ON THE STABILITY OF RADIAL SOLUTIONS TO AN ANISOTROPIC
GINZBURG-LANDAU EQUATION

XAVIER LAMY AND ANDRES ZUNIGA

ABSTRACT. We study the linear stability of entire radial solutions u(re'®) = f(r)e'®, with
positive increasing profile f(r), to the anisotropic Ginzburg-Landau equation

—Au—6(8, +i0y)’a=(1—|u*)u, —-1<d<1,

which arises in various liquid crystal models. In the isotropic case § = 0, Mironescu showed
that such solution is nondegenerately stable. We prove stability of this radial solution in
the range § € (01,0] for some —1 < 81 < 0, and instability outside this range. In strong
contrast with the isotropic case, stability with respect to higher Fourier modes is not a direct
consequence of stability with respect to lower Fourier modes. In particular, in the case where
é =~ —1, lower modes are stable and yet higher modes are unstable.

1. INTRODUCTION

Given § € (—1,1) and u : R? — C, we consider the anisotropic energy
1 0 1
(1) Elu] = / §]Vu|2 + 3 Re {(9,u)*} + Z(l — |u?)? dz, where 0, = 0, + 10,.
RQ

Minimizers and stable critical points of & are relevant in describing 2D point defects (or 3D
straight-line defects) in some liquid crystal configurations (e.g. smectic-C* thin films [4] and
nematics close to the Fréedericksz transition [2]). This energy can also be viewed as a toy
model to understand intricate phenomena triggered by elastic anisotropy in the more complex
Landau-de Gennes energy [11].

Remark 1.1. The anisotropic term Re {(9,%)?} can be rewritten as
Re {(8,,71)2} = (V-u)? = (V xu)?
so that, in view of the identity |Vu|? = (V -u)? + (V x u)? — 2det(Vu), energy (1) differs from

~ ks k 1
€[u] :/2(v-u)2 + g(v x u)? + il )2, ke=1+46 ky=1-4,

only by the integral of the null Lagrangian det(Vu). This is precisely the form that appears
in [4] where minimizers of

2 42

are investigated in the limit as ¢ — 0" in a bounded planar domain €.

@) &= [TV RV X wP + p(— ul?)
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Critical points of & are solutions of the Euler-Lagrange equation

Lsu = (Jul* = 1u in R?

3
3) Lsu = Au + 6 Opy.

We are interested in symmetric solutions of the form

(4) u(re®) = f(r)e®e for some a € R,

with a radial profile f(r) satisfying

(5) f(0)=0, lim f(r)=1, |f(r))>0 Vre(0,00).

r—+00
Formally, one can always look for solutions of in the form (as a consequence of the
O(2)-invariance of €), and f must solve

2 1d 1

dr?2 ~ rdr 1%’

At this point we see a fundamental difference with respect to the isotropic case 6 = 0. If § = 0,
one can find solutions as above for a real-valued function f, which moreover does not depend
on a. In the anisotropic case § # 0, as remarked in [2], the function f can be real-valued only
if @« = 0 modulo 7/2. In that case, the existence and uniqueness of a solution satisfying
follows from the case § = 0 (see [1,6]). Otherwise, the function f must be complex valued.

Tf 4+ e 20T f = (|f|2 . 1) £ T=

Remark 1.2. Another difference with respect to the isotropic case is that for § # 0 the Ansatz
u(re??) = f(r)e™? cannot provide a solution when the winding number m is # 1.

In (2], the core energies of the two symmetric solutions corresponding to o« = 0,7/2 are
compared, to find that the lowest energy corresponds to @« = 0 for § < 0 and o = 7/2 for
6 > 0. In view of Remarktljis is consistent with the fact that V x e = 0, while V-ie? = 0;
indeed, for § < 0 the energy €[u| in Remark penalizes more strongly the term (V x u)?
than the term (V - u)?, since in this case ky = 1 —§ > ks = 1 + §. In |4, Proposition 3.1] the
authors use this to show that minimizers of behave like e*®e’? around point defects, with
a =0 (resp. m/2) modulo 7 if § < 0 (resp. 6 > 0). These results tell us, for § # 0, which one
is the minimizing behavior at infinity.

Here, in contrast, we fix the far-field behavior and investigate the local stability of radial
solutions with respect to compactly supported perturbations. For the isotropic case § = 0,
this study has been performed in [12] (see also [5]), and the radial solution is stable. In the
anisotropic situation ¢ # 0 we find that the corresponding symmetric solution stays stable for
negative ¢ close to zero and it loses stability for § either positive or close to minus one (see
Theorem for precise statements).

It can be readily seen that the case & = 7/2 corresponds to o = 0, after changing the sign of
0. Accordingly, we only treat the case where oo = 0. That is, we investigate the linear stability
of solutions u of the form
(6) ul g (r,0) = f(r)e?,  f:(0,+00) = (0,400) with f(0)=0, lim f(r)=1.

rad r—-+o00
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Let us note that the equation satisfied by ufad, (3), reduces to the following ODE for f
2 1d 1
A
As pointed out in [2], the rescaling of the variable by (1 + 5)% simplifies to the standard
ODE corresponding to the isotropic case § = 0. Whence, existence and uniqueness of f follow
from [1,6]. Moreover, it is known that f takes values in (0,1) and is strictly increasing.

The second variation of the energy € around ufad is the quadratic form

(1 Q+O)Tf=(f-1f T=

Qalel = [ 190 +5Re {(0,0} = (1 = [P +2 (uhog - 0)? o

() = / |Vo|? + dRe {(8,717)2} — (1= )2+ 2,27 - v)?da
RZ
associated to the linear operator obtained by linearizing around ufad:

E(ufad)[v] - —251) - (1 - ’ufad‘Q)v +2 (ufad : U) ufad?

where u - v := Re{uv} denotes the standard inner product of complex-valued functions.
Taking into account the asymptotic expansion f(r) = 1+ O(r=2) as r — oo (see [1,/6]), it
follows that the energy space of Qfad naturally corresponds to

1 :
H = {v € H! (R?): / Vol + ﬁ\v\Q + (e - v)dx < +oo} .
R2

Also, the translational invariance of & readily provides two elements of H at which Qfad
vanishes, namely

893ufad = e (f/ cos ) — Zi sin 9) ) 8yufad =¢? <f’ sin 6 + Zi cos 9) ,
r T
and the linear space they generate is denoted by
KO = Span{aﬂﬂufad? 6yu(rsad}'

Our main result shows that the symmetric solution ufad is stable when § < 0 is small, and
unstable otherwise:

Theorem 1.3. Let ufad denote the radial solution @ of the anisotropic Ginzburg-Landau
equation , and let Qfad denote the quadratic form (8) associated to the energy € around

ufad. Then, there exists a unique number 61 € (—1,0) such that

e for every ¢ € (01,0], ufad is nondegenerately stable: namely,

Q0 [v] >0 for allv e H\ Ky,

rad
e for every 6 € (—1,61) U (0,1), ul,, is linearly unstable: namely,
Q0 4v] <0 for some v € H.

Remark 1.4. The most relevant range from the stand point of physics is ¢ € (—1, 0] since for
d > 0 the far-field behavior corresponding to o = 0 is non-minimizing, and this translates here
into instability of the radial solution.
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Remark 1.5. In the stability range § € (d1, 0], a contradiction argument as in [5, Lemma 3.1]
provides a coercivity estimate of the form
Q0 4[v] > C((S)/ Vo|?dz Vv e Ky : / (ie?) - v(re?)do = 0 Vr > 0,
R2 St
where L denotes orthogonality in H. Using this coercivity for § = 0, one can deduce stability
for small negative § via a relatively simple perturbation argument, combined with properties

of the lower modes in § 3| Instead, we will give a more quantitative proof, which provides an
explicit range for stability: we deduce that §; < —1/+/5.

Our proof of Theorem follows the general strategy of |[12]: we decompose v into Fourier
modes

v=e? Z wy (r)e™.

ne’l

and we are led to studying the sign of Qfad, separately, for each mode
eiﬁ? (wn(r)einﬁ + w_n(r)e_m9> ]

As in [12], the lower modes n = 0 and n = 1 play a special role. They can be studied via an
appropriate decomposition already used in [12] (see also [5]). For any § € (—1,0] we find that
these lower modes are stable, while for § > 0 the mode corresponding to n = 0 is unstable.

A major difference of the present work compared to [12] (or similar results in [8-10]) pertains
to the higher modes n > 2. In contrast with the cited works, stability for the higher modes is
not an obvious consequence of stability for the lower modes. More precisely in the isotropic
case we have

Qg |7 (wer)e +w (e )| = Qg [ (wr ) +w_(re )] vz,

but for § # 0 this is not valid anymore, see . This feature is new and specific to the
anisotropic case § # 0. Our strategy to study the sign of these higher modes is based on the
same decomposition used for n = 1, and a careful balance of the contributions of additional
terms, which end up causing instability for § ~ —1.

The article is organized as follows. In Section [2] we recall the splitting property of the
quadratic form Qfad with respect to Fourier expansion. In Section |3| we study the stability of
lower modes, and in Section {4 the instability of higher modes. In Section [5| we give the proof of
Theorem In addition, we included Appendix [A] to recall the details of the decomposition
used to study the lower modes, adapted to our notations.
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2. FOURIER SPLITTING
Recall that f(r) = fo((1+ 5)_%7“) where fj is the classical Ginzburg-Landau vortex profile

corresponding to the case § = 0. That is, the unique solution of

o I+ %fé _ Tizf0 (=)o, fo>0o0n (0,400), fo(0)=0, Tim fo(r)=1.

r—400

We rescale variables and consider Q°[v] = Q7 _,[3] where #() = v((1 + 5)_%;%), so that
(100 Q] = / (Vo2 + 0 Re {(8,9)°} + (1 +0) {23 (7 - )2 = (1 = fB)Iv]?} dz,
R2

which corresponds to the second variation of the appropriately rescaled energy around u?ad.
Following [12] we decompose v using Fourier series, as

(11) wv= ey = an(r)em@,
nez

where we have conveniently shifted the index n — 1 — n.
This decomposition provides a “diagonalization” of the linearized operator:

Lemma 2.1. The quadratic form splits as
Qp) =9’ [wo(r)eﬂ +y 0 [ew (wn(r)emg + win(r)e—meﬂ .
n>1

Proof of Lemma[2.1l Lemma [2.T] essentially asserts that the family of functions
(12)  wo(r)e?, {e¥ <wn('r)em0 + w_n(r)e_m9> :n> 1},

is orthogonal for the quadratic form Q. This quadratic form is composed of three terms.
For the first term,

/ |Vv|2d:1:,
]R2

the orthogonality of is a standard fact (recall e.g. in [12]). For the third term,

LA 02— 0=} a.

the orthogonality of is proved in [12]. The novelty here, with respect to [12], concerns the
anisotropic term

/ Re {(9,)*} da.
R2

The orthogonality of for this anisotropic term, as a matter of fact, follows from the
calculations in [3, § 3.2]. As our notations are different, we sketch a proof here for the reader’s
convenience.
We compute
_ 0 - eV _ 1+n —inB
Oyt = €' 8rv—|—891):z<w;l—|— W) me

T
nez
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and deduce, using the orthogonality of {e?} in L?(S'),

][ Re {(9,)*} db
Sl
1 1 .
=Re{ Y. <w;+ +nwn) (w;n++mwm> ][ e~ ntm) gg
T T St

n,me”Z

This implies the announced orthogonality and completes the proof of Lemma [2.1 ]

According to the decomposition of Lemma ({2.1)), we define the quadratic forms

Qe = 5-2° [or)e”] for € Ho,
Qe t1 = 5@ [ (o)™ + p(r)e™?) | for (¢.1) € Hi,
m

where Ho and H; are the natural spaces corresponding to the conditions ¢(r)e?’ € H and
e (o(r)e™? +1p(r)e=) € H for n > 1, respectively.

“+oo 2
Hoz{soeﬂlzcm,oo):/ <]<p"2+|f2|+Re{<p}2>rdr<+oo},
0
400 2 2
+ _
My = {«o, o) € 0.9 [ <|90'\2 bl AR, \ww{?) rdr < +oo}

Remark 2.2. Using the density of smooth functions in H,., and cut-off functions x. such

that 1o, ;-1 < Xe(r) < 1ocpco.—1 and |xL(r)| < C/r, we see that smooth test functions with
compact support in (0,00) are dense in Hy and H;. Hence, in the sequel, we will always be
able to perform calculations assuming, without loss of generality, that ¢ and v are such test
functions.
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The quadratic forms Qg and Qg are explicitly given by

712 1 2 _/ 1_ 2
\go\ +T—2\g0| + 0 Re <p+;g0

+(1+8) {2/2Re {o})? - (1 - f&)W}] rdr,

5 B 0o
13) Qg = /0

(1+n)? (1-n)?
e
T T

+25Re{<<ﬁ'+1:n¢> <1/7+1;n1/7>}

) { Rl +ol” (1= 1) (el + W)}] rr.

[+ ')+

(14) Qo] = /0 h

Remark 2.3. For every n > 1 there is a further splitting, namely

Q. ] = Q5 [Re{p}, Re {}] + Q) [Tm {¢} , — Im {¢)}] .

Consequently, it will be sufficient to consider real-valued test functions ¢, 1.

3. STUDY OF THE LOWER MODES Q9 AND Q%

We show that Qg is positive for § < 0, but it can become negative for 6 > 0. In addition,
we prove that Qf is nonnegative for all § € (—1,0].

3.1. Positivity of Q) for § € (—1,0]. Let us recall from that Q) is given by

[ee] , 1 _ 17 2
@il = | \so|2+r2|sor?+5Re{(so +30) }

+(1+0) {2f3(Re {o})? = (1 - féw}] rdr

We now introduce the quadratic form

Aglg] := Q)]

:/O“

P+ g lel? + 243 (Re o)) — (1 - f@)@f] "
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It is known that Ag[¢] > 0, unless ¢ = 0 (see Appendix [A| for more details). Moreover, we
have the identity

Qfli) = (1+ 8) AfRe )] + (1= &) Aolitn ()] — 25 [ (1~ ) (tm (P
8 [ 4 R ())? — (m o] ar
— (14 8)Ao[Re {o}] + (1 — 6) Aofi Tm {ip}] — 2 / (1 - f2)(m {})?rdr.

which is valid for any ¢ € C2°(0, c0), hence for ¢ € Hg thanks to Remark Since 1— f2 > 0,
we deduce the positivity of Qg for every 6 € (—1,0].

3.2. Instability for § > 0. Using the formula obtained for Ay in Appendix we see
that for any compactly supported real-valued test function y we have

Qlifox] = (1— ) / 2V dr — 26 / (1— 223 rdr.

Applying this to x,(r) = xi1(r/n), for a fixed test function xi, and using the asymptotic
expansion [1}6]:

1
fo(r)=1- 5,2 + 0™ as r — oo,

we see that
2
i Q3lifoxal = (1= 0) [ () rdr—25 [ A rar
n—o00 r

When § > 0, this expression must be negative for some x1, since Hardy’s inequality is known
to fail in two dimensions. Explicitly, by choosing

: J
x1(r) = Sln(\ﬁ)\lnr)l(lﬁ,r/ﬁ) (r) for A = 1T-5° 0,

we have that y; € H'(0,00) is compactly supported, and
lim Q3[ifoxn) = —5/ X—zlrdr <0.
n—o00 r

Whence, for § > 0, the mode of order 0 already brings instability. This comes as no surprise
as this mode corresponds to infinitesimal rotations (see Appendix , and we know that the
far-field behavior € is unstable: rotating this far-field behavior decreases the energy.
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3.3. Positivity of Q‘lS for 6 < 0. Recall, according to , that Q‘f is given by

& 4
Qlletl = [ |I¢F+ P + ol

+ 20 Re { (go’ + igo) 1//}

+ @+ {Ble+ o = 0= (lef + W)}] rdr.

We introduce the quadratic form A; := QY, namely

Ailp, ] = /OOO

P+ [0+ el

Rl == 1) (I + W)] rdr.

It is a known fact that A; is nonnegative on H;p, and Vanishes exactly at pairs (p,1) corre-
sponding to maps v which are linear combinations of d,ul ; and 9,u’ ; (see Appendix [A| for
more details). Moreover, we have

rad

(15) e, ]~ (1+8)Asfp,v] = —5/00 o'+ [0/ + ;tw] rdr
o [T (s ) o
_ —5/ rdr—25/ l1of?]
—_5/

for (¢,) € (C2(0,00))?, hence for all (¢,¢) € Hi. From this identity we infer that Q3 > 0
for every 0 € (—1,0], and equality can only occur when v is a linear combination of 806“9;1(1 and
9 urad

2
o +=p—v
T

4. STUDY OF THE HIGHER MODES Q% FOR n > 2

4.1. Positivity of Q° for n > 2 and § € [~1/v/5,0]. Let us recall: in the isotropic case,
the positivity of Qi (any n > 2) is a consequence of the fact that Q% > Q9. Here, from the
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definition of Qfl, we have

(16) Q2. v] — Q3w ¥]
*®1in+3
—(n—1) /0 32y

{#v}

+ zg Re {gi/ — 4} | rdr.

Unlike what happens in the isotropic case, this does not obviously have a sign (because of the
last term which contains derivatives).

It seems reasonable to use a decomposition for o, 1) adapted to @I, as in Appendix A.
Accordingly, we define for any real-valued test functions (, 7, the adapted quadratic form

1
Byl¢nl = 5@ [£6¢ — v fon. £i¢ + 7 fon
Decomposing
Q=1+0A+Q —(1+6)A +Q° — Q3

and using the above expressions of QfL—Q‘ls and Q‘f —(140)A; , we have, for real-valued
(907 w) € 7-ll:

Qo e, ] = (1+6) Arfp, ¥]
e’} 2
- 5/0 <g0/ + %cp - @b’) rdr

*®[n+3 n—1 n+1
+(n—1)/‘ [ — @+ —— ¢ — 20—~y
0 T T r

1
+25(n — 1)/0 - (o' — Q') rdr.

When plugging in ¢ = f{¢ — r~1fon, ¥ = fi¢ + r~1 fon, the first term significantly simplifies
thanks to the formula for A; in Appendix [Al For the other terms we directly expand

IC n fO/

2
Pt e = =2

n+3 n—1 n+1
(’DQJFTTQ’Z) —20

oLl

r2

— 20 - 9" (e +2<1+6>”“ (£a) - Spcton

o’ — sow—z(fO ) foc - 2(fo<>f
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from which it follows that B3[¢,n] = (1/2)Q3[£5¢ — " fon, f4¢ 4+ r~1 fon] can be rewritten as

an Blal=0+d) [ [ B+ wper+ Sasn-o7) v
—25/ [fo {f’n’rrdr
+o- [ [(1— )" (G <+6>”j1(f°n)2—4(fa<

w0 [ H(R) st~ ey L) rav.

Integrating by parts, the last integral becomes

[T (2a) sic— ey foa] rar=2 [™ (20 2 var
o T 0 r
:2/0 [(fo_fo) (/)ﬁg-i-% ! /ﬂ rdr.

We use the first positive term in (17]) in order to absorb this latter term: thanks to the identity

1)
52 7\ 2 C 2
- 41 T 5(” - 1)2 (fo) (r) )

1+ 0B 2+ ast -1 2yt = (1+5)<f0,+26( 1),4)

we rewrite as
Byl nl = By'[C.n

|+
B¢ = (1+9) /O N
) / 2
o f {<1+5>faf0(” L5 B0 L] }d
0

BGon = [ i) [foC f‘)”] rdr,

and ¢’ (r) is the quadratic form on R? given by

C )X, Y] = anX? +b,Y? + 2¢(r) XY,
2

1+6

(n = 1)B*[C. 1),

5 2
(Lo + 25 -0m) + (f6)2(C’)2] rdr

an=(1=8)(n+1)—4
by =01+ (n+1)

=225 (1 %)

(n—1)
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We readily see that B is nonnegative for 6 < 0. Moreover, since 1 > rfi/fo > 0 [7,
Proposition 2.2], for § < 0, it follows that
e(r)] < 2.
As b, > 0, a sufficient condition for ¢} (r) to be positive definite for all r > 0 is
4 < apby = (1 =63 (n+1)% —46%(n? - 1).
This amounts to the condition

0 < a(8)n? + B(&)n + (6,

where
a(d) =1 — 562,
B(6) = (1 - 0%,
7(8) = =3(1 - &%).

For 6 € [~1/4/5,0] we have a(d), 3(6) > 0 so that the above polynomial in n is nondecreasing
n [0,+00). Hence, it is positive for all values of n > 2 if and only if it is positive for n = 2.
That is,

0 < 4a(8) 4 26(8) +v(8) = 5 — 2162
We deduce that 2 is a positive definite quadratic form for all n > 2 whenever § € [~1/+/5,0].
In particular, B%? > 0 and therefore Q% >0 for 6 € [~1/4/5,0], with equality only at (0,0).

4.2. Instability for § ~ —1. In this section we show that Q? can take negative values for
0 ~ —1 and n > 1 large enough. To this end, we choose n = ( in , to obtain

Baldl = Byl¢. ¢
1—5/ fo rdr~l—(1+5)/Oo(f6)2(g")2rdr+(n—1)

0 0

/fO

Eza (r) rdr

a;im:<1—6><n+1><fa>2+<1+6><n+1>(f°) a(2 -+ )1y 1 25077 — 2570,

Using the asymptotics of fo ([1,6])
1
fotr) =1=2r2 400, fi(r) =r*+ 067, fi(r) ==3r"*+0(7%),
we find, for r — o0,

ag(r):(l""é)m""l)<1_1)_ 1-9 (r™ )

r2 r2
For 6 = —1 the leading order is negative. Hence, there exists € > 0 and a compact interval

[r0,70 + 1] on which a;;! < —2e. Thus, we deduce that for all n > 2 there exists &, > —1 such
that for all § € (—1,d,],

—52&2(7“), Vr € [ro,ro + 1].
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Choosing a nonzero test function ¢y with support in [rg, 9 + 1], we obtain
B[] < Ci(G) — (n—1)eCa(C) V8 € (—1,6,],

for some C1(¢p),C2(¢o) > 0. If n is large enough this becomes negative. Compared to the
isotropic case this is a really new situation: lower modes are positive but higher modes can
bring instability.

5. PROOF OF THEOREM [L.3|

In what precedes we have shown that ufad is nondegenerately stable for small § < 0, and
unstable for § > 0 and J close to —1. In particular, setting

61 = sup{d € (—1,0): ul,4 is unstable },

we know that —1 < §; < 0. It remains to show that u® , is unstable for all § € (—1,4;), and
nondegenerately stable for § € (41, 0].

Let 0’ € (—1,61) be such that ufad is unstable, that is, Q% [v] < 0 for some choice of v € H.
Civen that § — QJ[v] is an affine function which is nonnegative for § = 0 and negative for
§ = &', we deduce that Q°[v] < 0 for all § < §’. Therefore, ul_; is unstable for all § € (—1,0").
By arbitrariness of ¢ we deduce that ufad is unstable for all 6 € (—1,47).

Let us now fix 6 € (61, 0]. By definition of &1, ud, is not unstable for all § € (&1, 0]. In other
words, Q%[v] is nonnegative for all v € H. It remains to show that, in fact, Q°[v] > 0 for all
v € H \ span(9,ul 4, 9,u’ ). We observe that the function & — Q°[v] is affine for any given

rad’ rad
v € H \ span(d,ul 4, Oyul ,); it is positive for § = 0 because u! ,; is nondegenerately stable,

and it is nonnegative for § € (d1,0). Thus, it must be strictly positive for § € (d1,0). This
proves the desired nondegenerate stability in the announced range.

APPENDIX A. POSITIVITY OF Ay, Ay

We sketch here the approach in [12], adapted to our notation (see also [5]), based on Hardy-
type decompositions to show positivity of the two following quadratic forms

Aoly] = /000

1
o'+ lel?

+2f5 (Re {0})? — (1 - fg)lcpIQ] rdr,

’ 2

Aifp,y] = /Ooo

1
[T+ 10" + 5l

+ﬁW+&F—u—ﬁ%0w?HwﬁIMn
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Testing equation @, solved by fy, against f0]g5|2 for any smooth compactly supported
@ € CX(R;C), one obtains

[ e +2nsie- o+ Bigl - .- siier] rar o,
so that
(18)  Ao[fod] =/Oo [f()g\gb’{2+2f§(Re{g5})2] rdr.
0

By density of test functions, and since fo > 0, we deduce that Ag[p] > 0 for any non-zero
© € Ho. Moreover Agy[p] = 0 exactly when ¢ =~ ify. This corresponds to the fact that in the
isotropic case § = 0,

N [emufad] la=0 = ifoeie

solves the linearized equation due to rotational invariance.
For Ay, it is convenient to start by splitting it as

Ailp,v] = A1 [Re{p},Re{¢}] + A; [Im {p}, — Im {s}],
so we may just treat the case of real-valued test functions ¢, . Guided by the fact that

Dpul 4 = € (f) cosf — i@ sin 6), Dyl g = e (flsinf + i@ cos @),
r r

solve the linearized equation around u(r)ad, one uses the ansatz

<p=f6<—@n, w=f6C+@n,
T T

for some real-valued 71, € C2°(0,00). Testing equation @7 solved by fo, against for—2n% we

obtain
o [ N 2 /
/0 (({?) ) 7+ 2 ("?) %nn’ + % o — T%fof(/)WQ (1- fo)fo 2] rdr =0,

and similarly testing (9)) against ( féCQ)’ we find

/0 (FIN2C2 +2fh ficc! +5 (fo) %fof(’)CQJr (32 — 1)(f5)2¢2} rdr = 0.

As a consequence of these two identities, we learn
(19) Ay [f5¢ =" fom, ¢+ 77 fon]
2 !/
=2 [7 B+ ey + Siosin -7

Since fo, f{, > 0 one may consider the choice

C—2f0(s0+¢) 77—2f (¥ =),
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and deduce from the above that A;[p, ] > 0 for all non-zero (p, ) € Hi. Moreover A1[p, ] =
0 exactly when (p,1)) is in the real linear span of

(-2 ) (i(n-2)-i(5+2)).

which corresponds to the fact that (%U?ad and ayufad solve the linearized equation.
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