5 (N—22)k(l—j)> )

(From this we conclude (3.29).
Let us now estimate the terms that define r; (see (3.24)). First we have

rul = ¢ Z/ vz Y [ ure? | < ot 0t
gL A ig#l A

since, if j # [,

p—1 1

/UflUf<O</ Uszi) p (/ Uf+l>p<cgléﬁ<l+ﬂz>,
A Ay A

and, for i # [ and j # [,

foree(f o)™ () o
A A, Ay

An immediate consequence of (3.27) is that |ry| < Ce2t, while from (3.28) we have
that ‘T4l| S Cé‘%
We are left to estimate r3;. We thus fix j > [. In particular we just take [ # j. A
consequence of Lemma 3.1 is that in 4; we have
cN-2
luj(z) = Uj(z)] < C—5= —-
Hje 2 |z —alN 72

Hence, using again the change of variables x — a = p;.2, we see that the first terms
in the expression of r3; can be estimated as follows

eN—2 1
<Ci/ U ————dx
< = i =

MJ‘V22 A |xia|N 2

je

/ uy (uj = Uj) d
A

N-—-2

€ 1 1
<C — / dz

(jetue) "7 JA (L4 |z — mf2) 5 [N 2

N-—2

< Ce =k (2k—j—1+1) < (Ce F .
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The remaining terms in the definition of r3; can be estimated as follows. We have
for j > [ and using again the change of variable in A; given by x — a = .2,

eN-2 UP 1U
’/ D)Uj dx <C/ UP Ny — Uy|Ujde < C NQ/ dx
Ay -Al|

Ml52 v a|N ’
N-2, "3
< C’6 Hie / ! L ! dz
= N—2 _ — N-—2
th” A (L2 =m2)2 (2172 (12 4 ez — pjer; |2) 75
< C’ v / 1 1 d < C %
g k.
> NlNgzﬂfv;z RN (1 T |Z _ Tl|2)2 |Z|(N_2) FARS
5 je

By all the previous estimates we get

N-—2

= off! ZF (’”“) i e (1 + o(1)). (3.30)

y (3.7), (3.20) and (3.30) we conclude that

p+1
JE( ) = kC1 N
p+1 N-2 k-1 o2
N N—2 ra T(7) 1 M1\ 2 N2
+ coH (a,a)p + - — + ) T(n) | —— € 2
2 { R z
N-—2
to ({-:W) . (3.31)
In a very similar way one gets the expansion of J.(V}) in (3.5), that is
aerl
J (V) = key %
p+1 N-2p 1 k-1 5 B2 _
+ Oy CQH(b,b)(S{V_2 + "p (0-116\,)72 — +ZF(UZ) (H—l) gNzk2
2 (1 + lokl?) 7= o =1 o
to (SNT?) . (3.32)

We are now left with the estimate of J** in (3.6) to complete the expansion of
(3.5).
Standard arguments (see [2] and [3]) prove that

JE7 je

/ VP.Uy,,. a;.VP:Us,

1 N-2 N2
_ alﬁ_l / —— s dz G(ase, bje :uis 5'62 1+o(1
. <RN<1+|Z|2>2+ ) (aiesbyo)nic” 6,7 (1+0(1))

1 N 72 jH+i—1)(N-2
/ Mdz) Gla b, 7 6,7 52 (14 0(1)).
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Therefore

/VVGVVb:afVH / ) Glab) (b)) T (1 o(1)),
0. ey (14 [2)%5
(3.33)

Let now p > 0 be such that B(a, p) N B(b, p) = 0. Define
Goe = |Vo = Vo|""" = VI — VP,

Taking into account that D (|z[P™!) = (p + 1)z|z|P~!, a Taylor expansion gives

/ GQE = / G2€ + / G2€ =+ O(:LL{\:'];‘ + 5{\]5)
Q. Q.NB(a,p) Q.NB(b,p)

/ VPV; + / VIV,
Q.NB(a,p) Q.NB(b,p)
p(p+1)

/ (Vo 4+ sVi)P V2 + / (Vy 4 sV, )P~ 1v2
2 Q.NB(a,p) Q.NB(b,p)

+O(uis +01Y)

k
=—(p+1 / Ur. a,VL+/ ur . v,
( )Z [ Q.nBlap) TYE Q.NB(b,p) 0se:bie

=-(p+1)

+

j=1
+L+Q+OG%) (3.34)
where
hi=- /QmB(a,p) v z]: Uﬁj&ajs o /ngB(b,p) pr B ZJ: Ugja’bﬁ "
and
I:= —p(p; o) [/ (Vo + sV3) P~ 1132 +/ (Vo + sVa)P V2.
Q.NB(a,p) Q.NB(b,p)

It is straightforward to see that I, I, = O (6%) . Furthermore, it is by now stan-
dard (see [2] and [3]) that

P
/ U/,LJE,GJEPEUSia:biE d.’I;
QeNB(a,p)

= B! ) Glaw b )T 6T (14 0(1))
N RN (1+‘Z|2)N;—2 1€y Vge ) Fie Jje

1 N—2 N-2 (j4i-1)(N—2)
— oot / ———dz | G(a,b)u; 2 5,2 ¢ ==  (1+0(1)). (3.35
" ( TRAFEE= A e e

By (3.34) and (3.35) we deduce

N-—-2 N—2
2

/QE Goe = —2(p+ 1)l </RN (1+|Zl|2)1v2+2d2> G(a,b) (u161) = €72 (1+o(1).
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We thus conclude that

N—2

Jﬁ’b _ C2a§)v+1G(a’ b) (/1151)7 5%(1 + 0(1)), (3.36)

Finally by (3.5), (3.31), (3.32) and (3.36) the C°—estimate in (3.1) follows.
Arguing in a similar way, we can also prove the C'! —estimate. O

4. THE REDUCED FUNCTION

This section is devoted to guarantee that the functions ¥ and ¥* defined in (2.17)
and (2.20) have critical points which are stable under C'-perturbation of them.

Proposition 4.1. (i) There exist fig, 00 € Rff_ such that (0,0, fig, 60) is a non
degenerate critical point of the function U defined in (2.17).
(ii) If (1.7) holds, there exist fig,00 € R% such that (0,0, ig,d0) s a non de-
generate critical point of the function U* defined in (2.20).

Proof. Let us rewrite the functions ¥ and ¥* as

- 1 1
@(7_',5',/7,, (5) = ha,u% + hbéf + 2hab/~5151 + g(Tk)? + g(ak)6—2
k k

12 ik 92
+ f(T1)m+--~+f(Tk:1)Hk_1] + [f(01)61+--~+f(0k1)

Ok
Op—1]’

N2 N2
where we replaced p; > and 6, > with p; and J;, respectively, and we also set

he = coH(a,a), hy == baH(b,b), hyp := tcaG(a, b)

TéV_QF(?j , gp(x) == ré\fﬁr(gfv)d , [(@):=20(z).

= ) (1t o)

First of all, we point out that if we fix 7 = & = 0 the function (&, ) — ®(0,0, fz, 0)
has a minimum point (fig, & ). In fact, the quadratic form (1, 81) — hep? + hyd? +
2happ101 is strictly positively definite: this is trivial if hey = +2G(a,b) and it
follows by (1.7) if hap, = —2G(a, b).

We are going to show that (0,0, fig, &) is a nondegenerate critical point of ®. The
claim immediately follows.

Let us remark that

o He59(0,0, fio, 6o) 0 ~
H(I)(O’O’MO’&O)_( 0 H;59(0,0, fig, d0) )

By Lemma 4.2 we easily deduce that |H;’§<I>(O, 0, g, 50)’ # 0. It remains to prove
that

’Hﬂ75(1)(0707ﬂ0750)’ 7é 0. (41)



SIGN CHANGING TOWER OF BUBBLES 19

Let us compute V®(7,7, i,0) in a generic point:

Opy ® = 2ho 1 + 2hapdr — f(Tl)%
1

3;L7-,<I>:M—f(n)“igl, i=2,...,k—1
2

Hi—1
0, ® = _2ga(;—k) 4 f(kal).
. Hik—1

1)
05, ® = 2hp61 + 2happt1 — f(01)5%
1
D5.® = M—f(oi)é’tl, i=2,...,k—1
i i 5
gv(or) | flok=1)
Os, ® = -2 .
51 5}3 + o

If VO(7,5,[i,6) = 0, in particular we get

29q
o = A = Fr)E2 == ) = 292U oy o+ 2h),
H1 Hk—1 My
(4.2)
5 b 2
=B = f(01)= = = f(0p_1)—— = gb(fk), B = (2hy81 + 2happtr).
51 Sh1 52
(4.3)

2Bp2 B
2h, + 3 uzooce 0 2hap
I 3
R R
2 52(0,0, 72 = ;
7.5 2(0,0: o, do) 2hap 0 ... 0 2t AR -5
0 0 ... 0 —5 25
0 0 0 0 0
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By (4.2) and (4.3) we get

’H[L,S(O7 0) ﬁo: 50)’

QhGu% + 20, —0 ... 0 2hab,u%
o?
-8 20éa PN 0 0 0
3 0 0 ... 3a, 0 0
- 2hab5% 0 e 0 2hb(5% + 2ab 76
2

0 0 e 0 7% 20&5

0 0o ... 0 0 0
o A Qhab/i%ﬁ
I\ 2had2C B

where
2hap? + 20, —f
a;
A o _7 2aa
0 0 ... 3ag
2hb5% +20, -0 ... 0
2
—% Zab ce 0
B:= .ﬁ _
0 0 3ay,
and
1 0 ... 0
0 0 0
L=
00 ... 0
In order to prove (4.1) we shall show that
Az 4 2hgpp2Ly =0
9 r=y=0
2hab51£x + By =0

By the first equation we deduce
€T = _Qhab/fﬁ (A_l‘c) Y,

because by Remark 4.3 and by (4.2) we get

|A| = af ™! (8khapd + 2hap(2k + 1)p161) # 0.

Therefore, by the second equation we get

[B — 4hZy 303 (LA'L) ]y =0.

o

3&1,
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We point out that
2hp63 + 20 — 4habu151a11 -0

21

3ab

_a 20
B - 4h2,ui26? (CA™L) = i

0 0

where a7 is the element in the first row and in the first column of the matrix A4~!,

namely

ak=1(2k - 1) 2k — 1
a1 = = .
1 Al 8lihai2 + 2hay(2k + 1) 1116,

Finally, by Remark 4.3 and by (4.3) we get
2hy62 + 20 — 4h3b/ﬁ5%a11 -3
2

— % 2
|B — 4h2,u262 (LAL)| = P b
0 0

= ap " [(2he0F + 200 — 4h2,uidan) (2k — 1) — ap(2k — 3)]
 (64K%hahy + 32kh2,) puio}
- 8kha/1€ + 2hab(2k + 1)/1151

That proves our claim.

30&(,

O

Lemma 4.2. = =0 is a non degenerate critical point of the function I' defined in

(2.19).

Proof. Let us compute the Hessian matrix HI'(0). We have

Y; + T; 1
3miI‘:v:—N+2/ —
(x) = —( )RN Lt ly 1 22 2
and
02,4, D) = —(N+2) / (v 4y +fo i -
’ oy A+ly+22)%°  Q+ly+2)F |
In particular 97, T(0) = 0 if i # j and
2 1 1
2,00 = ~(N+2) [ |- )Ty
l L+ A+ )™= | WV

RN

Taking into account that

/ _ lyl? 1
(1+|y\ )’”6 IyIN 2 N (14 |y2)™=° ly[V 2

we have
52 N +2 N — 4y% 1

()** N :
;T N o\ N6 N-2
Jo @)
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We are going to prove that

/ N —4|y|? 1 20
Las T

The claim immediately follows.

It holds
+oo
/ N4y 1 / N -4
=wN r——————dar
9y 46 N—2 9y V46
oAl ) (Lr2)

+00 +oo
r r
=wpn(N +4 /7dr—4w /7%
N( ) (1+T2)N;»6 N (1+T2)N2+4
+oo +oo
" 1 + 4 w 1
=-—wN | ———=+7 N | ==
a+r2)% )|, N+2 1+7r2)%%" )|,
o N -2
TN
|
Remark 4.3. It holds
y -5 0 ... O
—%2 2 —p
0 -2 20 ... 0 [l=a"y@k—1)—a@k-3), (44
0 0 0 ... 3«

where k denotes the dimension of the above matriz.

Proof. Let us introduce the tridiagonal matrix of order n defined by

2a -6 0 ... 0
2

—% 2a2 -3 ... 0

0 0 0 ... 2«

Arguing by induction one can easily prove that |A4,| = (n 4+ 1)a™. An easy compu-
tation shows that

¥ -8 0 ... 0
—% 2a2 -0 0
0 —% 2a 0
0 0 0 3a

=7 [3a|Ak_2| — 042\Ak_3|] —a? [304|Ak_3| — oz2|A;€_4|]
= a2k — 1) — a"(2k = 3) = " [y(2k — 1) — a(2k — 3)]

and the claim follows. O
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5. THE LINEAR PROBLEM

Let us introduce the linear operator L : K+ — K1 defined by

L(¢) =TI {o —i* [f (V) ¢]}, (5.1)

where f/(V) = p|V|P~1, V is defined in (2.9) and p = {+2. In what follows we
study the invertibility of the map L, starting with an a-priori estimate for solutions
¢ € Kdé5 of Lj¢(¢) = h, for some right hand side i with bounded || - |-norm. We

have the validity of the following

Lemma 5.1. For any n > 0, there exists e9 > 0 and ¢ > 0 such that for any 7,0
in RY* and any [1,6 in RY satisfying (2.7) and for any € € (0,20), we have

IL@)] = cllgll  for all € K+

Proof. We argue by contradiction. Assume there exist sequences &, — 0, 7y, 0y, €
RNE | i, 0 € R’i where 7, — 7 € RN, 04, — 0y, with |73], o3| < 6, for i =
1,...,k, and pjp, — pj >0, 655 — 65 >0, for j =1,...,k, and functions ¢, 1, €

K+ such that
L(pn) = tn, ||én]l =1 and ||¢]| = 0 as n — co. (5.2)

(From the definition of (5.1), we get the existence of ¢, € K such that

G — 0" [f/ (V) ¢n] =UYn+ G (5'3)
STEP 1. We prove that
[l — 0. (5:4)
By definition, we write (, = Y. af'PZ} .+ 3 ﬁfthZgi b, - To
h=0,1,...,N h=0,1,...,N o
i=1,....k i=1,....k
prove (5.4) it is enough to show that y;,a — 0 and §;,3" — 0 as n — oo, for all
i, h. We will do it for o', Thus we multiply (5.3) by PZ};, ., we integrate in Q
and we get
(Co. PZ) 00 ) = / f (V) PZ . du. (5.5)
Q.

By Lemma 5.2 we deduce that

P (G P2, o) = all[en +0(1)] +0(1) [ > ol +> 8 (5.6)
Jj#h



24 YUXIN GE, MONICA MUSSO, AND ANGELA PISTOIA

Moreover, using the orthogonality condition <¢, Pz = 0 we deduce

#lmazn>

/ f/ (V) d)n /Lhnaln / f PZI}}:lnyaln - Z/}Llhualn)
Qe,

+ / [f/ (V) Ulen}aln} QSnZZlnvaln

Q

En

<1 Wy bnl 2x [PZ = 2 i

2N

N—-2
+ ‘f -p Ul:,,aln’N |¢”| 2 ’ mn,azn’Nf2
1
= — o1 5.7
o (1) (5.7)
Finally (5.4) follows by (5.5), (5.6) and (5.7).
STEP 2. Let us define
Up = Pp — VY — Cp, SO that ||u,|| — 1. (5.8)

Then equation (5.3) gets rewritten as

—Aup = (VN un+ (V) (b + ) in Q,,, (5.9)
up, =0 on 99, . '
‘We prove that
hmlnf / ' ( =c?>0. (5.10)
We multiply (5.9) by w,, we deduce that
funll = [ £ 00+ [0 Gt o) (1)
By Holder’s inequality, (5.2) and (5.4) we get
[ £ 0G0+ G| <17 Wl o+ Gal g, Junl
< cllvom + Gall lunl = o(1). (5.12)

We conclude that (5.10) follows by (5.8), (5.11) and (5.12).

STEP 3
Let us define smooth cut off functions around each annuli A;, and B;,, defined in
(3.22) around B(a,r.¢e) and around B(b, rpe), respectively. Namely

Aln = B(a, vV Mln/ﬁlfl,n)\B(av v ,U/ln/J/lJrl,n) and Bln = B(b, V 6ln6l71,n)\B(b7 V 6ln6l+l,n)a

with the convention that po, = an 2 for some p > 0 small and g1, = u,:nlrgf;j

and that do,, = 67, p? for some p > 0 small and Okt1n = 6kn r2e2.
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For any j =1,...,k, let xj,, be a smooth cut-off function such that
Xjn(@) =1 if \/Iinlitin < |z —al < /Hjnfj—1n,

X () =0 if |z —a| < YEEE or |z —al > 2/l —in, (5.13)

2 2. j 4
VX (2)] < == and [V2)), ()] < —0—.
Furthermore j =1,...,k, let X?,n be a smooth cut-off function such that

x;’n(l’) =1 if \/djndjtin < |z —0b] < \/0jndj_1n,

(@) =0 if |z — b < Y op o b > 2, /5,8, 1, (5.14)

VX2, (2)] < \/ﬁ and [V2x],(z)| < J_in‘é—ln.

For any j =1,...,k we define

. N_2
U?n (y) = Hjn" 7 un(piny + Q)X?n (1jny +a)

and

ﬂ?n(y) = 5jn%un(5jny + b)X?n (5jny + b)

We will show that, for any j =1,...,k,

as,, a5, — 0 weakly in DV?(R™) and strongly in L{, (RY) for any ¢ € [2,2*).
(5.15)
We will prove this fact for 4f,. For simplicity of notation, in what is left of this
step we will drop the dependence on a.
Furthermore, let p > 0 be such that B(a, p) () B(b,p) = @ and consider the annuli
introduced in (3.22).
It is useful to point out that for x = p;ny +a

Vijn(y) = finF [Vn(@)Xjn(2) + (@) Ve ()], (5.16)

and

. N2
Adijn(y) = pjn 2 [Aun (@)X jn (%) + 2VUn (2) Vijn(2) + tn (@) Axjn(2)] . (5.17)
First of all, by (5.16) and (5.13) we easily deduce that ||ty ||p12@~y < c.
Therefore, up to a subsequence, u;, — U; weakly in D12(RY) and strongly in
LI (RN) for any g € [2,2%).

We will show that 4, solves the problem

Adj + f (Ur,—r,) 45 =0 in RY (5.18)
and satisfies the orthogonality conditions
/vzﬁ_ijaj =0, h=0,1,...,N. (5.19)
RN

These two facts imply that @; = 0, namely (5.15).
We are thus led to prove (5.18) and (5.19). We start with (5.18).
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en —Q

Let us perform the change of variable z = pj,y + a, y € QJ, := Qﬂjn . By (5.17)
and (5.9) we get for any ¢ € C°(RY)

/Vﬁjn(y)vw(y)dy = /uanf’(V(ujner a))tn (y)e(y)dy
RN RN
+ / #;% I (V(pgny + ) @n(jny + a) + Ca(piny + a) x5 (1jny + a)(y)dy

RN
N+2

+ 245, / [V (1jny + a)VXjn(iny + @) + wn () Axn (1iny + )] o(y)dy
RN
=: I]_ +Ig+[3+[4 (520)

It is easy to check that Iy, I3, 14 — 0. Let us compute the limit of I;. If we denote
Ujn = a + pjnTj, for Y <y y| < 2, /Tt 1, we have

1
' Vpgny +a) = =f @Um(y +75) + Y Ui (Biny +a) +0(1) | ,

1
o (m) ifj >
Hin 2

N—2 1
Min 2 [ .
Ol e ——— | ifi>j
<ujnN—2 |y|N—2>

Therefore by (5.21) and (5.22), using the Lebesgue’s dominated convergence The-
orem we get that

(5.21)
with

Upinain (Bny +a) = (5.22)

L= [ £ @aly+ ) @ W),
]RN
Thus (5.18) follows by passing to the limit in (5.20).
Let us now prove (5.19). We have

[ V2 @Viwdy = [ £ )2 0y
RN RN

— Jijm / Uy @)L o (@)in(@)xin ()
V B g —a| <2 i

= 1tin / F U0y (@) Z0 o (@)un(@)de + o (1) ] - (5.23)
Ajn
Now we observe that, by (5.4) and (5.8),
tin / VPZﬁjmajn ()Vup(x)dz =0(1). (5.24)



SIGN CHANGING TOWER OF BUBBLES 27

On the other hand

/ VPZ o (2)Vun(2)ds = i / P Uy @) 2 o (@)in ()
~ / F Uy (@) 28 (@)n(2)da + o(1) (5.25)
since

f/(U#jmajn )Zl]j:jn,ajn (x)un (l')dx

en \B(ajn,p)
2
N
h oz
se ’Zﬂjnvajn 2N _ |un|% / Uﬂjnﬂajn = O(l)’
o Qe \B(a0)
and for [ # j
h
Hjn / f/(qun,ajn)Zujn,ajn (sc)un(:zc)dw
2
N
k
<ec ‘Z,;]mam o [l 2 / v | =o().
N=—2

In

(From (5.23), (5.24) and (5.25) we get (5.19).

STEP 4 We show that a contradiction arises with (5.10), by showing that

/ fLo (Vi e)) un = o(1). (5.26)

This fact concludes the proof of this Lemma.
Let us prove (5.26). We have

k k
/ v [ rves ;1,4/ f(V)qu+;B / vy

Qe \{B(a,p)UB(b,p)}

Now, it holds

k
Vi < €3 (1 + 83 [ =
Qc,, \{B(a,p)UB(b,p)} =1 Q,,\B(&,p)
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Finally, for any j, we scale x = u;,y + a and we get

k
[ Wi <oy [ o ey / U3
Ajn izl.Ajn

k 2
Hin ~2
< 2 2 1
_C;“m/ <u1n+ujn|y—T2> B - ol)
<c —_— ntc +0 (1
Z(MM) L+ yl? Z Mm )
RN

1<j 1>7

= o(1),

2
where the last estimate follows from the fact that (1+\1y|2) € L%(RN) and (5.15)
holds. In a similar way we prove that [ f/(V)u? = o(1). That concludes the proof.

Bjn
U

Next result states the invertibility of the operator defined in (5.1).

Proposition 5.2. For any n > 0, there exists €9 > 0 and ¢ > 0 such that for any
7,6 in RN* and any fi,6 in Rﬁ satisfying (2.7) and for any h € Kj:g there exists
a unique ¢ € Kj—-f solution to L(¢) = h, for any e € (0,e¢). Furthermore

IRl > cll]|- (5.27)
Proof. Notice that the problem L(¢) = h in ¢ gets re-written as
¢+ K(p)=h in Kg, (5.28)

where h is defined by duality and K : K j—:& — K j’:& is a linear compact operator.
Using Fredholm’s alternative, showing that equation (5.28) has a unique solution
for each h is equivalent to showing that the equation has a unique solution for
h = 0, which in turn follows from Lemma 5.1. The estimate (5.27) follows directly
from Lemma 5.1. This concludes the proof of Proposition 5.2.

O

Remark 5.2. It holds

w"—‘

h
<PZZ"L5;GAL5 PZHlsJIZE (

1

<.
™

if j # h,

Hie,Qie? Hie,Qie

)i
)

(Pz} pz! )= <

ol =
mw‘

Cj
(PZI . PZl . )=—1(

Hie,Qic? Hie,Qie
H]E

1 1
h
<PZFJLLE Aje? PZ6l57bLE <2 , O <62)
le

1€

)_\

+o(1

=

for some positive constants ¢y and ¢; =
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6. PROOF OF PROPOSITION 2.1

The main point to prove Proposition 2.1 is to estimate the || - ||-norm of the error
term R defined in (2.13). This is the content of next

Lemma 6.1. For any n > 0, there exists eo > 0 and ¢ > 0 such that for any 7,0
n RN* and any 1,0 in RY satisfying (2.7) and for any € € (0,e0), we have

N—-2p
e FE N>,
|IR| < 05%|1n€| if N =6,
e f3< N <5.
Proof. Since P.Us¢ = i* (Ugg) = 1*[f (Us,¢)] for any § > 0 and point § € €., we

can write

k k
R=1t )= S 1 Uy ) + S (1 F U ,)
j=1 j=1
Therefore by (2.1) we deduce
k k
IR < e[ f(V) = Y (=0 f(Unyenag) + (1 f(Us,0,0)
j=1 j=1 2N
N+2
Let us call
k k
Z ]+1f Hjes aJE + Z ]+1f dje bjs)
j=1 j=1 2N
N+2

The claim will follow if we prove that
ce T B N >1,
I1<{ ™% |Ine| if N =6, (6.1)
N-—2
ce 2k if3< N <5,
2N

To simplify notations, we call ¢ = ~i3- We have

k k
Z J+1f F’*szaJE + Z ]+1f P Ué]fﬁ bje )
j=1

=1
’ q

.t Z |F(P-Us,. 0,.) — f(Us,. 0,.)

+Z|f ]Eaaja f(U Ja,aJE

= A +B+C. (6.2)
We start with the estimate of A. Let p > 0 so that B(a, p) (| B(b, p) = . We write

Aq:/ +/ +/
Q:\(B(a,p) U B(b,p)) B(a,p)\B(a,r.e) B(b,p)\B(b,rpe)
=A; + Ay + A3

q
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In Q. \ (B(a, p) U B(b, p)) the function V is uniformly bounded by e*7 | so we get

q

k k
FO) = (=10 f(PelUpyay) + Y (=17 f(PeUs, )
j=1

Q\(B(a,p) U B(b,p)) /

thus A; = O(c 2 54 7). We next estimate As.
Let us then introduce the annuli A; already defined in (3.22), namely for all

Jky Ay o= Bla, Jlueti—12) \ B(a, /Huefigiz). with poe = pi! p? and pigi1- ==
uk;rgez so that B(a, p) \ B(a, 7€) = U}, Ai. We have

q
k k E
A2 = Z/ Z J+1f H357a15 + Z j+1f P U6]57 ]5)
=17 A =1 j=1
To simplify again the notation, we will use U; to denote the function Uy,,_,,.. Fix

[. We have

k k
/ Z J+1f Liesase +Z J+1f P U6 )
Ay Jj=1

q

j=1
. q
N-2p
SC/A, ; YHLF(PU;) +O(e2k ﬂ)
Z/ Up1U|q+Z/ U —|—O %)
1%l 1l

Since pq = p+1, arguing as in the proof of estimate (3.27) we obtain that fAz Urt =
O(E%%q). On the other hand, if N > 6, we get

/‘ - 13 ! P !
UP* Ui S C/( £ ) 1€ —
S S\t e = ael)?2 )\ a2 + o — aief?) 55

=l q/‘ng / 2 12 2)2 . N—2
(Wie + 1Y) (1 + |y[2) "=
\/Hls#1+1s<| ‘<\/*“Ir—:“‘l le
[ fie
N+6 1 1
o( ) / it >,
e e P
Mls“l+ls<|y‘< Highl—1e
_ Hie - - Hie
- N—Nfzq -2 1 . .
0] (.uia 2 Ty, q) / —(1 TP e if I <1,

VHIieFl4+1e <|Z/‘< VHieltl—1e
Hie - Hie
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If N <6 we get

p-1p7 |7 o . N-2a F57a 1 1
J oo < ot TP (2 + ol 0
A VHiePit1e e le
Hie
_N-2 1
) I AR S,
Hie  Hig (1+ [y[?)2
e Sl
= N_Ng N2_2q) 1 1 . )
o (/J’ls Hie / 24 (14 [yP)2” if I <1,
\/wgﬂszﬂz S\ylﬁ\/wigflg

)

=0 (51\,2;2‘1) .

A similar arguments allows to prove that if N = 6 then

/‘Ul”_lUi
A
N-—-2

ce 7k 51if N > 7,

q _
=0 (EN?’fﬂ ln5|q) .

‘We thus conclude that

Ay < { e 9| Ine|? if N =6,
N-—2
ce 2 1if 3 < N < 5.
A similar estimate can be obtained for Asz. We proved that
ce B AN > T,
A< ce™% |Ine| if N =6, (6.3)
e if3< N <5.

Let us now estimate the term B in (6.2). For any fixed ¢, from Lemma 3.1 we have

/|(PUi)p —UP| < c/ U (PU; - 1)
Qe Qe

N—2 2 q
< 2 q /’LiE
= e / <<u%5 e >)

+cE(N_2)q /( 7 )q 1
N2—2q (/’I’%E—'_ ‘x_ais|2)2 |x_a‘(N—2)q

q
+C/‘PUZ‘ — Ui‘pq
Qe

since

O () it N =7,

2 q
M 2 ;
/((/ﬂ +|xia's|2)2) =1 O (st mpelt) it N =,
i€ .
Q

: O (ul™) if3< N <5.
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Therefore

N—2p
2

ez 2if N>7,
B<{ ¢ |Ine| if N =6, (6.4)
N-—2
g2k if3< N <5.
In a very analogous way, one gets a similar estimate for C. Estimates (6.2), (6.3)

and (6.4) conclude the proof. O

We have now the tools to give the

Proof of Proposition 2.1. First of all, we point out that in virtue of Proposition 5.2,
solving problem (2.10) is equivalent to find a fixed point of the operator

T(¢) ==L (N(¢) +R), € K,
where R is defined in (2.13) and and
N(@) =T {i" [f(V+¢) = fF(V) = [ (V) ¢]}.
By Lemma 5.1 we get
IT(O) < c(IN@I + R]) and [[T(¢1) = T(¢2)ll < c[[N(¢1) = N(g2)l-

It is by now standard to prove that
IN@)I < elél*" and [IN(61) = N(2)| <161~ ]|, for some L€ (0,1).
At this point we consider the set E = {¢ : ||¢]| < r(¢)}, where

CE%g it N >7,

r(e) = ce%ﬂnd if N =6,
e’ if3< N <5

We conclude then that, for ¢ small, T"is a contraction mapping from F to F, and so
it has a unique fixed point ¢ in E. A standard argument shows that (d, &) — be qe

is a C'-map. This concludes the proof.
O

7. PROOF OF PROPOSITION 2.2

Given the result of Proposition 2.1 we conclude that V 4 ¢, with V' defined in (2.9)
and ¢ predicted by Proposition 2.1, is a solution to our original problem if we can
find (7,7, ii,0) € R*MF x R? satisfying constraints (2.7) to solve equation (2.11).
But this is equivalent to finding critical points to the explicit finite dimensional
functional J. defined in (2.15), as we prove next.

Proof of Proposition 2.2, Part 1. To simplify the notations, we set Z]’{a = Zﬁjw’aﬁ
and Z]}.fb = Z(?_;E,bjg- By (2.10) we get

VI(7,6,11,0) = J.(V + ) [VV + Vg

N k N k
=33 Pz, VYV + V) + > i (P.Zh, VV + V), (7.1)

1=0 i=1 =0 i=1

for some vectors ¢ and ct. Thus, if (7,7, [, ) is a critical point for J., we have
a b ) 9 7/1'7 p 9
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N k
(P2, NV 4+ V) + D> i (P24, VV + V) = 0. (7.2)

1 =0 i=1

M»

N
1=

Equation (7.2) is equivalent to a homogeneous system of 2(IN + 1)k equations in
2(N + 1)k variables, the components of the vectors c/! and c/?. We shall prove that
all the components of ¢/ and c% are equal to zero, provided ¢ is small enough,
showing that the matrix of coefficients is at main order invertible. This fact gives

the proof of the statement.
We start with the following direct computation

7

N
2j—1 0 2j—1 h
0,V = P20, +c Y P27,

and
V., V= i (Pe Z}

ga7"'?

P.Z},).
And analogous formulas hold true for s,V and V,,V. Now, by Lemma 5.2 one
easily gets that the system

N k N k
(P2, YV + > e (P24, VV) =0.

=0 i=1 =0 i=1
has, at main order, an invertible matrix as the matrix of coefficients. Thus to get
the proof of the result, we need to show that the other part of system (7.2)

N k

di{P.Z!,, V) +ch (P.Z}, V) =0
=0 i=1 =0 i=1
is of lower order. To get this fact, we need to estimate the scalar products (P-Z!,0:¢)
and <PEZbeS¢>, where J; denotes one of the components of the gradient of ¢.
Now, since ¢ € K+, one has <P Zja,asgb) <8 P, Z]ha,<;§>. Since ||65PEZ]}-LG|| =

O(—z=r), one easily gets (P.Z",,0:¢) = o (|(P-Z},0,V)|). A similar argument
2k

jar

shosws that < Jb,85¢> <’<P€Zjhb, 33V>’> . This facts give the result.
O

Remark 7.1. Following the proof and using the estimates contained in the proof of
Proposition 2.2, Part 1, above, one gets the following estimate for the components
of the vectors c? and CZ] , for any h and j

9] < Cugellgll,  [e?| < Cose |- (7.3)

To get now the proof of Proposition 2.2, Part 2, we need to estimate the C! closeness
of J. (V + ¢) with J. (V). This is the content of next

Lemma 7.2. For any n > 0, there exists g > 0 such that for any e € (0,¢p), we
have

Jo (V +6) = J. (V) + o),
C'—uniformly for any 7,5 in RN® and any i, 0 in RY satisfying (2.7).
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Proof. We write

J(V 4 6) = I (V) = 5 6]

k k
/ Z j+1f ﬁu’JE a?E + Z j+1f P U5767 75)]¢
Jj=1

Q. J=1
f/[F(V+¢)fF(V)ff(V)¢], (1.4
Q
where F(u) := |u|PT1. Using Holder inequality and estimates (6.1) and (2.12)

T
k k
JUW) = S (PO, + SR 0, 0

k k
< |FV) =Y W) (Pl ap) + ) (1T F(PUs )| (6] as,
Jj=1

2N
N+

= o(e"T). (7.5)

)

On the other hand, by the mean value theorem we get for some ¢ € [0, 1]

/[F(V+¢)*F(V)ff /|f V + t6) |
<c/|V|" 1¢>2+c/|¢>\”“
7, 16, +c|¢>\f’;53 = o), (7.6)

using again (2.12) and taking into account that ’|V|p*1 = O(1). Therefore the

v|Z

CY closeness follows.
We need to show now that

VIV +¢) — VJ(V) = o(e 7). (7.7)

The proof of the above estimate is very similar to the proof of Lemma 8.1 in [31].
For completeness, we briefly sketch the principal steps below.
We write

VIV +¢) = VI(V) = [JUV + ¢) = LV)[VV]+ JL(V + $)[Vg].  (7.8)

Let us use the notation J; to denote one of the partial derivatives in the gradient.
As computed in the Proof of Proposmon 2 2, Part 1, the function 9V is a lin-

ear combination of &% P zh fiea,. and € o P zZh §ebye with coefficients uniformly

bounded as ¢ — 0 for for any 7,5 in RV and any /i, 0 in Rﬁ_ satisfying (2.7). Thus,
in order to estimate the first term in (7.8) it is enough to estimate, for instance

(V4 6) = T (V)] |5 P2, (7.9)

jelje
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We write

T (V+¢)—J (V)] [s 5 pgh }

HjeQje
h h
/f d)E 2k |:P Z/"L]EaJE - Z;Ufjsajai|

- / [fl (V) - f/ ( HJE“JE)] (bgzj%l NJEO’JE
£ ( )

Q.
- / Vo) - (V)= [ (V)9 P2
Q

e

=L + I+ I,

35

because (;5 € K+, It is immediate to check that I; = o (s%) . Let us estimate I5.

Since |e 5% P zZh

< cUy,.q;. We have

HjcQje
|IQ| S C/S; ‘Vp ! Ugjglajg |¢|U,U‘j6ajs
k
:c/ ... +c / ...+c/
Q:\B(a,p) 1:21 A Aj
ij

N-2
:c/ +O(E 2k ),
A

J

where A; are the annuli defined in (3.22). Observe now that if N > 7

/1 ‘ipl Uticas
jelje
J

|¢|qu5aj5

é C/ Uﬁ;lajs (PEUﬂjsa]‘E - U/»‘f]saja + ZP U icQie + ZP U(stsbls ‘¢|
A

g i#]
p—1 _
<c ’UMJEaJE ‘PEUMjeajs queaje 2 ‘(bl%
+c E Ur- 1 ‘ 2N
Mjelje | N HicQie LN-2 (Aj)
i#]

R )

p—1
+ CZ ’U”JEU‘?E
)

where we use estimate (3.27). Thus we conclude that I; = 0(5%). The case
3 < N <6 can be treated similarly. Using similar arguments, we also obtain that

I3 = 0(5%).
We are left with the estimate of J.(V + ¢)[V¢] in (7.8). By definition we have

N k

TV +)Vel=> > (P2, .. V¢>+22cb P.Z§, ...V o)

=0 =1 =0 i=1
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Taking into account estimate (7.3), we get that

N-—2

TV + 6)[Vell = 09l ) = o(e"5)
since one has, for instance,

(P20, V) | £ €12,

Hic@ie?

veaie| 20 |0 2n . < Cpiic|g] 2w

This concludes the proof.

Proof of Proposition 2.2, Part 2. It follows from Theorem 3.1 and Lemma 7.2.
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