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Abstract. In this small note we prove that the almost Schur theorem, introduced by
De Lellis-Topping, is true on 4-dimensional Riemannian manifolds of nonnegative scalar
curvature and discuss some related problems on other dimensional manifolds.

1. Introduction

Very recently, De Lellis and Topping proved an interesting result about a generalization
of Schur theorem

Theorem 1 (Almost Schur Theorem [1]). For n ≥ 3, if (Mn, g) is a closed Riemannian
manifold with non-negative Ricci tensor, then

(1)
∫

M
|Ric− R

n
g|2dv(g) ≤ n2

(n− 2)2

∫
M
|Ric− R

n
g|2dv(g),

where R = vol(g)−1
∫
M Rdv(g) is the average of the scalar curvature R of g.

It is clear that the Schur theorem follows directly from the Theorem. The latter can be
seen as a quantitative version or a stability result of the Schur Theorem. In [1] they also
showed that the constant in inequality (1) is optimal and the non-negativity of the Ricci
tensor can not be removed in general: When n ≥ 5 they gave examples of metrics on Sn

which make the radio of the left hand side of (1) to the right hand side of (1) arbitrarily
large. When n = 3, they found manifolds which makes the ratio arbitrarily. At the end
they left an open question: Inequalities of this form may hold for n = 3 and n = 4 with
constants depending on the topology of M.

In this small note we will show that the Theorem 1 holds under the condition of non-
negativity of the scalar curvature for dimension n = 4.

Theorem 2. If n = 4, and if (M4, g) is a closed Riemannian manifold with non-negative
scalar curvature, then (1) holds. Moreover, equality holds if and only if (M4, g) is an
Einstein manifold.

We first observe that inequality (1) is equivalent to

(2)
(∫

M
σ1(g)dv(g)

)2

≥ 2n
n− 1

vol(g)
∫

M
σ2(g)dv(g),

where σk(g) is the k-scalar curvature of metric g. Its definition will be recalled in Section
2. Then we prove this inequality for n = 4 by using an argument given by Gursky [3].
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2. Proof of Theorem 2

Let us first recall the definition of the k-scalar curvature, which was first introduced by
Viaclovsky [4] and has been intensively studied by many mathematicians. Let

Sg =
1

n− 2

(
Ricg −

Rg

2(n− 1)
· g
)

be the Schouten tensor of g. For an integer k with 1 ≤ k ≤ n let σk be the k-th elementary
symmetric function in Rn. The k-scalar curvature is

σk(g) := σk(Λg),

where Λg is the set of eigenvalue of the matrix g−1 · Sg. In particular, σ1(g) = trS and
σ2 = 1

2((trS)2 − |S|2). It is trivial to see that

σ1(g) =
R

2(n− 1)
,

σ2(g) =
1

2(n− 2)2

{
−|Ric|2 +

n

4(n− 1)
R2

}
,∣∣∣∣Ric− R

n
g

∣∣∣∣2 = |Ric|2 − R2

n
.

From above it is easy to have the following observation.

Observation. Inequality (1) is equivalent to (2).

Hence, instead of proving Theorem 3 we actually prove

Theorem 3. If n = 4, and if (Mn, g) is a closed Riemannian manifold with non-negative
scalar curvature, then (2) holds. Moreover, equality holds if and only if (M, g) is an
Einstein metric.

The proof of Theorem 3 follows closely a nice argument of Gursky [3].

Lemma 1. For any n ≥ 3 and any closed Riemannian manifold (Mn, g), there exists a
conformal metric g1 ∈ [g] satisfying

(3)
2n
n− 1

∫
M
σ2(g1)dv(g1)

(vol(g1))
n−4

n

≤ Y1([g])2,

where Y1([g]) is the first Yamabe invariant defined by

(4) Y1([g]) := inf
g∈[g]

∫
M
σ1(g)dv(g)

(vol(g))
n−2

n

and [g] is the conformal class of the metric to g.
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Here our definition of the Yamabe constant is different from the standard one by a
multiple factor 1

2(n−1) .

Proof of Lemma 1. The proof follows closely an argument given by Gursky in [3]. Let g1
a solution of Yamabe problem. Thus the scalar curvature, and hence σ1(g) is constant.
We have a simple fact: for any n× n symmetric matrix A

(σ1(A))2 ≥ 2n
n− 1

σ2(A)

equality holds if and only if the matrix is a multiple of the identity one. Now the following
calculations lead to

(5)
2n
n− 1

vol(g1)
∫

M
σ2(g1)dv(g1) ≤ vol(g1)

∫
M

(σ1(g1))2dv(g1) = (
∫

M
σ1(g1)dv(g1))2.

Here we have used the fact that σ1(g1) is a constant. Therefore,

2n
n− 1

∫
M
σ2(g1)dv(g1)

(vol(g1))
n−4

n

≤


∫

M
σ1(g1)dv(g1)

vol(g1)
n−2

n


2

= Y1([g])2,

since g1 is a Yamabe solution.

Proof of Theorem 3. In the case of dimension n = 4, it is well-known that
∫

M
σ2(g)dv(g)

is constant in any given conformal class. Hence by Lemma 1 we have
2n
n− 1

∫
M
σ2(g)dv(g) =

2n
n− 1

∫
M
σ2(g1)dv(g1) ≤ Y1([g])2

≤


∫

M
σ1(g)dv(g)

vol(g)
1
2


2

.

In the last inequality we have used the condition σ1(g) ≥ 0, which implies that Y1([g]) ≥ 0.
The equality holds if and only if the Schouten tenser Sg is proportional to the metric g,
i.e., g is an Einstein metric.

We conjecture that Theorem 2 is true for n = 3. To attack this conjecture one needs to
study a corresponding Yamabe type problem. The methods developed, especially in [2],
for σk-Yamabe problem would be helpful to study this problem.
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