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Abstract. In this paper we show positive mass theorems and Penrose type inequalities for
the Gauss-Bonnet-Chern mass, which was introduced recently in [20], for asymptotically flat
conformally flat manifolds and its rigidity.

1. Introduction

Recently motivated by the Einstein-Gauss-Bonnet theory [9, 43] and the pure Lovelock theory
[36, 15], we introduced in [20] (and [21]) the Gauss-Bonnet-Chern mass by using the Gauss-
Bonnet curvature

(1.1) Lk :=
1

2k
δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−1i2k

j2k−1j2k ,

where δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

is the generalized Kronecker delta defined in (2.2) below. When k = 1,

L1 is just the scalar curvature R. When k = 2, it is the (second) so-called the Gauss-Bonnet
curvature

L2 = RµνρσR
µνρσ − 4RµνR

µν +R2,

which appeared first in the paper of Lanczos [32] in 1938. For general k it is the Euler integrand
in the Gauss-Bonnet-Chern theorem [13, 14] if n = 2k and is therefore called the dimensional
continued Euler density in physics if k < n/2. Here n is the dimension. In this paper we are
interested in the case k < n/2. The Gauss-Bonnet-Chern mass introduced in [20] is defined

(1.2) mk = mGBC = c(n, k) lim
r→∞

∫
Sr

P ijlm(k) ∂mgjlνidS,

with

c(n, k) =
(n− 2k)!

2k−1(n− 1)!ωn−1
,

where ωn−1 is the volume of (n− 1)-dimensional standard unit sphere and Sr is the Euclidean
coordinate sphere, dS is the volume element on Sr induced by the Euclidean metric, ν is the
outward unit normal to Sr in Rn and the derivative is the ordinary partial derivative. Here the
tensor P(k) is decided by the decomposition

(1.3) Lk = P ijlm(k) Rijlm.

The project is partly supported by SFB/TR71 “Geometric partial differential equations” of DFG.
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In this paper we use the Einstein summation convention. The tensor P(k) has a crucial prop-
erty of divergence-free, which guarantees the Gauss-Bonnet-Chern mass is well-defined and is a
geometric invariant, under a suitable decay condition. See Section 2 below or [20]. When k = 1,

P ijlm(1) =
1

2
(gilgjm − gimgjl),

and m1 is just the ADM mass introduced by Arnowitt, Deser, and Misner [1] for asymptotically
flat Riemannian manifolds. For a similar mass see also [33].

A complete manifold (Mn, g) is said to be an asymptotically flat (AF) of order τ (with one
end) if there is a compact set K such thatM\K is diffeomorphic to Rn \BR(0) for some R > 0
and in the standard coordinates in Rn, the metric g has the following expansion

gij = δij + σij ,

with

|σij |+ r|∂σij |+ r2|∂2σij | = O(r−τ ),

where r and ∂ denote the Euclidean distance and the standard derivative operator on Rn re-
spectively. The condition that the Gauss-Bonnet-Chern mass be well-defined is

(1.4) τ >
n− 2k

k + 1
,

and Lk is integrable overM. In this case, the Gauss-Bonnet-Chern mass is a geometric invariant,
which is a generalization of the work of Bartnik for the ADM mass m1 [2].

The positive mass theorem for the ADM mass mADM = m1, which plays an important role
in differential geometry, was proved by Schoen and Yau [38] for 3 ≤ n ≤ 7 and by Witten for
general spin manifolds. See also [34, 35]. Its refinement, the Penrose inequality, was proved by
Huisken-Ilmanen [27] and Bray [3] for n = 3 and Bray-Lee [7] for n ≤ 7. Recently there are
many interesting works on special, but interesting classes of asymptotically flat manifolds. In
[31] Lam showed the positive mass theorem and the Penrose inequality for asymptotically flat
graphs in Rn+1 by using an elementary, but elegant proof. See also the generalizations of Lam’s
work in [16, 17, 28, 29]. A Penrose type inequality was proved for conformally flat manifolds
by Freire-Schwartz [18], Jauregui [30] and Schwartz [39] by using the relation between mass and
the capacity. This relation was used already in the proof of Penrose inequality in [3]. For this
relation, see also [5] and [8]. It is interesting to see that there is a deep relation between the
ADM mass and various geometric objects.

We are interested in generalizing the above results to our Gauss-Bonnet-Chern mGBC = mk

(k ≥ 2). Motivated by the work of Lam [31], we showed a positive mass theorem and an optimal
Penrose inequality when M is an asymptotically flat graphs in Rn+1 in [20]. This Penrose
inequality establishes a relationship between the mass mGBC and more geometric objects [20].
In this paper we are interested in studying mGBC mass on conformally flat manifolds.

A conformally flat manifold with or without boundary, CF manifold for short, is a manifold
(Mn, g) = (Rn/Ω, e−2uδ), where δ is the canonical Euclidean metric on Rn, Ω is a smooth
bounded (possibly empty, not necessarily connected) open set and u is smooth. A CF manifold
(Mn, g) is called an asymptotically flat CF manifold of decay order τ if

(1.5) |u|+ |x||∇u|+ |x|2|∇2u| = O(|x|−τ ).
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In this paper we always assume that k < n
2 , τ > n−2k

k+1 and Lk is integrable.

First we have a positive mass theorem.

Theorem 1.1. Let (Mn, g) = (Rn, e−2uδ) be an asymptotically flat CF manifold. Assume
further that Lj(g) ≥ 0 for all j ≤ k. Then the mass mk ≥ 0. Moreover, equality holds if and
only if u ≡ 0, i.e., M is the Euclidean space.

The condition Lj(g) ≥ 0 for any j ≤ k here is equivalent to g ∈ Γk, which will be discussed
in Section 2 below. A similar result was announced by Li-Nguyen in [33].

For the Gauss-Bonnet-Chern mass, m2j+1 has different behavior from m2j . The former be-
haves like the ADM mass m1 and the latter like m2. For k even, we have also a positive mass
theorem for metrics in a non-positive cone.

Theorem 1.2. Let k be even and (Mn, g) = (Rn, e−2uδ) be an asymptotically flat CF manifold.
Assume (−1)jLj ≥ 0 for all j ≤ k. Then the mass mk ≥ 0. Moreover, equality holds if and only
if u ≡ 0, i.e., M is the Euclidean space.

Theorem 1.1 and Theorem 1.2 provide a support for our conjecture on the positivity of
the Gauss-Bonnet-Chern mass in [20]. Furthermore, from our proof we have a Penrose type
inequality.

Theorem 1.3. Let (Mn, g) = (Rn \ Ω, e−2uδ) be an asymptotically flat CF manifold. Assume
that Ω is convex, ∂M = (Ω, e−2uδ) is a horizon of (M, g) (i.e. ∂M = ∂Ω ⊂ M is minimal)
and u is constant on ∂Ω. Assume further that Lj(g) ≥ 0 for any j ≤ k. Then we have Penrose
type inequalities

mk ≥
(
|∂Ω|
ωn−1

)n−2k
n−1

.(1.6)

Moreover, if k ≥ 2, we have the following strengthened Penrose type inequality

mk ≥
( ∫

∂ΩR

(n− 1)(n− 2)ωn−1

)n−2k
n−3

,(1.7)

where R is the scalar curvature of ∂Ω as a hypersurface in Rn.

The assumptions on the boundary ∂Ω can be reduced by the result of Guan-Li [24] and the
results could be slightly strengthened. For more details see Section 4 below. Unlike the Penrose
inequality obtained in [20], this Penrose inequality is not optimal. Our Penrose inequality is
motivated by the work of Jauregui in [30], who obtained (1.6) for k = 1. The idea is to express
the mass via various integral identities.

Before ending the introduction, we would like to give remarks on the assumptions on metrics.
Instead of discussing the assumption that the metric g satisfies Lj(g) ≥ 0 for any j ≤ k, it would
be better to discuss a stronger assumption that the metric g satisfies

Lj(g) > 0, for any j ≤ k.(1.8)
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Condition (1.8) is well-known as an ellipticity condition in the study of a fully nonlinear Yamabe
problem. See for example [42] and [23]. When k ≥ n/2, it is a rather restrictive condition. In
fact, in this case, it implies that the metric has positive Ricci tensor. See [26]. In this paper,
we consider the case k < n/2, in which it is not as strong as it looks like. For a fixed k, the
larger the dimension n is, the weaker this condition is. In the lowest dimension we consider,
i.e., n = 2k + 1, this condition is quite similar to the condition requiring a metric with positive
scalar curvature in the 3-dimensional case. For example, the results of Gromov-Lawson and
Schoen-Yau on gluing of metrics of positive scalar curvature can be extended to our case. In
[25] it was proved that if k < n/2, and M1 and M2 are two compact manifolds (not necessarily
locally conformally flat) with condition (1.8), then the connected sum M1#M2 also admits
a metric with condition (1.8). If, in addition, M1 and M2 are locally conformally flat, then
M1#M2 admits a locally conformally flat metric with condition (1.8). With this result, one can
construct a family of non-symmetric metrics with condition (1.8) from a rotationally symmetric
metric with condition (1.8), such that this family of metrics concentrated in a suitable sense at
finitely many given points. Another condition that u is constant on ∂Ω in Theorem 1.3 is rather
restrictive. However, here we need not an “outermost” condition on the horizons, as in the
ordinary Penrose inequality, which is quite difficult to handle mathematically. This condition
that u is constant on ∂Ω was also used in [17, 18, 30, 29, 31, 20, 39].

The rest of the paper is organized as follows. In Section 2 we recall the definitions of the
Gauss-Bonnet curvature Lk and the σk-scalar curvature and their relationship when the under-
lying manifolds are locally conformally flat. In Section 3 we prove the positive mass theorems,
Theorem 1.1 and Theorem 1.2. Theorem 1.3 is proved in Section 4.

2. The Gauss-Bonnet curvatures and the σk-scalar curvatures

We recall the definition of generalized k-th Gauss-Bonnet curvature

(2.1) Lk :=
1

2k
δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−1i2k

j2k−1j2k .

Here the generalized Kronecker delta is defined by

(2.2) δj1j2...jri1i2,...ir
= det


δj1i1 δj2i1 · · · δjri1
δj1i2 δj2i2 · · · δjri2
...

...
...

...

δj1ir δj2ir · · · δjrir

 .

When k = 2, we can write

(2.3)

L2 = RµνρσR
µνρσ − 4RµνR

µν +R2

= |W |2 +
n− 3

n− 2

(
n

n− 1
R2 − 4|Ric|2

)
= |W |2 + 8(n− 2)(n− 3)σ2(Ag)

= RijklP
ijkl
(2) ,
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where

(2.4) P ijkl(2) = Rijkl +Rjkgil −Rjlgik −Rikgjl +Rilgjk +
1

2
R(gikgjl − gilgjk),

W denotes the Weyl tensor, Ric the Ricci tensor, R the scalar curvature and

Ag :=
1

n− 2

(
Ric− R

2(n− 1)
g

)
,

the Schouten tensor and σ2 the 2-th elementary symmetric function defined below. P(2) is the
divergence-free part of the Riemann curvature tensor Riem. For the general Lk-curvature, the
corresponding P(k) curvature is

(2.5) P stlm(k) :=
1

2k
δ
i1i2···i2k−3i2k−2st
j1j2···j2k−3j2k−2j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−3i2k−2

j2k−3j2k−2gj2k−1lgj2km.

Recall that Lk = P ijlm(k) Rijlm and the tensor P(k) has the following crucial property.

Proposition 2.1. The tensor P(k) has the same symmetry and anti-symmetry as the Riemann
curvature tensor and satisfies

∇iP ijlm(k) = 0.

Proof. The case k = 1 is trivial. We have proved the k = 2 case in [20]. For the general case, it
follows from the symmetry of the Riemann curvature tensor and the differential Bianchi identity.
And this result does not appear to actually be used in the paper, we skip the proof here. �

Now we consider the case that (Mn, g) is a conformally flat manifold of dimension n ≥ 5.
Namely, (Mn, g) = (Rn, e−2uδ), where δ is the canonical Euclidean metric on Rn. In this case,
we will show the curvature Lk is just the σk-scalar curvature (up to a constant multiple), which
was considered by Viaclovsky in [41] and has been intensively studied in the σk Yamabe problem.

For the convenience of the reader, we recall some basic properties on the elementary symmetric
functions (see for example [22, 11, 41] ). For 1 ≤ k ≤ n and λ = (λ1, · · · , λn) ∈ Rn, the k-th
elementary symmetric function is defined as

σk(λ) :=
∑

i1<i2<···ik

λi1 · · ·λik .

The definition can be extended to symmetric matrices. For a symmetric matrix B, denote
λ(B) = (λ1(B), · · · , λn(B)) be the eigenvalues of B. We set

σk(B) := σk(λ(B)).

We define also σ0(B) = 1. Let I be the identity matrix. Then we have for any t ∈ R,

σn(I + tB) = det(I + tB) =

n∑
i=0

σi(B)ti.

We recall the definition of the G̊arding cone: for 1 ≤ k ≤ n, let Γ+
k (resp. Γk) is a cone in Rn

determined by
Γ+
k = {λ ∈ Rn : σ1(λ) > 0, · · · , σk(λ) > 0}.

(resp. Γk = {λ ∈ Rn : σ1(λ) ≥ 0, · · · , σk(λ) ≥ 0}).
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A symmetric matrix B is called belong to Γ+
k (resp. Γk) if λ(B) ∈ Γ+

k (resp. λ(B) ∈ Γk). The
k-th Newton transformation is defined as follows

(2.6) (Tk)
i
j(B) :=

∂σk+1

∂bij
(B),

where B = (bij). If there is no confusion, we omit the index k. We recall some basic properties
about σk and T .

σk(B) =
1

k!
δi1···ikj1···jkb

j1
i1
· · · bjkik =

1

k
tr(Tk−1(B)B),(2.7)

(Tk)
i
j(B) =

1

k!
δii1···ikjj1···jkb

j1
i1
· · · bjkik .(2.8)

Tk can be also described with induction

(2.9) Tk = σrI −BTk−1 and T0 = I,

which yields

Tk =

k∑
i=0

σk−i(B)(−B)i = σk(B)I − σk−1(B)B + · · ·+ (−1)kBk.

It is well-known that σ
1/k
k is concave in Γk, which implies that

(2.10) σk(A+B) ≥ σk(A) + σk(B), for any A,B ∈ Γk.

The σk-scalar curvature σk(g) is defined in [41] by

σk(g) := σk(g
−1Ag),

where Ag is the Schouten tensor of g.

Proposition 2.2. Let (Mn, g) be a locally conformally flat metric of dimension n. Assume
2k < n. Then

(2.11) Lk = 2kk!
(n− k)!

(n− 2k)!
σk(g).

Proof. We recall the decomposition of the Riemann curvature tensor

Riem = W +A ∧© g.

As W ≡ 0, we have

(2.12) Ri1i2
j1j2 = Ai1

j1δi2
j2 + δi1

j1Ai2
j2 −Ai1j2δi2j1 − δi1j2Ai2j1 .

It follows that

Lk = 1
2k
δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ri1i2
j1j2 · · ·Ri2k−1i2k

j2k−1j2k

= 2kδ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ai1
j1δi2

j2 · · ·Ai2k−1
j2k−1δi2k

j2k

= 2k(n− k) · · · (n− 2k + 1)δ
i1i3···i2k−1

j1j3···j2k−1
Ai1

j1Ai3
j3 · · ·Ai2k−1

j2k−1

= 2kk!(n− k) · · · (n− 2k + 1)σk(A).
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Here in the second equality we use the facts

δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

Ai1
j1δi2

j2 = δ
i1i2···i2k−1i2k
j1j2···j2k−1j2k

δi1
j1Ai2

j2

= −δi1i2···i2k−1i2k
j1j2···j2k−1j2k

Ai1
j2δi2

j1 = −δi1i2···i2k−1i2k
j1j2···j2k−1j2k

δi1
j2Ai2

j1 ,

and in the third equality we use the basic property of generalized Kronecker delta

δ
i1i2···ip−1ip
j1j2···jp−1jp

δip
jp = (n− p+ 1)δ

i1i2···ip−1

j1j2···jp−1
,

which follows from the Laplace expansion of determinant

δ
i1i2···ip
j1j2···jp =

p∑
s=1

(−1)p+sδ
ip
js
δ
i1···is···̂ip
j1···ĵs···jp

.

�

For the special case k = n
2 of Proposition 2.2 see [41]. Another important property will be

the following.

Proposition 2.3. ([40]) Let (Mn, g) be a locally conformally flat manifold of dimension n.
Then Tk−1(A) is divergence-free.

Proof. See the proof of Proposition 2.2 in [40]. �

Without the conformal flatness Proposition 2.3 still holds for k = 2, i.e., T1 is divergence-free,
which was also proved in [40].

3. Positive Mass Theorem for CF manifolds and Rigidity

In this section we prove Theorem 1.1 and Theorem 1.2. For the proof we need one more
well-known property.

Proposition 3.1. Let u : Rn → R be some smooth function. Denote D2u = (uij) be the hessian
matrix of u with respect to Euclidean metric. Then Tk(D

2u) is divergence-free, that is,

∂iT
ij
k (D2u) = ∂jT

ij
k (D2u) = 0.

Remark 3.2. Note that in Proposition 3.1 the divergence-free is with respect to the standard
euclidean metric δ and in Proposition 2.3 the divergence-free is with respect to the metric g =
e−2uδ.

For an asymptotically flat CF manifold, we first have an equivalent form of Gauss-Bonnet-
Chern mass defined by (1.2). By (1.3), (2.12) together with Proposition 2.1, we have

Lk = 4P ijlm(k) Ailgjm = −4P ijjl(k) Aile
−2u.

On the other hand, from (2.7) and (2.11) we have

Lk = 2k(k − 1)!
(n− k)!

(n− 2k)!
(Tk−1(A))ilAil.
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For the Gauss-Bonnet-Chern mass (1.2) we have

mk :=
(n− 2k)!

2k−1(n− 1)! ωn−1
lim
r→∞

∫
Sr

P ijlm(k) ∂mgjlνidS

=
(n− 2k)!

2k−1(n− 1)! ωn−1
lim
r→∞

∫
Sr

−2e−2uP ijjl(k) ulνidS.

Combining all together, we thus obtain the following equivalent form of (1.2),

(3.1) mk = lim
r→∞

(k − 1)!(n− k)!

(n− 1)! ωn−1

∫
Sr

(Tk−1(A))ijujνidS.

This formula will be useful in the computation of the Gauss-Bonnet-Chern mass.
Now we start to prove Theorem 1.1. For the convenience of readers, we propose a remark

first.

Remark 3.3. In the following proof of Theorem 1.1, the calculations before (3.7) are with
respect to the Euclidean metric δ, namely σk(A) means σk(δ

−1A). Hence from (2.11) that

Lk = 2kk! (n−k)!
(n−2k)!e

2kuσk(A), which has be used in (3.7).

Proof of Theorem 1.1. Since g = e−2uδ, a direct computation gives

Ric = (n− 2)(D2u+
1

n− 2
(∆u)δ + du⊗ du− |∇u|2δ),

R = e2u(2(n− 1)∆u− (n− 1)(n− 2)|∇u|2),

which imply

(3.2) Ag :=
1

n− 2

(
Ric− Rg

2(n− 1)

)
= D2u− |∇u|

2

2
δ + du⊗ du.

Here ∇ and ∆ are operators with respect to the Euclidean metric δ and D2 is the Hessian
operator. Since

Tk−1(D2u) = Tk−1(A) +O(|x|−kτ−2k+2),

which follows from (1.5) and (2.8), we have by (3.1)

mk = lim
r→∞

(k − 1)!(n− k)!

(n− 1)! ωn−1

∫
Sr

(Tk−1(D2u))ijujνidS.(3.3)

Applying Proposition 3.1 and Green’s formula, we obtain∫
Sr

(Tk−1(D2u))ijujνidS =

∫
Br

(Tk−1(D2u))ijuijdx = k

∫
Br

σk(D
2u)dx.(3.4)

Now, we write

D2u = A+
|∇u|2

2
I − du⊗ du.

It is crucial to see that the matrix |∇u|
2

2 I−du⊗du has one eigenvalue − |∇u|
2

2 and n−1 eigenvalues
|∇u|2

2 . Therefore, B := |∇u|2
2 I − du⊗ du ∈ Γ+

k for k < n/2, for

σj(B) =
(n− 1)!(n− 2j)

2jj!(n− j)!
|∇u|2j for any j ≤ k < n/2.
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It follows from (2.10) that

σk(D
2u) = σk(A+B)(3.5)

≥ σk(A) + σk(B) = σk(A) +
(n− 1)!(n− 2k)

2kk!(n− k)!
|∇u|2k.(3.6)

Finally, we infer

mk ≥
(n− 2k)!

2k(n− 1)!ωn−1

∫
M
e(n−2k)uLk(g)dvolg

+
n− 2k

2k

∫
M
e(n−2k)u|∇u|2kg dvolg.(3.7)

This yields the positivity of the mass mk. Moreover, if mk = 0, we have ∇u ≡ 0. Hence u ≡ 0,
that is, g is the Euclidean metric. We finish the proof of the Theorem. �

Proof of Theorem 1.2. Let v := eu. Thus, the conformal metric is written as g = v−2δ. For such
a representation of the metric, the Schouten tensor (3.2) can be written as

A =
D2v

v
− |∇v|

2δ

2v2
.

Let α ∈ R be some sufficiently negative number to be fixed later. As in the proof of Theorem
1.1, it follows from the decay condition (1.5) of u that

(Tk−1(D2u))ijujνi = vα(Tk−1(D2v))ijvjνi +O(|x|−(k+1)τ−2k+1),

which implies from (2.8) and (3.1)

mk = lim
r→∞

(k − 1)!(n− k)!

(n− 1)! ωn−1

∫
Sr

vα(Tk−1(D2v))ijvjνidS.(3.8)

Thus, integration by parts leads to

mk =
(k − 1)!(n− k)!

(n− 1)! ωn−1

{∫
Rn
vα(Tk−1(D2v))ijvjidx

+

∫
Rn
vα(Tk−1(D2v))ij ,ivjdx

+α

∫
Rn
vα−1(Tk−1(D2v))ijvivjdx

}
.

On the other hand, it follows from Proposition (3.1) that (Tk−1(D2v))ij ,i = 0 and also

(Tk−1(D2v))ijvji = kσk(D
2v).

Therefore, we have

mk =
k!(n− k)!

(n− 1)! ωn−1

∫
Rn
vασk(D

2v)dx

+
(k − 1)!(n− k)!α

(n− 1)! ωn−1

∫
Rn
vα−1(Tk−1(D2v))ijvivjdx.
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We will try to write the integral of the right hand in terms of σi(D
2v) and |∇v|2i, then in terms

of σi(A) and |∇v|2i for 0 ≤ i ≤ k.
Directly from (2.9), we know

Ti(D
2v) = σi(D

2v)I − Ti−1(D2v)D2v = σi(D
2v)I −D2vTi−1(D2v).

It follows, together with the partial integration∫
Rn
vα−1(Tk−1(D2v))ijvivjdx

=

∫
Rn
vα−1σk−1(D2v)|∇v|2 −

∫
Rn
vα−1(Tk−2(D2v))ilvjlvjvi

=

∫
Rn
vα−1σk−1(D2v)|∇v|2 − 1

2

∫
Rn
vα−1(Tk−2(D2v))ij(|∇v|2)jvi

=

∫
Rn
vα−1σk−1(D2v)|∇v|2 +

α− 1

2

∫
Rn
vα−2(Tk−2(D2v))ij |∇v|2vivj

+
1

2

∫
Rn
vα−1(Tk−2(D2v))ij ,j |∇v|

2vi +
1

2

∫
Rn
vα−1(Tk−2(D2v))ij |∇v|2vij

=
k + 1

2

∫
Rn
vα−1σk−1(D2v)|∇v|2 +

α− 1

2

∫
Rn
vα−2(Tk−2(D2v))ij |∇v|2vivj .

Here the boundary term at infinity vanishes in the integration by parts because of the asymp-
totical assumption (1.5). More generally, we have the following claim.

Claim. For all 1 ≤ l ≤ k − 2, we have∫
Rn
vα−1−l(Tk−1−l(D

2v))ij |∇v|2lvivj

=
k + l + 1

2(l + 1)

∫
Rn
vα−1−lσk−1−l(D

2v)|∇v|2(l+1)

+
α− l − 1

2(l + 1)

∫
Rn
vα−2−l(Tk−2−l(D

2v))ij |∇v|2(l+1)vivj .

(3.9)

As above we have∫
Rn
vα−1−l(Tk−1−l(D

2v))ij |∇v|2lvivjdx

=

∫
Rn
vα−1−lσk−1−l(D

2v)|∇v|2(l+1) −
∫
Rn
vα−1−l(Tk−2−l(D

2v))ij |∇v|2lvimvmvi

=

∫
Rn
vα−1−lσk−1−l(D

2v)|∇v|2(l+1) − 1

2

∫
Rn
vα−1−l|∇v|2l(Tk−2−l(D

2v))ij(|∇v|2)jvi.(3.10)
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On the other hand, we have

−1

2

∫
Rn
vα−1−l|∇v|2l(Tk−2−l(D

2v))ij(|∇v|2)jvi

=
α− 1− l

2

∫
Rn
vα−2−l(Tk−2−l(D

2v))ij |∇v|2(l+1)vivj

+
k − 1− l

2

∫
Rn
vα−1−lσk−1−l(D

2v)|∇v|2(l+1)

+
l

2

∫
Rn
vα−1−l(Tk−2−l(D

2v))ij |∇v|2l(|∇v|2)jvi,

which implies

−1

2

∫
Rn
vα−1−l|∇v|2l(Tk−2−l(D

2v))ij(|∇v|2)jvi

=
α− 1− l
2(l + 1)

∫
Rn
vα−2−l(Tk−2−l(D

2v))ij |∇v|2(l+1)vivj

+
k − 1− l
2(l + 1)

∫
Rn
vα−1−lσk−1−l(D

2v)|∇v|2(l+1).

Going back to (3.10), the desired claim yields. Hence, we have by inductively using (3.9)∫
Rn
vα−1(Tk−1(D2v))ijvivjdx

=
k + 1

2

∫
Rn
vα−1σk−1(D2v)|∇v|2 +

(α− 1) · · · (α− k + 1)

2k−1(k − 1)!

∫
Rn
vα−k|∇v|2k

+

k−1∑
l=2

(α− 1) · · · (α− l + 1)(k + l)

2ll!

∫
Rn
vα−l|∇v|2lσk−l(D2v).

Finally, we infer

(n− 1)! ωn−1

(k − 1)!(n− k)!
mk

= k

∫
Rn
vασk(D

2v)dx+
(k + 1)α

2

∫
Rn
vα−1σk−1(D2v)|∇v|2

+
α(α− 1) · · · (α− k + 1)

2k−1(k − 1)!

∫
Rn
vα−k|∇v|2k

+
k−1∑
l=2

α(α− 1) · · · (α− l + 1)(k + l)

2ll!

∫
Rn
vα−l|∇v|2lσk−l(D2v).

(3.11)

Now we want to write mk in terms of σl(A) and |∇v|2l. Recall

D2v = vA+
|∇v|2I

2v
,

so that for all 1 ≤ l ≤ k we have

σl(D
2v) = vlσl(A+

|∇v|2I
2v2

) = vl
l∑

j=0

C l−jn−jσj(A)

(
|∇v|2

2v2

)l−j
,
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where Ck−jn−j = (n−j)!
(n−k)!(k−j)! . From (3.11), we deduce

(n− 1)! ωn−1

(k − 1)!(n− k)!
mk

= k

∫
Rn
vα+k

k∑
j=0

Ck−jn−jσj(A)

(
|∇v|2

2v2

)k−j
+(k + 1)α

∫
Rn
vα+k

k−1∑
j=0

Ck−1−j
n−j σj(A)

(
|∇v|2

2v2

)k−j
+

2α(α− 1) · · · (α− k + 1)

(k − 1)!

∫
Rn
vα+k

(
|∇v|2

2v2

)k
+

k−1∑
l=2

k−l∑
j=0

α(α− 1) · · · (α− l + 1)(k + l)

l!

∫
Rn
vα+kCk−l−jn−j σj(A)

(
|∇v|2

2v2

)k−j
=

∫
Rn
vα+k

k∑
j=0

Pk−j(α)σj(A)

(
|∇v|2

2v2

)k−j
.

Here for all 0 ≤ j ≤ k, Pj(α) is a polynomial of degree j in α with a leading coefficient equal

to k when j = 0, to k + 1 when j = 1, to 2k−j
(k−j)! when 2 ≤ j ≤ k − 1 and to 2

(k−1)! when

j = k. Therefore, we can choose sufficiently negative number α < 0 such that (−1)jPj(α) > 0
for all 0 ≤ j ≤ k. By the assumptions (−1)jLj ≥ 0 for all 1 ≤ j ≤ k, which are equivalent to
(−1)jσj(A) ≥ 0, we have

Pk−j(α)σj(A) = (−1)k−jPk−j(α)(−1)jσj(A) ≥ 0,

i.e., each term on the right hand side in the last inequality is non-negative. This gives mk ≥ 0.
Here we need that k is even. Moreover, if mk = 0, we have ∇v ≡ 0, and hence v is a constant 1
and M is the standard euclidean space. We finish the proof. �

4. Penrose type inequality

Let (Mn, g) = (Rn \ Ω, e−2uδ) be now a CF manifold, where Ω is a bounded domain such that
each connected component of Ω is star-shaped such that the second fundamental form of the
boundary ∂Ω is in the cone Γ+

k−1(∂Ω). As before, we assume 2k < n, g ∈ Γk, Lk integrable and
u satisfies the decay condition at the infinity

|u|+ |x||∇u|+ |x|2|∇2u| = O(|x|−τ ),

with τ > n−2k
k+1 . First, we assume Ω has just one connected component.

Theorem 4.1. Let (M, g) = (Rn\Ω, e−2uδ) satisfy the above assumptions. Assume, in addition,
that ∂M is a horizon on (M, g) (i.e. ∂M = ∂Ω ⊂ M is minimal) and u is constant on ∂Ω.
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Then we have the following Penrose type inequality

mk ≥ (n− 2k)!

2k(n− 1)! ωn−1

∫
M
e(n−2k)uLk(g)dvolg

+
n− 2k

2k

∫
M
e(n−2k)u|∇u|2kg dvolg +

(
|∂Ω|
ωn−1

)n−2k
n−1

≥
(
|∂Ω|
ωn−1

)n−2k
n−1

.

(4.1)

Moreover, if we assume the second fundamental form of ∂Ω is in the cone Γ2k−1 (k ≥ 2), we
have

(4.2)

mk ≥ (n− 2k)!

2k(n− 1)! ωn−1

∫
M
e(n−2k)uLk(g)dvolg

+
n− 2k

2k

∫
M
e(n−2k)u|∇u|2kg dvolg +

( ∫
∂ΩR

(n− 1)(n− 2)ωn−1

)n−2k
n−3

≥
( ∫

∂ΩR

(n− 1)(n− 2)ωn−1

)n−2k
n−3

.

Here R is the scalar curvature of ∂Ω as a hypersurface in Rn.

Proof. Applying Proposition 3.1 and Green’s formula, we obtain∫
Sr

(Tk−1(D2u))ijujνidS −
∫
∂Ω

(Tk−1(D2u))ijujνidS = k

∫
Br\Ω

σk(D
2u)dx,(4.3)

for large r > 0. The argument given in the proof of Theorem 1.1, together with (3.5) to (3.8),
implies

mk ≥ (n− 2k)!

2k(n− 1)!ωn−1

∫
M
e(n−2k)uLk(g)dvolg

+
n− 2k

2k

∫
M
e(n−2k)u|∇u|2kg dvolg

+
(k − 1)!(n− 2k)!

(n− 1)! ωn−1

∫
∂Ω

(Tk−1(D2u))ijujνidS.

(4.4)

Recall ν is the normal vector pointing to the infinity. Since ∂M is a horizon of M, the mean
curvature of ∂M is equal to zero at the boundary. We denote H the mean curvature of ∂Ω in
Rn. As g is a conformal metric, the mean curvature of ∂M is equal to eu(H − (n− 1)〈∇u, ν〉).
Therefore, on the boundary ∂Ω we have

H − (n− 1)〈∇u, ν〉 = 0.(4.5)

In particular, 〈∇u, ν〉 > 0 on the boundary, since we assume the second fundamental form N is
in the cone Γ+

k−1(∂Ω). On the other hand, from the non-negativity of the scalar curvature, we
have

∆u ≥ 0.
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Hence, by the Maximum principle, we deduce u ≤ 0 in Ω. For all x ∈ ∂Ω, we split TxRn = Tx∂Ω⊕
Rν as the sum of tangential part and normal part. Let eβ (1 ≤ β ≤ n−1) a basis of ∂Ω and en =
ν. And Let B = (D2u(ei, ej))1≤i,j≤n be the Hessian matrix and B′ = (D2u(eα, eβ))1≤α,β≤n−1

the first (n− 1)× (n− 1) block in B. Recall that u is a constant on the boundary ∂Ω. We have
for all 1 ≤ α, β ≤ n− 1,

D2u(eα, eβ) = eαeβ(u)−∇eαeβ(u)

= −∇eαeβ(u)

= −〈∇eαeβ, ν〉ν(u)

= 〈∇u, ν〉N(eα, eβ),(4.6)

where N is the second fundamental form with respect to the normal vector −ν. Hence, we can
compute

(Tk−1(D2u))ijujνi = 〈∇u, ν〉∂σk(B)

∂bnn
= 〈∇u, ν〉σk−1(B′).(4.7)

Here we have used the fact ∇βu = 0 on the boundary. Gathering (4.5) to (4.7), we deduce

(Tk−1(D2u))ijujνi = 〈∇u, ν〉kσk−1(N) =
1

(n− 1)k
σ1(L)kσk−1(N).(4.8)

Recall that in the Garding cone Γ+
m, we have the Newton-MacLaurin inequalities,

σm−1σm+1

σ2
m

≤ m(n−m− 1)

(m+ 1)(n−m)
,(4.9)

σ1σm−1

σm
≥ m(n− 1)

n−m
.(4.10)

We have

Tk−1(D2u))ijujνi ≥
(

(k − 1)!

(n− 1) · · · (n− k + 1)

) k
k−1

σk−1(N)
2k−1
k−1 .

From the Hölder inequality and the Aleksandrov-Fenchel inequality (see [37], [24] and [12] for
example), we have∫

∂Ω
(Tk−1(D2u))ijujνidS ≥

(
(k − 1)!

(n− 1) · · · (n− k + 1)

) k
k−1
∫
∂Ω
σk−1(N)

2k−1
k−1

≥
(

(k − 1)!

(n− 1) · · · (n− k + 1)

) k
k−1
(∫

∂Ω
σk−1(N)

) 2k−1
k−1

|∂Ω|
−k
k−1

≥ (n− 1)!

(k − 1)!(n− k)!
ω

2k−1
n−1

n−1 |∂Ω|
n−2k
n−1 .

Going back to (4.4), we get the desired inequality (4.1). Now, assume N ∈ Γ2k−1, it follows
from the Newton-MacLaurin inequality that

1

(n− 1)k
σ1(N)kσk−1(N) ≥ (2k − 1)!(n− 2k)!

(k − 1)!(n− k)!
σ2k−1(N).
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Hence, again by the Aleksandrov-Fenchel inequality, we get∫
∂Ω

(Tk−1(D2u))ijujνidS ≥ (2k − 1)!(n− 2k)!

(k − 1)!(n− k)!

∫
∂Ω
σ2k−1(N)

≥ (n− 1)!

(k − 1)!(n− k)!
ω

2k−3
n−3

n−1

(∫
∂Ω

2σ2(N)

(n− 1)(n− 2)

)n−2k
n−3

.

In view of (4.4), we prove inequality (4.2) and finish the proof. �

Remark 4.2. In (4.2), the scalar curvature R could be replaced by other high order curvature
tensor of order small than k which establishes a relationship between the mass mGBC and more
geometric objects.

Remark 4.3. We remark that when k = 1, our mass m1 = mADM . In this case the Penrose
inequality in Theorem 4.1 is

m1 ≥
(
|∂Ω|
ωn−1

)n−2
n−1

,

which was already proved in [30]. In fact, our Penrose inequality is motivated by his work. Note
that we have taken a different test function comparing with the paper [30].

Let Ωi be the components of Ω, i = 1, · · · l, and let Σi = ∂Ωi. If we assume that each Σi is a
horizon, we have the following

Corollary 4.4. With the same condition of Theorem 4.1, and the additional condition that each
Σi is a horizon Then we have the the following Penrose type inequality

mk ≥ (n− 2k)!

2k(n− 1)! ωn−1

∫
M
e(n−2k)uLk(g)dvolg

+
n− 2k

2k

∫
M
e(n−2k)u|∇u|2kg dvolg +

l∑
i=1

(
|Σi|
ωn−1

)n−2k
n−1

≥
l∑

i=1

(
|Σi|
ωn−1

)n−2k
n−1

≥

(∑l
i=1 |Σi|
ωn−1

)n−2k
n−1

.

Moreover, if we assume the second fundamental form of ∂Ω is in the cone Γ2k−1 (k ≥ 2), we
have

mk ≥ (n− 2k)!

2k(n− 1)! ωn−1

∫
M
e(n−2k)uLk(g)dvolg

+
n− 2k

2k

∫
M
e(n−2k)u|∇u|2kg dvolg +

l∑
i=1

( ∫
Σi
R

(n− 1)(n− 2) ωn−1

)n−2k
n−3

≥
l∑

i=1

( ∫
Σi
R

(n− 1)(n− 2)ωn−1

)n−2k
n−3

≥

( ∑l
i=1

∫
Σi
R

(n− 1)(n− 2)ωn−1

)n−2k
n−3

.

Here R is the scalar curvature of ∂Ω as a hypersurface in Rn.
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Example 4.5. (Mn = I × Sn−1, g) with coordinates (ρ, θ), general Schwardschild metrics are
given

gkSch = (1− 2m

ρ
n
k
−2

)−1dρ2 + ρ2dΘ2,

where dΘ2 is the round metric in Sn−1, m ∈ R is the “total mass” of corresponding black hole
solutions in the Lovelock gravity [15, 10]. When k = 1 we recover the Schwarzschild solutions of
the Einstein gravity.

Motivated by the Schwarzschild solutions, the above metrics also have the following form of
conformally flat which is more convenient for computation ([20]).

gkSch = (1− 2m

ρ
n
k
−2

)−1ρ2 + ρ2dΘ2 = (1 +
m

2r
n
k
−2

)
4k

n−2k (dr2 + r2dΘ2).

For this metric the Gauss-Bonnet-Chern mass mk = mk (one can check it by (4.11) below)

and the black hole (i.e. the horizon) Σ = ∂Ω = {r = r0 = (m2 )
k

n−2k } and its area is

|Σ| = ωn−1r
n−1
0 ,

hence

mk = mk = (2r
n−2k
k

0 )k

= 2k
(
|Σ|
ωn−1

)n−2k
n−1

=
1

2k

(
|Σ|gkSch
ωn−1

)n−2k
n−1

.

We remark that the Penrose inequality in Theorem 1.3 is not optimal, since in Theorem 1.3
the area of Σ is computed with the Euclidean metric δ, not with the metric g = e−2uδ itself. In
general, if (Mn, g) is spherically symmetric, we have the following result.

Proposition 4.6. Suppose (Mn, g) is asymptotically flat CF manifold with g = e−2u(r)δ, ie.,
(Mn, g) is spherically symmetric, then

(4.11) mk = lim
r→∞

1

ωn−1

∫
Sr

(ur)
k

rk−1
dSr.

If k is even, we always have mk ≥ 0. Moreover, if we assume Lk ≥ 0 in such a case, then
mk = 0 if and only if u is a constant, i.e., M is the Euclidean space.

Proof. We adopt the equivalent form (3.3) to calculate the Gauss-Bonnet-Chern mass. Denote

the radial derivative of u by ur , ∂u
∂r . We consider Ω = Br being the ball centered at the origin

with radius equal to r. Thus Ω can be seen as a level set of u which enable us to use the formulas
in the proof of Theorem 4.1. Let (e1, · · · , en−1) be an orthonormal basis of the boundary ∂Ω.
It follows from (4.6) that for all 1 ≤ α, β ≤ n− 1

D2u(eα, eβ) =
ur
r
δαβ,
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since the second fundamental form on ∂Ω = Sr is equal to 1
r I where I is the identity map. By

(4.7) we have

Tk−1(D2u)ijuiνj =
(n− 1) · · · (n− k + 1)

(k − 1)!rk−1
ukr .

Going back to (3.3), we get the desired result (4.11). It is clear mk ≥ 0 when k is even and
mk = 0 when u is a constant. Now we want to prove the inverse, under an extra condition that
Lk ≥ 0. A direct computation gives

Aij = urr
xi
r

xj
r

+
ur
r

(δij −
xi
r

xj
r

) + u2
r(
xi
r

xj
r
− 1

2
δij).

Thus, A has an eigenvalue urr + 1
2u

2
r and n− 1 eigenvalues ur

r −
1
2u

2
r . Hence, we get

σk(A) = Ckn−1

(
ur
r
− 1

2
u2
r

)k−1(ur
r
− 1

2
u2
r +

k

n− k
(urr +

1

2
u2
r)

)
.

Similarly, we infer

σk(D
2u) = Ckn−1

(ur
r

)k−1
(
ur
r

+
kurr
n− k

)
.

From the decay condition (1.5), we have ur = O(|x|−τ−1) = o(|x|−1). Therefore, there exists
some R1 > 0 such that for any r > R1, there holds 1

r −
1
2ur > 0.

We claim for all r > R1, ur ≤ 0. Otherwise, we suppose ∃ r1, r2 ∈ (R1,+∞] with r2 < r1

such that ukrr
n−k|r=r1 = 0 (when r1 = +∞, this is just the assumption mk = 0) and ur(r) > 0

for all r ∈ (r2, r1). Since σk(A) ≥ 0, we have ur
r −

1
2u

2
r + k

n−k (urr + 1
2u

2
r) ≥ 0, which implies

ur
r + k

n−kurr > 0 for all r ∈ (r2, r1) since n > 2k. Thus, for all r ∈ (r2, r1), we have σk(D
2u) > 0.

Applying (4.3), we get∫
Sr1

(Tk−1(D2u))ijujνidS −
∫
Sr

(Tk−1(D2u))ijujνidS = k

∫
Br1\Br

σk(D
2u)dx > 0,

which implies ∫
Sr

(ur)
k

rk−1
dSr < 0.

This contradiction yields the desired claim. Assume that u is not a constant on (R1,+∞).
∃r1, r2 ∈ (R1,+∞] with r2 < r1 such that ukrr

n−k|r=r1 = 0 and ur(r) < 0 for all r ∈ (r2, r1).

Thus,
(
ur
r −

1
2u

2
r

)k−1
< 0 on (r2, r1), which implies that

ur
r
− 1

2
u2
r +

k

n− k
(urr +

1

2
u2
r) ≤ 0,

since σk(A) ≥ 0. Using the decay condition (1.5), there exists some positive constant C > 0
such that on (r2, r1) there holds

n− k
k

ur
r

+ Cr−1−τur + urr ≤ 0.

Therefore, we have

(r
n−k
k e−

C
τrτ ur)

′ ≤ 0,



18 YUXIN GE, GUOFANG WANG, AND JIE WU

which gives

r
n−k
k e−

C
τrτ ur ≥ [r

n−k
k e−

C
τrτ ur]|r=r1 = 0.

Hence, ur(r) ≥ 0 which contradicts the assumption ur(r) < 0. Therefore, we prove that u is
constant, say c0, on (R1,+∞). Without loss of generality, we assume R1 = min{t > 0, u ≡
c0 on (t,+∞)}. Suppose R1 > 0. So there exists some small positive number ε < R1 such

that u2r
r −

1
2u

3
r > 0 on (R1 − ε,R1). (XXXXXX why XXXX) Thus, we could repeat the above

arguments to obtain the desired contradiction according ur > 0 or ur < 0 on (R1 − ε,R1).
Finally, we prove u ≡ c0 on [0,+∞).

�
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