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Abstract. We consider the problem ∆u+ |u| 4
N−2 u = 0 in Ωε, u = 0 on ∂Ωε,

where Ωε := Ω\{B(a, ε)
S

B(b, ε)}, with Ω a bounded smooth domain in RN ,
N ≥ 3, a 6= b two points in Ω, and ε is a positive small parameter. As ε goes
to zero, we construct sign changing solutions with multiple blow up both at a
and at b.
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1. Introduction

Let D be a smooth bounded domain in RN , N ≥ 3. Consider the following nonlinear
elliptic problem

∆u + |u| 4
N−2 u = 0 in D, u = 0 on ∂D. (1.1)

It is well know that the Sobolev embedding H1
0 (D) ↪→ L

2N
N−2 (D) is not compact and

for this reason solvability of (1.1) is a quite delicate issue. Pohozaev’s identity [33]
shows that problem (1.1) has only the trivial solution if the domain D is assumed
to be strictly starshaped. On the other hand, if D is an annulus then (1.1) has a
(unique) positive solution in the class of functions with radial symmetry [22]. In the
nonsymmetric case, Coron [13] found via variational methods that (1.1) is solvable
under the assumption that D is a domain exhibiting a small hole. Substantial
improvement of this result was obtained by Bahri and Coron [4], showing that if
some homology group of D with coefficients in Z2 is not trivial, then (1.1) has at
least one positive solution (see also [3, 8, 10, 19, 28, 25, 35] for related results). If
the domain D has several holes, then a multiplicity result for positive solutions to
(1.1) is obtained in [34]. On the other hand, in [12] the authors found a second
solution in Coron’s setting (one small hole), but they were unable to say if the
second solution was positive or changed sign. Existence and qualitative behavior
of sign changing solutions for elliptic problems with critical nonlinearity have been
investigated by several authors in the last years (see [5, 6, 9, 11, 20, 21, 26, 27]). A
large number of sign changing solutions to (1.1) in the presence of a single hole has
been proved in [29].
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More precisely, in [29] the authors assume that D = Ω \ B(0, ε), where Ω is a
bounded domain, which contains the origin and is symmetric with respect to the
origin. They prove the existence of an arbitrary number of sign changing solutions
for (1.1), if the radius ε of the removed ball is small enough. The shape of such
solution is a superposition of blowing up bubbles with alternate sign concentrating
around the center 0 of the removed ball B(0, ε).
A bubble is a function defined in RN of the form

Uµ,ξ(x) = αN

(
µ

µ2 + |x− ξ|2
)N−2

2

(1.2)

where αN := [N(N − 2)]
N−2

4 , µ is any positive parameter and ξ a point in RN .
These functions are all and the only positive bounded solutions of problem (1.1) in
the whole space RN [1, 36].
The result in [29], as well as in other related problems where construction of tower
of bubbles is obtained [14, 15, 16, 32], rely strongly on the assumption of symmetry
of the domain. On the other hand, even if delicate, removing the symmetry as-
sumption can be done. The first contribution in this direction is due to [17], where
the authors generalize the construction of tower of bubbles for the slightly super
critical Brezis-Nirenberg problem obtained in [14] for a general non symmetric do-
main. They obtained this result under a further non degeneracy condition: if ξ0 is
a non degenerate critical point of the Robin’s function of the domain it is possible
to construct a tower of bubbles concentrating at ξ0. Even if generic, this non de-
generacy assumption is hard to check: the only result about that is contained in
[18], where the author shows that the origin is a non degenerate critical point of the
Robin’s function if the domain is convex and axially symmetric with respect to the
origin. Let us mention that recently in [31] the authors drop both the assumptions
of symmetry of the domain and of non degeneracy of the Robin’s function. The
proof in [17] uses a gluing technique developed in [23] in some other context. The
proof in [31] is based on the use of a Liapunov-Schmidt reduction.

The aim of the present work is to remove the assumption of symmetry on the
pierced domain Ω. Let us be more precise.
Let Ω be a bounded domain with smooth boundary and a be a given point in Ω.
Given a parameter ε > 0 small, we remove from Ω the ball centered at a with radius
raε. Here ra is a positive fixed number. We are interested in constructing solutions
with the shape of a tower of bubbles around the removed ball for the problem at
the critical exponent{

∆u + |u| 4
N−2 u = 0 in Ω \B(a, raε),

u = 0 on ∂ (Ω \B(a, raε)) .
(1.3)

The result we prove is the following

Theorem 1.1. For any integer k ≥ 1, there exists εk > 0 such that for any
ε ∈ (0, εk) there exists a pair of solutions uε and −uε to problem (1.3) such that

uε(x) = αN

k∑

i=1

(−1)i+1

(
Miε

2i−1
2k

M2
i ε2 2i−1

2k + |x− a|2

)N−2
2

+ Θε(x),

where M1, . . . ,Mk are positive constants depending only on N and k and ‖Θε‖H1
0(Ω\B(a,raε)) →

0 as ε → 0.
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The second result we get reads as follows. Let a, b be two given points in Ω with
a 6= b. Given a parameter ε > 0 small, we remove from Ω two balls of centers a
and b and radius respectively raε and rbε. Here ra and rb are two positive fixed
numbers. We construct solutions with the shape of two towers of bubbles around
the removed balls for the problem at the critical exponent

{
∆u + |u| 4

N−2 u = 0 in Ω \ {B(a, raε) ∪B(b, rbε) } ,

u = 0 on ∂ (Ω \ {B(a, raε) ∪B(b, rbε) }) .
(1.4)

The result we prove is the following

Theorem 1.2. For any integer k ≥ 1, there exists εk > 0 such that for any
ε ∈ (0, εk) there exists a pair of solutions uε and −uε to problem (1.4) such that

uε(x) = αN




k∑

i=1

(−1)i+1

(
Miε

2i−1
2k

M2
i ε2 2i−1

2k + |x− a|2

)N−2
2

−
k∑

i=1

(−1)i+1

(
Niε

2i−1
2k

N2
i ε2 2i−1

2k + |x− b|2

)N−2
2


 + Θε(x),

where M1, . . . , Mk, N1, . . . , Nk are positive constants depending only on N and k
and ‖Θε‖H1

0(Ω\{B(a,raε)∪B(b,rbε)}) → 0 as ε → 0.

Observe that in the above construction, the first elements in the two towers have
opposite sign. On the other hand, in case that the two towers are build upon
bubbles of the same sign, an extra condition on the position of the centers a and b
of the holes is required. This condition is on the sign of a certain combination of the
Green function of Ω and its regular part. We thus need to recall their definitions.
We denote by G(x, y) the Green function of the Laplace operator in Ω with zero
Dirichlet boundary condition and we denote by H(x, y) its regular part, namely

G(x, y) = γN

(
1

|x− y|N−2
−H(x, y)

)
, (1.5)

with γN := 1
(N−2)|∂B| , where |∂B| denotes the surface area of the unit sphere in

RN . Thus for all y ∈ Ω, H(x, y) satisfies

−∆H(x, y) = 0 in Ω, H(x, y) =
1

|x− y|N−2
x ∈ ∂Ω. (1.6)

The Robin’s function is defined as H(x, x), x ∈ Ω.

Our last result is the following

Theorem 1.3. Assume

H1/2(a, a)H1/2(b, b)−G(a, b) > 0. (1.7)
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For any integer k ≥ 1, there exists εk > 0 such that for any ε ∈ (0, εk) there exists
a pair of solutions uε and −uε to problem (1.4) such that

uε(x) = αN




k∑

i=1

(−1)i+1

(
Aiε

2i−1
2k

A2
i ε

2 2i−1
2k + |x− a|2

)N−2
2

+
k∑

i=1

(−1)i+1

(
Biε

2i−1
2k

B2
i ε2 2i−1

2k + |x− b|2

)N−2
2


 1 + Θε(x),

where A1, . . . , Ak, B1, . . . , Bk are positive constants depending only on N and k
and ‖Θε‖H1

0(Ω\{B(a,raε)∪B(b,rbε)}) → 0 as ε → 0.

Theorem 1.2 and Theorem 1.3 extend the results obtained in [34] and in [30] in the
case of two holes when k = 1: our results claim that on top of solutions found in
[34] and [30] one can put two towers of sign changing bubbles.
Let us mention that natural extensions of the results obtained in Theorems 1.2 and
1.3 can be obtained in the case of several holes removed.
We will prove our results with the aim of a Liapunov-Schmidt reduction, which we
describe, together with the scheme of the proof, in Section 2.

2. Proof of Theorem 1.2, Theorem 1.3 and Theorem 1.1

We will describe the steps of the proof of Theorem 1.2. The proof of Theorem 1.3
and Theorem 1.1 can be carried out in a similar way.
For any ε > 0 fixed, set Ωε := Ω\{B(a, raε) ∪B(b, rbε) } . Let H1

0 (Ωε) be the usual
Sobolev space equipped with the scalar product < u, v >=

∫
Ωε

∇u∇b, which induces

the norm ‖u‖ = (
∫
Ωε
|∇u|2 dx)

1
2 . Let Lq(Ωε) be the space equipped with the norm

|u|q = (
∫
Ωε
|u|q dx)

1
q . By Sobolev Embedding Theorem we have the existence of a

positive constant S, depending only on N , such that |u| 2N
N−2

≤ S‖u‖ for all u ∈
H1

0 (Ωε). Consider now the adjoint operator of the above embedding i : H1
0 (Ωε) ↪→

L
2N

N−2 (Ωε), namely the map i∗ : L
2N

N+2 (Ωε) → H1
0 (Ωε) defined as follows: if w ∈

L
2N

N+2 (Ωε) then u = i∗(w) in H1
0 (Ωε) is the unique solution of the equation−∆u = w

in Ωε, u = 0 on ∂Ωε. We have the existence of a positive constant c, which depends
only on the dimension N , such that

‖i∗(w)‖ ≤ c |w| 2N
N+2

for all u ∈ L
2N

N+2 (Ωε). (2.1)

Using the above definitions and notations, problem (1.4) can be re-written as follows

u = i∗[f(u)], u ∈ H1
0 (Ωε), (2.2)

where f(u) := |u|p−1u and p = N+2
N−2 .

We next describe the shape of the solutions we are looking for. We start with the
definition of the two towers, centered respectively around a and b. We define

Va(x) =
k∑

j=1

(−1)j+1uja(x), Vb(x) =
k∑

j=1

(−1)j+1ujb(x) (2.3)

where
uja(x) = PεUµjε,ajε(x), ujb(x) = PεUδjε,bjε(x) (2.4)
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In (2.4) Pε denotes the projection onto H1
0 (Ωε), namely for a given function defined

on all RN , Pεu is the unique solution in of the problem ∆Pεu = ∆u in Ωε and
Pεu = 0 on ∂Ωε. Furthermore, in (2.4) we assume that

µjε = ε
2j−1
2k µj and δjε = ε

2j−1
2k δj (2.5)

for some positive numbers µj and δj , and

ajε = a + µjετj and bjε = b + δjεσj (2.6)

for some points τj and σj in RN . We will assume the following bounds on the
parameters and points appearing in (2.5) and (2.6): given δ > 0 small

η < µj , δj < η−1, |τj |, |σj | < η for all j = 1, . . . , k. (2.7)

To refer to the parameters above, we will use the compact notation

τ̄ = (τ1, . . . , τk), σ̄ = (σ1, . . . , σk) ∈ RNk, and

µ̄ = (µ1, . . . , µk), δ̄ = (δ1, . . . , δk) ∈ Rk
+. (2.8)

The solution predicted by Theorem 1.2 has the form

u(x) = V (x) + φ(x), where V (x) = Va(x)− Vb(x). (2.9)

Here the term φ has to be thought as a smaller perturbation of V .

We next describe the term φ in (2.9). To do so, let us recall (see [7]) that, for all
δ > 0 and ζ ∈ RN , every bounded solution to the linear equation

−∆ψ = f ′ (Uδ,ζ)ψ in RN

is a linear combination of the functions

Zj
δ,ζ(x) := ∂ζj Uδ,ζ(x) = αN (N − 2)δ

N−2
2

xj − ζj

(δ2 + |x− ζ|2)N/2
, j = 1, . . . , N

and

Z0
δ,ζ(x) := ∂δUδ,ζ(x) = αN

N − 2
2

δ
N−4

2
|x− ζ|2 − δ2

(δ2 + |x− ζ|2)N/2
.

We define the subspace of H1
0 (Ωε)

K := span
{

PεZ
h
µjε,ajε

, PεZ
h
δjε,bjε

: h = 0, 1, . . . , N, j = 1, . . . , k
}

,

where Pε is the projection onto H1
0 (Ωε) as defined before, and

K⊥ :=
{

φ ∈ H1
0 (Ωε) :

〈
φ, PεZ

h
µjε,ajε

〉
=

〈
φ, PεZ

h
δjε,bjε

〉
= 0,

h = 0, 1, . . . , N, j = 1, . . . , k} .

Let Π : H1
0 (Ωε) → K and Π⊥ : H1

0 (Ωε) → K⊥ be the orthogonal projections.

In order to solve problem (1.4) we will solve the couple of equations

Π⊥ {V + φ− i∗ [f (V + φ)]} = 0 (2.10)

Π {V + φ− i∗ [f (V + φ)]} = 0. (2.11)

Given τ̄ , σ̄, µ̄ and δ̄ (see (2.8)) whose components satisfy conditions (2.7), one can
solve uniquely equation (2.10) in φ ∈ K⊥. This solution φ is the lower order term
in the description of the ansatz (2.9). This is the content of
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Proposition 2.1. For any η > 0, there exists ε0 > 0 and c > 0 such that for any
τ̄ , σ̄ ∈ RNk, for any µ̄, σ̄ ∈ Rk

+, satisfying (2.7) and for any ε ∈ (0, ε0) there exists
a unique φ = φ(τ̄ , σ̄, µ̄, δ̄) ∈ K⊥ which solves equation (2.10). Moreover

‖φ‖ ≤





cε
N−2
2k

p
2 if N ≥ 7,

cε
N−2
2k | ln ε| if N = 6,

cε
N−2
2k if 3 ≤ N ≤ 5.

(2.12)

Finally, (τ̄ , σ̄, µ̄, δ̄) → φ(τ̄ , σ̄, µ̄, δ̄) is a C1−map.

Roughly speaking, the solution φ to (2.10) is found with a fixed point argument,
which works thanks to two fundamental ingredients: the existence and estimates
of the inverse of the linear operator obtained linearizing problem (1.4) around V in
the space K⊥ (see Section 5) and the study of the error term

R := Π⊥ {i∗ [f (V )]− V } . (2.13)

This last estimate is carried out in Section 6.

We are left now to solve equation (2.11), more precisely to find points τ̄ , σ̄ in RNk,
and parameters µ̄, σ̄ in Rk

+ so that (2.11) is satisfied. It happens that this problem
has a variational structure, in the sense that solving (2.11) reduces to find critical
points to some given explicit finite dimensional functional. Let us introduce the
energy associated to problem (1.4)

Jε(u) =
1
2

∫

Ωε

|∇u|2 dx− 1
p + 1

∫

Ωε

|u|p+1. (2.14)

Furthermore, we define the function J̃ε : RkN × RkN × Rk
+ × Rk

+ → R by

J̃ε(τ̄ , σ̄, µ̄, δ̄) := Jε (V + φ) . (2.15)

Next result contains two fundamental statements to conclude the proof of our The-
orem 1.2. First it states that solving equation (2.11) is equivalent to finding critical
points (τ̄ε, σ̄ε, µ̄ε, δ̄ε) of the finite dimensional function defined in (2.15). Second
it computes the asymptotic expansion, as ε → 0, of the function J̃ε(τ̄ , σ̄, µ̄, δ̄), for
points and parameters satisfying (2.7). More precisely, in the above region the
function J̃ε(τ̄ , σ̄, µ̄, δ̄) is uniformly close, together with its derivatives, to Jε(V ).
The proof of these facts are contained in Section 7. Furthermore, we can expand
explicitly Jε(V ) and prove that it is closed in a C1 sense to a constant plus an
function Ψ(τ̄ , σ̄, µ̄, δ̄)ε

N−2
2k plus a lower order term o(ε

N−2
2k ). This fact is proved in

section 3.
In the whole paper we will use the notation O(1) or o(1) to denote a continuous
function of the parameters µj , δj , τj and σj , which is bounded or approaching to
zero as ε goes to zero uniformly in the range described by constraint (2.7).

Proposition 2.2. The following facts hold.
Part 1. If (τ̄ε, σ̄ε, µ̄ε, δ̄ε) is a critical point of J̃ε, then the function V +φ is a solution

to problem (1.4).
Part 2. For any η > 0, there exists ε0 > 0 such that for any ε ∈ (0, ε0) it holds

J̃ε(τ̄ , σ̄, µ̄, δ̄) = 2c1
αp+1

N

N
k +

αp+1
N

2
Ψ(τ̄ , σ̄, µ̄, δ̄)ε

N−2
2k (1 + o(1)), (2.16)
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C1−uniformly with respect to points and parameters τ̄ , σ̄, µ̄, δ̄ satisfying
(2.7). The functions Ψ is defined as follows

Ψ(τ̄ , σ̄, µ̄, δ̄) = c2

[
H(a, a)µN−2

1 + H(b, b)δN−2
1 + 2G(a, b)µ

N−2
2

1 δ
N−2

2
1

]

+
Γ(τk)

(1 + |τk|2)N−2
2

rN−2
a

µN−2
k

+
Γ(σk)

(1 + |σk|2)N−2
2

rN−2
b

δN−2
k

+ 2
k−1∑

j=1

[
Γ(τj)

(
µj+1

µj

)N−2
2

+ Γ(σj)
(

δj+1

δj

)N−2
2

]
. (2.17)

Here

c1 =
∫

RN

1
(1 + |z|2)N

dz, c2 =
∫

RN

1

(1 + |z|2)N+2
2

dz. (2.18)

and F : RN → R is the smooth function defined by

Γ(x) :=
∫

RN

1

(1 + |y − x|2)N+2
2

1
|y|N−2

dy, x ∈ RN . (2.19)

We have now all the tools to give the

Proof of Theorem 1.2. In virtue of (i) of Proposition 4.1 there exists a nondegener-
ate critical point (0, 0, µ̄0, δ̄0) of the function Ψ introduced in (2.17), which is stable
with respect to C1−perturbation. Therefore, taking into account the expansion
(2.16) in Proposition 2.2, Part 2, we deduce that if ε is small enough the function
J̃ε (see (2.15)) has a critical point (τ̄ε, σ̄ε, µ̄ε, δ̄ε) such that τ̄ε, σ̄ε → 0, µ̄ε → µ̄0 and
δ̄ε → δ̄0 as ε goes to 0. Finally, from Proposition 2.2, Part 1, and from formula
(??), it follows that V + φ, where V is defined in (2.9) and φ is the function whose
existence is guaranteed by Proposition 2.1, is the solution predicted by Theorem
1.2. ¤

Proof of Theorem 1.3. We look for a solution to (1.4) of the form u(x) = W (x) +
φ(x) where W (x) = Va(x) + Vb(x) (instead of Va(x) − Vb(x)). Here Va, Vb are
defined as in (2.3) and satisfy (2.5), (2.6), (2.7). The rest term φ is a lower order
term which is constructed exactly as in Proposition 2.1. Arguing as in the proof
of Theorem 1.2 we are lead to find a critical point of the reduced energy, whose
expansion is given in (2.16) where in this case the function Ψ = Ψ∗ becomes

Ψ∗(τ̄ , σ̄, µ̄, δ̄) = c2

[
H(a, a)µN−2

1 + H(b, b)δN−2
1 − 2G(a, b)µ

N−2
2

1 δ
N−2

2
1

]

+
Γ(τk)

(1 + |τk|2)N−2
2

rN−2
a

µN−2
k

+
Γ(σk)

(1 + |σk|2)N−2
2

rN−2
b

δN−2
k

+ 2
k−1∑

j=1

[
Γ(τj)

(
µj+1

µj

)N−2
2

+ Γ(σj)
(

δj+1

δj

)N−2
2

]
. (2.20)

Let us point out that in this case the interaction between the first two bubbles of
the towers is negative and is given by −2G(a, b), while in the case of Theorem 1.2
it is positive and is given by +2G(a, b). Finally, using (ii) of Proposition 4.1, the
proof follows the same argument of the proof of Theorem 1.2. ¤
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Proof of Theorem 1.1. We look for a solution to (1.3) of the form u(x) = Va(x) +
φ(x), where Va is defined as in (2.3) and satisfy (2.5), (2.6), (2.7). The rest term φ
is a lower order term which is constructed exactly as in Proposition 2.1. Arguing
as in the proof of Theorem 1.2 we are lead to find a critical point of the reduced
energy, whose expansion is given in (2.16) where in this case the function Ψ reduces
to

Ψ(τ̄ , µ̄) = c2H(a, a)µN−2
1 +

Γ(τk)

(1 + |τk|2)N−2
2

rN−2
a

µN−2
k

+ 2
k−1∑

j=1

Γ(τj)
(

µj+1

µj

)N−2
2

.

Arguing as in Proposition 4.1, we can prove that φ has a non degenerate critical
point (0, µ̄0). Finally, the proof follows the same argument of the proof of Theorem
1.2. ¤

3. Expansion of the energy functional

This section is devoted to the computation of the expansion of Jε(V ), where Jε is
the functional defined in (2.14) and V is defined in (2.9).
The main result of this section is contained in the following

Theorem 3.1. For any η > 0, there exists ε0 > 0 and c > 0 such that for any τ̄ , σ̄
in RNk and any µ̄, δ̄ in Rk

+ satisfying (2.7) and for any ε ∈ (0, ε0), we have

Jε(Va − Vb) = 2c1
αp+1

N

N
k

+
αp+1

N

2

{
c2

[
H(a, a)µN−2

1 + H(b, b)δN−2
1 + 2G(a, b)(µ1δ1)

N−2
2

]

+
Γ(τk)

(1 + |τk|2)N−2
2

rN−2
a

µN−2
k

+
Γ(σk)

(1 + |σk|2)N−2
2

rN−2
b

δN−2
k

+ 2
k−1∑

j=1

[
Γ(τj)

(
µj+1

µj

)N−2
2

+ Γ(σj)
(

δj+1

δj

)N−2
2

]

 ε

N−2
2k

+ o
(
ε

N−2
2k

)
, (3.1)

C1−uniformly with respect to µj, δj, τj and σj, satisfying (2.7). Here the positive
constants c1 and c2 are given in (2.18) and the function F is defined in (2.19).

Of fundamental importance to carry out the proof of the above expansion are the
two Lemmas that follows. The first one gives a description of the basic element of
each one of our towers, namely the projection onto H1

0 (Ωε) of the standard bubble
Uδ,ξ, for proper election of δ and ξ. The second Lemma is a direct consequence of
the first one.
We start with

Lemma 3.1. Assume that ξ = a + µτ , with µ → 0 as ε → 0 and ε = o(µ) as
ε → 0. Then, if we define

R(x) := PεUµ,ξ(x)− Uµ,ξ(x) + αNµ
N−2

2 H(x, ξ) + αN
1

µ
N−2

2 (1 + |τ |2)N−2
2

(raε)N−2

|x− a|N−2
,
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there exists a positive constant c such that for any x ∈ Ω \ (B(a, raε) ∪B(b, rbε))

|R(x)| ≤ cµ
N−2

2

[
εN−2(1 + εµ−N+1)

|x− a|N−2
+ µ2 + (

ε

µ
)N−2

]
(3.2)

|∂µR(x)| ≤ cµ
N−4

2

[
εN−2(1 + εµ−N+1)

|x− a|N−2
+ µ2 + (

ε

µ
)N−2

]
(3.3)

|∂τi
R(x)| ≤ cµ

N
2

[
εN−2(1 + εµ−N )
|x− a|N−2

+ µ2 +
εN−2

µN−1

]
(3.4)

Proof. We scale as follows: R̂(y) = µ−
N−2

2 α−1
N R(raεy + a). Thus −∆R̂ = 0 in Ω̂ε,

where

Ω̂ε =
(

Ω− a

raε

)
\

(
B(0, 1) ∪B(

b− a

raε
,
rb

ra
)
)

.

It is easy to check that Ω̂ε → RN \B(0, 1) as ε → 0, and that if y ∈ ∂B(0, 1)

R̂(y) = − 1

µN−2(1 + | raε
µ y − τ |2)N−2

2

+ H(raεy + a, ξ) +
1

µN−2(1 + |τ |2)N−2
2

and if y ∈ ∂
(

Ω−a
raε

)

R̂(y) = − 1

(µ2 + |raεy − µτ |2)N−2
2

+
1

|raεy − µτ |N−2
+

1

µN−2(1 + |τ |2)N−2
2 |y|N−2

.

Thus we get the estimates

|R̂(y)| ≤ C(1 +
1

µN−2

ε

µ
) for all y ∈ ∂B(0, 1),

and

|R̂(y)| ≤ C(µ2 + (
ε

µ
)N−2) for all y ∈ ∂

(
Ω− a

raε

)
.

A comparison argument for harmonic functions implies that

|R̂(y)| ≤ C

[
1 + εµ1−N

|y|N−2
+ µ2 + (

ε

µ
)N−2

]
.

This fact gives (3.2).
Let us now denote by Rµ(x) = ∂µR(x) and define R̂µ(y) = µ−

N−4
2 R(raεy + a). A

direct computation shows that

|R̂µ(y)| ≤ C(1 +
1

µN−2

ε

µ
) for all y ∈ ∂B(0, 1),

and

|R̂µ(y)| ≤ C(µ2 + (
ε

µ
)N−2) for all y ∈ ∂

(
Ω− a

raε

)
.

This fact gives (3.3).
Finally, let Ri(x) = ∂τiR(x) and R̂i(y) = µ−

N
2 Ri(raεy + a). We get the following

estimates
|R̂i(y)| ≤ C(1 +

ε

µN
) for all y ∈ ∂B(0, 1),

and

|R̂i(y)| ≤ C(µ2 +
εN−2

µN−1
) for all y ∈ ∂

(
Ω− a

raε

)
.

This fact gives (3.4).
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¤
Lemma 3.2. Under the same assumption of Lemma 3.1 we have the validity of
the following estimate∫

Ωε

U
4

N−2
µ,ξ (PεUµ,ξ − Uµ,ξ)

2 = O
(
µN + (ε/µ)N

)
if N ≥ 5,

= O
(
µ4| log µ|+ (ε/µ)4| log(ε/µ)|) if N = 4,

= O
(
µ2 + (ε/µ)2

)
if N = 3.

Proof. As direct consequence of Lemma 3.1, we have to estimate
∫

Ωε

µ2

(µ2 + |x− ξ|2)2
(

µN−2 +
ε2(N−2)µ−(N−2)

|x− a|2(N−2)

)
dx.

Now, we have if N ≥ 5
∫

Ωε

µ2

(µ2 + |x− ξ|2)2 dx = 0


µ2

∫

Ω

1
|x− a|4 dx




and if N = 3 (setting x− ξ = µy)
∫

Ωε

µ2

(µ2 + |x− ξ|2)2 dx = 0


µ

∫

RN

1
(1 + |y|2)2 dy


 .

Moreover, we have if N ≥ 5 (setting x− a = εy)

∫

Ωε

µ2

(µ2 + |x− ξ|2)2
1

|x− a|2(N−2)
= 0


ε−(N−4)µ−2

∫

{|y|≥1}

1
|y|2(N−2)

dy




and if N = 3 (setting x− ξ = µy)
∫

Ωε

µ2

(µ2 + |x− ξ|2)2
1

|x− a|2 = 0


µ−1

∫

RN

1
(1 + |y|2)2

1
|y − τ |2 dy


 .

The case N = 4 can be treated in a similar way.
Collecting all the previous estimates, the claim follows.

¤
Proof of Theorem 3.1. .
We write

Jε(Va − Vb) = Jε(Va) + Jε(Vb) + Ja,b
ε (3.5)

where

Ja,b
ε := −

∫

Ωε

∇Va∇Vb − 1
p + 1

∫

Ωε

(|Va − Vb|p+1 − |Va|p+1 − |Vb|p+1
)

dx. (3.6)

We start to estimate Jε(Va) in (3.5). In a very similar way, the estimate of the term
Jε(Vb) will follow.
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Recall that Va(x) =
∑k

j=1(−1)j+1uja(x). For simplicity of notation, while comput-
ing the expansion of Jε(Va), we will write uj instead of uja. Then, using the fact
that

∫
Ωε
∇ui∇uj dx =

∫
Ωε

up
j ui dx, we have

Jε(Va) =
k∑

j=1

Jε(uj) + J1
ε (3.7)

where

J1
ε := − 1

p + 1

∫

Ωε


|

k∑

j=1

(−1)j+1uj |p+1 dx−
k∑

j=1

|uj |p+1 − (p + 1)
∑

i>j

(−1)i+jup
i uj


 dx.

(3.8)
Let us fix j in {1, . . . , k}. To simplify again the notation, we will use Uj to denote
the function Uµjε,ajε

. Since ∆uj = Up
j in Ωε and uj = 0 on ∂Ωε, we see that, for

some 0 ≤ s ≤ 1,

Jε(uj) =
1
N

∫

Ωε

Up+1
j dx +

1
2

∫

Ωε

Up
j (uj − Uj) dx− 1

p + 1

∫

Ωε

[|uj |p+1 − Up+1
j ] dx

=
1
N

∫

Ωε

Up+1
j dx− 1

2

∫

Ωε

Up
j (uj − Uj) dx− p

∫

Ωε

[Uj + s(uj − Uj)]
p−1 [uj − Uj ]2 dx

= Aj + Bj + Cj . (3.9)

It is useful to point out that µjε,
µjε

ε = O
(
ε

1
2k

)
, because of (2.5).

First we observe that Lemma 3.2 implies that

|Cj | = o
(
ε

N−2
2k

)
. (3.10)

If we perform the change of variables x−a = µjεz, the domain Ωε gets transformed
into

Ω̃ε =
(

Ω \ {a}
µjε

)
\

(
B(0,

raε

µjε
)
⋃

B(b− a,
rbε

µjε
)
)

. (3.11)

Since ε
µjε

→ 0 as ε → 0, the set Ω̃ε converges to the whole space RN and we get

Aj =
1
N

αp+1
N

∫

RN

1
(1 + |z|2)N

dz + O
(
ε

2j−1
2k N

)
, for all j = 1, . . . , k. (3.12)

We observe for later purpose that |ε 2j−1
2k N | ≤ ε

N
2k .

Using the notations introduced in Lemma 3.1, we write

Bj =
1
2
(Bj1 + Bj2 + Bj3) (3.13)

where

Bj1 = αp+1
N µjε

N−2
2

∫

Ωε

(
µjε

µjε
2 + |x− ajε|2

)N+2
2

H(x, ajε) dx (3.14)

Bj2 = αp+1
N rN−2

a

εN−2µjε
−N−2

2

(1 + |τj |2)N−2
2

∫

Ωε

(
µjε

µjε
2 + |x− aj,ε|2

)N+2
2 1
|x− a|N−2

dx

(3.15)
and

Bj3 = −αp+1
N

∫

Ωε

(
µjε

µjε
2 + |x− aj,ε|2

)N+2
2

R(x) dx. (3.16)
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Using again the change of variables x− a = µjεz, the domain Ωε gets transformed
into Ω̃ε (3.11) and we get

Bj1 = αp+1
N µjε

N−2

∫

Ω̃ε

(
1

1 + |z + τj |2
) N+2

N−2

H(a + µjεz, a + µjετj) dz

= αp+1
N (

∫

RN

1

(1 + |z|2)N+2
2

dz) H(a, a)µN−2
j ε

2j−1
2k (N−2)(1 + o(1)) (3.17)

and

Bj2 = αp+1
N

rN−2
a εN−2

µjε
N−2(1 + |τj |2)N−2

2

∫

Ω̃ε

(
1

1 + |z − τj |2
) N+2

N−2 1
|z|N−2

dz (3.18)

= αp+1
N

rN−2
a

(1 + |τj |2)N−2
2

(
∫

RN

1

|z|N−2(1 + |z − τj |2)N+2
2

dz)
ε

(N−2)(2k−2j+1)
2k

µN−2
j

(1 + o(1)).

Finally, using the result in Lemma 3.1, we have

|Bj3| = o(ε
2j−1
2k (N−2) + ε(N−2)

2(k−j)−1
2k ), for all j = 1, . . . , k. (3.19)

Thus we conclude from (3.9)–(3.19) that
k∑

j=1

Jε(uj) = kc1
αp+1

N

N
+

αp+1
N

2

[
c2H(a, a)µN−2

1 +
rN−2
a Γ(τk)

(1 + |τk|2)N−2
2

1
µN−2

k

]
ε

N−2
2k (1+o(1)).

(3.20)
Next we estimate the term J1

ε (3.8) in (3.7). Assume B(a, ρ)
⋂

B(b, ρ) = ∅ for some
ρ > 0. Thus we write

−(p + 1) J1
ε = (

∫

Ωε\B(a,ρ)

+
∫

Ωε

T
B(a,ρ)

)G1
ε(x) dx, (3.21)

with

G1
ε =


|

k∑

j=1

(−1)j+1uj |p+1 dx−
k∑

j=1

|uj |p+1 − (p + 1)
∑

i>j

(−1)i+jup
i uj


 .

The first integral in (3.21) is lower order respect to the first one. Indeed we have
∣∣∣∣∣
∫

Ωε\B(a,ρ)

G1
ε

∣∣∣∣∣ ≤ C




k∑

j=1

∫

Ωε\B(a,ρ)

Up+1
j +

∑

i 6=j

∫

Ωε\B(a,ρ)

Up
i Uj




≤ C


∑

j

µjε
N +

∑

i 6=j

µiε
N+2

2 µjε
N−2

2


 = O

(
ε

N
2k

)
.

To deal with the second integral in (3.21), we will decompose the set Ωε

⋂
B(a, ρ) =

B(a, ρ)\B(a, raε) into the union of non-overlapping annuli. More precisely, we write

B(a, ρ) \B(a, raε) =
k⋃

l=1

Al (3.22)

where for all l = 1, . . . , k,

Al := B(a,
√

µlεµl−1ε) \B(a,
√

µlεµl+1ε).

with µ0ε := µ−1
1ε ρ2 and µk+1ε := µ−1

kε r2
aε2.
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Thus we write ∫

Ωε

T
B(a,ρ)

Gε
1 dx =

k∑

l=1

∫

Al

Gε
1 dx (3.23)

Fix now l. We write

∫

Al

Gε
1 dx =

∫

Al




∣∣∣∣∣∣
∑

j

(−1)j+1uj

∣∣∣∣∣∣

p+1

− up+1
l − (p + 1)up

l

∑

i 6=l

(−1)i+lui




−
∑

i6=l

∫

Al

up+1
i − (p + 1)

∫

Al


∑

i>j

(−1)i+jup
i uj − up

l

∑

i 6=l

(−1)i+lui


 .

Now we further decompose the last integral above as follows

− (p + 1)
∫

Al


∑

i>j

(−1)i+jup
i uj − ul

∑

i 6=l

(−1)i+lui




= −(p + 1)


−

∑

j>l

(−1)l+j

∫

Al

up
l uj +

∑

i>j,i 6=l

(−1)i+j

∫

Al

up
i uj




= (p + 1)


∑

j>l

(−1)j+l

∫

Al

Up
l Uj +

∑

j>l

(−1)j+l

∫

Al

[(up
l − Up

l )Uj ] + [up
l (uj − Uj)]

−
∑

i>j, i 6=l

(−1)j+i

∫

Al

up
i uj




Summarizing the above information and putting in evidence the principal term, we
write ∫

Al

Gε
1 dx = (p + 1)

∑

j>l

(−1)l+j

∫

Al

Up
l Uj dx + rl (3.24)

where rl =
∑4

j=1 rjl with

r1l =
∫

Al




∣∣∣∣∣∣
∑

j

(−1)j+1uj

∣∣∣∣∣∣

p+1

− up+1
l − (p + 1)up

l

∑

i6=l

(−1)i+lui


 ,

r2l = −
∑

i6=l

∫

Al

up+1
i ,

r3l = (p + 1)
∑

j>l

(−1)j+l

∫

Al

{[(up
l − Up

l )Uj ] + [up
l (uj − Uj)]} ,

r4l = (p + 1)
∑

i>j, i 6=l

(−1)j+i

∫

Al

up
i uj .

We first deal with the main term in (3.24), namely (p+1)
∑

j>l(−1)l+j
∫
Al

Up
l Uj dx.

Hence we are interested in computing
∫
Al

Up
l Uj dx for l = 1, . . . , k−1. In the region
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Al we perform the change of variables x−a = µlεz. Thus the transformed domains
are

Ãl = {z ∈ RN :
√

µl+1ε

µlε
≤ |z| ≤

√
µl−1ε

µlε
} if l = 1, . . . , k − 1.

It is immediate to see that (2.5) gives that the transformed domain Ãl converges
to the whole space RN as ε → 0.
With this in mind and using the fact that j > l and l = 1, . . . , k − 1, we have

∫

Al

Up
l Uj dx =

(
µjε

µlε

)N−2
2

∫

Ãl

αp+1
N

(1 + |z − τl|2)N+2
2

1

[(µjε

µlε
)2 + |z − µjε

µlε
τj |2]N−2

2

dz

= αp+1
N (

∫

RN

1

|z|N−2(1 + |z − τl|2)N+2
2

dz)
(

µj

µl

)N−2
2

ε
(N−2)(j−l)

2k (1 + o(1)). (3.25)

Since ε
N−2
2k + 1

k = ε
N
2k , we thus conclude that, for all l = 1, . . . , k − 1,

∑

j>l

(−1)l+j

∫

Al

Up
l Uj dx = −αp+1

N Γ(τl)
(

µl+1

µl

)N−2
2

ε
(N−2)

2k (1 + o(1)), (3.26)

where F is defined in 2.19. To get the estimate of
∫
Al

Gε
1 dx we are left to show

that the term rl in (3.24) is negligible. We claim that this fact will be consequence
of two fundamental computations∫

Al

Up+1
j dx = O

(
ε

N
2k

)
for all j 6= l, (3.27)

∫

Al

Up
i Ujdx = O

(
ε

N
2k

)
for all j 6= l, for all i 6= l, (3.28)

and ∫

Al

Up
l Ujdx = O

(
ε
|l−j|(N−2)

2k

)
for all j 6= l. (3.29)

To get (3.27), we perform the change of variable x− a = µjεz to get
∫

Al

Up+1
j dx =

∫
√

µlεµl+1ε

µjε
<|z|<

√
µlεµl−1ε

µjε

1
(1 + |z − τj |2)N

dz.

If j > l then
√

µlεµl−1ε

µjε
→∞ and so, for some positive constant C,

∣∣
∫

Al

Up+1
j dx

∣∣≤ C

∫ ∞
√

µlεµl−1ε

µjε

t−N−1 dt = C

(
µjε√

µlεµl+1ε

)N

= O(ε
N
2k ).

If j < l then
√

µlεµl+1ε

µjε
→ 0 and so, for some positive constant C,

∣∣
∫

Al

Up+1
j dx

∣∣≤ C

(√
µlεµl−1ε

µjε
−
√

µlεµl+1ε

µjε

)N

≤ C

(√
µlεµl−1ε

µjε

)N

= O(ε
N
2k ).

These facts give the validity of (3.27).
Estimate (3.28) is a direct consequence of (3.27) and Holder inequality, since

∣∣∣∣
∫

Al

Up
i Ujdx

∣∣∣∣ ≤
(∫

Al

Up+1
i dx

) p
p+1

(∫

Al

Up+1
j dx

) 1
p+1

≤ CO(ε
N
2k ).
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Finally (3.29) is a direct consequence of the computations contained in (3.25) when
j > l. Assume now that j < l. Perform the change of variable x − a = µlεz, one
gets

∫

Al

Up
l Uj dx = µ

N−2
2

lε µ
N−2

2
jε

∫

Ãl

αp+1
N

(1 + |z − τl|2)N+2
2

1

[µ2
jε + |µlεz − µjετj |2]N−2

2

dz

= (
∫

RN

αp+1
N

|z − τl|N−2(1 + |z − τj |2)N+2
2

dz)
(

µl

µj

)N−2
2

ε
(N−2)(l−j)

2k

= O
(
ε

(N−2)(l−j)
2k

)
.

¿From this we conclude (3.29).
Let us now estimate the terms that define rl (see (3.24)). First we have

|r1l| ≤ C


∑

j 6=l

∫

Al

Up−1
l U2

j +
∑

i,j 6=l

∫

Al

Up−1
i U2

j


 ≤ Cε

N−2
2k (1+ 2

N+2 )

since, if j 6= l,

∫

Al

Up−1
l U2

j ≤ C

(∫

Al

Up
l Uj

) p−1
p

(∫

Al

Up+1
j

) 1
p

≤ Cε
N−2
2k (1+ N

N+2 ).

and, for i 6= l and j 6= l,

∫

Al

Up−1
i U2

j ≤ C

(∫

Al

Up
i Uj

) p−1
p

(∫

Al

Up+1
j

) 1
p

≤ Cε
N
2k .

An immediate consequence of (3.27) is that |r2l| ≤ Cε
N
2k , while from (3.28) we have

that |r4l| ≤ Cε
N
2k .

We are left to estimate r3l. We thus fix j > l. In particular we just take l 6= j. A
consequence of Lemma 3.1 is that in Al we have

|uj(x)− Uj(x)| ≤ C
εN−2

µjε
N−2

2 |x− a|N−2
.

Hence, using again the change of variables x− a = µlεz, we see that the first terms
in the expression of r3l can be estimated as follows

∣∣∣∣
∫

Al

up
l (uj − Uj) dx

∣∣∣∣ ≤ C
εN−2

µ
N−2

2
jε

∫

Al

Up
l

1
|x− a|N−2

dx

≤ C
εN−2

(µjεµlε)
N−2

2

∫

Ãl

1

(1 + |z − τl|2)N+2
2

1
|z|N−2

dz

≤ Cε
N−2
2k (2k−j−l+1) ≤ Cε

N−2
k .
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The remaining terms in the definition of r3l can be estimated as follows. We have
for j > l and using again the change of variable in Al given by x− a = µlεz,
∣∣∣∣
∫

Al

(up
l − Up

l )Uj dx

∣∣∣∣ ≤ C

∫

Al

Up−1
l |ul − Ul|Uj dx ≤ C

εN−2

µ
N−2

2
lε

∫

Al

Up−1
l Uj

|x− a|N−2
dx

≤ C
εN−2µ

N−2
2

jε

µ
N−2

2
lε

∫

Ãl

1
(1 + |z − τl|2)2

1
|z|N−2

1

(µ2
jε + |µlεz − µjετj |2)N−2

2

dz

≤ C
εN−2

µ
N−2

2
lε µ

N−2
2

jε

∫

RN

1
(1 + |z − τl|2)2

1
|z|(N−2)

dz ≤ Cε
N−2

k .

By all the previous estimates we get

J1
ε = αp+1

N

k−1∑

l=1

Γ(τl)
(

µl+1

µl

)N−2
2

ε
N−2
2k (1 + o(1)). (3.30)

By (3.7), (3.20) and (3.30) we conclude that

Jε(Va) = kc1
αp+1

N

N

+
αp+1

N

2

{
c2H(a, a)µN−2

1 +
rN−2
a Γ(τk)

(1 + |τk|2)N−2
2

1
µN−2

k

+
k−1∑

l=1

Γ(τl)
(

µl+1

µl

)N−2
2

}
ε

N−2
2k

+ o
(
ε

N−2
2k

)
. (3.31)

In a very similar way one gets the expansion of Jε(Vb) in (3.5), that is

Jε(Vb) = kc1
αp+1

N

N

+
αp+1

N

2

{
c2H(b, b)δN−2

1 +
rN−2
b Γ(σk)

(1 + |σk|2)N−2
2

1
δN−2
k

+
k−1∑

l=1

Γ(σl)
(

δl+1

δl

)N−2
2

}
ε

N−2
2k

+ o
(
ε

N−2
2k

)
. (3.32)

We are now left with the estimate of Ja,b
ε in (3.6) to complete the expansion of

(3.5).
Standard arguments (see [2] and [3]) prove that

∫

Ωε

∇PεUµiε,aiε∇PεUδjε,bjε

= αp+1
N

(∫

RN

1

(1 + |z|2)N+2
2

dz

)
G(aiε, bjε)µ

N−2
2

iε δ
N−2

2
jε (1 + o(1))

= αp+1
N

(∫

RN

1

(1 + |z|2)N+2
2

dz

)
G(a, b)µ

N−2
2

i δ
N−2

2
j ε

(j+i−1)(N−2)
2k (1 + o(1)).
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Therefore
∫

Ωε

∇Va∇Vb = αp+1
N

(∫

RN

1

(1 + |z|2)N+2
2

dz

)
G(a, b) (µ1δ1)

N−2
2 ε

N−2
2k (1 + o(1)).

(3.33)
Let now ρ > 0 be such that B(a, ρ) ∩B(b, ρ) = ∅. Define

G2ε = |Va − Vb|p+1 − V p+1
a − V p+1

b .

Taking into account that D
(|x|p+1

)
= (p + 1)x|x|p−1, a Taylor expansion gives

∫

Ωε

G2ε =
∫

Ωε∩B(a,ρ)

G2ε +
∫

Ωε∩B(b,ρ)

G2ε + O(µN
1ε + δN

1ε)

= −(p + 1)

[∫

Ωε∩B(a,ρ)

V p
a Vb +

∫

Ωε∩B(b,ρ)

V p
b Va

]

+
p(p + 1)

2

[∫

Ωε∩B(a,ρ)

(Va + sVb)p−1V 2
b +

∫

Ωε∩B(b,ρ)

(Vb + sVa)p−1V 2
a

]

+ O(µN
1ε + δN

1ε)

= −(p + 1)
k∑

j=1

[∫

Ωε∩B(a,ρ)

Up
µjε,ajε

Vb +
∫

Ωε∩B(b,ρ)

Up
δjε,bjε

Va

]

+ I1 + I2 + O
(
ε

N
2k

)
, (3.34)

where

I1 := −



∫

Ωε∩B(a,ρ)


V p

a −
∑

j

Up
µjε,ajε


 Vb +

∫

Ωε∩B(b,ρ)


V p

b −
∑

j

Up
δjε,bjε


Va




and

I2 := −p(p + 1)
2

[
∫

Ωε∩B(a,ρ)

(Va + sVb)p−1V 2
b +

∫

Ωε∩B(b,ρ)

(Vb + sVa)p−1V 2
a ].

It is straightforward to see that I1, I2 = O
(
ε

N
2k

)
. Furthermore, it is by now stan-

dard (see [2] and [3]) that
∫

Ωε∩B(a,ρ)

Up
µjε,ajε

PεUδiε,biε dx

= αp+1
N

(∫

RN

1

(1 + |z|2)N+2
2

dz

)
G(aiε, bjε)µ

N−2
2

iε δ
N−2

2
jε (1 + o(1))

= αp+1
N

(∫

RN

1

(1 + |z|2)N+2
2

dz

)
G(a, b)µ

N−2
2

i δ
N−2

2
j ε

(j+i−1)(N−2)
2k (1 + o(1)). (3.35)

By (3.34) and (3.35) we deduce
∫

Ωε

G2ε = −2(p + 1)αp+1
N

(∫

RN

1

(1 + |z|2)N+2
2

dz

)
G(a, b) (µ1δ1)

N−2
2 ε

N−2
2k (1 + o(1).
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We thus conclude that

Ja,b
ε = c2α

p+1
N G(a, b) (µ1δ1)

N−2
2 ε

N−2
2k (1 + o(1)). (3.36)

Finally by (3.5), (3.31), (3.32) and (3.36) the C0−estimate in (3.1) follows.
Arguing in a similar way, we can also prove the C1−estimate. ¤

4. The reduced function

This section is devoted to guarantee that the functions Ψ and Ψ∗ defined in (2.17)
and (2.20) have critical points which are stable under C1-perturbation of them.

Proposition 4.1. (i) There exist µ̄0, δ̄0 ∈ Rk
+ such that (0, 0, µ̄0, δ̄0) is a non

degenerate critical point of the function Ψ defined in (2.17).
(ii) If (1.7) holds, there exist µ̄0, δ̄0 ∈ Rk

+ such that (0, 0, µ̄0, δ̄0) is a non de-
generate critical point of the function Ψ∗ defined in (2.20).

Proof. Let us rewrite the functions Ψ and Ψ∗ as

Φ(τ̄ , σ̄, µ̄, δ̄) := haµ2
1 + hbδ

2
1 + 2habµ1δ1 + g(τk)

1
µ2

k

+ g(σk)
1
δ2
k

+
[
f(τ1)

µ2

µ1
+ · · ·+ f(τk−1)

µk

µk−1

]
+

[
f(σ1)

δ2

δ1
+ · · ·+ f(σk−1)

δk

δk−1

]
,

where we replaced µ
N−2

2
i and δ

N−2
2

i with µi and δi, respectively, and we also set
ha := c2H(a, a), hb := b2H(b, b), ha,b := ±c2G(a, b)

ga(x) :=
rN−2
a Γ(x)

(1 + |x|2)N−2
2

, gb(x) :=
rN−2
b Γ(x)

(1 + |x|2)N−2
2

, f(x) := 2Γ(x).

First of all, we point out that if we fix τ̄ = σ̄ = 0 the function (µ̄, δ̄) → Φ(0, 0, µ̄, δ̄)
has a minimum point (µ̄0, δ̄0). In fact, the quadratic form (µ1, δ1) → haµ2

1 +hbδ
2
1 +

2habµ1δ1 is strictly positively definite: this is trivial if hab = +2G(a, b) and it
follows by (1.7) if hab = −2G(a, b).
We are going to show that (0, 0, µ̄0, δ̄0) is a nondegenerate critical point of Φ. The
claim immediately follows.
Let us remark that

HΦ(0, 0, µ̄0, δ̄0) =
( Hτ̄ ,σ̄Φ(0, 0, µ̄0, δ̄0) 0

0 Hµ̄,δ̄Φ(0, 0, µ̄0, δ̄0)

)
.

By Lemma 4.2 we easily deduce that
∣∣Hτ̄ ,σ̄Φ(0, 0, µ̄0, δ̄0)

∣∣ 6= 0. It remains to prove
that

∣∣Hµ̄,δ̄Φ(0, 0, µ̄0, δ̄0)
∣∣ 6= 0. (4.1)
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Let us compute ∇Φ(τ̄ , σ̄, µ̄, δ̄) in a generic point:

∂µ1Φ = 2haµ1 + 2habδ1 − f(τ1)
µ2

µ2
1

∂µiΦ =
f(τi−1)
µi−1

− f(τi)
µi+1

µ2
i

, i = 2, . . . , k − 1

∂µk
Φ = −2

ga(τk)
µ3

k

+
f(τk−1)
µk−1

.

∂δ1Φ = 2hbδ1 + 2habµ1 − f(σ1)
δ2

δ2
1

∂δi
Φ =

f(σi−1)
δi−1

− f(σi)
δi+1

δ2
i

, i = 2, . . . , k − 1

∂δk
Φ = −2

gb(σk)
δ3
k

+
f(σk−1)

δk−1
.

If ∇Φ(τ̄ , σ̄, µ̄, δ̄) = 0, in particular we get

αa := Aµ1 = f(τ1)
µ2

µ1
= · · · = f(τk−1)

µk

µk−1
=

2ga(τk)
µ2

k

, A := (2haµ1 + 2habδ1),

(4.2)

αb := Bδ1 = f(σ1)
δ2

δ1
= · · · = f(δk−1)

δk

δk−1
=

2gb(σk)
δ2
k

, B := (2hbδ1 + 2habµ1).

(4.3)

Now let τ̄ = σ̄ = 0 and set β := f(0). Then we have:

Hµ̄,δ̄Φ(0, 0, µ̄0, δ̄0) =




2ha + 2βµ2
µ3

1
− β

µ2
1

. . . 0 2hab 0 . . . 0
− β

µ2
1

2βµ3
µ3

2
. . . 0 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . 6ga(0)
µ4

k
0 0 . . . 0

2hab 0 . . . 0 2hb + 2βµ2
δ3
1

− β
δ2
1

. . . 0
0 0 . . . 0 − β

δ2
1

2βµ3
δ3
2

. . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 6gb(0)

δ4
k




.
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By (4.2) and (4.3) we get
∣∣Hµ̄,δ̄(0, 0, µ̄0, δ̄0)

∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




2haµ2
1 + 2αa −β . . . 0 2habµ

2
1 0 . . . 0

−α2
a

β 2αa . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 3αa 0 0 . . . 0

2habδ
2
1 0 . . . 0 2hbδ

2
1 + 2αb −β . . . 0

0 0 . . . 0 −α2
b

β 2αb . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 3αb




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∣∣∣∣
( A 2habµ

2
1L

2habδ
2
1L B

)∣∣∣∣

where

A :=




2haµ2
1 + 2αa −β . . . 0
−α2

a

β 2αa . . . 0
...

...
. . .

...
0 0 . . . 3αa


 ,

B :=




2hbδ
2
1 + 2αb −β . . . 0
−α2

b

β 2αb . . . 0
...

...
. . .

...
0 0 . . . 3αb




and

L :=




1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


 .

In order to prove (4.1) we shall show that
{
Ax + 2habµ

2
1Ly = 0

2habδ
2
1Lx + By = 0

=⇒ x = y = 0.

By the first equation we deduce

x = −2habµ
2
1

(A−1L)
y,

because by Remark 4.3 and by (4.2) we get

|A| = αk−1
a

(
8khaµ2

1 + 2hab(2k + 1)µ1δ1

) 6= 0.

Therefore, by the second equation we get
[B − 4h2

abµ
2
1δ

2
1

(LA−1L)]
y = 0.
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We point out that

B − 4h2
abµ

2
1δ

2
1

(LA−1L)
=




2hbδ
2
1 + 2αb − 4h2

abµ
2
1δ

2
1a11 −β . . . 0

−α2
b

β 2αb . . . 0
...

...
. . .

...
0 0 . . . 3αb


 ,

where a11 is the element in the first row and in the first column of the matrix A−1,
namely

a11 =
αk−1

a (2k − 1)
|A| =

2k − 1
8khaµ2

1 + 2hab(2k + 1)µ1δ1
.

Finally, by Remark 4.3 and by (4.3) we get

∣∣B − 4h2
abµ

2
1δ

2
1

(LA−1L)∣∣ =

∣∣∣∣∣∣∣∣∣




2hbδ
2
1 + 2αb − 4h2

abµ
2
1δ

2
1a11 −β . . . 0

−α2
b

β 2αb . . . 0
...

...
. . .

...
0 0 . . . 3αb




∣∣∣∣∣∣∣∣∣

= αk−1
b

[(
2hbδ

2
1 + 2αb − 4h2

abµ
2
1δ

2
1a11

)
(2k − 1)− αb(2k − 3)

]

=

(
64k2hahb + 32kh2

ab

)
µ2

1δ
2
1

8khaµ2
1 + 2hab(2k + 1)µ1δ1

6= 0.

That proves our claim. ¤

Lemma 4.2. x = 0 is a non degenerate critical point of the function Γ defined in
(2.19).

Proof. Let us compute the Hessian matrix HΓ(0). We have

∂xiΓ(x) = −(N + 2)
∫

RN

yi + xi

(1 + |y + x|2)N+4
2

1
|y|N−2

and

∂2
xixj

Γ(x) = −(N+2)
∫

RN

[
−(N + 4)

(yi + xi)(yj + xj)

(1 + |y + x|2)N+6
2

+
δij

(1 + |y + x|2)N+4
2

]
1

|y|N−2
.

In particular ∂2
xixj

Γ(0) = 0 if i 6= j and

∂2
xixi

Γ(0) = −(N + 2)
∫

RN

[
−(N + 4)

y2
i

(1 + |y|2)N+6
2

+
1

(1 + |y|2)N+4
2

]
1

|y|N−2
.

Taking into account that
∫

RN

y2
i

(1 + |y|2)N+6
2

1
|y|N−2

=
1
N

∫

RN

|y|2
(1 + |y|2)N+6

2

1
|y|N−2

we have

∂2
xixi

Γ(0) = −N + 2
N

∫

RN

N − 4y2
1

(1 + |y|2)N+6
2

1
|y|N−2

.



22 YUXIN GE, MONICA MUSSO, AND ANGELA PISTOIA

We are going to prove that∫

RN

N − 4|y|2
(1 + |y|2)N+6

2

1
|y|N−2

6= 0.

The claim immediately follows.
It holds

∫

RN

N − 4|y|2
(1 + |y|2)N+6

2

1
|y|N−2

= ωN

+∞∫

0

r
N − 4r2

(1 + r2)
N+6

2

dr

= ωN (N + 4)

+∞∫

0

r

(1 + r2)
N+6

2

dr − 4ωN

+∞∫

0

r

(1 + r2)
N+4

2

dr

= −ωN

(
1

(1 + r2)
N+4

2

)∣∣∣∣∣

+∞

0

+
4

N + 2
ωN

(
1

(1 + r2)
N+2

2

)∣∣∣∣∣

+∞

0

= ωN
N − 2
N + 2

.

¤
Remark 4.3. It holds∣∣∣∣∣∣∣∣∣∣∣∣




γ −β 0 . . . 0
−α2

β 2α −β . . . 0
0 −α2

β 2α . . . 0
...

...
...

. . .
...

0 0 0 . . . 3α




∣∣∣∣∣∣∣∣∣∣∣∣

= αk−1 [γ(2k − 1)− α(2k − 3)] , (4.4)

where k denotes the dimension of the above matrix.

Proof. Let us introduce the tridiagonal matrix of order n defined by

An :=




2α −β 0 . . . 0
−α2

β 2α −β . . . 0
0 −α2

β 2α . . . 0
...

...
...

. . .
...

0 0 0 . . . 2α




.

Arguing by induction one can easily prove that |An| = (n + 1)αn. An easy compu-
tation shows that∣∣∣∣∣∣∣∣∣∣∣∣




γ −β 0 . . . 0
−α2

β 2α −β . . . 0
0 −α2

β 2α . . . 0
...

...
...

. . .
...

0 0 0 . . . 3α




∣∣∣∣∣∣∣∣∣∣∣∣
= γ

[
3α|Ak−2| − α2|Ak−3|

]− α2
[
3α|Ak−3| − α2|Ak−4|

]

= γαk−1(2k − 1)− αk(2k − 3) = αk−1 [γ(2k − 1)− α(2k − 3)]

and the claim follows. ¤
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5. The linear problem

Let us introduce the linear operator L : K⊥ → K⊥ defined by

L(φ) := Π⊥ {φ− i∗ [f ′ (V )φ]} , (5.1)

where f ′(V ) = p|V |p−1, V is defined in (2.9) and p = N+2
N−2 . In what follows we

study the invertibility of the map L, starting with an a-priori estimate for solutions
φ ∈ K⊥̄

d,ξ
of Ld̄,ξ(φ) = h, for some right hand side h with bounded ‖ · ‖-norm. We

have the validity of the following

Lemma 5.1. For any η > 0, there exists ε0 > 0 and c > 0 such that for any τ̄ , σ̄
in RNk and any µ̄, δ̄ in Rk

+ satisfying (2.7) and for any ε ∈ (0, ε0), we have

‖L(φ)‖ ≥ c‖φ‖ for all φ ∈ K⊥.

Proof. We argue by contradiction. Assume there exist sequences εn → 0, τ̄n, σ̄n ∈
RNk, µ̄n, δ̄n ∈ Rk

+ where τin → τi ∈ RN , σin → σi, with |τi|, |σi| ≤ δ, for i =
1, . . . , k, and µjn → µj > 0, δjn → δj > 0, for j = 1, . . . , k, and functions φn, ψn ∈
K⊥ such that

L(φn) = ψn, ‖φn‖ = 1 and ‖ψn‖ → 0 as n →∞. (5.2)

¿From the definition of (5.1), we get the existence of ζn ∈ K such that

φn − i∗ [f ′ (V )φn] = ψn + ζn (5.3)

Step 1. We prove that

‖ζn‖ → 0. (5.4)

By definition, we write ζn =
∑

h=0,1,...,N
i=1,...,k

αih
n PZj

µin,ain
+

∑
h=0,1,...,N

i=1,...,k

βih
n PZj

δin,bin
. To

prove (5.4) it is enough to show that µinαih
n → 0 and δinβih

n → 0 as n →∞, for all
i, h. We will do it for αih

n . Thus we multiply (5.3) by PZh
µln,aln

, we integrate in Ω
and we get

〈
ζn, PZh

µln,aln

〉
=

∫

Ωεn

f ′ (V )φnPZh
µln,aln

dx. (5.5)

By Lemma 5.2 we deduce that

µ2
ln

〈
ζn, PZh

µln,aln

〉
= αlh

n [ch + o(1)] + o(1)


∑

j 6=h

αlj
n +

∑
βlj

n


 (5.6)



24 YUXIN GE, MONICA MUSSO, AND ANGELA PISTOIA

Moreover, using the orthogonality condition
〈
φ, PZj

µln,aln

〉
= 0 we deduce

∫

Ωεn

f ′ (V )φnPZh
µln,aln

=
∫

Ωεn

f ′ (V )φn

(
PZh

µln,aln
− Zh

µln,aln

)

+
∫

Ωεn

[
f ′ (V )− pUp−1

µln,aln

]
φnZh

µln,aln

≤ |f ′ (V )|N
2
|φn| 2N

N−2

∣∣PZh
µln,aln

− Zh
µln,aln

∣∣
2N

N−2

+
∣∣f ′ (V )− pUp−1

µln,aln

∣∣
N
2
|φn| 2N

N−2

∣∣Zh
µln,aln

∣∣
2N

N−2

=
1

µln
o(1) (5.7)

Finally (5.4) follows by (5.5), (5.6) and (5.7).

Step 2. Let us define

un := φn − ψn − ζn, so that ‖un‖ → 1. (5.8)

Then equation (5.3) gets rewritten as
{
−∆un = f ′ (V ) un + f ′ (V ) (ψn + ζn) in Ωεn ,

un = 0 on ∂Ωεn .
(5.9)

We prove that

lim inf
n

∫

Ωεn

f ′ (V ) u2
n = c2 > 0. (5.10)

We multiply (5.9) by un we deduce that

‖un‖2 =
∫

Ωεn

f ′ (V )u2
n +

∫

Ωεn

f ′ (V ) (ψn + ζn) un. (5.11)

By Hölder’s inequality, (5.2) and (5.4) we get
∣∣∣∣∣∣∣

∫

Ωεn

f ′ (V ) (ψn + ζn)un

∣∣∣∣∣∣∣
≤ |f ′ (V )|N

2
|ψn + ζn| 2N

N−2
|un| 2N

N−2

≤ c ‖ψn + ζn‖ ‖un‖ = o(1). (5.12)

We conclude that (5.10) follows by (5.8), (5.11) and (5.12).

Step 3
Let us define smooth cut off functions around each annuli Aln and Bln defined in
(3.22) around B(a, raε) and around B(b, rbε), respectively. Namely

Aln := B(a,
√

µlnµl−1,n)\B(a,
√

µlnµl+1,n) and Bln := B(b,
√

δlnδl−1,n)\B(b,
√

δlnδl+1,n),

with the convention that µ0n = µ−1
1n ρ2 for some ρ > 0 small and µk+1,n = µ−1

kn r2
aε2

and that δ0n = δ−1
1n ρ2 for some ρ > 0 small and δk+1,n = δ−1

kn r2
aε2.
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For any j = 1, . . . , k, let χa
j,n be a smooth cut-off function such that





χa
jn(x) = 1 if √

µjnµj+1n ≤ |x− a| ≤ √
µjnµj−1n,

χa
jn(x) = 0 if |x− a| ≤

√
µjnµj+1n

2 or |x− a| ≥ 2√µjnµj−1n,

|∇χa
jn(x)| ≤ 2√

µjnµj−1n
and |∇2χj

n(x)| ≤ 4
µjnµj−1n

.

(5.13)

Furthermore j = 1, . . . , k, let χb
j,n be a smooth cut-off function such that





χb
jn(x) = 1 if

√
δjnδj+1n ≤ |x− b| ≤ √

δjnδj−1n,

χb
jn(x) = 0 if |x− b| ≤

√
δjnδj+1n

2 or |x− b| ≥ 2
√

δjnδj−1n,

|∇χb
jn(x)| ≤ 2√

δjnδj−1n

and |∇2χj
n(x)| ≤ 4

δjnδj−1n
.

(5.14)

For any j = 1, . . . , k we define

ûa
jn(y) = µjn

N−2
2 un(µjny + a)χa

jn(µjny + a)

and
ûb

jn(y) = δjn

N−2
2 un(δjny + b)χb

jn(δjny + b).

We will show that, for any j = 1, . . . , k,

ûa
jn, ûb

jn → 0 weakly in D1,2(RN ) and strongly in Lq
loc(RN ) for any q ∈ [2, 2∗).

(5.15)
We will prove this fact for ûa

jn. For simplicity of notation, in what is left of this
step we will drop the dependence on a.
Furthermore, let ρ > 0 be such that B(a, ρ)

⋂
B(b, ρ) = ∅ and consider the annuli

introduced in (3.22).
It is useful to point out that for x = µjny + a

∇ûjn(y) = µjn
N
2 [∇un(x)χjn(x) + un(x)∇χjn(x)] , (5.16)

and

∆ûjn(y) = µjn
N+2

2 [∆un(x)χjn(x) + 2∇un(x)∇χjn(x) + un(x)∆χjn(x)] . (5.17)

First of all, by (5.16) and (5.13) we easily deduce that ‖ûjn‖D1,2(RN ) ≤ c.

Therefore, up to a subsequence, ûjn → ûj weakly in D1,2(RN ) and strongly in
Lq

loc(RN ) for any q ∈ [2, 2∗).
We will show that ûj solves the problem

∆ûj + f ′
(
U1,−τj

)
ûj = 0 in RN (5.18)

and satisfies the orthogonality conditions
∫

RN

∇Zh
1,−τj

∇ûj = 0, h = 0, 1, . . . , N. (5.19)

These two facts imply that ûj = 0, namely (5.15).
We are thus led to prove (5.18) and (5.19). We start with (5.18).
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Let us perform the change of variable x = µjny + a, y ∈ Ωj
n := Ωεn−a

µjn
. By (5.17)

and (5.9) we get for any ϕ ∈ C∞0 (RN )
∫

RN

∇ûjn(y)∇ϕ(y)dy =
∫

RN

µjn
2f ′(V (µjny + a))ûjn(y)ϕ(y)dy

+
∫

RN

µ
N+2

2
jn f ′ (V (µjny + a)) (ψn(µjny + a) + ζn(µjny + a))χj

n(µjny + a)ϕ(y)dy

+ 2µ
N+2

2
jn

∫

RN

[∇un(µjny + a)∇χjn(µjny + a) + un(x)∆χjn(µjny + a)] ϕ(y)dy

=: I1 + I2 + I3 + I4. (5.20)

It is easy to check that I2, I3, I4 → 0. Let us compute the limit of I1. If we denote
ajn = a + µjnτj , for

√
µjnµj+1n

2 ≤ |µjny| ≤ 2√µjnµj−1n we have

f ′ (V (µjny + a)) = = f ′


 1

µ
N−2

2
jn

U1,0(y + τj) +
∑

i 6=j

Uµin,ain
(µjny + a) + o(1)


 ,

(5.21)

with

Uµin,ain(µjny + a) =





O

(
1

µin
N−2

2

)
if j > i

O

(
µin

N−2
2

µjn
N−2

1
|y|N−2

)
if i > j.

(5.22)

Therefore by (5.21) and (5.22), using the Lebesgue’s dominated convergence The-
orem we get that

I1 →
∫

RN

f ′ (U1,0(y + τj)) ûj(y)ϕ(y)dy.

Thus (5.18) follows by passing to the limit in (5.20).
Let us now prove (5.19). We have

∫

RN

∇Zh
1,−τj

(y)∇ûjn(y)dy =
∫

RN

f ′(U1,−τj (y))Zh
1,−τj

(y)ûjn(y)dy

= µjn

∫

q
µjnµj+1n

2 ≤|x−a|≤2
√

µjnµj−1n

f ′(Uµjn,ajn(x))Zh
µjn,ajn

(x)un(x)χjn(x)dx

= µjn




∫

Ajn

f ′
(
Uµjn,ajn(x)

)
Zh

µjn,ajn
(x)un(x)dx + o (1)


 . (5.23)

Now we observe that, by (5.4) and (5.8),

µjn

∫

Ωεn

∇PZh
µjn,ajn

(x)∇un(x)dx = o (1) . (5.24)
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On the other hand

µjn

∫

Ωεn

∇PZh
µjn,ajn

(x)∇un(x)dx = µjn

∫

Ωεn

f ′
(
Uµjn,ajn

(x)
)
Zh

µjn,ajn
(x)un(x)dx

= µjn

∫

Ajn

f ′
(
Uµjn,ajn(x)

)
Zh

µjn,ajn
(x)un(x)dx + o(1) (5.25)

since
∣∣∣∣∣∣∣

∫

Ωεn\B(ajn,ρ)

f ′(Uµjn,ajn)Zh
µjn,ajn

(x)un(x)dx

∣∣∣∣∣∣∣

≤ c
∣∣∣Zh

µjn,ajn

∣∣∣
2N

N−2

|un| 2N
N−2




∫

Ωεn\B(a,ρ)

U
2N

N−2
µjn,ajn




2
N

= O(1),

and for l 6= j

µjn

∣∣∣∣∣∣

∫

Aln

f ′(Uµjn,ajn)Zh
µjn,ajn

(x)un(x)dx

∣∣∣∣∣∣

≤ c
∣∣∣Zh

µjn,ajn

∣∣∣
2N

N−2

|un| 2N
N−2




∫

Aln

U
2N

N−2
µjn,ajn




2
N

= o (1) .

¿From (5.23), (5.24) and (5.25) we get (5.19).

Step 4 We show that a contradiction arises with (5.10), by showing that
∫

Ωεn

f ′εn

(
Vd̄n,ξn

)
u2

n = o(1). (5.26)

This fact concludes the proof of this Lemma.
Let us prove (5.26). We have

∫

Ωεn

f ′(V )u2
n =

∫

Ωεn\{B(a,ρ)∪B(b,ρ)}

f ′(V )u2
n +

k∑

j=1

∫

Ajn

f ′(V )u2
n +

k∑

j=1

∫

Bjn

f ′(V )u2
n.

Now, it holds

∫

Ωεn\{B(a,ρ)∪B(b,ρ)}

f ′(V )u2
n ≤ c

k∑

i=1

(
µ2

in + δ2
in

) ∫

Ωεn\B(ξ,ρ)

u2
n = o(1).
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Finally, for any j, we scale x = µjny + a and we get

∫

Ajn

f ′(V )u2
n ≤ c

k∑

i=1

∫

Ajn

Up−1
µin,ain

u2
n + c

k∑

i=1

∫

Ajn

Up−1
δin,bin

u2
n

≤ c

k∑

i=1

µ2
in

∫

RN

(
µin

µ2
in + µ2

jn|y − τi|2
)2

û2
jn + o(1)

≤ c
∑

i<j

(
µjn

µin

)2

+ c

∫

RN

(
1

1 + |y|2
)2

û2
jn + c

∑

i>j

(
µin

µjn

)2

+ o(1)

= o(1),

where the last estimate follows from the fact that
(

1
1+|y|2

)2

∈ L
N
2 (RN ) and (5.15)

holds. In a similar way we prove that
∫
Bjn

f ′(V )u2
n = o(1). That concludes the proof.

¤

Next result states the invertibility of the operator defined in (5.1).

Proposition 5.2. For any η > 0, there exists ε0 > 0 and c > 0 such that for any
τ̄ , σ̄ in RNk and any µ̄, δ̄ in Rk

+ satisfying (2.7) and for any h ∈ K⊥̄
d,ξ

there exists
a unique φ ∈ K⊥̄

d,ξ
solution to L(φ) = h, for any ε ∈ (0, ε0). Furthermore

‖h‖ ≥ c‖φ‖. (5.27)

Proof. Notice that the problem L(φ) = h in φ gets re-written as

φ + K(φ) = h̄ in K⊥̄
d,ξ (5.28)

where h̄ is defined by duality and K : K⊥̄
d,ξ

→ K⊥̄
d,ξ

is a linear compact operator.
Using Fredholm’s alternative, showing that equation (5.28) has a unique solution
for each h̄ is equivalent to showing that the equation has a unique solution for
h̄ = 0, which in turn follows from Lemma 5.1. The estimate (5.27) follows directly
from Lemma 5.1. This concludes the proof of Proposition 5.2.

¤

Remark 5.2. It holds

〈
PZj

µiε,aiε
, PZh

µlε,alε

〉
= o

(
1

µ2
iε

)
if l > i,

〈
PZj

µiε,aiε
, PZh

µiε,aiε

〉
= o

(
1

µ2
iε

)
if j 6= h,

〈
PZj

µiε,aiε
, PZj

µiε,aiε

〉
=

cj

µ2
jε

(1 + o(1))

〈
PZj

µiε,aiε
, PZh

δlε,blε

〉
= o

(
1

µ2
iε

)
, o

(
1
δ2
lε

)

for some positive constants c0 and c1 = · · · = cN .



SIGN CHANGING TOWER OF BUBBLES 29

6. Proof of Proposition 2.1

The main point to prove Proposition 2.1 is to estimate the ‖ · ‖-norm of the error
term R defined in (2.13). This is the content of next

Lemma 6.1. For any η > 0, there exists ε0 > 0 and c > 0 such that for any τ̄ , σ̄
in RNk and any µ̄, δ̄ in Rk

+ satisfying (2.7) and for any ε ∈ (0, ε0), we have

‖R‖ ≤





cε
N−2
2k

p
2 if N ≥ 7,

cε
N−2
2k | ln ε| if N = 6,

cε
N−2
2k if 3 ≤ N ≤ 5.

Proof. Since PεUδ,ξ = i∗
(
Up

δ,ξ

)
= i∗ [f (Uδ,ξ)] for any δ > 0 and point ξ ∈ Ωε, we

can write

R = Π⊥


i∗


f(V )−

k∑

j=1

(−1)j+1f(Uµjε,ajε
) +

k∑

j=1

(−1)j+1f(Uδjε,bjε
)





 .

Therefore by (2.1) we deduce

‖R‖ ≤ c

∣∣∣∣∣∣
f(V )−

k∑

j=1

(−1)j+1f(Uµjε,ajε) +
k∑

j=1

(−1)j+1f(Uδjε,bjε)

∣∣∣∣∣∣
2N

N+2

.

Let us call

I :=

∣∣∣∣∣∣
f(V )−

k∑

j=1

(−1)j+1f(Uµjε,ajε) +
k∑

j=1

(−1)j+1f(Uδjε,bjε)

∣∣∣∣∣∣
2N

N+2

.

The claim will follow if we prove that

I ≤





cε
N−2
2k

p
2 if N ≥ 7,

cε
N−2
2k | ln ε| if N = 6,

cε
N−2
2k if 3 ≤ N ≤ 5.

(6.1)

To simplify notations, we call q = 2N
N+2 . We have

I ≤
∣∣∣∣∣∣
f(V )−

k∑

j=1

(−1)j+1f(PεUµjε,ajε) +
k∑

j=1

(−1)j+1f(PεUδjε,bjε)

∣∣∣∣∣∣
q

+
k∑

j=1

∣∣f(PεUµjε,ajε)− f(Uµjε,ajε)
∣∣
q
+

k∑

j=1

∣∣f(PεUδjε,bjε)− f(Uδjε,bjε)
∣∣
q

= A + B + C. (6.2)

We start with the estimate of A. Let ρ > 0 so that B(a, ρ)
⋂

B(b, ρ) = ∅. We write

Aq =
∫

Ωε\(B(a,ρ)
S

B(b,ρ))

. . . +
∫

B(a,ρ)\B(a,raε)

. . . +
∫

B(b,ρ)\B(b,rbε)

. . .

= A1 + A2 + A3
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In Ωε \ (B(a, ρ)
⋃

B(b, ρ)) the function V is uniformly bounded by ε
N−2
4k , so we get

∫

Ωε\(B(a,ρ)
S

B(b,ρ))

∣∣∣∣∣∣
f(V )−

k∑

j=1

(−1)j+1f(PεUµjε,ajε
) +

k∑

j=1

(−1)j+1f(PεUδjε,bjε
)

∣∣∣∣∣∣

q

≤ Cε
N−2
2k

p
2 q,

thus A1 = O(ε
N−2
2k

p
2 q). We next estimate A2.

Let us then introduce the annuli Al already defined in (3.22), namely for all l =
1, . . . , k, Al := B(a,

√
µlεµl−1ε) \B(a,

√
µlεµl+1ε). with µ0ε := µ−1

1ε ρ2 and µk+1ε :=
µ−1

kε r2
aε2, so that B(a, ρ) \B(a, raε) =

⋃k
l=1Al. We have

A2 =
k∑

l=1

∫

Al

∣∣∣∣∣∣
f(V )−

k∑

j=1

(−1)j+1f(PεUµjε,ajε
) +

k∑

j=1

(−1)j+1f(PεUδjε,bjε
)

∣∣∣∣∣∣

q

To simplify again the notation, we will use Uj to denote the function Uµjε,ajε
. Fix

l. We have

∫

Al

∣∣∣∣∣∣
f(V )−

k∑

j=1

(−1)j+1f(PεUµjε,ajε) +
k∑

j=1

(−1)j+1f(PεUδjε,bjε)

∣∣∣∣∣∣

q

≤ c

∫

Al

∣∣∣∣∣∣
f(V )−

k∑

j=1

(−1)j+1f(PεUj)

∣∣∣∣∣∣

q

+ O
(
ε

N−2
2k

p
2 q

)

≤ c


∑

i 6=l

∫

Al

|Up−1
l Ui|q +

∑

i 6=l

∫

Al

Upq
i


 + O

(
ε

N−2
2k

p
2 q

)
.

Since pq = p+1, arguing as in the proof of estimate (3.27) we obtain that
∫
Al

Upq
i =

O(ε
N−2
2k

p
2 q). On the other hand, if N > 6, we get

∫

Al

∣∣∣Up−1
l Ui

∣∣∣
q

≤ c

∫

Al

(
µ2

lε

(µ2
lε + |x− alε|2)2

)q
(

µ
N−2

2
iε

(µ2
iε + |x− aiε|2)N−2

2

)q

= cµ
N−N−2

2 q
iε µ2q

lε

∫

√
µlεµl+1ε

µiε
≤|y|≤

√
µlεµl−1ε

µiε

1
(µ2

lε + µ2
iε|y|2)2q

1

(1 + |y|2)N−2
2 q

=





O
(
µ

N−N+6
2 q

iε µ2q
lε

) ∫

√
µlεµl+1ε

µiε
≤|y|≤

√
µlεµl−1ε

µiε

1
|y|4q

1

(1 + |y|2)N−2
2 q

, if l > i,

O
(
µ

N−N−2
2 q

iε µ−2q
lε

) ∫

√
µlεµl+1ε

µiε
≤|y|≤

√
µlεµl−1ε

µiε

1

(1 + |y|2)N−2
2 q

, if l < i,

= O
(
ε

N−2
2k ( 4

N−2+ p
2 )q

)
.
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If N < 6 we get∫

Al

∣∣∣Up−1
l Ui

∣∣∣
q

≤ cµN−2q
lε µ

N−2
2 q

iε

∫

√
µlεµl+1ε

µlε

1
(1 + |y|2)2q

1

(µ2
iε + µ2

lε|y|2)
N−2

2 q

=





O
(
µN−2q

lε µ
−N−2

2 q
iε

) ∫

√
µlεµl+1ε

µlε
≤|y|≤

√
µlεµl−1ε

µlε

1
(1 + |y|2)2q

, if l > i,

O
(
µN−Nq

lε µ
N−2

2 q
iε

) ∫

√
µlεµl+1ε

µlε
≤|y|≤

√
µlεµl−1ε

µlε

1
|y|(N−2)q

1
(1 + |y|2)2q

, if l < i,

= O
(
ε

N−2
2k q

)
.

A similar arguments allows to prove that if N = 6 then∫

Al

∣∣∣Up−1
l Ui

∣∣∣
q

= O
(
ε

N−2
2k q| ln ε|q

)
.

We thus conclude that

A2 ≤





cε
N−2
2k

p
2 q if N ≥ 7,

cε
N−2
2k q| ln ε|q if N = 6,

cε
N−2
2k q if 3 ≤ N ≤ 5.

A similar estimate can be obtained for A3. We proved that

A ≤





cε
N−2
2k

p
2 if N ≥ 7,

cε
N−2
2k | ln ε| if N = 6,

cε
N−2
2k if 3 ≤ N ≤ 5.

(6.3)

Let us now estimate the term B in (6.2). For any fixed i, from Lemma 3.1 we have∫

Ωε

|(PUi)
p − Up

i |q ≤ c

∫

Ωε

∣∣∣Up−1
i (PUi − Ui)

∣∣∣
q

+ c

∫

Ωε

|PUi − Ui|pq

≤ cµ
N−2

2 q
iε

∫

Ωε

(
µ2

iε

(µ2
iε + |x− aiε|2)2

)q

+ c
ε(N−2)q

µ
N−2

2 q
iε

∫

Ωε

(
µ2

iε

(µ2
iε + |x− aiε|2)2

)q 1
|x− a|(N−2)q

+ cµ
N+2

2 q
iε ,

since

∫

Ωε

(
µ2

iε

(µ2
iε + |x− aiε|2)2

)q

=





O
(
µ2q

iε

)
if N ≥ 7,

O
(
µ2q

iε | ln µiε|q
)

if N = 6,

O
(
µN−2q

iε

)
if 3 ≤ N ≤ 5.
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Therefore

B ≤





ε
N−2
2k

p
2 if N ≥ 7,

ε
N−2
2k | ln ε| if N = 6,

ε
N−2
2k if 3 ≤ N ≤ 5.

(6.4)

In a very analogous way, one gets a similar estimate for C. Estimates (6.2), (6.3)
and (6.4) conclude the proof. ¤

We have now the tools to give the

Proof of Proposition 2.1. First of all, we point out that in virtue of Proposition 5.2,
solving problem (2.10) is equivalent to find a fixed point of the operator

T (φ) := L−1 (N(φ) + R) , φ ∈ K⊥,

where R is defined in (2.13) and and

N(φ) := Π⊥ {i∗ [f (V + φ)− f (V )− f ′ (V ) φ]} .

By Lemma 5.1 we get

‖T (φ)‖ ≤ c (‖N(φ)‖+ ‖R‖) and ‖T (φ1)− T (φ2)‖ ≤ c ‖N(φ1)−N(φ2)‖ .

It is by now standard to prove that

‖N(φ)‖ ≤ c |φ|min{2,p}
2N

N+2
and ‖N(φ1)−N(φ2)‖ ≤ l ‖φ1 − φ2‖ , for some l ∈ (0, 1).

At this point we consider the set E = {φ : ‖φ‖ ≤ r(ε)}, where

r(ε) =





cε
N−2
2k

p
2 if N ≥ 7,

cε
N−2
2k | ln ε| if N = 6,

cε
N−2
2k if 3 ≤ N ≤ 5.

We conclude then that, for c small, T is a contraction mapping from E to E, and so
it has a unique fixed point φ in E. A standard argument shows that (d̄, ξ) → φε,d̄,ξ

is a C1-map. This concludes the proof.
¤

7. Proof of Proposition 2.2

Given the result of Proposition 2.1 we conclude that V +φ, with V defined in (2.9)
and φ predicted by Proposition 2.1, is a solution to our original problem if we can
find (τ̄ , σ̄, µ̄, δ̄) ∈ R2Nk × R2k

+ satisfying constraints (2.7) to solve equation (2.11).
But this is equivalent to finding critical points to the explicit finite dimensional
functional J̃ε defined in (2.15), as we prove next.

Proof of Proposition 2.2, Part 1. To simplify the notations, we set Zh
j,a = Zh

µjve,ajε

and Zh
j,b = Zh

δjε,bjε
. By (2.10) we get

∇J̃ε(τ̄ , σ̄, µ̄, δ̄) = J ′ε (V + φ) [∇V +∇φ]

=
N∑

l=0

k∑

i=1

cli
a

〈
PεZ

l
ia,∇V +∇φ

〉
+

N∑

l=0

k∑

i=1

cli
b

〈
PεZ

l
ib,∇V +∇φ

〉
, (7.1)

for some vectors cli
a and cli

b . Thus, if (τ̄ , σ̄, µ̄, δ̄) is a critical point for J̃ε, we have
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N∑

l=0

k∑

i=1

cli
a

〈
PεZ

l
ia,∇V +∇φ

〉
+

N∑

l=0

k∑

i=1

cli
b

〈
PεZ

l
ib,∇V +∇φ

〉
= 0. (7.2)

Equation (7.2) is equivalent to a homogeneous system of 2(N + 1)k equations in
2(N + 1)k variables, the components of the vectors cli

a and cli
a . We shall prove that

all the components of cli
a and cli

a are equal to zero, provided ε is small enough,
showing that the matrix of coefficients is at main order invertible. This fact gives
the proof of the statement.
We start with the following direct computation

∂µj V = ε
2j−1
2k PεZ

0
j,a + ε

2j−1
2k

N∑

h=1

PεZ
h
jaτjh,

and
∇τj

V = µjε(PεZ
1
j,a, . . . , PεZ

N
j,a).

And analogous formulas hold true for ∂δj V and ∇σj V . Now, by Lemma 5.2 one
easily gets that the system

N∑

l=0

k∑

i=1

cli
a

〈
PεZ

l
ia,∇V

〉
+

N∑

l=0

k∑

i=1

cli
b

〈
PεZ

l
ib,∇V

〉
= 0.

has, at main order, an invertible matrix as the matrix of coefficients. Thus to get
the proof of the result, we need to show that the other part of system (7.2)

N∑

l=0

k∑

i=1

cli
a

〈
PεZ

l
ia,∇φ

〉
+

N∑

l=0

k∑

i=1

cli
b

〈
PεZ

l
ib,∇φ

〉
= 0

is of lower order. To get this fact, we need to estimate the scalar products
〈
PεZ

l
ia∂sφ

〉
and

〈
PεZ

l
ib∂sφ

〉
, where ∂s denotes one of the components of the gradient of φ.

Now, since φ ∈ K⊥, one has
〈
PεZ

h
ja, ∂sφ

〉
= − 〈

∂sPεZ
h
ja, φ

〉
. Since ‖∂sPεZ

h
ja‖ =

O( 1

ε
2j−1
2k

), one easily gets
〈
PεZ

h
ja, ∂sφ

〉
= o

(∣∣〈PεZ
h
ja, ∂sV

〉∣∣) . A similar argument

shows that
〈
PεZ

h
jb, ∂sφ

〉
= o

(∣∣∣
〈
PεZ

h
jb, ∂sV

〉∣∣∣
)

. This facts give the result.
¤

Remark 7.1. Following the proof and using the estimates contained in the proof of
Proposition 2.2, Part 1, above, one gets the following estimate for the components
of the vectors chj

a and chj
b , for any h and j

|chj
a | ≤ Cµjε‖φ‖, |chj

b | ≤ Cδjε‖φ‖. (7.3)

To get now the proof of Proposition 2.2, Part 2, we need to estimate the C1 closeness
of Jε (V + φ) with Jε (V ). This is the content of next

Lemma 7.2. For any η > 0, there exists ε0 > 0 such that for any ε ∈ (0, ε0), we
have

Jε (V + φ) = Jε (V ) + o(ε
N−2
2k ),

C1−uniformly for any τ̄ , σ̄ in RNk and any µ̄, δ̄ in Rk
+ satisfying (2.7).
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Proof. We write

Jε (V + φ)− Jε (V ) =
1
2
‖φ‖2

−
∫

Ωε

[f(V )−
k∑

j=1

(−1)j+1f(PεUµjε,ajε
) +

k∑

j=1

(−1)j+1f(PεUδjε,bjε
)]φ

−
∫

Ω

[F (V + φ)− F (V )− f (V )φ] , (7.4)

where F (u) := 1
p+1 |u|p+1. Using Hölder inequality and estimates (6.1) and (2.12)

∣∣∣∣∣∣

∫

Ωε

[f(V )−
k∑

j=1

(−1)j+1f(PεUµjε,ajε) +
k∑

j=1

(−1)j+1f(PεUδjε,bjε)]φ

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
f(V )−

k∑

j=1

(−1)j+1f(PεUµjε,ajε
) +

k∑

j=1

(−1)j+1f(PεUδjε,bjε
)

∣∣∣∣∣∣
2N

N+2

|φ| 2N
N−2

= o(ε
N−2
2k ). (7.5)

On the other hand, by the mean value theorem we get for some t ∈ [0, 1]
∣∣∣∣∣∣

∫

Ωε

[F (V + φ)− F (V )− f (V )φ]

∣∣∣∣∣∣
≤

∫

Ωε

∣∣f ′ (V + tφ)φ2
∣∣

≤ c

∫

Ωε

|V |p−1
φ2 + c

∫

Ωε

|φ|p+1

≤ c
∣∣∣|V |p−1

∣∣∣
N
2

|φ|22N
N−2

+ c |φ|p+1
2N

N−2
= o(ε

N−2
2k ), (7.6)

using again (2.12) and taking into account that
∣∣∣|V |p−1

∣∣∣
N
2

= O(1). Therefore the

C0 closeness follows.
We need to show now that

∇Jε(V + φ)−∇Jε(V ) = o(ε
N−2
2k ). (7.7)

The proof of the above estimate is very similar to the proof of Lemma 8.1 in [31].
For completeness, we briefly sketch the principal steps below.
We write

∇Jε(V + φ)−∇Jε(V ) = [J ′ε(V + φ)− J ′ε(V )][∇V ] + J ′ε(V + φ)[∇φ]. (7.8)

Let us use the notation ∂s to denote one of the partial derivatives in the gradient.
As computed in the Proof of Proposition 2.2, Part 1, the function ∂sV is a lin-
ear combination of ε

2j−1
2k PεZ

h
µjεajε

and ε
2j−1
2k PεZ

h
δjεbjε

, with coefficients uniformly
bounded as ε → 0 for for any τ̄ , σ̄ in RNk and any µ̄, δ̄ in Rk

+ satisfying (2.7). Thus,
in order to estimate the first term in (7.8) it is enough to estimate, for instance

[J ′ (V + φ)− J ′ (V )]
[
ε

2j−1
2k PεZ

h
µjεajε

]
. (7.9)
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We write

[J ′ (V + φ)− J ′ (V )]
[
ε

2j−1
2k PεZ

h
µjεajε

]

= −
∫

Ωε

f ′ (V )φε
2j−1
2k

[
PεZ

h
µjεajε

− Zh
µjεajε

]

−
∫

Ωε

[
f ′ (V )− f ′

(
Uµjεajε

)]
φε

2j−1
2k Zh

µjεajε

−
∫

Ωε

[f (V + φ)− f (V )− f ′ (V )φ] ε
2j−1
2k PεZ

h
µjεajε

=: I1 + I2 + I3,

because φ ∈ K⊥. It is immediate to check that I1 = o
(
ε

N−2
2k

)
. Let us estimate I2.

Since
∣∣∣ε 2j−1

2k PεZ
h
µjεajε

∣∣∣ ≤ cUµjεajε
we have

|I2| ≤ c

∫

Ωε

∣∣∣V p−1 − Up−1
µjεajε

∣∣∣ |φ|Uµjεajε

= c

∫

Ωε\B(a,ρ)

. . . + c

k∑
i=1
i 6=j

∫

Ai

. . . + c

∫

Aj

. . .

= c

∫

Aj

. . . + o
(
ε

N−2
2k

)
,

where Ai are the annuli defined in (3.22). Observe now that if N ≥ 7
∫

Aj

∣∣∣V p−1 − Up−1
µjεajε

∣∣∣ |φ|Uµjεajε

≤ c

∫

Aj

Up−1
µjεajε

∣∣∣∣∣∣
(
PεUµjεajε − Uµjεajε

)
+

∑

i 6=j

PεUµiεaiε +
∑

i

PεUδiεbiε

∣∣∣∣∣∣
|φ|

≤ c
∣∣∣Up−1

µjεajε

∣∣∣
N
2

∣∣PεUµjεajε − Uµjεajε

∣∣
2N

N−2
|φ| 2N

N−2

+ c
∑

i 6=j

∣∣∣Up−1
µjεajε

∣∣∣
N
2

|Uµiεaiε |
L

2N
N−2 (Aj)

|φ| 2N
N−2

+ c
∑

i

∣∣∣Up−1
µjεajε

∣∣∣
N
2

|Uδiεbiε |
L

2N
N−2 (Ωε\B(a,ρ))

|φ| 2N
N−2

= o
(
ε

N−2
2k

)
,

where we use estimate (3.27). Thus we conclude that I1 = o(ε
N−2
2k ). The case

3 ≤ N ≤ 6 can be treated similarly. Using similar arguments, we also obtain that
I3 = o(ε

N−2
2k ).

We are left with the estimate of J ′ε(V + φ)[∇φ] in (7.8). By definition we have

J ′ε(V + φ)[∇φ] =
N∑

l=0

k∑

i=1

cli
a

〈
PεZ

l
µiεaiε

,∇φ
〉

+
N∑

l=0

k∑

i=1

cli
b

〈
PεZ

l
δiεbiε

,∇φ
〉
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Taking into account estimate (7.3), we get that

|J ′ε(V + φ)[∇φ]| = O(|φ|22N
N−2

) = o(ε
N−2
2k )

since one has, for instance,

| 〈PεZ
l
µiεaiε

,∇φ
〉 | ≤ C|Zl

µiεaiε
| 2N

N−2
|φ| 2N

N−2
≤ Cµiε|φ| 2N

N−2
.

This concludes the proof. ¤

Proof of Proposition 2.2, Part 2. It follows from Theorem 3.1 and Lemma 7.2. ¤
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