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ABSTRACT. In this small note we prove that the almost Schur theorem, introduced by
De Lellis-Topping, is true on 4-dimensional Riemannian manifolds of nonnegative scalar
curvature and discuss some related problems on other dimensional manifolds.

1. INTRODUCTION

Very recently, De Lellis and Topping proved an interesting result about a generalization
of Schur theorem

Theorem 1 (Almost Schur Theorem [1]). For n > 3, if (M",g) is a closed Riemannian
manifold with non-negative Ricci tensor, then
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where R = vol(g)~" [,, Rdv(g) is the average of the scalar curvature R of g.

It is clear that the Schur theorem follows directly from the Theorem. The latter can be
seen as a quantitative version or a stability result of the Schur Theorem. In [1] they also
showed that the constant in inequality (1) is optimal and the non-negativity of the Ricci
tensor can not be removed in general: When n > 5 they gave examples of metrics on S™
which make the radio of the left hand side of (1) to the right hand side of (1) arbitrarily
large. When n = 3, they found manifolds which makes the ratio arbitrarily. At the end
they left an open question: Inequalities of this form may hold for n = 8 and n = 4 with
constants depending on the topology of M.

In this small note we will show that the Theorem 1 holds under the condition of non-
negativity of the scalar curvature for dimension n = 4.

Theorem 2. Ifn =4, and if (M*,g) is a closed Riemannian manifold with non-negative
scalar curvature, then (1) holds. Moreover, equality holds if and only if (M*,g) is an
Einstein manifold.

We first observe that inequality (1) is equivalent to
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where oy (g) is the k-scalar curvature of metric g. Its definition will be recalled in Section

2. Then we prove this inequality for n = 4 by using an argument given by Gursky [3].
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2. PROOF OF THEOREM 2

Let us first recall the definition of the k-scalar curvature, which was first introduced by
Viaclovsky [4] and has been intensively studied by many mathematicians. Let

_ 1 - Iy
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be the Schouten tensor of g. For an integer k with 1 < k < n let o, be the k-th elementary
symmetric function in R™. The k-scalar curvature is

ok(g) 1= or(Ay),
where A, is the set of eigenvalue of the matrix g~1 - S,. In particular, o1(g) = tr S and
oy = 3((tr S)? — [S|?). It is trivial to see that

R
o1(g) = ma
_ 1 12 n 2
o2(g9) = 2(n—2)2{ | Ric|” + n = 1)R },
2 2
Ric — Eg = |Ric)* — R—
n n

From above it is easy to have the following observation.
Observation. Inequality (1) is equivalent to (2).

Hence, instead of proving Theorem 3 we actually prove

Theorem 3. Ifn =4, and if (M"™,g) is a closed Riemannian manifold with non-negative
scalar curvature, then (2) holds. Moreover, equality holds if and only if (M,g) is an
Einstein metric.

The proof of Theorem 3 follows closely a nice argument of Gursky [3].

Lemma 1. For any n > 3 and any closed Riemannian manifold (M™,g), there exists a
conformal metric g1 € [g] satisfying

o [ P2(on)dvta)

(3) =
no b (vol(gn)
where Y1([g]) is the first Yamabe invariant defined by

| i)
(4) Yi(lg]) := glél[g] W

and [g] is the conformal class of the metric to g.

< Yi(lg))?,
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Here our definition of the Yamabe constant is different from the standard one by a

multiple factor 2(n1—1)'

Proof of Lemma 1. The proof follows closely an argument given by Gursky in [3]. Let ¢;
a solution of Yamabe problem. Thus the scalar curvature, and hence o1(g) is constant.
We have a simple fact: for any n x n symmetric matrix A

o)z 2

102(A)

equality holds if and only if the matrix is a multiple of the identity one. Now the following
calculations lead to

2n
) Pvlen) [ aalgndulon) < vollgr) [ (o) Paulon) = (| or(gn)duign)®
n—1 M M M
Here we have used the fact that o1(g1) is a constant. Therefore,
2
/[ o2(g1)dv(g1) o1(g1)dv(g1)
2n Ju M 2
1 n—4 < n—2 = Yl([g]) )
=3 (vol(gy)) = vol(g1) =

since g7 is a Yamabe solution. ]

Proof of Theorem 3. In the case of dimension n = 4, it is well-known that / o2(g)dv(g)
M
is constant in any given conformal class. Hence by Lemma 1 we have

nzfl/M%(g)dv(g) - = /MU2(91)dv(91)§Y1([g])2

n—1

2

/ o1(g)dv(g)
M

vol(g)?

IN

In the last inequality we have used the condition o;(g) > 0, which implies that Y7 ([g]) > 0.
The equality holds if and only if the Schouten tenser S, is proportional to the metric g,
i.e., g is an Einstein metric. |

We conjecture that Theorem 2 is true for n = 3. To attack this conjecture one needs to
study a corresponding Yamabe type problem. The methods developed, especially in [2],
for op-Yamabe problem would be helpful to study this problem.
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