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RESUME. Etant donné une variété riemannienne compacte connexe de
dimension n, nous étudions la régularité de ’application du trans-
port optimal entre les densités lisses par rapport au coit de la dis-
tance riemannienne au carré. L’application du transport optimal est
caractérisée par exp(grad u), ou la fonction potentielle u satisfait une
équation de type Monge-Ampere. Delanoé [5] a montré la régularité de
u sur les surfaces riemanniennes lorsque la courbure scalaire est proche
de 1 dans la norme C2. Dans ce travail, nous étudions le probléeme de
régularité sur les variétés riemanniennes avec courbure suffisamment
proche de la courbure de la sphére usuelle dans la norme C? en toutes
les dimensions et prouvons que la C-courbure sur de telles variétés rie-
manniennes satisfait une condition Ma-Trudinger-Wang améliorée et
le jacobien de 'application exponentielle est strictement positive. Par
conséquent, nous impliquons la régularité de I’application du transport
optimal par la méthode de continuité.

1. Introduction and main results
1.1. Background

Let (M, g) be a compact connected Riemannian manifold without bound-
ary of dimension n > 2. For short, we call such (M, g) as a closed Riemannian
manifold. Let d(-,-) be geodesic distance on M and denote dvol the Rie-
mannian volume form. We consider the optimal transportation problem on
M with the cost ¢(-,-) = $d?(-, ). The problem of optimal transportation is
to find the most efficient strategy to transport an assigned mass distribution
to another one. Precisely, let pg = podvol and i = pidvol be two positive
Borel probability measures on M with the density pg and p; with respect
to the volume form dvol. The problem consists in minimizing the total cost
functional

Cost(G):/ c(z, G(x))dpo

M
among all Borel measurable maps G : M — M which push forward pg to

in the sense that
w1 (E) = uo(G™Y(E)),YE C M Borel set.

The minimizers are called optimal transport maps. This problem is first
posed by Monge [34] in 1781 with the Euclidean distance cost ¢(z,y) = |z—yl.
One and a half centuries later, Kantorovich [20] reduced the problem to an
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infinite dimensional linear program. For the squared Euclidean distance cost
c(z,y) = 3|z — y|?, Brenier [1] showed the existence and uniqueness of the
optimal transport map which can be characterized as the gradient of some
convex function. McCann [32] developed Brenier’s theory on Riemannian
manifolds. He showed the optimal transport map is unique and takes the
form G(m) = exp,,(Vu(m)) where u is some c-convex function, that is,
Vo € M, u(x) = sup,ep(—c(z,y) — v(y)) for some function v on M. Such
function w is called the potential function of the optimal transport map G.
The aim of this paper is to show the smoothness of the optimal transport
maps G, or equivalently, the smoothness of the optimal transport potential w.
Ma-Trudinger-Wang [31] introduced for the first time the MTW tensor which
is crucial in the study of the regularity theory of the optimal transport maps.
Later on, Kim-McCann [22] interpreted the MTW tensor as a curvature
tensor of some pseudo-Riemannian metric. There are a lot of developments
in the past decade for example [5,8,9,11-13,15,17,24,26-28,30, 36] etc. For
more references, see the book of Villani [37].

We recall the definition of the C-curvature. Given m € M, denote by
Cut,, € M the cut locus of M at m. The closed subset Cut of TM is
defined by

Cut = {(m,v) € M x T,, M, exp,, v € Cuty,}.
We consider the open connected component of T'M\Cut containing the zero
section and denote it by
NoCut = {(m,v),Vt € [0,1] and (m, tv) ¢ Cut}.
Given (m,v) € NoCut, (§,7n) € T;nM x T,, M, we define the C-curvature by

3 0? 0?
C(mv l/)(f, n) = _gﬁh‘:o@h:oc(expm tfv expm(l/ + 877)) (11)

For the more intrinsic geometric interpretation, we use the aforemen-
tioned pseudo-Riemannian metric h on M x M and set Secty, for its sectional
curvature tensor viewed as a field of quadratic forms on /\2 T(M x M), for
each (m,m) € M x M \ Cutp; with Cutps = exp(Cut) the cut locus of M

and each (§,€) € T, M x TimM, the associated cross-curvature is defined
in [22]:

Cro8S (1, 7y (€, &) 1= Secty, [(€ ® 0) A (06 &)].

Kim and McCann [22] observed that it must vanish for some choice of (£, ¢).
Trudinger et al noted [31, p.164] that one identically recovers 1 cross ,, m) (&, €)
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at m = exp,, (V) with (m,V) € NoCut and & = d(exp,,)(V)(v), by calcu-
lating the quantity:

D2
_W [
where A(m,V)(§) = Vd[p — c(p,exp,,(V))]p=m(&, &) with V the Levi-
Civita connection of the Riemannian metric ¢ and where D stands for the
canonical flat connection of T,,, M.

C(m, V)(&,v) := A(m, V + A1) (§)] =0 (1.2)

When v = 0, Loeper [28] observed that the C-curvature is just the sec-
tional curvature. In fact, it follows from the Taylor expansion for the geodesic
distance [33, p.5] that

d*(exp,, t&,exp,, sn) = [E[2 7 = 2gm (&, n)ts + 0|7, 5% —
1
3 B (6, & mEs” + (£ + 57)%).

Thus we see C(m,0)(&,n) = Rn(&,m,€,n). More generally, we have the as-
ymptotic expansion [24] for the C-curvature

Clm 1) (6:1) = (€1, € 1)+ 5 (Vo R)(E, 1, €, m) 3 (T B) (€., E,m) ol )

We introduce several curvature conditions [23,31, 36]

(i) A3S condition is satisfied if there exists some ko > 0 such that C(m,v)(&,n) >
kol€]?|n|?,¥(m,v) € NoCut,V(¢,n) € T,,M x T, M with (£,n) = 0;

(ii) A3W condition is satisfied if C(m, v)(£, 1) > 0,V(m,v) € NoCut, V(£,77) €
ToM x T, M with (£,n) = 0;

(iii) the non-negatively c-curved (or NNCC) condition is satisfied if C(m, v)(§,n) >
0,¥(m,v) € NoCut,V(£,n) € Trpn M x T,, M;

(iv) the almost-positively c-curved (or APCC) condition is satisfied if NNCC
condition is satisfied and C(m,v)(&,n) = 0 if and only if the span of
the vectors (v, £, n) has dimension at most 1.

The A3S condition is satisfied on the round sphere [29] and on nearly spheri-
cal manifolds [8,16,17,30]. The NNCC condition is stable under Riemannian
products, unlike A3W condition. Each of the above conditions is stable un-
der Riemannian submersion [23]. The APCC condition holds on spheres [23]
(see also [8,16,29]), on projective spaces CP* and HP* [23] and on posi-
tively curved Riemannian locally symmetric space [7]. The APCC condition
is satisfied on surfaces close to 2-sphere [9]. On the other hand, the A3W
condition can imply nonnegative sectional curvature [28], but the inverse is
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not true [18,21, 30].

For the regularity issue, the A3W condition is necessary for the continuity
of the optimal transport map [28] and also sufficient under some suitable
assumptions [36]. There are many works related to the C! regularity of
potential u (or continuity of optimal transport maps) for all measures g, (11
(possibly not smooth). For the instance, see references [15-18,23] etc. Here
we are interested in the high order regularity on closed manifolds. Such
regularity result holds on flat manifolds [11], on spheres [29], on complexe
or quaternionic projective spaces [5,13,23] (see also [27]), on product of
spheres [13,14,23], on nearly spherical manifolds with topology [8,30] and on
2 dimensional simply connected manifolds or positively curved Riemannian
locally symmetric spaces [5].

1.2. Main results and outline of the paper

Let us recall some notations (see [2-4,35]). Let X, Y, Z, W be smooth vec-
tor fields on M. The (3,1)-type Riemann curvature tensor of the Riemaniann
manifold (M, g) is defined by

R(X,Y)Z =VxVyZ —VyVxZ —Vxy|Z

where V denotes the Levi-Civita connection of g. We set Riem for the asso-
ciated (4,0)-type Riemann curvature tensor(!) | that is.

Riem(X,Y, Z, W) = (R(Z, W)Y, X)

Here, we adopt the Einstein summation convention over repeated indexes.

In a local coordinate system{z?!,--- 2"}, the components of Riemann cur-
; 9 9\ 8 _ pl 8 o — 4. RP
vature tensor are given by R(z27, 5.5) 557 = Rijrger and Riji = Jip R

respectively. The Ricci tensor is obtained by the contraction Ric;; = gk'l Rirji
and the scalar curvature by Scal = g“/Ric;;. The Riemannian metric induces
norms on all the tensor bundles. More precisely, the squared norm of (r, s)-
tensor field 7" in the coordinate system x = (z!,--- ,2™) is given by

2 _ Y by s evis ke oks
IT|" = Gisky ** ik g o g7 T T

Let K : Gra(M) — R be the sectional curvature defined on the Grass-
mann bundle of tangent 2-planes (see [5]). We always assume the sectional

(1) We use g(+,-) and (-, -) interchangeably.
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curvatures satisfy

min K = 1. (1.3)
Gra (M)
and we define for the Riemann curvature tensor when n > 3
. Scal
¢ := ||Riem — m9®9”02(M,g) (1.4)

Here the Kulkarni-Nomizu product @® is defined as follows: given two 2-
covariant tensors h and k, the Kulkarni-Nomizu product is a 4-covariant
tensor, determined by

(h W) k)(le X?; X37 X4) = h'(Xla X3)k(X27 X4) + k(Xh X3)h'(X23 X4)
—h(X1, X4)k(Xz, X3) — k(X1, X4)h(X2, X3),

where X; for 1 < j < 4 are tangent vectors. If necessary, we could identify
the contravariant tensor and the covariant one via the Riemannian metric g.
In two dimension, the tensor on the right hand identically vanishes and we
replace the quantity on the right hand in (1.4) by

E = HK — 1||CQ(M,g) (15)

While the dimension n > 3, the quantity (1.4) vanishes if and only if (M, g)
is space form. It follows from [8] that we consider an equivalent term to (1.4)
when n > 3 or (1.5) when n = 2

¢ 1= |Riem — 59 © gllcxar.) (16)
It is known on the round spheres S™ that for v #£ 0
A(m,v)(€) = €], = (1= |V]m cot [v]m) (1€ = gm (€, ﬁ)z) (1.7)
and we can calculate the C-curvature
Clm. )& = 5 o Amv 4 m)(©) (18)

It follows from [23] that the APCC condition holds on spheres S™. Our first
main result concerns about the stability of the APCC condition.

THEOREM 1. — Let (M, g) be a closed n-dimensional Riemannian man-
ifold satisfying (1.3). Then there exists some universal positive constants
€0, Ko such that if € < eq, that is, when n > 3

Scal
)9 B glle2(a,g) < €0

Riem — ———
| Riem = =1

when n = 2
1K = 1lc2(ar,g) < €0
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Then for all (m,v) € NoCut and all tangent vectors £, in T, M
C(m,v)(&n) = ro(l€ A nl, + €l In A vla + 1€ AVIZInl%), (1.9)
where [§ Anl7, = €1, 015 = gm (&), In A v, = 7. VI5, — gm(n, )%, €A
vz = €7 vIm — gm (€ v)?.
Since the NNCC condition is stable for the Riemannian products, a direct
consequence of the above theorem can be read as the following.
COROLLARY 1. — Assume M and N satisfy the assumptions as in The-

orem 1. Then the ASW condition holds on the product manifold M x N.

Once we prove the A3S condition, we could study the regularity of the
optimal transport maps. For this purpose, we use the PDE setting. If the
potential function u is C2, it satisfies the following fully nonlinear PDE

det(Hess'® (u)(z)) = B (&, Vyu) (1.10)
where
Hess(c)(u)(x) = [Vd c(.7q)][myexpx(VU(m))}
+ Vdu(x),
and
B(x,Vyu) = po(z)

p1(G(z)) det (dpexp, (p) (z, Vau))
An observation due to Delanoé [5, Lemma3.5] is the stay away property,
that is, if the potential v is C?, then for all point m € M the image point
G(m) of the optimal transport map does not meet the cut locus Cut,,. This
is some kind of the first order estimate for the potential w. With the help of
Theorem 1, we prove the following regularity result.

THEOREM 2. — Let (M, g) be a closed n-dimensional Riemannian man-
ifold satisfying (1.3). Then there exists some universal positive constant &
such that if when n > 3

. Scal _
|| Riem — )g®g||cz(Mﬁg) <&

2n(n—1
when n = 2
K — 1lc2(ar,g) < &1

then for all given (podvol, pydvol) of C* positive Borel probability measures
on M with k > 2 and a € (0,1), the potential function of the optimal
transport map is CF+2
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We use the continuity method to get the result. For this purpose, we
need to establish the suitable estimates & priori. The main difficulties come
from two parts: on one hand, we need to deduce the suitable C? estimates.
This is solved by Ma-Trudinger-Wang [31] under the suitable positivity of
C-curvature. Thus, it is done with the help of result in Theorem 1; on the
other hand, the optimal transport map G needs to avoid the cut locus, that
is, for all m € M, G(m) is uniformly away from the cut-locus of m. For
this aim, we choose a suitable new test function to obtain the maximum
principle. Delande [6] communicates kindly to us that he has obtained some
stability result on A3S condition on the homogenous manifolds with positive
sectional curvature and proved smoothness result on such manifolds.

The paper is organized as follows. Section 1 presents the main results of
the paper. Section 2 is devoted to recall some notions of Riemannian geome-
try. In Section 3 we prove Theorem 1, that is, the C-curvature satisfies APCC
condition. The proof relies on a careful analysis together with the perturba-
tive arguments comparing to the constant curvature case. It is divided into
three cases: near the origin, the intermediate case and near the focalization.
The asymptotic expansion of the C-curvature gives the improved MTW con-
dition near the origin. In the intermediate case, the fact that the improved
MTW condition holds on the sphere gives rise to the improved MTW con-
dition on M. We adapt the method [17] to verify improved MTW condition
near the cut-locus. The last section is devoted to the proof of Theorem 2 by
continuity method. We collect some known results and prove some technical
results related to Jocobi fields in Appendix.

2. Preliminaries

In this section, we collecte some notions in riemannian geometry [2—4,35]
(see also [8,37)).

2.1. Basic notations and conventions

Recall a fact that the tensor g ® ¢ is parallel, i.e.
V(g®g) =0. (2.1)

By the condition (1.3) and taking trace of the Riemann curvature tensor one
and two times we get the following relations

|Ric — (n — 1)gllc2(ar,g) =~ €, [|Scal — n(n — 1)||c2(ar,q) ~ €. (2.2)
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The (3,1)-form of g ® g is denoted by R, i.e.

R(X,Y)Z =(Y,Z2)X — (X, 2)Y,
which is also the curvature tensor on the sphere S*. The components of R
are given by R(%, %)% = Rﬁjk%.
By Bonnet Myers theorem [4], the normalization (1.3) implies (M, g) is com-
pact and there is conjugate point along every geodesic. Moreover, there is
cut point along every geodesic [2]. Given m € M, Vv € T,, M with |v|,, = 1,
let to(m,v) be the distance from point m to the cut point of m along the
geodesic exp,, (tv),i.e.

te(m,v) = sup{t > 0; exp,, (sv)|o<s<t is & minimizing geodesic}.
The injectivity domain at m is denoted by I(m), i.e.
I(m) ={tv;0 <t < tc(m,v),v € T,,M\{0}}.
The focal time tg(m,v) is defined by
tp(m,v) = inf{t > 0;exp,, (tv)is conjugate to m}.

We recall that the cut time is smaller than the focal time, the injectivity
domain is an open subset contains the origin in T}, M and star-shaped with
respect to origin. Moreover, M = exp,,(I(m))| | Cut,,, where | | means
disjoint union. The exponential map exp,, : I(m) — M\Cut,, is a diffeo-
morphism. We denote by exp;,.!(y) all the velocities v € T,, M such that the
geodesic exp,, (sv)|ogsg1 is minimizing and exp,,, v = y.

The geometry of injectivity domain is complicated. But on some special
manifolds they have special geometric properties.

We state $d*(-,-) is smooth in M x M\Cutys. For any y ¢ Cut,,, the
Gauss lemma implies that

d2
Vi o (y,m) = —expy,y. (2.3)

Given a real smooth function u defined on M, the Hessian of u at m is

given by the linear operator from 7, M to T,, M defined

VE € TrnM, V2 u(€) := Ve(grad u).

It is easy to see that the Hessian is a self adjoint and can be calculated as

follows
2

(V2,0(6).€) = 5 lamour(5), (24)

where v is a geodesic such that v(0) = m and %(0) = &, where " is the
derivative with respect to the real variable s.
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2.2. Jacobi fields

DEFINITION 1. — Giwvenm € M andv € T,, M\{0}, let {E1, Es,--- , En}
be an orthonormal basis of T, M with Ey = v/|v|m. Let v(-) be a geodesic
with initial point m and initial velocity v and {e1,eq, -+ ey} be the parallel
transport of {E1,Es,--- ,E,} along v. We define Jo(m,v,t), Ji(m,v,t) as
the matriz valued solutions of the second order equation

Jo+RJ,=0,a=0,1,
Jo(m,l/, 0) = 07 jo(myyv 0) = Ina (25)
Jl(ma V70) = Inajl(maya 0) =0.

where the elements of R are given by

Rij () = (R(ei(t), ¥(1)) (1), €5 (t))- (2.6)

As same as on the sphere, we define J,(m,v,t) as the matrix-valued of
the second order equation

J.+RJ,=0,a=0,1, (2.7)

with the initial condition Jo(m,v,0) = 0, jo(m, v,0) = I,, and J;(m,v,0) =
I,,, Ji(m,v,0) = 0. The elements of R are given by

Rij(m,v,t) = (R(es(t),¥(t))3(t), e;(t)).
It is easy to see that Jo and J; in the orthonormal basis {e1,€2, -+ ,e,} are
given respectively by

R P N I
e R A R YA

[v]

From the homogeneity of a geodesic (see [2, p.64]), we get the homogene-
ity of the Jacobi fields AJo(m, Av, t) = Jo(m, v, At), J1(m, Av, t) = Ji(m, v, At),
YA > 0. For t € [0, 1], we extended J,, by continuity at v = 0 by J1(m,0,t) =
tI,, and Jy1(m,0,t) = I,. For simplicity, the Jacobi fields J,(m,v,t) are ab-
breviated to J,(t) unless otherwise specified. By the definition of conjugate
points, the matrix Jy(t) is invertible for V¢ € (0,¢p(m,v)). Moreover, the
continuity of the Jacobi fields implies [37] detJy(t) > 0 for V¢ € (0,tp(m, v)).
We first state the fundamental formula which will be used in section 3 to
calculate the C-curvature, that is, the hessian of the squared distance can be
expressed in terms of Jacobi fields and we have the representation formula
for the inhomogeneous Jacobi equations. We recall some results in [17,37].
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PROPOSITION 1. — Under the above assumptions, we have

(a) Given v € T, M\{0}, let J(t) be the Jacobi field along the geodesic
exp,, (tv) determined by the conditions J(0) =&, J(1) =0 and J(t) # 0
for all0 <t < 1. Then J(t) = —Jo(t)Jy (1) J1(1)(&) + J1(£)(&);

(b) Fort € [0,tp(m,v)), let S(m,v,t) be the linear operator from T, M to
T M whose matriz in the orthonormal basis {FE1, Es,--- , E,} is given
by tJo(t)"1J1(t). Then the linear operator S(m,v,t) : T,,M — T, M is
self adjoint. Moreover, if v € I(m), then for V¢ € T, M,

<V$nc(" CXPpmy V) (6)’ §> = <S(m7 v, 1)(5)7 §> (28)

(¢) (Representation formula)The solution of the matriz valued inhomoge-
neous Jacobi equation

J(t) + R(t)J(t) = B(t)

1s given by the formula
t t
(WPJWN@+Lmﬂ®+%®/wa—Lm/me,@w
0 0

where J¥ is the transpose (or adjoint) of the matriz J, for a =0,1.

REMARK 1. — 1) (Homogeneity)From the homogeneity of the Jacobi
fields, we have S(m, Av,t) = S(m,v, At) for A > 0. Then we can extended S
by continuity at v =0 by S(m,0,t) = I,.

2) The linear operator S(m, v,t) has explicit formula on space forms [25], for
instance, on the round sphere S*, S(m,v,t)(¢) = € — (1 — t|v| cot(t|v])) (£ —
(€, ).

3) Given some C? real valued function f : I C R — R defined on some
interval I, we consider some ODE

f+f=0,

where " is the derivative with respect to the real variable. Hence, it is known
that the representation formula holds

) ¢ ¢
f(t) = f(0)cost+ f(0)sint + Sint/ ¢(s) cos sds — Cost/ @(s) sin sds.
0 0
(2.10)

2.3. Fermi coordinate system

In this work, we use extensively the Fermi chart in the calculus. Here we
recall the definition and some results in [8].
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DEFINITION 2. — (Fermi coordinate system) Let (M, g) be a n-dimensional
Riemannian manifold. Given (mg,vo) € NoCut with vy # 0, let I = [0, |vg|] C
R be a compact interval. Let v : I — M such that y(t) = exp,, (tvo/|vo|)

be a geodesic and {e1(t),e2(t), -+ ,en(t)} be a parallel orthonormal moving
frame of vector fields along the geodesic v with e1(t) = \%tfgl The Fermi
coordinate system {x',--- 2"} are defined by
- t
1 B —
z(expy () Aes(t))) = — 7,
02, Vel = gy

p=2

n
2% (expy ) 3 Mep(t) =A*,2<a<ntel
=2

where NP are sufficiently small so that the exponential maps are defined.

The Fermi coordinate system is generalization of the normal coordinate
system. To see this, along the axis we have

Vol € I,Vi, 5,k € {1,2,--+ ,n}, gij(z",0) = §;;,0r9:5(z',0) =0, (2.11)

where § is Kronecker symbol. In the following, the Latin indices run over
1,--- ,n and the Greek indices run over 2,--- ,n. We calculate higher order
derivatives of the metric and Christoffel symbols in such chart.

LEMMA 1. — The following identities hold on the axis
2 2 2
0,911 = —2Rii1j,0,591, = _g(R(xlﬁu + Rappi), (2.12)
1
32/399# = _g(Rﬁpau + Rpuap); (2.13)
i i i Lo i
ak]:‘lj = Rjklaaarﬁu = g( Bop + Rua,@)7 (214)
92T = ViRjay + VaRig, (2.15)
1
BTl = g(le}m — ViR 50) — VaR}5, (2.16)
1 1
BTt = i(vaRZﬂ1 + VgRI1) + g(leiﬁu + ViR, (2.17)

Proof. All identities are proved in [8, Lemma 2| except (2.13). However,
its proof is same. We leave the detail for the readers. O
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3. Proof of Theorem 1

We give first the expression of the C-curvature. We adapt the presentation
in [17]. The proof of theorem relies on a careful analysis together with the
perturbative arguments comparing to the constant curvature case.

3.1. C-curvature calculation in dimension n

In this subsection we calculate the C-curvature. Fix mg € M, vy € I(mg)\{0}
and (§,m) € T M x T,,, M. Since the C-curvature is homogeneous with de-
gree 2 in both £ and n, it suffices to assume that [£],,, = [7]m, = 1. Fix
an orthonormal basis {E1, Ea,- -+, E,} of the tangent space T,,, M so that
vo = [olme B, € = §1E1 4 §oEa + §3E3,m = mEy + 1n2Es and identify the
tangent vectors at mg with their coordinates in this basis. Then the metric
at the point myg is given by the canonical scalar product of R". We denote
T = |vp|. It will be implicitly understood throughout the calculations that
the inner product and the Riemann curvature are evaluated at the point my.

Combining (1.2) and (2.8), we have

3 d?
“ds2

d2
— _2E|S:0<S(m071/0+5n71)(£)7€>m0'

C(m07 VO)(fv 77) = <V?n00(., €XPimy (VO + 577))(§)7 g)mo

For any s € R small enough, we can write vy+sn = t(s)(cos 0E1+sin 0 Ey),

where
_ S1)2
t(s) = |vo + 81|, 0(s) = tan™? (7_4_8771) .
Together with Remark 1, it follows that
3 d? .

C(mo,0)(&,n) = —5@‘52()(5(')%07(308 0(s)E1 +sin0(s)FE2,t(8))(£), &) me-

We give some notations now. Let ~4(t) be the geodesic with initial point
mo and initial velocity cos 0 E1+sin 0 Ey. For |0] small, let {e1(0,t),e2(0,t),--- ,e,(0,t)}
be the parallel transport along the geodesic v¢(t) with e1(6,0) = cos0E; +
sinGEg, 62(0, 0) = —sin 0E1+COS 9E27 61(9, 0) = Ez for i 2 3. Let Jo(a, t), J1(9, t)
be the solutions of the Jacobi equation (2.5) and R(6,t) the curvature ma-
trix by (2.6) along the geodesic g (t). The matrix of S(mg, e1(0,0),t) in the
orthonormal basis {e1(6,0),e2(0,0),--- ,e,(0,0)} is given by

S(6,t) =tJo(0,t) 1 J1(6,1).

- 13 -
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Let
cosf sinf
Q) = |—sinf cosb .
In—2

Then the matrix of S(mq, e1(6,0),t) in the orthonormal basis { E1, Eo, -+ , B}
is Q(0)TS(0,4)Q(0), i.e.

(S(mo, €1(6,0),)(€), &) = (S(0,1)Q(0)E, Q0)E). (3.1)

Here, the dot stands for the derivative with respect to ¢ and the prime for
the derivative with respect to 6.
Differentiating (3.1) once and twice with respect to s successively, we have

LS (mo,e1(60,0).1)(0).8) = [(SQE.Q8) +2(SQE QENT +

(508,06 %

£ (S(mo, e1(6,0),1)(€), )

= [(5"Q&,QE) + 4(S'QE.Q€) +2(SQ'E, Q'€) +2(SQE, Q)] (42)?
(S0, Q) + 4508, QO + (SQ6 QO(5)°
+[(S'QE, Q€) + 2(SQE, Q'E) L + (SQ€, Q) LE.
(3.2)
The direct computations lead to
dt - s(iAm3)+Tm &t T3
ds lvo + 51 ds? v+ snf?
g N2 0 2mips(ni +n3) +7m]
ds — S*(nf+m3) + 25t + 72 ds?  [s2(nf + n3) + 25T + 72
so that at s = 0, we have
__dt d?t n3 o, d0 mp d*0 2
t—T,%—nl,@—7,0—o,%—?7@_— T2 . (33)
Writing

Pé-: (61752707"' 70)T7PL§: (SQu_ghof" 7O)Ta

then at s = 0, we have

Q6 =¢,Q'¢=Pr¢ Q"¢ = —Pt. (3.4)

— 14 —
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Gathering (3.2), (3.3) and (3.4), we obtain

d2
@|S:0<S(mo, 61(9, 0)7 t)(f), £>

2
= [(8"6.) +4(S'e, PH&) + 2(SP-¢, P1e) — 2(S¢, P2 +
[2(5',€) + 4(5¢, P12 + (8¢, e)m? +

(576, +2(5, PLOI 202 1 (5.6 2

- <5£ 7 + [2(876,€) + 2(8, PAe) — S(56,6) -
= HASE P mm + [5(576,€) + (36,6 +
86 PE) + S(SPE Phe) - ;22<55,P5>]n5

which yields

Cmgw)En) |
= (Sé,P%)]nmz + 5[5 (87€,6) — £(S€,€) — (8¢, PHE)—
Z(SPrE, PLe) + 5(SE, PE)lns
= a11(m0,V0, )N+ ar2(mo, vo, E)mne + azz(mo, 1o, )3,

where

a1 (mo, vo,§) = _%<S’§3§>
ara(mo, vo,€) i= 3[—1(5'¢, &) — 2(SE, PLE) + H(S'6,6) +  3(S¢, Pe)]
a22<m07V07§) : %[_7—%<SN§7§> % S >

_;172<S/£’PL£> 2 <SPL£ Plﬁ) <S£aP€>]

3.2. Proof of Theorem 1 and Corollary 1

The proof of Theorem 1 is divided into three cases: near the origin, the
intermediate case and near the focalization. The asymptotic behaviour gives
the improved MTW condition near the origin. In the intermediate case, we
use the similar strategy in [8]: the fact that the improved MTW condition
holds on the sphere gives rise to the improved MTW condition on M. We
adapt the method [17] to verify improved MTW condition near the cut-locus.
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3.2.1. Asymptotic behaviour near the origin

With the help of the above preparations, we can obtain our main result
in this subsection as follows.

THEOREM 3. — Under the same assumptions as in Theorem 1, there
exist some universal positive constants £y, 01, k1 such that if ¢ < &gy, then
for all (mg,vp) € NoCut with T = || < 61 and all tangent vectors &,m in
T M

Clmo, 10)(€,m) = 1€ A la, + [El5, 10 A volm, + 1€ Aol [nl5,,)- (3.5)

Proof. We deduce first the expansion of the C-curvature near the origin.
For this purpose, by (B.25)(B.26)(B.27) below, we have

C(mo,v0)(&,m)
= [R(&, E1, &, Er) + 37(V1R121283 + 2V1 Rio13628s +
ViRiz1563) + 372(63 + €3) + Oe® + 7)(& + E)lni +
{2R(¢, Er, €, Eo) + T[3VaR121263 + (V1 Ri223 +
VaRi213)&28s + (ViRises + 5 VaRi313)E3 —
ViRi21261€2 — ViRi2136183) — 272616 +
O(er? + 73)(&5 + &3 + &1&o + £1&3) ymme +
{R(&, Eq, &, E) + T[ilelng - %V2R1212§1§2 -
3(ViRi223 4+ V2Ri213)&16s + 5 V2 Ri223628s +
($ViRa323 + £ VaRi323)E3) + %(S% + €2 +262) +
O(er? + 7402
= R(§ E1LE BN +2R(E B E Ex)mmne + R(E, B, €, Ea)ns +
%T(VlRuufg + 2V1R12136283 + V1 R131383)n0} +
T[3VaR121263 + (V1Ri223 + V2 Ri213)6283 +
(ViRis23 + 3VaR1313)€3 — ViRi212&1 &2 — ViRi21361&8]mmne +
T[T ViR12126] — $VaR12126& — 5 (ViR1223 + VaRi213) 6165 +
1V R12236285 + (3 Vi Rosas + 3 VaRis03)E3]n3 +
T ($5E003 — $&a&omm + BENT + 5E315 + 2EENT + 5 &35) +
O(e? + 7%)(E1&amma + E1&smn + E307 +
E8mnz + & + Emnz +n3)
= L+ 11 +111+ 1V, (3.6)
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where I; (vesp. Iy, 111, IV}) collects all terms containing 0-power (resp.
1-power, 2-power and higher order powers) in 7.

We estimate term by term from I to I'V;. The key point is the fact that
the combination of the zero order term and the second order term controls
all others.

The term I; It is clear that Iy = R,,,(£,7,€,7n). Recall the curvature
approximation (1.3). Thus the term I; has the lower bound

Lo = [P — (& n)? (3.7)
= (&am—&m)®+&0 +n3).

The term I1; The term 1, involves the first order parts 7703, 7€21%, 761Eom2
and 7E2m1m2. They cann’t be directly controlled by the associated terms in
the second order, but the combination of them composes good terms, more
precisely, the term I1; can be stated as

3 T

I, = valnglgfg’lﬁ — 7ViRi21261&amm2 + ZV1R1212€%77§ +
T 3 3
§V2R1212(§§771772 —&&m3) + §TV1R1213§2§3Tﬁ + ZTV1313135577% +

1
T[(V1R1223 + VaR1213)6283 + (V1 Ri323 + §V231313)§§ -

1
ViR1213&1&3]mine + T[—i(V1R1223 + VaRi213)6163 +
1 1 1 .
§V2R1223§2§3 + (1V1R2323 + §VQR1323)§3]772 +
T T
= ZV1R1212(§2771 — &)+ §V1R1212(£2771 —&ine)éam +
T 3 2 3 2, 2
§V2R1212(§2771 —&im2)&amns + 57v1R1213£2§37]1 + ZTV1R1313§3771 +

1
T[(V1R1223 + VaR1213)8283 + (V1 Rises + §V231313)§§ -
1
ViRi21361&3]mne + T[*i(V1R1223 + VaRi213)6163 +

1 1 1
§V2R1223§2§3 + (Zle%% + §V231323)§§]77§

Using the curvature approximation (1.6), Cauchy Schwartz inequality and
the parallel property (2.1), we estimate the term I1; as follows

T 1
1 > —5(1 + 5)(51772 — &om)? —eT?Ein; — 2e77E5n; —
1 5 3 7 3
557253773 - E(Z + 57)5577% - 8(1 + 57)5:?773
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Here we drop the upper indicator for & in (1.6). Now assume 0 < 7 < 2, the
following inequality holds

5
IIi > —e(&imp—&m)? —er?En; — 45725577% - (3.8)
1 5 3 7 3
557255775 - 5(1 + 57)532,77% - 5(1 + 57)53%773

The term V) The remainder error term is negligible comparing with the
second order of 7 when € and 7 are small. Let €; be some small positive real
number to be fixed later. Assume 0 < e < 5,0 <7 < 5 such that

IVi = O(er® + 1) (5 + &ni + Em3 + &n7 + &3 +n3) (3.9)
> —em (& + &0 4+
Here we use the fact &2 + &3 + €2 = 1. Gathering (3.6), (3.7), (3.8) and

(3.9), we estimate

C(mo,v0)(&n) = (&m2—&am)* + & +n3) — %51(51772 —&m)? -

1 5 1 5 3
551725%773 - §5172§§77% - 1517253773 - El(g + 17)5377% -

3 1 2 2
ei(s + *T)£§77§ + 72(1—5§f77§ - 55152771772 + gfgnf +

(5
1
ﬁé 53+ 53771 + 1 f%n%) —e1m? (&7 + &0t +13)

1 ¢ 2
= (1- *)(517]2 - §2ﬁ1) + (= — D282 - S22 6mns +
15 2 )
2 5 1
(5 - §€1)7' &1 + (B - Z) “Emy +
2 5 3
[572 - 51(8 + 47') +1]&n7 +
2, 7T 3 2.2 20¢2,2 | ¢2.2 | 2
[BT — 51(8 + 17’) + 1&5ms — et (&my + &5my +1m3)
1 2
= l—e+ (B —2e1)7%)Ein; —2(1 —e1 + )6152771772 +

1=+ (G — 220716808 + (€ — &om) +

5 3 7
[1—ei(z+Sm+7)8m +[1—el(5 + 7')]53772
8 4 8
3 1
5517 &ns + 517' 2t + (*5 - *) 2ms +
2
5 53771 5 253772 — e’ 772
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The discriminant of the quadratic polynomial h.-(t) = [1 — &+ (& —
2e)72)t2 —2(1 — e + = )t +1—¢e+ (2 — 2)7? is polynomial with argu-
ments (¢,7). By contmulty , there exists a small positive constant £; such
that the discriminant is non-positive in [0,&;] x [0,£;]. Together with the
fact €2 + €2 + €5 = 1, we have

C(mo,)(&,n) = E51(51772 —&m)?+[1- 51(% + ZT +72)|€E5ni +

7 3 1 3
[L-alg+ 17)]5%17% +3E T + ga TGN +
1 561 2
(T5 - T) 233 + 7' Gt + (15 — e1)72&3m5.

Thus, we could choose some small e; < &; such that for any 7 < % there
holds 1 —e1(3 4+ 37+ 7%) > 0 and 1 —1(£ + 27) > 0. As a consequence,
there exist the constants £y, x; and ;1 such that Ve < &y and Vg € T}, M
with |vp| < 01, we have

Clmo,vo) (&) =k [(IEPInI* — (& m)?) + [l (&3 + ED)Iml* + [vol*I€*n3 ] -

Finally, we prove Theorem 3. ]

3.2.2. Behaviour near the focalization

Under the curvature assumption (1.3) and (1.4) (or (1.5)) with & small
enough, we can obtain by the method in [17] near the focalization.

THEOREM 4. — Under the same assumptions as in Theorem 1, there
exist some universal positive constants €p.1,02 € (%’T,W),nm such that if
€ < €o,1, then for all (mg, o) € NoCut with 02 < T = |1y| < tp(mo,vy) and
for all tangent vectors &,m in Ty, M

C(mo, 10)(&,m) = K11(IEA NG, + 1Elos I Avol2, + €A VOL2, n2,,)- (3-10)

Proof. In view of [17, (5.22)], there exist positive numbers kg, 2,02 €
(2%, 7) such that if ¢ < &5, then for all (mg, ) € NoCut with d; < 7 =
lvo| < tp(mo, o) and for all tangent vectors &, 7 in T,,, M with |§| = |n| = 1,

the C-curvature has the following estimate

C(mo, vo) (&, 1) = ra(|STE[2|n|* + &1113), (3.11)

where S+ denotes the orthogonal projection of S on the orthogonal subspace
1L
VO .
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From the curvature assumption (1.3), the Hessian comparison theorem [4]
infers

V| COS |V,
_Sl>_|0| |0|

. n—1-
sin |vp|

Hence the term |S£[? controls &3 + &3 if |vo| > 27, ie. [SHE|2 > 2(63 +€3).
By Cauchy-Schwarz inequality, we estimate

1 1
5(512773 +&n7) > 1(51772 —&m)>.
Thus, it follows from (3.11),

Clmo)(6.n) > wa |5€08 + 4 (6m — &m)? + (& + ol

> K2 %ffﬁg + 25577% - %&52771772 + &+ 5§)|772]
(1 1 3
= | ORI = (6n) + 36508 + P + T3P
> o [P — (€m)) + (€ + Dl + I
> s [(EPI? — (€.1) + o (& + Elal? + ol lePnd]

Therefore, there exist positive constants £p,1 < €2,K1,1 < Ckg such that
(3.10) holds. Finally, the proof of Theorem 4 is complete. a

3.2.3. Behaviour in the intermediate case

In this subsection we assume 6; < |vo| < d2 < tp(mo, 1), where the
positive constant d, is strictly smaller than 7 and given in Theorem 4, and
the positive constant §; is given in Theorem 3. We adapt the same strategy
in [8, Theorem 2| to get the stability result. For convenience of readers, we
recast as follows.

PROPOSITION 2. — Let (M, g) be a closed n-dimensional Riemannian
manifold satisfying (1.3) and (1.4) (or (1.5)) with e < ~. Let (mg,vg) €
NoCut with T = |vy| < d2. Assume v is small enough such that d2 <

tr(mo, o) and
vol o1
Sin|1/0|’y S4vn—1
Then there exists a positive constant C1 = 1 under control (independent of
(mo,vo,7)) such that for all £,m € Ty M the following inequality holds

€, 16)(6.1) = Clma, ) (€1)| < CalGhety 2 (162 + b ),
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where £+ (resp. ') is orthogonal projection of & (resp. n) on the orthogonal

subspace v

Proof. The C-curvature difference has the following expression

C(mo, v0)(&,m) — C(mo, o) (&) (3.12)
= 2B - e + IS8 + (56,8 ~ 2(§ - e, Pet) +

T

S8 = 5)6, PE Y mm + 5[~ 5 (5"6,€) — —{(§ - §)6.6) -

SHS'PER € — Z(5 — S)PEH, PEY) + 5 (5~ 5)e PO,

Plugging (B.28) and (B.29) into (3.12) we get the result. Therefore, Propo-
sition 2 is proved. O

As a consequnce, we get the stability result as follows.

THEOREM 5. — Under the same assumptions as in Theorem 1, there
exist some universal positive constants €y 2, k1,2 such that if € < €2, then
for all (mg,vy) € NoCut with 5 < 7 = || < b2 < tp(mg, o) and for all
tangent vectors §,m in T M

C(mo,10)(&,m) = K12(1E Anlo, + €l I Avoli, + 1€ Avoli, Inla,)- (3.13)

Proof. Assume 0 < € < 45?\“/%. We note the function ﬁ is nonde-
creasing in the interval [0, 7), and the condition in Proposition 2 is satisfied.
Thus, we have

_ 5o

C(m071/0)(£7n) 2 C(m()vVO)(gvn) _Cl(sin52

)'e( + &5 +n3)

C165

> Rl = (&)%) + (hor® = 7 e)(@ + €+ )
C163

> RallEPInl? — {€m)%) + (Ro — L F—)r(& + & + )
7 sin” d9

> Z2IEPm? — (& m)? + (& + & + )

> k2 [(1EPN1* = (€ m)?) + [wol*(& + &) nl* + lvol*[€*n3] -

~ L . Rzzs? sin® 5o sin o Ro .
Here we choose € < €7 o := min( 5CoT 462\/nTI) and k12 < %2. Finally,

we prove the result. 0
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3.2.4. Proof of Theorem 1

Proof of Theorem 1. It is a direct consequence of Theorems 3, 4 and 5. [J

3.2.5. Proof of Corollary 1

Proof of Corollary 1. Thanks to Theorem 1, NNCC conidtion holds. Such
condition is stable for Riemannian product. On the other hand, NNCC con-
dition implies A3W condition. Thus, the desired result yields. ]

4. Proof of Theorem 2

In this section, we are going to prove Theorem 2. Let (podvol, p1dvol) be
C* positive Borel probability measures on M. The curvatures of M satisfy
(1.3) and (1.4) (or (1.5)). Fix any couple (k,«) € N x (0,1), with k > 2. Let
Hess'“u be c-Hessian of u, namely,

Hess'“u = V2 u+ V2 ¢(-, exp,, V).

On the one hand, a C? potential function « of the optimal transport map
G(m) = exp,,, Vmu pushing forward podvol to pidvol satisfies the following
Monge-Ampere equation

po(m)

p1(exp,, Viu)
On the other hand, a classical C solution of the above equation is the poten-
tial function of the optimal transport map exp,,, V., u pushes forward podvol
to prdvol. To establish Theorem 2, it suffices to prove the Monge-Ampere
equation admits a classical C*+2® solution. We attack it by the continuity
method. Here we consider only regularity issue on simply connected man-
ifold M. For the general case, we reduce to simply connected manifold by
covering arguments (see [8]).

Let Z be the set of the parameter ¢ € [0, 1] for which there exists a C*+2:
solution u; of the equation (4.1) with p; replaced by py = (1 —t)po +tp1. It
is clear that 0 € Z, so the set Z is not empty. The openness is derived by the
implicit function theorem [19]. If Z is closed, the connectedness of the set

det(dy,, o exp,,)det Hessu = (4.1)
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[0,1] shows Z = [0,1] and we prove the equation (4.1) admits a C*“ solu-
tion. From Theorem 1, we know that on the Riemannian manifold with the
curvature conditions (1.3) and (1.4) (or (1.5)), A3S condition holds. [5, The-
orem 6.1] (see also [8]) reduced the closedness of the set Z to the following
estimate

Main estimate. There exists a positive number dy (depending on the den-
sities) under control such that

det dv,,u, €xp,, = do, (4.2)

for each (t,m) € T x M.

Fix t € Z. From [5, Theorem 3.1], we know that Vu; at m locates in the
injectivity domain at m. Recalling the curvature assumption (1.3), by Rauch
comparison theorem [2], the length |V,,u| is strictly less than 7. The Jaco-
bian is related to Jacobi field, i.e.

det dv,, v, €xp,, = det Jo(m, Vue, 1)

By Bishop’s theorem [4], det dv,, v, €xp,, is uniformly bounded above by
1 if M has nonnegative Ricci curvature. It is known that det dv,, ., exp,,
is positive. But det dv,,., €xp,, may not has a positive lower bound. Since
det Jo(m,v,1) vanishes if (and only if) exp,, v is conjugate to m, so the
estimate (4.2) is not obvious. For instance, on the sphere S™ with the stan-

dard metric, det dv, 4, €xp,, = (%)”*1

is close to zero when |V, uy]
is close to m. Making use of Lemma 3 in Appendix, the estimate (4.2) is
obvious if max{|Vyu¢| : m € M} < 2%, provided ¢ is small enough. Thus
without loss of generality, we assume there exists at least a point such that
the length of gradient |Vu,| at that point is not smaller than 2T. To prove
(4.2) we need to construct an appropriate test function.

Let J(m,Vui) = —|Viu|2S™(m, Vyug, 1). We consider the minimiza-

tion problem

3

Hlil’l{<j£,€> : (m,f) € TM? Z < |vut‘ma |£|m = 17£J—Vmut}

Let (mo, &) be the minimum point. We consider the test function

<j§a€> + <€7 Vut>2 .

Vug)?
612 - fea

h(m,§) =

Then h attains the minimum at the point (mg,&p) in a neighborhood of

the point (mg, &) in TM. To see this, let £+ = ¢ — <§7Vut>|VvT“;|2 be the
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orthogonal projection of & on (V,,u)*. Then
1ol
ISl

By continuity, we obtain h attains local minimum at the point (mg, &p).
The minimum h(mg, &) has a nice explanation— the second eigenvalue of 7.
Specifically, as h is bilinear with respect to £ on the orthogonal subspace
(Vmu)®, the minimum h(mg, &) is the second eigenvalue of the self adjoint
operator J (mg, Vm,u) with the associated eigenvector £y. As a consequence
of the above explanation, a necessary condition for the main estimate (4.2)
is that the minimum h(mg, &) has a positive lower bound. At first the min-
imum h(mg, &) has to be positive. To see this, from the Hessian Compar-
ison Theorem, we know that —S= is positive definite. Thus the minimum
h(mg,&p) is positive and has a lower bound under control. To differentiate
the test function h, it needs to rule out the boundary case. Proposition 5

infers

h(mo.£0) > — |V mo ] Sin |V o ]

— Cge
€08 | Vo it 8

_rsinr
cosT

can assume |V, us| > 7 — 0,0 < 6 < 7. Henceforth, we drop the subscript
t and set for short 7 = |V, ul.

provided € < ~y;. Since the function is non-increasing in (%, ), we

Some local notations We take the Fermi coordinate system x = (2!, 2%, - -

along the geodesic exp,, (5V.,,u) as the one constructed in section 2 and

v = (vl,v% --- ,v™) be the fiber coordinates of TM — M naturally associ-
ated to z. We abbreviate the partial derivatives as follows
0 0? 0 0?
=04 =+ Di=—— D= ——.
Y0zt T gxigad’ Tt vt T Quidyd
Components of tensors will be denoted by
i 9 2 i j 9 i j 9

gradu = V'u(m) pye Viu = Viu(m)ds! @ Fret S = Si(m,v,1)dr’ ® ek
J =Jj(m,v)dx’ @ &E“H =H;(m,v)dz’ ® Baci’]:: Fi(m,v)da? @ Bt

where Hj = Viu+ S}, Hj Fy = 6.

We denote D = ¢gF' D) and 0% = ¢*'9; the lifting indices. Let us now describe
the behavior of the components 7, 5’

PROPOSITION 3. — Let (mg,vp) € NoCut and |vg| > m — & with 0 <
0 < G. Let x be the Fermi coordinate system associated to the geodesic
exp,,, svo and v be the fiber coordinates of TM — M naturally associated to
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x. Then there exists a positive constant C under control such that the absolute
value of the first and second partial derivatives of the components Jg', o, B €
{2, ,n} with respect to (x,v), evaluated at the point (0, (|vo|,0),1), are all
bounded above by Ce, except the following partial derivatives

D1J&, 05508, D11 TS, DTl Doy TS 0 # 0,0 # ¢.

and the following estimates hold

IDITe 7] < Cle+96), (4.3)
055 T — 7| < Cle+9), (4.4)

IDLT+2| < Cle+96), (4.5)

|[Dppds + 1+ 25,8 < Cle+9), (4.6)
|Duyp T + 0906y + 0pupbip| < Cle+68), 0 #@,u#¢.  (4.7)

Proof. Recalling Proposition 5, we only need to calculate the following
components

al‘jﬁlx’ D'Ujﬁlx’ a:bmjﬁ?a D.’I)’Ujl?? ‘D’U'Ujél
where J = —|v|2S71(m,v,1). By differentiating the equation

ﬁﬂwhere fv)) = _lv|sinjy]
1%

Evaluated at the point (mq, vo,§) with £ L 1y and [§] = 1, we get
0:. 5" = 0,D;J5eve’ = fou,

(7€.€) = FvDIER = (Iv1* + fIvD)E,

v

0,;J56a" = —lwolf(lwl),0:D;T5*¢" =0,
D;; J5exe? = fo1:01; + l{(')|(§ij — 014015) —
sin |vg| o
2(1 — 613) (1 — 81;)(1 — ——20L ygigi,
( 1 )( 1])( |1/0|COS|V0|)§§
Using the symmetry of J, we get the desired results. |
REMARK 2. — Let (mg,vp) € NoCut. Assume x is the Fermi coordinate

system associated to the geodesic exp,, svo and v is the fiber coordinates of
TM — M naturally associated to x. It is well-known

b2 = exppl[fgmdplc(.,pﬂ], (48)

whenever pa € M is not cut point with respect to p1 € M. Assume the points
Pa for a = 1,2 are in the domain of the Fermi coordinate system and set x =
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x(p1). Suppose m = p; and mo = exp,,(v) and denote v = (v*),v* = dx'(v).
Differentiating (4.8) with respect to the coordinates x at x(m), we have

Dy X (z,v,1)V¥c(m, exp,, v) = 6y X*(z,v,1), (4.9)
where 5J~VXi =0, X"— F?l(x)lepXi is defined in an intrinsic way (see [5]).

In the following, all terms are evaluated at the point (z,v) = (0, (7,0)).
It is implicitly understood throughout the calculations.

The critical point condition. By differentiating the test function with
respect to x?, the first derivative condition on critical point could be read as

(0:T§ + ViuDpJ§)(€)a(§0)” = 0. (4.10)

Under the curvature assumption (1.3), by the Hessian comparison theorem
we have h(mg,&) > 0. The components of & are denoted by (&), i.e.,
&o = (&) 0;.

Differentiating two times on the test function h with respect to x, the second
derivative condition on extrema can be read as follows

0L Iy + I+ 111y + IV, + Vs, (4.11)
where
I = —(J%,%)Fi9" 0590p(60)"(€0)° + Fig”' 079ar T4 (£0)*(€0)”,
Iy, = —1FTDvJs (G0)a(0)’ + Fjg7 0775 (€0)a(€0)”,
I, = 2FViud;DkJTS (&)alé0)”,
o = 24 (T, ) FIVEuThulEo)a(er)’ +

FiVEuV{uDD' TS (£0)a (&)’
Vo = F;@JVqukJE(ﬁo)a(fo)ﬁ

Here (&)i = gij(£)? are coordinates of the corresponding co-vector related
to &. The potential function u evaluated at the point mq satisfies the equa-
tion

Po
proG’

detJodet(H}) =

with the matrix (H}) positive definite and Jy = D, X. The positive definite-
ness of the matrix (H7) implies that Viu is larger than —1. We also write
the expression

S(0, (7,0),1) = Ll) ;g} .
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Moreover, we have

TCOST

-5t > I, (4.12)

sinT
We calculate each of the terms Is to V5.
The term I» Recall g;; = §;; on the axis and 7! = 0 at the point (0, (1, 0))
so that the term Iy can be recast as

Iy = —(T €0, £0) F 59" 02,905 (80) " (€0)” + FL9¥7 0%, 90 Th(€0)* (S0)°.
Then we calculate the term I by Lemma 1 and find
2 2
I = §<t7§0’§0>]:;5R¢Oéwﬁ(€0)a(§0)6 - g]:lwaijé(fo)a(fo)B-

Using the curvature assumption (1.4) (or (1.5)), Proposition 5, the posi-

tive definiteness of (]—']l) and the Cauchy-Schwarz inequality, there exists a

universal constant C' > 0 such that the following upper bound holds
IQ < CE]:S. (413)

The term Il Using (1.4) (or (1.5)), Lemma 1, Proposition 5 and the
Cauchy-Schwarz inequality, there exists a universal constant C' > 0 (maybe
different value than previous one) such that the following upper bound holds

I, < C(e + 8)F}.

Recalling F;V%UV{U = Viu—1+ F}, we have F} <2+ ]:]’:Vguvjllu since
Viu > —1. Thus, we infer

II; < C(e + 0)FS + Cle + ) FiVEiuviu+ C. (4.14)
The term 175 Using f,iV;?u = 6; — f,iS;“? we estimate
11y = 20, D" J§' (§0)a(€0)” + 2F510; DETS (£0)a(€0)”.
From the Proposition 5, there exists a universal constant C' > 0 such that
111, < Ce(1 + F1SiSF).
Let us observe that the following identities hold: Vk,I = {1,--- ,n}
FiVIuViu=Viu— Sf+ FiSFS] = H} — 28} + FISFS].  (4.15)

The positive definiteness of (#7), (—S*) and the facts S} = 1 and S, = 0
imply

11T, < Ce(FiVEuViu+1). (4.16)
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The term V5 Splitting the negative term f;Vqu{uDleJg‘(So)a (€0)P
into four parts, we have

IVa = FiVIuViuDiD'JT§ (&)a(é0)? + 2FIVIuViuD D" TS (€0)a(é0)” +

FiVv{uViuD,D? J5 (&) (&)’ + > FiViuviuD,DY T (&)a ()"
pFY

to(1+ gugo, £0)) FiVEuVhu(o)a()”.

Using Proposition 5, there exists a universal constant C' > 0 such that the
following upper bound holds

IVy < [Cle+6) — 2JFiViuViu+ [Cle +6) — | FIVeuViu (4.17)
2 Awiel j
+§<~7§07§0>ij1' uVhu(€o)a()”.
The term V5 The term V5 involves the third derivatives of u. We use

the equation (4.1). After commuting the third derivatives of u, the term V5
can be estimated

Vo = FUOMVu+ g™ T RE 1) DTS (€0)* (&)

By taking the logarithm and differentiating the equation (4.1) with respect
to the variable ¥, we obtain the following simplified expressions

0 0 ) . ) .
Vo =[2G — (o)) — (T 0T —

Po . Pt

FiopSI|DF 78 (60)a (&) +

9; i —1yi j —1yi j
(== o)i = (D] = (T DT~

FiDiS]ViuD" J5 (€0)a(€0)” +
2n o' jm Tt a
—ViuD* J§ (§0)a(60)” + 76" T Ritn Di T (0)a(€0)”
We observe that S = —S(0571)S and DS = —S(DS1)S. Using the
critical condition (4.10), Lemma 4, Proposition 5, the identities (4.15) and

Cauchy-Schwarz inequality, there exists a positive constant C' > 0 such that
there holds

Vo < Ctm[%?]{|dlogpt|} +Cle + 6)}';Vquf;u +[C(e+46) (4.18)
€lo,
—m?]Fe + C.

— 928 —



REGULARITY OF OPTIMAL TRANSPORT MAPS

Gathering (4.11), (4.13),(4.14),(4.16),(4.17) and (4.18), we obtain the follow-
ing inequality

0 < C’tm[aa%{\dlogpﬂ} +[C(e +0) = ] FE +[Cle +0) — 2]]-'}V%uV{u +
€10,

[C(e +6) + %Ugo, &) — UFViuViu+ C.

Fix € < g, 0 < g5. Recalling (4.10), (4.12), (4.15), Proposition 5 and using

the fact the function r — —Z2LT jg decreasing in the interval [27, 7], we
obtain the inequality
n—1(r—09)cosd
0 < C dl - 4.19
< O max {|dlogp[} = —3 s (4.19)

2 1 . )
+(§<~750, o) — 1)}'}V?uvgu +C.

327 (n—1)
Xsefo,1]{[dlogpe

We take § < min{gs, 60 (ma |}+1)}, the minimum h(mqg, &)

must be bounded below by

1 1 3v2n(n — 1) 2
= (7 — min{—, D™
] 8C" 16C (max;e(o,1){|dlogp:|} + 1)

Finally, the proof of Theorem 2 is complete.

Appendix A. The geodesic motion and applications
A.1. The derivatives up to third order of geodesic motion

In this subsection, we collect some results in [8]. Fix mg € M,y €
I(mo)\{0} and take the associated Fermi coordinate system along the geo-
desic exp,, (tvg) and v = (v',v%,--- ,0™) be the fiber coordinates of TM —
M naturally associated to x. The curvatures of the Riemaniann manifold
satisfy the assumptions (1.3) and (1.4) (or (1.5)). For m € M,v € I(m)
with m in the domain of the Fermi coordinate system x, let X (z,v,t) be the
coordinates of the geodesic exp,, tv. Then X (x,v,t) is the solution of the

Cauchy problem
X4+ T3(XN)X' X =0, X5 (2,0,0) = 2%, X" (2,v,0) = v". (A1)

In the Fermi coordinate system, (my, ) corresponds to (0,vy) where vy =
(|vol, 0). On the axis, set for short Xo(t) := X (0, vg, t). We recall some results
in [8]. Let Jy = D, X, J; = 0, X be Jacobi fields in Section 2. Differentiating
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(A.1) once with respect to the variable z (or v), on the axis, we get the
following equation

Ji+ 0T (X)XIXRJL + 21 (X) X7 JF =0, (A.2)
with the initial conditions, namely either
DX (0) = 0%, 0, X°(0) = 0,
or
Do X' (0) =0, D, X*(0) = 4.

We note that the equation (A.2) is equivalent to (2.5) on the axis. Thus, we
have

LEMMA 2. — [8, Lemmad] There exists a positive constant Cy > 0 such
that on the axis, for each t € [0,1], the terms

|8IX(Ova?t)|a |6$X(07U07t)|7 |DUX(O7U07t)|7 |DUX(07v07t)|7
are all bounded above by Cs.

We require the notation 9, X (t) and D, X (t) for the solution J, of the
unperturbed equation

Jo + P Rigy 7 =0,
with the initial conditions, namely either
0, X1(0) = 6%,0,X(0) = 0,

or

D, X(0) =0,D,X(0) = 5.
It is clear that 0, X (¢) and D, X (t) correspond to .J; and .Jy respectively on
the axis. Thus, we have

LEMMA 3. — [8, Lemma 5] There exists a positive constant C3 > 0 such
that on the azis, for each t € [0, 1], we have

[0:X(0,v9,t) — 0 X (t)| < Cse,
10, X (0, v0, 1) — Do X (£)] < Cie,
| D, X(0,v0,t) — D, X ()| < Cse,
ID,X (0, v0,) — DX (t)] < Che.
REMARK 3. — For later use, dealing with |Jy — j0|, the constant C3 can

be taken value 2v/n — 1 (see [8, Remark 5]).
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Let Jup be 02, X,0,DvX,D,0,X or D? X. Differentiating the Cauchy
problem (A.1) twice with respect to the parameters x and v
Ji, + o XI Xk L, 4 or, X9k = (A.3)
ORI XIXK LY — 2018, X (JFJL + JEJE) — 21, J] JE.
and the homogenuous initial conditions

w(0) = Jop(0) = 0. (A1)
On the axis, recalling (2.15), equation (A.3) is reduced to
Tap + vol* R o1 (X0) J5 = —[vol* 07, T4y Jo g — 2v0| Ry (Xo) (J TS + JET)).
By Lemma 1, we have (see [8, Lemma9])

LEMMA 4. — There ezists a positive constant Cy > 0 such that on the
axis, for each t € [0,1], the terms
|8§xX(07 Vo, t)|7 |8£xX(Oa Vo, t)‘7
0. Dy X (0,9, 1)], 10, Dy X (0, v0, 1),
|D3vX(m07UOat)|v |D3UX(O’UO>t)|

are all bounded by Cy.

Let us introduce the solutions 92, X, 0,D,X, D,0,X and D? X along

the axis of the unperturbed equation
Tiy + [vo[20%, Jg, = 2|0l (9554 — 160)(JTLTE + T} JE), (A.5)

avab =

with null initial conditions
Jap(0) = J,(0) = 0. (A.6)
We have the following perturbation result (see [8, Lemmal0]).

LEMMA 5. — There ezists a positive constant Cs > 0 such that on the
azis, for each t € [0,1], we have

|331X(07 Vo, t) - m(t” < 0557
102, X(0,v0,1) — 92, X, ()] < Cse,

|8xDUX(O, Vo, t) — 8LDUX(t)| < 056,
10, D, X (0,00, 1) — 9o Dy X ()] < Cse,
|D?, X (0,v0,t) — D2, X (t)| < Cse,

|
D2, X (0,v0,) — D2,X(1)| < Cse.
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Furthermore,|0%,X (0,v9,t)| < Cse, |01 D, X (0,v0,t)] < Cse.

Proof. The first 6 statements are the results in (or comes directly from)
[8, Lemmal0]. The last two approximations are just the consequences of the
facts 02, X (t) = 0 and 9D, X (t) = 0 which follows from the equation (A.5)

and the initial conditions (A.6). O
Let J%, (t) equal to 93,, X (0, vq,t),02,D,X (0, v9,t), 0 D2, X (0, vg,t) or

D3, X(0,vg,t). Differentiating (A.1) three times with respect to the vari-

VvUVU
ables z and v

abc+ |V0‘ Rlal( )J:zlbc = 7|V0|28l3pq1—‘§1‘]é‘]bp‘]g - |V0‘2al2p]'—‘§1 Z J(lLng
(a,b,c)
—2\w|0fTi, Y JadyJ?
(a,b,c)
—2w| Risr (Xo) Y (JEJp + J5,T7)
(a,b,c)
—205T%, > JIIETPL.
(a,b,c)

with null initial conditions

1e(0) = Jiy.(0) = 0.

Here }_, ; ) means circular summation on (a, b, ¢). It is stated (or with the
same arguments) in [8, Lemmal2].

LEMMA 6. — There exists a positive constant Cg > 0 such that on the
axis, for each t € [0,1], the terms

| rTT (0’007 )| | TTT (O Vo, )|ﬂ
|a§ZDUX(O,’U0, )|a|82wD’UX(07U07t)|7

|a D2UX(OVUO7 )| |a ngX(OavO»t)‘v
|DUU’UX(O7UO7 )| |vau (07U07t)|

are all bounded above a universal positive constant Cg.
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Let us introduce the solutions 93, X, 02, D, X, 0,D,0, X, D, 02, X, 0, D2, X,
D,0,D,X, D% 0, X and D3

SouX along the axis of the unperturbed equation

abc+ |V0| 6& abc (A7)
= S0L - 00) 3 (wolPTEI L — 20T -
(a,b,c)
2wl (5508 — 0167) Y (JETE 4+ JkJ5) —
(a,b,c)
2(8% — 830r) > JLILTE+
(a,b,c)
i 2 i i 2 o — R

(26104 + 5 (6% = 8100 D (Le Ty T2+ T TY).

(a,b,c)

with null initial conditions
Zbc(o) = jtibc(o) =0.
It is shown (or with the same arguments) in [8, Lemmal3].

LEMMA 7. — There ezists a positive constant C7; > 0 such that on the
axis, for each t € [0,1], we have

‘ TTT (O7U07 ) 82_1/1/ ()| 076,
102, D, X (0,v0,t) — 82, D, X ()| < Cre,
‘aﬂcD?wX(OvUOa ) 8 D2 (t)| g 7€,
‘DSUUX(O7UO7 ) D3 X( )| < 075

vUv

Appendix B. The behaviour of Jacobi fields and applications
B.1. The behaviour of the curvature matrix

In this subsection, we study the behaviour of the curvature matrix. Given
mo € M, vy € I(mg)\{0} and some orthonormal basis { £y Es,--- E,}
of the tangent space T,, M, let vy(t) be the geodesic with the initial point
mo and the initial velocity cos@FE; + sin@F,. For |f| small enough, let
{e1(6,1),e2(0,t),--- ,en(f,t)} be the parallel transport along the geodesic
~o(t) with e1(0,0) = cosOFE; + sinfFs, es(0,0) = —sinE; + cos0F,, and
ei(0,0) = E; for i > 3. Then {e1(0,t),e2(0,¢), --- ,e,(0,%)} is the parallel
orthonormal moving frame along the geodesic yo(t) with e1(0,t) = 5o(t).

*\V\’
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Let X(0,t) = (X*(0,t),X2(0,t), -, X™(0,t)) denote the coordinate of
the geodesic y(t) in the Fermi coordinate system, i.e.

Xk(0,t) = X*(0, (cos 0,5in 0,0, - - - ,0),1).

Along the geodesic 4 (t), there are two bases in the tangent space: the natural
basis {32:} and the orthonormal basis {e1, - ,e,}. Set (Y7 (0,1)) for the
coordinates of the orthonormal chart {e1,--- ,e,}, i.e. €;(0,t) = Yij(G,t)aj.
It is clear that Y7 (0,t) = X?(6,t). Recall the dot stands for the derivative
with respect to ¢ and the prime for the derivative with respect to 6. Given
two real function f(¢) and h(t), we write f(t) = B(h(t)) if there exists a
positive constant C' (under control) such that |f(¢)| < C|h(t)| for all ¢ in a
given range. The third derivative of f(¢) with respect to ¢ will be denoted

by f(t). The derivatives of the elements of the n x k matrix-valued function
(a%(6,t)) with respect to ¢ and 6 will be denoted by a(6,t),a’5(0,¢t),- -+ ,
etc. For short, we drop the indices = and v if there is no confusion in the
context.

B.1.1. More asymptotic behaviour of the geodesic motion

We investigate the geodesic motion. In particular, we study its asymptotic
behaviour near the origin.

LEMMA 8. — Under the curvature assumptions (1.3) and (1.4) (or (1.5))
with e < 1, for all t € [0,7] with T = ||, the geodesic motion on the axis
satisfies in Fermi chart
1) X'(0,t) = (0,sint + B(et®), B(et?), - -+, B(et?))”,
X'(0,t) = (0, cost + B(stQ),B(etQ) L, B(et?) T
X'(0, t) = (0, —sint + B(et), B(et),--- , B(et))T,
where T is the transpose;

2) X" (0, ) = (—sintcost + B(et®), B(et?), - , B(et3))T,

X7(0,1) = (= cos(2t) + B(et?), B(et?), - -, B(et?))7,
X”(O t) = (4smtcost+3(€t) B(et),--- ,B(et)T;
)= (0,

3) X'(0,0 —R151(0),- . —Riy (0)7,

X"(0,0) = (—4R},,(0), 4R221(0> V()
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Proof. The coordinates of the geodesic exp,,, t(cos 0 Ey +sin 0Ey) are the
solution of the following Cauchy problem

Xt 4T (X)XIXF =0
{ +15(X) ’ (B.1)

X(6,0) =0,X(6,0) = (cosb,sin6,0,---,0)7.
On the axis, since the Christoffel symbols vanish, we have
X(0,t) = (t,0,---,0)T.
1) Differentiating (B.1) with respect to 6, we obtain

X4 9,1, XXX 4217, XV X = 0,

with the initial condition
X"1(0,0) = 0, X'(0,0) = &
It follows from (2.14) and (2.17) that on the axis we have

(B.2)

X" 4R X =0,
X'(0,0) = 0,X'(0,0) = (0,1,0,--- ,0)7.

It is clear that X’'(0,t) = 0. For i > 1, we first establish the following
standard estimation.
Claim: For any t € [0, 7] C [0,7],
max{|X'(0,)), |X(0,8)]} < eF.

Proof of the Claim: Let f = |X'|> 4+ |X’|? with f(0) = 1. The derivative of
£ has the form f = 2(Ry,,(X) — R?.(X))X"*X"”. Recall £ < 1. Using the
Cauchy-Schwarz inequality, we get f < f. We conclude that f(¢) < e' < eT.
Thus claim is proved. o
We define X’(¢) = (X''(¢),- -+, X""(t)) so that

X"+ R, X' =0,

X'(0,0) =0,X'(0,0) = (0,1,0,---,0)7.
Denote £ be the difference X’* — X’*. We rewrite the equation (B.2) in the
perturbative form

gl + gl = (71041 - ial)Xﬂl? (Bg)
with the homogeneous initial conditions

£(0,0) = £'(0,0) = 0.
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By the representation formula (2.10), we get
. t —i . t —i .
E(0,t) = sint/ (Ry, — R. )X cos sds — cost/ (Ry,, — R )X sin sds.
0 0
which yields by the above claim [£%(0,t)| < 3et?e® for all ¢ € [0, 7]. More
precisely, we have for all t € [0, 7]

™

IX72(0,¢) —sint| < Set?e®, |X"(0,4)] < gsﬁeiw >3

l\J\W

Using (B. 3) we have 1£7(0,1)] < (3me2 +1)et. Therefore, £(0,1) fo
B(et?), € fo (0, s)ds = B(et?). Hence, we prove the first part.
2) leferentlatmg (B.1) twice with respect to 6, we obtain

X4 9,0y XIXEXP 4 02 T XIXFXP X 4
49,18, X7 XEXP 42T (X0 XF 4 X7 XM = o,
with the initial condition
X"1(0,0) = 0, X" (0,0) = —oi.
Using (2.14), (2.16) and (2.17), we get on the axis

X' 4 R X" + (Vo Rig + VlRBozl)X/aX/ﬂ + 4R5a1X,aXIﬁ =0,
X"(0,0) = O,X”(an) =(-1,0,-- 70)T.

Claim: There exists a positive universal constant C' such that, for any ¢ €
[0,7] C [0, 7],
max{|X"(0,1)],|X"(0,8)[} < e

Proof of the Claim Let f;(t) = | X”(0,t)|2 + | X" (0,t)|2. Then

fit) = 2X"Xn 4 oxr X

— axMixn 2R1Q1X”O“X”i —2[(VaRig + ViRh, )X X" +
4Rﬂa1X’aX’ 1x7"
Ci1fi(t) + Cy,

N

— 36 —



REGULARITY OF OPTIMAL TRANSPORT MAPS
which gives fi(t) < C1e¢* < e€™. Thus the claim is proved.
When i = 1, let fo(t) = X" (0,¢) + sint cost. Thus

Bt) = —ViRh X" X7 4 4(Rpay — Rh) XX —
4§[13MX’QX’B —4sintcost
= 4X'“X’" —4sintcost + B(et)
= 4X7°X"" — 4sintcost + B(et)
= 44X - Sint)X’2 + 4().(’2 — cost)sint + B(et)
= Blet).

When i > 1, X""" satisfies the following equation
X0 4 X" = (Rigy — Rig)) X" — (VaRig + ViR, )X XY — 4R}, XX,
with the initial condition

X"(0,0) = X' (0,0) = 0.

By the representation formula (2.10), we get
; t —_— . . .
X0,8) = sint [ (B - R X" = (VaRip + ViR XX -
0
4R, X" X! }cossdsfcost/o [(Riy; — Rio) X" —

(VR g + ViR, )X X" — 4R, X" X" ] sin sds.

Note that Ri,, — R}, = B(€),VaRis = B(e), ViR, = B(e), Ry, =
B(e) and X', X, X" are uniformly bounded shown by two previous claims.
Thus we have X”*(0,t) = B(et). Gathering the above results, we infer

X"(0,t) = (4sintcost,0,--- ,0)7 + B(et).
Integrating this equality, we obtain

X"(0,t) = (—cos(2t),0,---,0)T + B(et?),
X"(0,t) = (—sintcost,0,---,0)T + B(et?).
3) Differentiating (B.1) once with respect to 6 and ¢ respectively, we have
X+ 92 L XIXPXP X' 4 9,Th (XIXPXP 4 XIXPXP 4 XTXPXT) 4

20,1, X' Xk X7 4 2T (X7 XF 4 X7 XF) = 0.
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Using the facts X (0,0) = (1,0,--- ,0)7, X’(0,0) = 0, X’(0,0) = (0,1,0,---,0)7
and 81Ffj (0) = 0 and together with (2.17), we get
Xi(0,0) = R121( )

Differentiating (B.1) twice with respect to 6 and once with respect to ¢
respectively

X" 4 02,1, X9 XPXP X" 4 0,1 (X7 XE X 4 X XRX) +
93, THXIXFXPX'IX! 4202 T (XIXFXP X' 4+ XIXPXTX') +

402, X XRXP X' 4 49,T (X7 XEXP 4+ X7 XEXP 4 X7 XRXT) 4
20,1, (X7 XF 4 X/ XM X7 4 2T (X7 XK 4 X' Xk 42X XM = 0.

Again by (2.1 )and together with the facts X (0,0) = (1,0,---,0)7, X'(0,0) =
X"(0,0) = (0,---,0)", X’(0,0) = (0,1,0--- ,0)", X”(0,0) = (—=1,0--- ,0)T
and T'};(0) = 8, ()—O,Weget

X71(0,0) = —4R3,(0).
Finally, the Lemma is proved. ]

B.1.2. The orthonormal basis motion

We write e;(6,t) = Y7 (6,1)d; for all i. Since the orthonormal moving
basis {e1,--- ,e,} is parallel, we consider its equation in Fermi chart
Yi+ D (X)X'YF =0, (B.4)
with the initial condition

cosf) —siné
Y(0,0) = |sinf cos@
In72

We remark when j is equal to 1, Y{(6,t) = X?(6,t). It is obvious that
Y (0,t) = I,.

LEMMA 9. — Under the curvature assumptions (1.3) and (1.4) (or (1.5))
with € < 1, then in the Fermi chart, the derivatives of the basis motion along
the axis satisfy the following estimates, Vt € [0, 7] with T = |vp|
1) Y'5(0,t) = —(350% — 636}) cost + B(et?),

%

Y75(0,t) = (8162 — 656}) sint + B(et);
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2) Y//;(O, t) = =010} cos(2t) — 0507 cos” t+
1(6 — 6362 — 6167 sin® t + B(et?),
YL”;—(O7 t) = 45{5]1» sintcost + 25;5]2 sint cos t+
2(5i - 535? - 5{5;) sintcost + B(et);
3) ! (0 0) =0,
Y (0,0) = 207 Ri5; (0) — 5(1 +50]) Rhy;(0).

Proof 1) Differentiating equation (B.4) with respect to 6, we get
V7 4 0,05 XIXPYE 4+ T (XY + XY = o,

which implies by Lemma 1

>t i o

Y, + Ry X7 =0,
with initial condition

Y"(0,0) = 650; — 6107
Thus, we infer

>t _ % o
Y'5(0,t) = —Rj, X

( ;’al - jal)X/a JalX/a

By Lemma 8, we have
YO(0,0) = —Ry X"+ Blet)
= —Riy X" 4 Blet)
= ((5{(5]2- - 5;5;-) sint + B(et).

Integrating this equality, we deduce
t
i % )
Y0, = Y'H0.0)+ /O Y7 (0, 5)ds

t
= 050; — 6107 + (6107 — 5;5;)/0 sin sds + B(et?)
= (5@5]1- - 6%5]2) cost + B(et?).

2) Differentiating equation (B.4) twice with respect to the parameter 6, we
obtain

-4 P k P P 1
V7 420,11, X XPY'T 4+ 0,10, X' X"PY ) + 20,1, X XY} +
02T, XX XY 4 Ty (X' + 2X /'y 4 XTvhy = o,
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with the initial condition
Y"(0,0) = — 815} — 5502
which yields on the axis
Y7 4+ 2R, XY 4 R X 420,15 XX 4 92,10 X x" =,
We consider the cases j > 1. Using (2 16),(2.17) and Lemma 8, we get

Y7 = 2R, XY - g(RﬁaJ + Rl )X X 1 B(et)

. N 2 o
= 2Rp XY} = S(Riy + Riap) X' X7 4 Blet)

[\

pi 1 i i 2 %2
= _25;2' 121 XY — <( boj + Rijon) X" X' + Blet)

[NCOLY

= 2§?R§21 sintcost — 3 7§2j sint cost + B(et)

. 2
= 2(5;(5]2- sintcost + 5(5; - 5%5]2-) sint cost + B(et).

which gives by integration

. , ¢
Y"5(0,t) = Y"j(0,0)+/0 Y ;(0,5)ds
= —5;5?4—2556?/ sin s cos sds +
0

t
;(5; - 555]2)/ sin s cos sds + B(st?)

0

= —526?- + 525? sin®t + §<6j - 626?) sint + B(et?)
= —6507 cos”t + §(6; — 0467) sin® ¢ + B(et?).

Similarly, when j = 1, it follows from Lemmas 1 and 8

1

Y7 = 2RI XV R X" 20,0 XX 4 92,10 X X'
= 4R}, sintcost + B(et?)
—4R%,(0)sint cost + B(et)
= 40%sintcost + B(et)
Recalling the initial condition Y”"(0,0) = —&%, this yields
Y (0,) = — cos 2t6" + B(et?).
We prove 2).
3) The first part comes directly 2).
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For the second part, differentiating equation (B.4) twice with respect to 6
and once with respect to ¢ respectively
Y7 4202 T, X' XP XYY 420,05 (XX PY'S 4+ XXy 4+
XIXPY7) 4 02, T, XUXP XY E 4+ 0, Ty (XIXPYF + XXy 4
XIXPYR) 4 202, T, X7 XPXYE 4 20, T (X7 XPYE 4+ X XPYE 4
X’ X’ka) + 02

3 D X XXX Y 4+ 02 Ty (XX XY+
XX XYE 4+ XIXTXYE 4 XIXP XY + 9,1 (X7 ij +
2XVE 4 Xy XP 4 Ty (XY E 4 XV E 42Xy
2X/'Y7 4+ XY 4 XYy = o,

Combining (2.17) with the relations X(0,0) = (1,0---,0)", X’(0,0)

(an)]

o
N—
L

X"(0,0) = (0---,0)7, X’(0,0) = (0,1,0---,0)T, X"(0,0) = (-1,
Y (0,0) = I, and I'};(0) = &, I};(0) = 0, we get
Y7(0,0) = 2R}, (0)Y"}5(0,0) — 20,1, (0)
2 i
= *25 R221( )+252 191(0) — 25 Riy,(0) — 5(1*531') 52;(0)
2
= 5 Rip (0 )+252 101(0) — 3 52;(0)
i 2

= 25]2' 121(0) — 3(1 "‘551) 22g(0)

We complete the proof of Lemma 9. O

B.1.3. The behaviour of curvature matrix

In this subsection, we take account of the derivatives of the curvature
matrix. Combining (2.6) and equality 45 (t) = e1(6,t), by the anti-symmetry
of the Riemann curvature tensor, R;;(6,t) = 0 when ¢ = 1 or j = 1. Our
main result in this subsection can be read as

PROPOSITION 4. — Under the curvature assumptions (1.3) and (1.4)
(or (1.5)) with € < 1, then in the Fermi chart, we have on the azis: for all
t € [0, 7] with 7 = |vy

1) Rij(0,t) = V1Ru1,(X(0,1)),
R};(0,t) = (Ruizj+ Rijoi+ Ri21;0; + R121:0}) cos t+Va Ry sint+B(et?);
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2) Wheni,j > 1,
Rij(0,1) = V3, Riinj (X (0,1)),
R;J (07 t) = (V1R1i2j + ViRyjo; + V2R1i1j) cost + B(Et),
R;(0,t) = [2Rgi0j — 2R1i15 + 67 Ri21j + 63 Ruzui + 26 Riggj + 26] Riggi +
2R12125i1531'] cos? t + (_lelilj + 2VQR2“]‘ + 2VQR2]'1¢ + 2VQR121i5j1- +
2V R121;0} ) sint cost + B(et?);

3) When i,j > 1,
R}5(0,0) = 2V1 Ri9j(0) — 3V1 R1515(0) + 67 V1 Riay (o) + 67 Vi Riz1i(0) +
201 V1 Ry22; (0)+25}V1R122i(0)+2V131212 (0)5}5}+2V2R2i1j (0)+2V2R2;1:(0)+
2VoRy214 (O)(Sjl + 2VoRi91; (0)(521,
R5(0,0)
= _[2R2i2j(0) - 2R1i1j(0) + (512R121j(0) + (532R121i(0) + 2(5}R122j(0) +
26} R122:(0)4+2R1212(0)8} 01142V 1 V1 Rai2;(0)—4V1 V1 Ryi1;(0)+67 V1 V1 Ri21,(0)+
03V 1V1R121:(0)+20; V1 V1 R122;(0) 4205 V1 V1 R122i(0)+2V1 V1 R1212(0)8; 05 ]+
2[2v1v2R2i1j (0)+2V1V2R2j1i(0)+2V1V2R1211‘(0)(5}+2V1VQR121j (0)511]4—
B(e)
= B(e).

Proof. As we see R;;j(0,t) = 0 when ¢ = 1 or j = 1, we study the cases
i,j> 1. ,
Recall e;(0,t) = Y/ (0,t)0; Vi, in particular e;(6,t) = X7(6,t)9;. By (2.6),
we can write
Rij(0,t) = (R(ei(0,1),e1(0,1))e1(0,1),¢e;(0,1))

= Ripa XY XY} (B.5)

— RabchaY;bXC}/}d~
Here the last equality follows from the symmetry of the Riemann curvature
tensor.

1) Differentiating (B.5) with respect to ¢, we deduce

Rij(0,t) = 0pRapeaX Y XYIXP + Rapealr(X Y XY}
_ 3pRabchaYichdeX” i Rabcd(XaYichde n Xa}'/ichY'jd
—&-X“Yf’XCde 4 XaYibXCde)-
Using the relations X (0,t) = (¢,0,---,0)7,Y(0,t) = I,,, we infer on the axis
Rij(0,t) = 91 R111;(X(0,1)).
Recall the first covariant derivative formula

h h ' h
VpRabed = OpRaved — Upg Bived — UpyRanea — UpeRavha — U'pgRaven-

— 492 —



REGULARITY OF OPTIMAL TRANSPORT MAPS

Since the Christoffel symbols vanish identically on the axis, we have

Rij(()ﬂf) = V1R1i1j. (B6)
Differentiating (B.5) with respect to 6, we obtain

Ri(0.4) = 0pRapca X YPXYIX 4 Rupeay (XYL XY
8p3abcdxa}/;chY??dX/p —-i—cRabcd(X/a}/;bXC}/jd (B?)
+XQY/?XCde + Xa}/ibX/ )/jd + Xa)/ichylg).

Using the relations X(0,¢) = (¢,0,--- ,O)T,X’l(O,t) =0,Y(0,t) = I,, we
infer

Rij(O,t) = aaRlilea/ + Railea/ + Rlaljy;;a/ + lean’ + Rmana/
VaRulea/ + (Raitj + Rliaj)XO/ + R1a1jYia/ + Rlila}/ja/7

since the Christoffel symbols vanish identically on the axis. From Lemma 8
and Lemma 9, we get

R;j (0, t) = VaRlﬂjX/a + (Railj + Rliaj)Xla + B(Et2)
VQRlile/Q + (R2ij + Ruzj)X'z + B(5t2)
= V2R1i1j sint + (Rligj + legi) cost + B(EtQ).

2) Differentiating (B.6) with respect to ¢ and using the relation X (0,t) =
(t,0,---,0)T, we get

Ri;(0,t) = 81 V1 R1i1;(X(0,)) = Vi, R1i1;(X(0,1)),
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since the Christoffel symbols vanish identically on the axis. Differentiating
(B.5) with respect to 6 and ¢ respectively, there holds

Ri;(0,1) 02, Rabea XY XY XIX™ + Oy Rapea XV XV X' +

Op RabeaOn (XY XY X" + Oy Rapeads (XY XY XP +

Rabcda?e (XaY%bXCde)

— aiqRabchay;chY}quX/P + 8pRabchaYtL_chY}dX/P +
8pRabcd(Xa}/ibXC}/}d + Xa}./ichi/}d _|_ XQY;ch}/jd +
XaY;bXC}./jd)X/p 4 apRabcd(X/a)/ibXCde 4 Xayl?XC}/jd +
XVPXVE 4+ XVPXY')XP + Rapea(XYVEXYE +
X/U‘Y;bXC}/jd + X/ay;chY'jd + X/aY'ichy'*jd + Xay/?XCY;-d +

Xay,?Xchd+Xayf?Xchd+Xay/?Xc}>jd+Xaan,c},jd+
XaYibX/C}/jd+Xa§'/ibX,C}/jd+XaYibX,Cyjd+XaYichY/?+

Xa)'/ichyl?_’_XaY'ibxcy/? _"_Xay;chY/;l)'

Using the relations X (0,¢) = (¢,0,---,0)T, X"1(0,¢) = 0,Y(0,t) = I,,, we
infer on the axis

R(0,t) = 0%, Rii; X" + 0aR11; X" + 01 Rain; X'° +
N Ria;Y'; + 51R1ij'CY + O RiiaY'; +
Raile/a + Rlale/? + Ruan’a + Rlilayl?
= a%aRlilela + (0aRii1j + O1Rairj + 81R1mj)X'a +
(Raitj + Rliaj)X/a + alRlozle/? + 81R1i1ay/? +
+R1a1jylia + RlilaY/a

j-

Using the fact V,Raped = OpRabea o1 the axis, it follows from Lemma 8 and
Lemma 9 that on the axis there holds

2 2
a1pﬁRabcd = leRabcd s
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and

R;(0,t) = ViR, X"+ (VaRuj + ViRairj + Vi Raiog) X' +
(Rui1j + Rliaj)X’a +ViRia; Y5 + lelilaY/;‘X +
+R1a1jY’? + RmaY’?

= Vi Rinj X"+ (VoRiij + ViRaij + VlRliaj>X/a +
(Rai1j + Ruing) X' + B(et)

= V3,Riu1;X"° + (VoRijj + ViRan, + VlRlﬂj)Xl2 +
(Ra2i1j + Ru‘zj)X/Q + B(et)

= Vi Ryajsint + (VaRyj1j + ViRoi; + ViRyij) cost —
(R2i15 + Ruioz) sint + B(et)

= (ViRuij + ViRyjoi + VaRyy) cost + Blet).

Here in the last equality we used the fact that Ri,o; = B(e).

Differentiating (B.5) twice with respect to 6, we get

R5(6,t) 02, Rabea X VP XY XX 4 0y Rapea XV XY X" +

20, Rabeap (XY XY X + Rapealpg(X Y XY

= 02 RabeaX Y XVIXPX'" + 0y Rapea X Y X VX" +
20, Rapea( X" VP XY + XV XY + XOVP XY +
XVPXY' DX 4 Rapea( X" VP XV 42X Y1 XY +
2X VP XY 42X VP XY' + Xy XY +
2XY XY 42XV XY + XV XY+
2XYPXY + XY XeY"),

Applying the relations X (0,t) = (¢,0,- - 7O)T,X'l(O,t) =0,Y(0,t) = I,
we deduce on the axis
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025 R XX 4 0, Ry X7 + 20, Rpi; X' X7 +

200 Rs1; X'“Y"? + 20, Ruig X' X7 4 203 Runs X'°V"7 +
Rty X" 4 2Rt XYY 4 2R gy X' X7 4 2R s X1°V7 +
Ripi;Y") 4 2R150; X' “Y' 4+ 2R1015Y"SY") + Ruj; X" +
2R1mbX’aY/§- + RlilBY/lf

02 5R1i; X" X" 4+ 0, R11; X" + 2(0aRpir; +

O R1ip) X" X7 4 200 Ripr; XYY + 00 R g X'°Y')) +
(Raitj + Ruiaj) X" + 2Raigi X" X7 + 2(Rop; XY +
Rijas X' “Y")) + 2(Rairg XY + Riga X"Y'0) +
2R1a15Y'?Y’f + RlBleN? + Rmﬁyﬁf-

It is clear that on the axis V,Raped = OpRavea- On the other hand, using
Lemma 1, we deduce on the axis

aiﬁRlilj =

viﬂRlilj + 0T s Rpirj + 0T Rip1j +
&ll“fﬁRupj + 8QF?5R1¢1P
VesRuinj + 0ol 5(Rpinj + Ruips) + 0Tt Rap1s +
aal_?BRlilp

1
V2gRuinj + Ry (Ruips + Rajpi) + 3 (Biap + Rsoi) Baprj +
1

3 (Rfaﬁ + Rgaj)Rlilp'

Thus 82 BRUU are uniformly bounded on the axis. Therefore

RI;(0,t) =

325R111jX’aX/B + VpR1i1; X" + 2(VaRgi; +
VQRWJ-)X’C’X/B + 2(vaRm1jX’“Y’f + VaRumX’C'Y’f) +
(Rairj + Rliaj)XNa + 2Rai/3jX/aXlB + Q(Rable'aY/? +
R1mbX'aY/2) + Q(Rm‘lﬁX'aylf + Rlﬂan/aY/f) +
2R1a15YSY") 4+ Ripi;Y") + RungY"’.
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With the help of Lemma 1 and Lemma 8, we obtain

R[(0,t) = 8222Rlile/2X/2 + lelile”l +2(VaRo1j +
V2R1i2j)X/2X/2 + 2R1i1jX”1 + ZRzing’QX’Q +
(52zR2qu' Y/ + Ryi2102; X Yll) +
Ry Y"i + ijY”§ + B(et?)
= 02,Ryj;sin®t — Vi Ry sintcost +2(VaRaitj +
VoRiio5)sint cost — 2Ry;15 cos(2t) + 2Ra;0; cos?t +
2(62; + 925)Rui1; cos®t — (8o; + d2;)Rii; cos®t +
%(@3 +8j3 4+ Gin + 0jp) Rus1y sin® ¢t + B(et?)
= 03 Rujsin®t + (=ViRyaj + 2VaRe; +
2VoRiio;) sint cost — 2R1;1; cos(2t) + 2Rai0, cos?t +
(02; + 025)Ru41;j cos’t +
1

5(513 + 5j3 + 4 5”1 + 5jn)R1i1j sin2 t+ B(€t2).

In view of (2.17) and by the formula for the second covariant derivative, we
have on the axis

OoRin; = ViaRinj + 02T Ryinj + aQngRlplj + 821““2’11%1@]» + 02T Ry
= ViyRuinj + Rby) (Rpinj + Ruips) + 3R221R1P1J + R223 RiifB-8)
8 1
= _§R1“j + 5(521 + 52j)R1¢1j + B(E)

Therefore, we infer on the axis

R;’J (0,t) = —mej sin®t + = ((521 + 02;) Rui1j sin®t +
(7V1R111J + 2V2R221j + QVQRMQJ) sintcost —

2R1i1j COS(QIf) + 2R2¢2j cos?t + (621’ + (52j)R1i1j cos? t +
1

5(623 + 5]'3 + e + 5zn + 5jn)R1i1j sin2 t + B(EtQ).
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Since for 4,5 > 1,0;3 4+ -+ 6 = 1 _52ia5j3 +"'+5jn =1- 52]' so that
there holds on the axis

8 1
R;;(O,t) = —gRUljSin2t+5(52i+52j)R1i1jsin2t+

(=ViRui1; +2VaRo15 + 2VaRi05) sint cost —
2Rq;1j cos(2t) + 2Ra0; cos? t + (8 + d2;)Rai1; cos®t +
1
3
= 72R11‘1j sint + (7V1R1i1j + 2V2R2i1j +
2VoRyig;) sint cost — 2Ry;1; cos(2t) 4+ 2R, cos?t +
(89; + 095 ) Ryj1; cos® t + B(et?)
= 2(Rajoj — Rii1j) cos® t + (—V1Ri1; + 2VaRis; +
2VaRij2;)sint cost + (62; + 025) Riin; cos?t + B(gtz).

2 — §9; — 09;)R1i1; sin’ t + B(et?
j j

3) It is a direct consequence of the second part. This ends the proof of the
Proposition 4. O

As a direct consequence of Proposition 4, we have the following result.

COROLLARY 2. — Under the curvature assumptions (1.3) and (1.4) (or
(1.5)) with ¢ < 1, then in the Fermi chart, we have on the axis: for all
t €10, 7] with T = |1y

1)

. 0 0
£/(0,0) = :
(0,0) [0 ViRii2j + ViRij2 + Vsz]}

2)

RO.0= ) p) HO0= [0 ] mO0=[0 g

B.1.4. Asymptotic behaviour near the origin

In this part, we deduce the asymptotic behavior of the C-curvature near
the origin. We first take account of the asymptotic behavior of the coefficient
a11 which involves S.
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LEMMA 10. — Under the curvature assumptions (1.3) and (1.4) (or
(1.5)) with e < 1, we have on the axis for small t = 0

t2 . t
= In —_ — _ — ) — 714 4 6 B
S(0,t) 3R(O,O) 12R(O,O) VT + O(et™ +t°), (B.9)
: 2 t? 4 3 3145
S(0,t) = —gtR(0,0) - ZR(O’O) - ﬁt A+ O(et° +¢t°), (B.10)
.. 2 [ 4
S(0.t) = —3R(0,0) - 5R(0,0) - 1—5t2A +O0(et? +t*),  (B.11)
t? .
S'(0,t) = _gR’(0,0) - ER’(o,o) + O(et* +19), (B.12)
. 2 2 .
5'0,t) = —gtR’(0,0) - ZR’(o,o) +O(et® + 1°), (B.13)
2 .
S"(0,t) = —gR”(O, 0) — ER"(O,O) + O(et* +9). (B.14)
0 0 L .
where A = 0 I and R is given by (2.6) (see also Section B.1.3)
n—1
REMARK 4. — 1) The formula (B.9) can also recover the expression of
the C-curvature in the special case vy = 0. Using a Riemannian normal
coordinate system at mg, we get from (1.1),
3 d?
C(m()?O)(Ean) = *5@%:0(5(”@0,%5)(5),@

= <R(0’0)£7€> = Rmo(f’nafan)-

Proof. Let J,(t) be the solution of the following second order equation
Ju(t) + R(0,0)J,(t) = 0,Ya = 0,1
with the initial conditions
Jo(0) = 0, Jo(0) = I,
J1(0) = I, J1(0) = 0.
From the representation formula (2.9), we derive

Jo(t) = Jo(t) + Jo(t) /Ot Ji (5)[R(0,0) — R(0, 5)] Jo(s)ds

~Ji(t) /O JZ[R(0,0) — R(0, 5)]Jods.

It follows from the Taylor formula and Proposition 4,

R(0,t) = R(0,0) + tR(0,0) + O(et?).

— 49 —



YUXIN GE AND JIAN YE

On the other hand, we have Jy(t) = tI,, — —R(O 0) + 15 (R(O 0))2+ O(t")
so that

4

To(0,8) = Jolt) — %R(o,o) + O(et?)
3 . 45
= tl, — ER(O,O) - 10,00+ 120 ——(R(0,0))? + O(t® + t7)
t3 t4 57
= th— £ R(0,0)— —R(O 0) + HOA +O(et® + 7).

Here we use the fact (R(0,0))? = A+ O(e). Similarly, we have

2 3 4
J(0,8) = I, — %R(O, 0) — %R(O 0) + 24A L Ot + 9.

Gathering the above estimates, we infer

S(Oat) = tJO(Ovt)ilJl(O’t)
3 t4 5 7
= t[t[n—ER(O,O) 15 R(O 0)+§OA+O(Et + O], —
t2 3 4

—R(0,0) - %R(o 0) + —A + O(et* +t°)]
3

= I, 4! R(O 0) +7 ! R(O 0) + %Ot‘lAJFO(et‘* + ][I, —
t2 . 4 4 6
12 t3 tt

= L3 —R(0,0) — R(O 0) — —5A + O(et* +t9).

As the term S involves Jo_ljo and Jo_ljl, we cosider the expansion of Jo_ljo
and J; ' J;. Differentiating (2.5) with respect to ¢, Jo(0,t) satisfies

Jo + RJo = —RJ,
Jo(0) = I,,, Jo(0) =

With the help of the representation formula (2.9) again, we obtain

t t
Jo(0,t) = J1(0,t) — JO((),t)/ JfRJOds+J1(O,t)/ Ji RJods,
0 0

which implies

t

t
tJo_ljo(O,t):tJo_ljl(O,t)—t/ JfRJods—i—tJo_lJl(O,t)/ Ji RJods.
0 0
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It follows from Proposition 4

R(0,1)

R(0,0) + /t R(0,5)ds
0

t
R(0,0) + / V2, R(0,5)ds
0

R(0,0) + O(et).

Hence, we deduce

: t2 3 . t
tJo ' Jo(0,t) = I, — FR(0,0) = 7 R(0,0) = =A+ O(et* + t%B.15)
Similarly, we infer
. t .
JytJi(0,t) = —R(0,0) — §R(07 0) + O(et? +t*). (B.16)

Recall the first and second derivatives of S with respect to ¢

S = (I, — tJy  Jo)Jy L+t L,

S =2J5 0y = 2tJy Vo dy Ny + 25 oty o — L) Jy L.
Together with (B.15) and (B.16), we deduce (B.10) and (B.11).

We consider J, *J4, Jo ' J;. J.(0,t) satisfies the following equations

J 4+ RJ, =—-R',, Va=0,1,
J;(0,0) = 0 = J;(0,0).

By the representation formula (2.9), we infer Vt
t
T0,6) = —Jo(0,) / JE R4 (0, 5)ds (B.A7)
0
t
+J1(O,t)/ J R J,(0, s)ds.
0
By Proposition 4, we have

R'(0,t) = R'(0,0) + tR'(0,0) + O(t?).

Hence, we infer
t t
Jo LI 0,t) = _/ JfR’Jads+JO_1J1(0,t)/ JiR'J,ds (B.18)
0 0
12 3.
= —ER’(O,O) - ER’(QO) + O(et* +19).
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With the same arguments, we get
-1 g7 t ! t2 S5 3 5
Jo " J1(0,t) = —§R (0,0) — ER (0,0) + O(et° +t°). (B.19)

On the other hand " = —tJ; ' JyJ5 ' Ji +tJy 1 J|. Together with (B.18) and
(B.19), we prove (B.12). With the same arguments, we estimate on the axis

. t t2 .
Jyra0,t) = fiR'(O,O)ng'(O,O)+O(5t3+t5), (B.20)

Jo L 1(0,1)

_R'(0,0) - %R’(o, 0)+ 02 +Y,  (B21)

which yields (B.13).

It is obvious the J/(0,t) for a = 1,2 satisfies the following equations

J! +RJ! =—R"J, — 2R'J},
Ji(0) = 0= J;(0).

Applying the representation formula (2.9), we infer on the axis
¢
J'0,t) = —J0(07t)/ JE(R"Jy + 2R J))(0, s)ds
0
t
+11(0,1) / (R"Ju + 2R'T)(0, 5)ds. (B.22)
0
By Proposition 4, we have R”(0,t) = R"(0) 4+ tR"(0) + O(et?) so that
t t
Jo L0, = —/ J;(R"J, 4+ 2R J!)ds + (J0_1J1)(O,t)/ (R"J, +2R'J))ds
0 0
t2 3
= —ER”(O,O) - ER”(o, 0) + O(st* + %), (B.23)
Similarly, we have
—1 qn t 1" t2 11 3 5
Jo 1 J7(0,8) = —§R (0,0) — ER (0,0) + O(et” +t°). (B.24)
On the other hand, we remark S” = 2tJ5 ' JiJy T4y — tJy Ty Iyt Ty —

2tJ5 T Ty Tty LT Together with (B.23) and (B.24), we deduce (B.14).
We finish the proof of Lemma 10. |

As consequences of Lemma 10, the coefficients a11,a12 and a2 in the
C-curvature (3.5) have the following expansion
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COROLLARY 3. — Under the same assumptions as in Lemma 10, we
have on the axis

a11(mo,v0,€) =  R(&, E1,& E1) 4 37(ViR1212€3 + 2V1 Ri2136283 +
ViRi31363) + 37°(6 + €3) + O(er? + 74)(€3 + €30B.25)

1
aia(mo,v0,§) = 2R(&, By, Er) + T[§V2R121255 + (ViRi223 +
1
VoR1213)6283 + (V1R1323 + §V2R1313)§§ -

ViR121261&2 — ViR12136183] — %7'25152 +  (B.26)
O(e7® +7%)(&5 + & + &16a + &183).

1 1
az(mo,vo,§) = R(E E2, & Ey) + T[ZV1R1212§f - §V231212§1§2 -
1 1
§(V1R1223 + VaRi213)6163 + §V2R1223€253 + (B.27)
1 1 2 7 2 2 2
(1V1R2323 + §V231323)§3} + TS(gl +&5 +263) +
O(em® + 7).

Proof. We study first the coefficients a;;. In view of (B.11), we calculate

anilmo, &) = (R(O,0)6,€) + S7(R0,006 ) + 346 &) +
O(e® +79)(€3 +&3)
= Ri21285 + 2R19136&3 + Rusisés +
%T(VlRmmfg + 2V 1 R1213628s + Vi Ris1363) +

2
TG HE) F O + TG + &)
3
= R(,ELEE)+ ZT(V1R1212§§ +2V1R12136283 +

ViRi31363) + %7'2(55 +&)+ 0+ (& +63).

Therefore, we prove (B.25).
Now we calculate the coefficients ajs. Noting that (¢, P§) = 0, thus the
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coefficient a;» takes the form

malmo, v, §) = ~2(S'E,€) — L{SE, PR + (56, €) +

S s - 16 Pre).

T

Plugging (B.9), (B.10), (B.12) and (B.13) into the above expression, we get

arlmo, ) = AR + Sr(R 0.6 +
A(R(O)E, PE) + (RO, PE) + 1Lr(A, Pre) —
(R(0)6.€) - 7 (R(0)¢,€) -

4
2R(0)E, PHE) — T{RO)E, Pre) — 27(AE, PHe) +

O(et? +11) (& + & + Lo + 61&3)
= (R'(0)& &) +2(R(0)¢, PHE) +

(G 06,6 + (RO} Pe) +
STHAE PLE) + Ot + (6 + 8 + 6162 + 665)

In view of Proposition 4, we get

a12(mo, 10,€) = 2Ri223&2€s + 2R132365 + 2(—Ri21261&2 — Ruzisiés) +
T[%nglmgg + (V1R1223 + VaR1213)6283 + (V1 R1323 +
%V2R1313)5§ — ViR12126162 — ViR121361&3] —

2725152 + 0+ ) (& + 6 +6& + &63),

which gives the desired result (B.26). Now we consider the coefficient ass.

We remark that (P&, PHE) = (€, P€) so that the coefficient agy takes the
form

6
)

(o, €)= —5 (86,6 S (SE,E) — {S'E PLE) -
3 3
SAS ~ L)PRE PR + S5 (5~ 1)6 P
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Plugging (B.9), (B.10), (B.12) and (B.14) into the above expression, we get

az2(mo, 10, &)

S(R0)6,6) + TR0, +
(RO)E,E) + S ARO)E€) + 12746, +
2R (006, P1€) + 3 (R (0)¢, P¢) +

2
(ROPE, PLE) + TRO)PE, PLE) + (AP, PLe) -

=1

(R(0), P§) — %(R(O)g,PQ - 71;;<A§?P§> +O(er? + 74

SURY(O)6,€) + 2R (0)€, PH6) + (RO)E,€) +
(R(0)P¢, PHE) — (R(0)¢, PE) +

IS (R(0)6,6) + 5 (R (0)8 PAe) + 2
1

(R(O)P*¢, Pre) = L(R(0)E, P& +
2

2 (R0, ) +

\]»-lk\)—l

512048, €) + (APE, PHg) — (A8, PE)] + O(er? +7%).

& \
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By Proposition 4, we obtain

aze(mo,v0,€) = —Ri213&s + (—Risis + Ro323)&5 — 2R120361&5 +
Ri212€3 + 2R12136083 + Ri31363 +
Ri212€} — (R1212€5 + Ri2136263) +

1
T{g[—lelszg + 4(—V1Ri1213 + VaRi223)&28s +
(2V1Ra323 — 3V1Ri313 + 4VaRi303)E3] —

1
§[V231212§1€2 + (V1R1223 + VaR1213)61&3] +

3
g(V1R1212§§ + 2V Ri2136283 + Vi Ri31363) +

1

1
ZV1R1212§% - Z(V1R1212€§ + V1R1213£2£3)}

2
-

+E G 4265 -G+ &) + 0 + 1)
= Ri21267 — 2Ry1293&163 + Rogosés +

1 1 1
T[ZV1R1212§% - §V231212§1§2 - §(V1R1223 +
1 1
VaRi213)61&3 + §V2R1223€2§3 + (Zlezazs +

1 72
5 Vo Ri323)€5] + ﬁ(ff + &5 +265) + O(er> + 1),

which yields the desired (B.27). Therefore, we prove the result. O

B.2. The inverse of the Hessian of the squared distance near the
focalization

In this subsection we consider the approximation of the inverse of the
squared distance and the associated derivatives.

PROPOSITION 5. — Let (M,g) be a closed n-dimensional Riemannian
manifold satisfying (1.3) and (1.4) (or (1.5)) with e small enough. Set (mq, vo) €
NoCut,|vo| > 3%. Let x be the Fermi coordinate system associated to the ge-
odesic exp,, tvy for t € [0,1] and v be the fiber coordinates of TM — M
naturally associated to x. Then there exist positive numbers vy1,Cs > 0 such
that for all € < 1, we have

1) ‘S_l(mo, g, 1) — S_l(mo,yo, 1)| < CgE;
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2) 10,5~ (mo, 19,1) — 0,58 (mo, vo, 1)| < Cse,
‘Dvsil(mo, 10, 1) — DvS’l(mo, 10, 1)| < 086;

3) 02,8 Y (mo,v0,1) — 02,5 (mo,v0,1)| < Cge,
\E)TDUS*I(mO, 0, 1) — 8IDU5"1(mO, 0, 1)| < 0857
‘ngsil(mo,yo, 1) — nggil(mo,l/o, 1)| < Cge.

Proof. Thanks to Lemma 2 and Lemma 3, 9, X (mg, v, 1) is inversible

provided |vp| > 2F and € small enough. We state

Sil(mo, o, ].) = (OmX(mo, Vo, 1))71DUX(m0, Lo, 1)

Thus, the desired results yield from Lemmas 2, 3, 4, 5, 6 and 7. Finally, we
prove Proposition 5. O

B.3. Perturbative calculation of the Hessian of the squared dis-
tance

PROPOSITION 6. — Let (M, g) be a closed n-dimensional Riemannian
manifold satisfying (1.3) and (1.4) (or (1.5)) with e < 7. Given any 02 €
(3w /4,7), let (mo,vo) € NoCut with T = |vg| < d2. Assume ~y is small enough
such that §3 < tp(mo, 1) and

ol o 1
sinfvg| " Avn—1

Then there exists a positive constant C > 1 independent of (mq, vg,7y) such
that

4 4 4

8 -8 <O 18 =81 < OS50, IS -S| <Oy, (B29)

sin® 7 sin® 7 sin® 7

4 ) 4 5

‘SI‘ <O D) ’\/7“9/‘ <O 3 ’}/7|S//| <O 37 (B29)

sin” 7 sin® 7 sin” 7

Proof. It is known that [8, section2]
1 = T
|Jot = It < 4vin — 1(Sim)%. (B.30)
o < 2vn— 1—. (B.31)
sinT
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We adapt the proof in [8]. We investigate S — S. From the expression of S,

we have

S —

S = 20y = Ty + 205 Ny = Jy) = 2ty = Ty dody L —
2Ty (Jo — Jo)Jg Ny — 2T Jo(Jgt — Ty )y —
oI5 To g NIy — )+ 2Tyt = Ty Yoy e dy by +
2J5 (Jo — Jo)Jg Moy L A+ 26Ty Vo (J5 = Ty ) dodg N +
2Ty Jody (o — Jo) Ty VT + 265 oy Vo (T = Ty )T+
otJy  Jody Lo dy (T — Jh) — 24(Jg "t — Ty D) dody L —
2tJ5  (Jo — Jo)Jg LIy — 2t T3 Vo (Jgt = TSy —
2Ty Jodg L(Jo — Ju) +t(Jg = Ty D+ eI Ny — ).

Together with (B.30)(B.31) and Lemmas 2 and 3, we infer the first estimate
in (B.28). With the same arguments, we get the last two estimates in (B.28).
On the other hand, using the representation formula (B.17) and (B.22) and
Proposition 4, we get |J.| = B(rv), |J"| = B(17), |J§| = B(y) for a = 0, 1.
From the expression of §’,5’,5”, we get the desired estimates in (B.29).

Therefore, Proposition 6 is proved. |
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