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Abstract. We study the linear stability of entire radial solutions u(reiθ) = f(r)eiθ, with
positive increasing profile f(r), to the anisotropic Ginzburg-Landau equation

−∆u− δ(∂x + i∂y)2ū = (1− |u|2)u, −1 < δ < 1,

which arises in various liquid crystal models. In the isotropic case δ = 0, Mironescu showed
that such solution is nondegenerately stable. We prove stability of this radial solution in
the range δ ∈ (δ1, 0] for some −1 < δ1 < 0, and instability outside this range. In strong
contrast with the isotropic case, stability with respect to higher Fourier modes is not a direct
consequence of stability with respect to lower Fourier modes. In particular, in the case where
δ ≈ −1, lower modes are stable and yet higher modes are unstable.

1. Introduction

Given δ ∈ (−1, 1) and u : R2 → C, we consider the anisotropic energy

E[u] =

∫
R2

1

2
|∇u|2 +

δ

2
Re
{

(∂ηū)2
}

+
1

4
(1− |u|2)2 dx, where ∂η = ∂x + i∂y.(1)

Minimizers and stable critical points of E are relevant in describing 2D point defects (or 3D
straight-line defects) in some liquid crystal configurations (e.g. smectic-C∗ thin films [4] and
nematics close to the Fréedericksz transition [2]). This energy can also be viewed as a toy
model to understand intricate phenomena triggered by elastic anisotropy in the more complex
Landau-de Gennes energy [11].

Remark 1.1. The anisotropic term Re
{

(∂ηū)2
}

can be rewritten as

Re
{

(∂ηū)2
}

= (∇ · u)2 − (∇× u)2,

so that, in view of the identity |∇u|2 = (∇·u)2 + (∇×u)2− 2 det(∇u), energy (1) differs from

Ẽ[u] =

∫
ks
2

(∇ · u)2 +
kb
2

(∇× u)2 +
1

4
(1− |u|2)2, ks = 1 + δ, kb = 1− δ,

only by the integral of the null Lagrangian det(∇u). This is precisely the form that appears
in [4] where minimizers of

Ẽε[u] =

∫
Ω

ks
2

(∇ · u)2 +
kb
2

(∇× u)2 +
1

4ε2
(1− |u|2)2(2)

are investigated in the limit as ε→ 0+ in a bounded planar domain Ω.
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Critical points of E are solutions of the Euler-Lagrange equation

(3)
Lδu = (|u|2 − 1)u in R2

Lδu := ∆u+ δ ∂ηηū.

We are interested in symmetric solutions of the form

u(reiθ) = f(r)eiαeiθ for some α ∈ R,(4)

with a radial profile f(r) satisfying

f(0) = 0, lim
r→+∞

f(r) = 1, |f(r)| > 0 ∀r ∈ (0,∞).(5)

Formally, one can always look for solutions of (3) in the form (4) (as a consequence of the
O(2)-invariance of E), and f must solve

Tf + δe−2iαT f̄ =
(
|f |2 − 1

)
f, T =

d2

dr2
+

1

r

d

dr
− 1

r2
.

At this point we see a fundamental difference with respect to the isotropic case δ = 0. If δ = 0,
one can find solutions as above for a real-valued function f , which moreover does not depend
on α. In the anisotropic case δ 6= 0, as remarked in [2], the function f can be real-valued only
if α ≡ 0 modulo π/2. In that case, the existence and uniqueness of a solution satisfying (5)
follows from the case δ = 0 (see [1, 6]). Otherwise, the function f must be complex valued.

Remark 1.2. Another difference with respect to the isotropic case is that for δ 6= 0 the Ansatz
u(reiθ) = f(r)eimθ cannot provide a solution when the winding number m is 6= 1.

In [2], the core energies of the two symmetric solutions corresponding to α = 0, π/2 are
compared, to find that the lowest energy corresponds to α = 0 for δ < 0 and α = π/2 for
δ > 0. In view of Remark 1.1 this is consistent with the fact that ∇×eiθ = 0, while ∇·ieiθ = 0;

indeed, for δ < 0 the energy Ẽ[u] in Remark 1.1 penalizes more strongly the term (∇ × u)2

than the term (∇ · u)2, since in this case kb = 1 − δ > ks = 1 + δ. In [4, Proposition 3.1] the
authors use this to show that minimizers of (2) behave like eiαeiθ around point defects, with
α ≡ 0 (resp. π/2) modulo π if δ < 0 (resp. δ > 0). These results tell us, for δ 6= 0, which one
is the minimizing behavior at infinity.

Here, in contrast, we fix the far-field behavior and investigate the local stability of radial
solutions with respect to compactly supported perturbations. For the isotropic case δ = 0,
this study has been performed in [12] (see also [5]), and the radial solution is stable. In the
anisotropic situation δ 6= 0 we find that the corresponding symmetric solution stays stable for
negative δ close to zero and it loses stability for δ either positive or close to minus one (see
Theorem 1.3 for precise statements).

It can be readily seen that the case α = π/2 corresponds to α = 0, after changing the sign of
δ. Accordingly, we only treat the case where α = 0. That is, we investigate the linear stability
of solutions u of the form

uδrad(r, θ) = f(r)eiθ, f : (0,+∞)→ (0,+∞) with f(0) = 0, lim
r→+∞

f(r) = 1.(6)
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Let us note that the equation satisfied by uδrad, (3), reduces to the following ODE for f

(1 + δ)Tf = (f2 − 1)f, T =
d2

dr2
+

1

r

d

dr
− 1

r2
.(7)

As pointed out in [2], the rescaling of the variable by (1 + δ)
1
2 simplifies (7) to the standard

ODE corresponding to the isotropic case δ = 0. Whence, existence and uniqueness of f follow
from [1,6]. Moreover, it is known that f takes values in (0, 1) and is strictly increasing.

The second variation of the energy E around uδrad is the quadratic form

Qδ
rad[v] =

∫
R2

|∇v|2 + δRe
{

(∂ηv̄)2
}
− (1− |uδrad|2)|v|2 + 2 (uδrad · v)2 dx

=

∫
R2

|∇v|2 + δRe
{

(∂ηv̄)2
}
− (1− f2)|v|2 + 2f2 (eiθ · v)2 dx(8)

associated to the linear operator obtained by linearizing (3) around uδrad:

L(uδrad)[v] = −Lδv − (1− |uδrad|2)v + 2 (uδrad · v)uδrad,

where u · v := Re {uv̄} denotes the standard inner product of complex-valued functions.
Taking into account the asymptotic expansion f(r) = 1 + O(r−2) as r → ∞ (see [1, 6]), it

follows that the energy space of Qδ
rad naturally corresponds to

H :=

{
v ∈ H1

loc(R2) :

∫
R2

|∇v|2 +
1

r2
|v|2 + (eiθ · v)2 dx < +∞

}
.

Also, the translational invariance of E readily provides two elements of H at which Qδ
rad

vanishes, namely

∂xu
δ
rad = eiθ

(
f ′ cos θ − if

r
sin θ

)
, ∂yu

δ
rad = eiθ

(
f ′ sin θ + i

f

r
cos θ

)
,

and the linear space they generate is denoted by

K0 = span{∂xuδrad, ∂yu
δ
rad}.

Our main result shows that the symmetric solution uδrad is stable when δ ≤ 0 is small, and
unstable otherwise:

Theorem 1.3. Let uδrad denote the radial solution (6) of the anisotropic Ginzburg-Landau

equation (3), and let Qδ
rad denote the quadratic form (8) associated to the energy E around

uδrad. Then, there exists a unique number δ1 ∈ (−1, 0) such that

• for every δ ∈ (δ1, 0], uδrad is nondegenerately stable: namely,

Qδ
rad[v] > 0 for all v ∈ H \K0,

• for every δ ∈ (−1, δ1) ∪ (0, 1), uδrad is linearly unstable: namely,

Qδ
rad[v] < 0 for some v ∈ H.

Remark 1.4. The most relevant range from the stand point of physics is δ ∈ (−1, 0] since for
δ > 0 the far-field behavior corresponding to α = 0 is non-minimizing, and this translates here
into instability of the radial solution.
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Remark 1.5. In the stability range δ ∈ (δ1, 0], a contradiction argument as in [5, Lemma 3.1]
provides a coercivity estimate of the form

Qδ
rad[v] ≥ C(δ)

∫
R2

|∇v|2 dx ∀v ∈ K⊥0 :

∫
S1

(ieiθ) · v(reiθ) dθ = 0 ∀r > 0,

where ⊥ denotes orthogonality in H. Using this coercivity for δ = 0, one can deduce stability
for small negative δ via a relatively simple perturbation argument, combined with properties
of the lower modes in § 3. Instead, we will give a more quantitative proof, which provides an
explicit range for stability: we deduce that δ1 ≤ −1/

√
5.

Our proof of Theorem 1.3 follows the general strategy of [12]: we decompose v into Fourier
modes

v = eiθ
∑
n∈Z

wn(r)einθ.

and we are led to studying the sign of Qδ
rad, separately, for each mode

eiθ
(
wn(r)einθ + w−n(r)e−inθ

)
.

As in [12], the lower modes n = 0 and n = 1 play a special role. They can be studied via an
appropriate decomposition already used in [12] (see also [5]). For any δ ∈ (−1, 0] we find that
these lower modes are stable, while for δ > 0 the mode corresponding to n = 0 is unstable.

A major difference of the present work compared to [12] (or similar results in [8–10]) pertains
to the higher modes n ≥ 2. In contrast with the cited works, stability for the higher modes is
not an obvious consequence of stability for the lower modes. More precisely in the isotropic
case we have

Q0
rad

[
eiθ
(
w+(r)einθ + w−(r)e−inθ

)]
≥ Q0

rad

[
eiθ
(
w+(r)eiθ + w−(r)e−iθ

)]
∀n ≥ 1,

but for δ 6= 0 this is not valid anymore, see (16). This feature is new and specific to the
anisotropic case δ 6= 0. Our strategy to study the sign of these higher modes is based on the
same decomposition used for n = 1, and a careful balance of the contributions of additional
terms, which end up causing instability for δ ≈ −1.

The article is organized as follows. In Section 2 we recall the splitting property of the
quadratic form Qδ

rad with respect to Fourier expansion. In Section 3 we study the stability of
lower modes, and in Section 4 the instability of higher modes. In Section 5 we give the proof of
Theorem 1.3. In addition, we included Appendix A to recall the details of the decomposition
used to study the lower modes, adapted to our notations.
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2. Fourier splitting

Recall that f(r) = f0((1 + δ)−
1
2 r) where f0 is the classical Ginzburg-Landau vortex profile

corresponding to the case δ = 0. That is, the unique solution of

f ′′0 +
1

r
f ′0 −

1

r2
f0 = −(1− f2

0 )f0, f0 > 0 on (0,+∞), f0(0) = 0, lim
r→+∞

f0(r) = 1.(9)

We rescale variables and consider Qδ[v] = Qδ
rad[ṽ] where ṽ(x̃) = v((1 + δ)−

1
2 x̃), so that

Qδ[v] =

∫
R2

|∇v|2 + δRe
{

(∂ηv̄)2
}

+ (1 + δ)
{

2f2
0 (eiθ · v)2 − (1− f2

0 )|v|2
}

dx,(10)

which corresponds to the second variation of the appropriately rescaled energy around u0
rad.

Following [12] we decompose v using Fourier series, as

v = eiθw = eiθ
∑
n∈Z

wn(r)einθ,(11)

where we have conveniently shifted the index n− 1 7→ n.
This decomposition provides a “diagonalization” of the linearized operator:

Lemma 2.1. The quadratic form (10) splits as

Qδ[v] = Qδ
[
w0(r)eiθ

]
+
∑
n≥1

Qδ
[
eiθ
(
wn(r)einθ + w−n(r)e−inθ

)]
.

Proof of Lemma 2.1. Lemma 2.1 essentially asserts that the family of functions

w0(r)eiθ, {eiθ
(
wn(r)einθ + w−n(r)e−inθ

)
: n ≥ 1},(12)

is orthogonal for the quadratic form Q. This quadratic form (10) is composed of three terms.
For the first term,∫

R2

|∇v|2 dx,

the orthogonality of (12) is a standard fact (recall e.g. in [12]). For the third term,∫
R2

{
f2

0 (eiθ · v)2 − (1− f2
0 )|v|2

}
dx,

the orthogonality of (12) is proved in [12]. The novelty here, with respect to [12], concerns the
anisotropic term∫

R2

Re
{

(∂ηv̄)2
}

dx.

The orthogonality of (12) for this anisotropic term, as a matter of fact, follows from the
calculations in [3, § 3.2]. As our notations are different, we sketch a proof here for the reader’s
convenience.

We compute

∂ηv̄ = eiθ∂rv̄ +
ieiθ

r
∂θv̄ =

∑
n∈Z

(
w̄′n +

1 + n

r
w̄n

)
e−inθ,
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and deduce, using the orthogonality of {einθ} in L2(S1),

−
∫
S1

Re
{

(∂ηv̄)2
}
dθ

= Re

 ∑
n,m∈Z

(
w̄′n +

1 + n

r
w̄n

)(
w̄′m +

1 +m

r
w̄m

)
−
∫
S1
e−i(n+m)θdθ


= Re

{∑
n∈Z

(
w̄′n +

1 + n

r
w̄n

)(
w̄′−n +

1− n
r

w̄−n

)}

=
∑
n∈Z

Re

{(
w̄′n +

1 + n

r
w̄n

)(
w̄′−n +

1− n
r

w̄−n

)}
.

This implies the announced orthogonality and completes the proof of Lemma 2.1. �

According to the decomposition of Lemma (2.1), we define the quadratic forms

Qδ0[ϕ] =
1

2π
Qδ
[
ϕ(r)eiθ

]
for ϕ ∈ H0,

Qδn[ϕ,ψ] =
1

2π
Qδ
[
eiθ
(
ϕ(r)einθ + ψ(r)e−inθ

)]
for (ϕ,ψ) ∈ H1,

where H0 and H1 are the natural spaces corresponding to the conditions ϕ(r)eiθ ∈ H and
eiθ
(
ϕ(r)einθ + ψ(r)e−inθ

)
∈ H for n ≥ 1, respectively.

H0 =

{
ϕ ∈ H1

loc(0,∞) :

∫ +∞

0

(∣∣ϕ′∣∣2 +
|ϕ|2

r2
+ Re {ϕ}2

)
r dr < +∞

}
,

H1 =

{
(ϕ,ψ) ∈ (H1

loc(0,∞))2 :

∫ +∞

0

(∣∣ϕ′∣∣2 +
∣∣ψ′∣∣2 +

|ϕ|2 + |ψ|2

r2
+
∣∣ϕ+ ψ̄

∣∣2) r dr < +∞

}

Remark 2.2. Using the density of smooth functions in H1
loc and cut-off functions χε such

that 12ε<r<ε−1 ≤ χε(r) ≤ 1ε<r<2ε−1 and |χ′ε(r)| ≤ C/r, we see that smooth test functions with
compact support in (0,∞) are dense in H0 and H1. Hence, in the sequel, we will always be
able to perform calculations assuming, without loss of generality, that ϕ and ψ are such test
functions.
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The quadratic forms Qδ0 and Qδn are explicitly given by

Qδ0[ϕ] =

∫ ∞
0

[∣∣ϕ′∣∣2 +
1

r2
|ϕ|2 + δRe

{(
ϕ̄′ +

1

r
ϕ̄

)2
}

(13)

+ (1 + δ)
{

2f2
0 (Re {ϕ})2 − (1− f2

0 )|ϕ|2
}]

rdr,

Qδn[ϕ,ψ] =

∫ ∞
0

[∣∣ϕ′∣∣2 +
∣∣ψ′∣∣2 +

(1 + n)2

r2
|ϕ|2 +

(1− n)2

r2
|ψ|2(14)

+ 2δRe

{(
ϕ̄′ +

1 + n

r
ϕ̄

)(
ψ̄′ +

1− n
r

ψ̄

)}
+ (1 + δ)

{
f2

0

∣∣ϕ+ ψ̄
∣∣2 − (1− f2

0 )
(
|ϕ|2 + |ψ|2

)}]
rdr.

Remark 2.3. For every n ≥ 1 there is a further splitting, namely

Qδn[ϕ,ψ] = Qδn [Re {ϕ} ,Re {ψ}] +Qδn [Im {ϕ} ,− Im {ψ}] .

Consequently, it will be sufficient to consider real-valued test functions ϕ,ψ.

3. Study of the lower modes Qδ0 and Qδ1

We show that Qδ0 is positive for δ ≤ 0, but it can become negative for δ > 0. In addition,
we prove that Qδ1 is nonnegative for all δ ∈ (−1, 0].

3.1. Positivity of Qδ0 for δ ∈ (−1, 0]. Let us recall from (13) that Qδ0 is given by

Qδ0[ϕ] =

∫ ∞
0

[∣∣ϕ′∣∣2 +
1

r2
|ϕ|2 + δRe

{(
ϕ̄′ +

1

r
ϕ̄

)2
}

+ (1 + δ)
{

2f2
0 (Re {ϕ})2 − (1− f2

0 )|ϕ|2
}]

rdr

We now introduce the quadratic form

A0[ϕ] := Q0
0[ϕ]

=

∫ ∞
0

[∣∣ϕ′∣∣2 +
1

r2
|ϕ|2 + 2f2

0 (Re {ϕ})2 − (1− f2
0 )|ϕ|2

]
rdr.
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It is known that A0[ϕ] > 0, unless ϕ = 0 (see Appendix A for more details). Moreover, we
have the identity

Qδ0[ϕ] = (1 + δ)A0[Re {ϕ}] + (1− δ)A0[i Im {ϕ}]− 2δ

∫
(1− f2

0 )(Im {ϕ})2 r dr

+ δ

∫ ∞
0

d

dr

[
(Re {ϕ})2 − (Im {ϕ})2

]
dr

= (1 + δ)A0[Re {ϕ}] + (1− δ)A0[i Im {ϕ}]− 2δ

∫
(1− f2

0 )(Im {ϕ})2 r dr,

which is valid for any ϕ ∈ C∞c (0,∞), hence for ϕ ∈ H0 thanks to Remark 2.2. Since 1−f2
0 ≥ 0,

we deduce the positivity of Qδ0 for every δ ∈ (−1, 0].

3.2. Instability for δ > 0. Using the formula (18) obtained for A0 in Appendix A, we see
that for any compactly supported real-valued test function χ we have

Qδ0[if0χ] = (1− δ)
∫
f2

0 (χ′)2 r dr − 2δ

∫
(1− f2

0 )f2
0χ

2 r dr.

Applying this to χn(r) = χ1(r/n), for a fixed test function χ1, and using the asymptotic
expansion [1, 6]:

f0(r) = 1− 1

2r2
+O(r−4) as r →∞,

we see that

lim
n→∞

Qδ0[if0χn] = (1− δ)
∫

(χ′1)2 r dr − 2δ

∫
χ2

1

r2
r dr.

When δ > 0, this expression must be negative for some χ1, since Hardy’s inequality is known
to fail in two dimensions. Explicitly, by choosing

χ1(r) = sin(
√
λ ln r)1

(1,eπ/
√
λ)

(r) for λ =
δ

1− δ
> 0,

we have that χ1 ∈ H1(0,∞) is compactly supported, and

lim
n→∞

Qδ0[if0χn] = −δ
∫
χ2

1

r2
r dr < 0.

Whence, for δ > 0, the mode of order 0 already brings instability. This comes as no surprise
as this mode corresponds to infinitesimal rotations (see Appendix A), and we know that the
far-field behavior eiθ is unstable: rotating this far-field behavior decreases the energy.
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3.3. Positivity of Qδ1 for δ ≤ 0. Recall, according to (14), that Qδ1 is given by

Qδ1[ϕ,ψ] =

∫ ∞
0

[∣∣ϕ′∣∣2 +
∣∣ψ′∣∣2 +

4

r2
|ϕ|2

+ 2δRe

{(
ϕ̄′ +

2

r
ϕ̄

)
ψ̄′
}

+ (1 + δ)
{
f2

0

∣∣ϕ+ ψ̄
∣∣2 − (1− f2

0 )
(
|ϕ|2 + |ψ|2

)}]
rdr.

We introduce the quadratic form A1 := Q0
1, namely

A1[ϕ,ψ] =

∫ ∞
0

[∣∣ϕ′∣∣2 +
∣∣ψ′∣∣2 +

4

r2
|ϕ|2

+ f2
0

∣∣ϕ+ ψ̄
∣∣2 − (1− f2

0 )
(
|ϕ|2 + |ψ|2

)]
rdr.

It is a known fact that A1 is nonnegative on H1, and vanishes exactly at pairs (ϕ,ψ) corre-
sponding to maps v which are linear combinations of ∂xu

0
rad and ∂yu

0
rad (see Appendix A for

more details). Moreover, we have

Qδ1[ϕ,ψ]− (1 + δ)A1[ϕ,ψ] = −δ
∫ ∞

0

[∣∣ϕ′∣∣2 +
∣∣ψ′∣∣2 +

4

r2
|ϕ|2

]
rdr(15)

+ 2δ

∫ ∞
0

Re

{(
ϕ̄′ +

2

r
ϕ̄

)
ψ̄′
}
rdr

= −δ
∫ ∞

0

∣∣∣∣ϕ′ + 2

r
ϕ− ψ̄′

∣∣∣∣2 rdr − 2δ

∫ ∞
0

d

dr

[
|ϕ|2

]
dr

= −δ
∫ ∞

0

∣∣∣∣ϕ′ + 2

r
ϕ− ψ̄′

∣∣∣∣2 rdr,
for (ϕ,ψ) ∈ (C∞c (0,∞))2, hence for all (ϕ,ψ) ∈ H1. From this identity we infer that Qδ1 ≥ 0
for every δ ∈ (−1, 0], and equality can only occur when v is a linear combination of ∂xu

0
rad and

∂yu
0
rad.

4. Study of the higher modes Qδn for n ≥ 2

4.1. Positivity of Qδn for n ≥ 2 and δ ∈ [−1/
√

5, 0]. Let us recall: in the isotropic case,
the positivity of Qδn (any n ≥ 2) is a consequence of the fact that Q0

n ≥ Q0
1. Here, from the
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definition (14) of Qδn, we have

Qδn[ϕ,ψ]−Qδ1[ϕ,ψ](16)

= (n− 1)

∫ ∞
0

[
n+ 3

r2
|ϕ|2 +

n− 1

r2
|ψ|2 − 2δ

n+ 1

r2
Re
{
ϕ̄ψ̄
}

+ 2
δ

r
Re
{
ϕ̄ψ̄′ − ϕ̄′ψ̄

}]
rdr.

Unlike what happens in the isotropic case, this does not obviously have a sign (because of the
last term which contains derivatives).

It seems reasonable to use a decomposition for ϕ,ψ adapted to Qδ1, as in Appendix A.
Accordingly, we define for any real-valued test functions ζ, η, the adapted quadratic form

Bδ
n[ζ, η] =

1

2
Qδn
[
f ′0ζ − r−1f0η, f

′
0ζ + r−1f0η

]
Decomposing

Qδn = (1 + δ)A1 +Qδ1 − (1 + δ)A1 +Qδn −Qδ1

and using the above expressions of Qδn−Qδ1 (16) and Qδ1−(1+δ)A1 (15), we have, for real-valued
(ϕ,ψ) ∈ H1:

Qδn[ϕ,ψ] = (1 + δ)A1[ϕ,ψ]

− δ
∫ ∞

0

(
ϕ′ +

2

r
ϕ− ψ′

)2

rdr

+ (n− 1)

∫ ∞
0

[
n+ 3

r2
ϕ2 +

n− 1

r2
ψ2 − 2δ

n+ 1

r2
ϕψ

]
+ 2δ(n− 1)

∫ ∞
0

1

r

(
ϕψ′ − ϕ′ψ

)
rdr.

When plugging in ϕ = f ′0ζ − r−1f0η, ψ = f ′0ζ + r−1f0η, the first term significantly simplifies
thanks to the formula (19) for A1 in Appendix A. For the other terms we directly expand

ϕ′ +
2

r
ϕ− ψ′ = 2f ′0

ζ − η
r
− 2

f0

r
η′,

n+ 3

r2
ϕ2 +

n− 1

r2
ψ2 − 2δ

n+ 1

r2
ϕψ

= 2(1− δ)n+ 1

r2
(f ′0ζ)2 + 2(1 + δ)

n+ 1

r2

(
f0

r
η

)2

− 8

r2
f ′0ζ

f0

r
η

ϕψ′ − ϕ′ψ = 2

(
f0

r
η

)′
f ′0ζ − 2(f ′0ζ)′

f0

r
η,
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from which it follows that Bδ
n[ζ, η] = (1/2)Qδn[f ′0ζ − r−1f0η, f

′
0ζ + r−1f0η] can be rewritten as

Bδ
n[ζ, η] = (1 + δ)

∫ ∞
0

[
f2

0

r2
(η′)2 + (f ′0)2(ζ ′)2 +

2

r3
f0f
′
0(η − ζ)2

]
rdr(17)

− 2δ

∫ ∞
0

[
f ′0
r

(η − ζ) +
f0

r
η′
]2

rdr

+ (n− 1)

∫ ∞
0

[
(1− δ)n+ 1

r2
(f ′0ζ)2 + (1 + δ)

n+ 1

r2

(
f0

r
η

)2

− 4

r2

(
f ′0ζ
)(f0

r
η

)]
rdr

+ 2δ(n− 1)

∫ ∞
0

1

r

[(
f0

r
η

)′
f ′0ζ −

(
f ′0ζ
)′ f0

r
η

]
rdr.

Integrating by parts, the last integral becomes∫ ∞
0

1

r

[(
f0

r
η

)′
f ′0ζ −

(
f ′0ζ
)′ f0

r
η

]
rdr = 2

∫ ∞
0

(
f0

r
η

)′
f ′0
ζ

r
rdr

= 2

∫ ∞
0

[(
f ′0 −

f0

r

)
f ′0
η

r

ζ

r
+
f0

r
η′f ′0

ζ

r

]
rdr.

We use the first positive term in (17) in order to absorb this latter term: thanks to the identity

(1 + δ)
f2

0

r2
(η′)2 + 4δ(n− 1)

f0

r
η′f ′0

ζ

r
= (1 + δ)

(
f0

r
η′ +

2δ

1 + δ
(n− 1)f ′0

ζ

r

)2

− 4
δ2

1 + δ
(n− 1)2

(
f ′0
)2(ζ

r

)2

,

we rewrite (17) as

Bδ
n[ζ, η] = Bδ,1

n [ζ, η] + (n− 1)Bδ,2
n [ζ, η],

Bδ,1
n [ζ, η] = (1 + δ)

∫ ∞
0

[(
f0

r
η′ +

2δ

1 + δ
(n− 1)f ′0

ζ

r

)2

+ (f ′0)2(ζ ′)2

]
rdr

+ 2

∫ ∞
0

{
(1 + δ)f ′0

f0

r

(η − ζ)2

r2
− δ

[
f ′0
r

(η − ζ) +
f0

r
η′
]2
}
rdr,

Bδ,2
n [ζ, η] =

∫ ∞
0

qδn(r)

[
f ′0
ζ

r
,
f0

r

η

r

]
rdr,

and qδn(r) is the quadratic form on R2 given by

qδn(r)[X,Y ] = anX
2 + bnY

2 + 2c(r)XY,

an = (1− δ)(n+ 1)− 4
δ2

1 + δ
(n− 1)

bn = (1 + δ)(n+ 1)

c(r) = −2− 2δ

(
1− rf

′
0

f0

)
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We readily see that Bδ,1
n is nonnegative for δ ≤ 0. Moreover, since 1 > rf ′0/f0 > 0 [7,

Proposition 2.2], for δ ≤ 0, it follows that

|c(r)| ≤ 2.

As bn > 0, a sufficient condition for qδn(r) to be positive definite for all r > 0 is

4 < anbn = (1− δ2)(n+ 1)2 − 4δ2(n2 − 1).

This amounts to the condition

0 < α(δ)n2 + β(δ)n+ γ(δ),

where

α(δ) = 1− 5δ2,

β(δ) = 2(1− δ2),

γ(δ) = −3(1− δ2).

For δ ∈ [−1/
√

5, 0] we have α(δ), β(δ) ≥ 0 so that the above polynomial in n is nondecreasing
on [0,+∞). Hence, it is positive for all values of n ≥ 2 if and only if it is positive for n = 2.
That is,

0 < 4α(δ) + 2β(δ) + γ(δ) = 5− 21 δ2.

We deduce that qδn is a positive definite quadratic form for all n ≥ 2 whenever δ ∈ [−1/
√

5, 0].

In particular, Bδ,2
n ≥ 0 and therefore Qδn ≥ 0 for δ ∈ [−1/

√
5, 0], with equality only at (0, 0).

4.2. Instability for δ ≈ −1. In this section we show that Qδn can take negative values for
δ ≈ −1 and n ≥ 1 large enough. To this end, we choose η = ζ in (17), to obtain

B̂δ
n[ζ] = Bδ

n[ζ, ζ]

= (1− δ)
∫ ∞

0

f2
0

r2
(ζ ′)2 rdr + (1 + δ)

∫ ∞
0

(f ′0)2(ζ ′)2 rdr + (n− 1)

∫ ∞
0

ζ2

r2
αδn(r) rdr

αδn(r) = (1− δ)(n+ 1)(f ′0)2 + (1 + δ)(n+ 1)

(
f0

r

)2

− 2(2 + δ)f ′0
f0

r
+ 2δ(f ′0)2 − 2δf0f

′′
0 .

Using the asymptotics of f0 ([1, 6])

f0(r) = 1− 1

2
r−2 +O(r−4), f ′0(r) = r−3 +O(r−5), f ′′0 (r) = −3r−4 +O(r−6),

we find, for r → +∞,

αδn(r) =
(1 + δ)(n+ 1)

r2

(
1− 1

r2

)
− 4

1− δ
r4

+O(r−6).

For δ = −1 the leading order is negative. Hence, there exists ε > 0 and a compact interval
[r0, r0 + 1] on which α−1

n ≤ −2ε. Thus, we deduce that for all n ≥ 2 there exists δn > −1 such
that for all δ ∈ (−1, δn],

−ε ≥ αδn(r), ∀r ∈ [r0, r0 + 1].
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Choosing a nonzero test function ζ0 with support in [r0, r0 + 1], we obtain

B̂δ
n[ζ0] ≤ C1(ζ0)− (n− 1)εC2(ζ0) ∀δ ∈ (−1, δn],

for some C1(ζ0), C2(ζ0) > 0. If n is large enough this becomes negative. Compared to the
isotropic case this is a really new situation: lower modes are positive but higher modes can
bring instability.

5. Proof of Theorem 1.3

In what precedes we have shown that uδrad is nondegenerately stable for small δ ≤ 0, and
unstable for δ > 0 and δ close to −1. In particular, setting

δ1 = sup{δ ∈ (−1, 0) : uδrad is unstable },

we know that −1 < δ1 < 0. It remains to show that uδrad is unstable for all δ ∈ (−1, δ1), and
nondegenerately stable for δ ∈ (δ1, 0].

Let δ′ ∈ (−1, δ1) be such that uδrad is unstable, that is, Qδ′ [v] < 0 for some choice of v ∈ H.

Given that δ 7→ Qδ[v] is an affine function which is nonnegative for δ = 0 and negative for
δ = δ′, we deduce that Qδ[v] < 0 for all δ ≤ δ′. Therefore, uδrad is unstable for all δ ∈ (−1, δ′).

By arbitrariness of δ′ we deduce that uδrad is unstable for all δ ∈ (−1, δ1).

Let us now fix δ ∈ (δ1, 0]. By definition of δ1, uδrad is not unstable for all δ ∈ (δ1, 0]. In other

words, Qδ[v] is nonnegative for all v ∈ H. It remains to show that, in fact, Qδ[v] > 0 for all
v ∈ H \ span(∂xu

0
rad, ∂yu

0
rad). We observe that the function δ 7→ Qδ[v] is affine for any given

v ∈ H \ span(∂xu
0
rad, ∂yu

0
rad); it is positive for δ = 0 because u0

rad is nondegenerately stable,
and it is nonnegative for δ ∈ (δ1, 0). Thus, it must be strictly positive for δ ∈ (δ1, 0). This
proves the desired nondegenerate stability in the announced range.

Appendix A. Positivity of A0, A1

We sketch here the approach in [12], adapted to our notation (see also [5]), based on Hardy-
type decompositions to show positivity of the two following quadratic forms

A0[ϕ] =

∫ ∞
0

[∣∣ϕ′∣∣2 +
1

r2
|ϕ|2

+ 2f2
0 (Re {ϕ})2 − (1− f2

0 )|ϕ|2
]
rdr,

A1[ϕ,ψ] =

∫ ∞
0

[∣∣ϕ′∣∣2 +
∣∣ψ′∣∣2 +

4

r2
|ϕ|2

+ f2
0

∣∣ϕ+ ψ̄
∣∣2 − (1− f2

0 )
(
|ϕ|2 + |ψ|2

)]
rdr.
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Testing equation (9), solved by f0, against f0|ϕ̃|2 for any smooth compactly supported
ϕ̃ ∈ C∞c (R;C), one obtains∫ ∞

0

[
(f ′0)2|ϕ̃|2 + 2f0f

′
0ϕ̃ · ϕ̃′ +

f2
0

r2
|ϕ̃|2 − (1− f2

0 )f2
0 |ϕ̃|2

]
rdr = 0,

so that

A0[f0ϕ̃] =

∫ ∞
0

[
f2

0

∣∣ϕ̃′∣∣2 + 2f4
0 (Re {ϕ̃})2

]
rdr.(18)

By density of test functions, and since f0 > 0, we deduce that A0[ϕ] > 0 for any non-zero
ϕ ∈ H0. Moreover A0[ϕ] ≈ 0 exactly when ϕ ≈ if0. This corresponds to the fact that in the
isotropic case δ = 0,

∂α[eiαuδrad]bα=0 = if0e
iθ

solves the linearized equation due to rotational invariance.
For A1, it is convenient to start by splitting it as

A1[ϕ,ψ] = A1 [Re {ϕ} ,Re {ψ}] +A1 [Im {ϕ} ,− Im {ψ}] ,

so we may just treat the case of real-valued test functions ϕ,ψ. Guided by the fact that

∂xu
0
rad = eiθ(f ′0 cos θ − if0

r
sin θ), ∂yu

0
rad = eiθ(f ′0 sin θ + i

f0

r
cos θ),

solve the linearized equation around u0
rad, one uses the ansatz

ϕ = f ′0ζ −
f0

r
η, ψ = f ′0ζ +

f0

r
η,

for some real-valued η, ζ ∈ C∞c (0,∞). Testing equation (9), solved by f0, against f0r
−2η2 we

obtain ∫ ∞
0

[((
f0

r

)′)2

η2 + 2

(
f0

r

)′ f0

r
ηη′ +

2

r4
f2

0 η
2 − 2

r3
f0f
′
0η

2 − (1− f2
0 )
f2

0

r2
η2

]
rdr = 0,

and similarly testing (9) against (f ′0ζ
2)′ we find∫ ∞

0

[
(f ′′0 )2ζ2 + 2f ′0f

′′
0 ζζ

′ +
2

r2
(f ′0)2ζ2 − 2

r3
f0f
′
0ζ

2 + (3f2
0 − 1)(f ′0)2ζ2

]
rdr = 0.

As a consequence of these two identities, we learn

A1

[
f ′0ζ − r−1f0η, f

′
0ζ + r−1f0η

]
(19)

= 2

∫ ∞
0

[
f2

0

r2
(η′)2 + (f ′0)2(ζ ′)2 +

2

r3
f0f
′
0(η − ζ)2

]
rdr.

Since f0, f
′
0 > 0 one may consider the choice

ζ =
1

2f ′0
(ϕ+ ψ), η =

r

2f0
(ψ − ϕ),
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and deduce from the above that A1[ϕ,ψ] > 0 for all non-zero (ϕ,ψ) ∈ H1. Moreover A1[ϕ,ψ] =
0 exactly when (ϕ,ψ) is in the real linear span of(

f ′0 −
f0

r
, f ′0 +

f0

r

)
,

(
i

(
f ′0 −

f0

r

)
,−i

(
f ′0 +

f0

r

))
,

which corresponds to the fact that ∂xu
0
rad and ∂yu

0
rad solve the linearized equation.
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1152.

[10] Ignat, R., Nguyen, L., Slastikov, V., and Zarnescu, A. Stability of point defects of degree ± 1
2

in a
two-dimensional nematic liquid crystal model. Calc. Var. Partial Differential Equations 55, 5 (2016), Art.
119, 33.

[11] Kitavtsev, G., Robbins, J., Slastikov, V., and Zarnescu, A. Liquid crystal defects in the Landau-de-
Gennes theory in two dimensions - beyond the one-constant approximation. Math. Models Methods Appl.
Sci. 26, 14 (2016), 2769–2808.

[12] Mironescu, P. On the stability of radial solutions of the Ginzburg-Landau equation. J. Funct. Anal. 130,
2 (1995), 334–344.
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