HYPERBOLIC REGULARIZATION EFFECTS FOR DEGENERATE ELLIPTIC
EQUATIONS
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ABSTRACT. This paper investigates the regularity of Lipschitz solutions w to the general two-dimensional
equation div(G(Du)) = 0 with highly degenerate ellipticity. Just assuming strict monotonicity of the
field G and heavily relying on the differential inclusions point of view, we establish a pointwise gradient
localization theorem and we show that the singular set of nondifferentiability points of u is H!-negligible.
As a consequence, we derive new sharp partial C' regularity results under the assumption that G is
degenerate only on curves. This is done by exploiting the hyperbolic structure of the equation along
these curves, where the loss of regularity is compensated using tools from the theories of Hamilton-Jacobi
equations and scalar conservation laws. Our analysis recovers and extends all the previously known results,
where the degeneracy set was required to be zero-dimensional.

1. INTRODUCTION

The focus of this paper is the regularity of two dimensional Lipschitz solutions to the elliptic equation:

div(G(Du)) = 0 in D'(By). (1.1)
To motivate the following discussion, let us consider, for the moment, its variational counterpart:
div(Df(Du)) = 0 in D'(By), (1.2)

which is the Euler-Lagrange equation satisfied by minima of the functional

f(Du) de. (1.3)
B

It is classical that solutions u to (1.2) are smooth provided f is convex, C%(R?), and
A tid < D?f(€) < Aid, in the sense of quadratic forms. (1.4)

In higher dimensions, this is due to the celebrated theorems of De Giorgi-Nash-Moser [16, 45, 48], while
in two dimensions it has been known since the work of Morrey [44]. In fact, in two dimensions, we will
see below that one may assume only one of the bounds in (1.4) and still infer C! regularity of Lipschitz
solutions to (1.2), provided f is strictly convex. In the context of the more general equation (1.1), strict
convexity of f € C*(R?) should be replaced by strict monotonicity of G € C°(R?,R?):
(G(b) — G(a),b—a) > o(lb—al), Va,beR? (1.5)
where
o :[0,+00) — [0, +00) is a strictly increasing, convex function. (1.6)
In the following, for brevity we will often say that G fulfills (1.5) to say that G fulfills (1.5) for o fulfilling

(1.6). This discussion motivates the following question, which is the starting point of this paper. Assume
G € C°(R% R?) and strictly monotone:

are Lipschitz solutions to (1.1) C*, or at least partially regular? (Q)

One motivation for this question is that many important and natural energies, such as the p-Laplacian, do

not enjoy the strong ellipticity property (1.4) and their regularity theory is more complicated, even in two

dimensions. See [42] for an extensive review of problems where (1.4) fails for |{| — 0 and || — co. Cases
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where (1.4) fails in a more general fashion are much less understood, but have seen a lot of progress in
recent years, starting with the work of D. De Silva and O. Savin [20]. In order to review the literature, we
introduce some (loosely defined) notation. We let Dy and D_ be the sets in By,(,) where the symmetric
part of (DG)~!, respectively of DG, has a zero eigenvalue, see (1.16) for the formal definition. In the
variational case (1.2), Dy and D_ should be thought as the sets of points in Byp(,) at which D?f has an
infinite eigenvalue and a zero eigenvalue, respectively. Then, the answer to (Q) is yes, provided:

e D, ND_ is empty or D_ is finite, [20];
e D, ND_ is finite, [35];

e G is J-monotone, see [2, Chapter 16.4.1]. In this case, u needs not be Lipschitz;
e Du lies in a curve and it solves (1.1)-(1.5) for o(t) ~ t*, [37].

Partial regularity is also obtained in [20] for an obstacle problem involving minimizers of (1.3) under the
constraint that Du lies in a convex polygon, with a degeneracy set Dy ND_ that may contain the polygon’s
boundary. Further, an example given in [35, Theorem 1.5] shows that, under the mere assumption (1.5),
Lipschitz solutions of (1.1) may have point singularities, hence one cannot expect better in general than
partial regularity in (Q).

Having asked that v € Lip(B1), (Q) becomes a question about controlling the oscillations in the gradient
of Du. Of course, a similar question could be asked about concentration effects, namely starting from a
WLP(B;) function. Some results in this direction, and valid in all dimensions, can be found in [14, 15] and
references therein. Notice, however, that in the unbounded gradient case, further and careful assumptions
need to be placed on u, f or GG, as counterexamples to regularity of very weak solutions to elliptic equations
show, see [9, 30]. Besides, in two dimensions the Lipschitz property of u can be inferred naturally in many
situations, compare [24, §12.4] and [8], valid in all dimensions. Another direction in which to extend this
analysis is, of course, higher dimensions, see [40, 41, 43]. In that case, however, the picture is much less
clear than in two dimensions: to the best of our knowledge, in that context even partial regularity for u
solving (1.2) for f strictly convex, smooth, and fulfilling only the upper bound in (1.4) is unknown.

As said, the aim of this work is to answer Question (Q). Let us give a rough idea of our main results,
deferring a more precise description to §1.2-1.3-1.4 below. The starting point is to write, formally, (1.1) as

(DG*(Du), D*u) = 0.

Then, if Du(z) ¢ Dy ND_, we can expect some sort of ellipticity in a neighborhood of x, while all ellipticity
is lost if Du(z) € Dy ND_. However, if D4 N D_ has a sufficiently nice structure, we can interpret

DueD,ND_ (1.7)

as an additional equation, coupled with (1.1). Our results show (partial) C* regularity under, for instance,
the assumption that D, ND_ is a finite union of curves. In that case, (1.7) coupled with (1.1) becomes a
hyperbolic problem: to study it, we rely on the theories of viscosity solutions to Hamilton-Jacobi equations
and entropy solutions of scalar conservation laws. It is important to note that our results recover and extend
all the results contained in the previous list where, essentially, Dy N D_ had to be taken of dimension zero.

To implement the strategy outlined above, the crucial point is to obtain a good localization property of
the gradient of a solution of (1.1), Theorem A. This property, inspired by the beautiful separation argument
of [22], tells us that oscillations of the gradient are small in L in any small enough neighborhood of a
differentiability point (where oscillations would a priori be small only in L? for p < 0o). Through Theorem
A, we are able to efficiently split By into regular and singular points, based on the Lipschitz blow-ups of u.
Our next result, Theorem B, shows that the singular set is #'-negligible. Next, in Theorem C, we show
that one can associate to a solution to (1.1) a measure that represents the determinant of its Hessian. It
is worth noticing that Theorems A-B-C hold purely under assumptions (1.1)-(1.5), hence they may be of
independent interest. Next, we exploit Theorems A-B to analyze the inclusion (1.7) coupled with (1.1), and
obtain partial C* regularity together with a precise description of the singular set in Theorem D (which
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extends [37] to general o). Finally, we combine Theorems A-B-C-D with the very recent [34] to deduce
partial O regularity for solutions to the general equation (1.1), Theorem E.

In the course of the paper, it will be convenient to take into account three equivalent viewpoints: other
than (1.1), it is better sometimes to look at solutions to differential inclusions, and sometimes at solutions
to nonlinear Beltrami equations. While we defer the explanation of the latter to §2.2, where we will also
thoroughly explain the interplay among the three, let us focus on the theory of differential inclusions in
two dimensions in the next section. This will be useful to introduce our results in §1.2-1.3-1.4.

1.1. The differential inclusions point of view. Given a solution u € Lip(Bj) to (1.1), it is rather easy
to construct a solution w = (u,v) € Lip(B1,R?) to

Dw € K a.e. in By, (1.8)

where K C R?*? fulfills

o(]X —Y]) <det(X -Y), VX, Y€K, (1.9)
as soon as G fulfills the monotonicity condition (1.5)-(1.6). The converse also holds: given a solution
w = (u,v) to (1.8) with K enjoying property (1.9), then u solves (1.1) for G satisfying (1.5)-(1.6). The
details of this translation is the content of Proposition 2.2 below.

In the theory of differential inclusions, ellipticity can be defined as in [54, §5], where a compact set K
is called elliptic if it fulfills (1.9), it is a manifold and its tangent space at every point has no rank-one
connections. Recall that A, B € R™*™ are rank one-connected if rank(A — B) = 1. For consistency with the
usual terminology in the world of PDEs, in this paper we refer to this requirement as uniform ellipticity. For
example, the aforementioned p-Laplacian is an elliptic equation which does not admit elliptic linearizations
at all points (hence is not uniformly elliptic) if p # 2. Hence, we give a weaker definition of ellipticity than
[54], that a priori includes and extends the one carried by the PDE (1.1), where G fulfills (1.5)-(1.6). While
this is just a matter of terminology, it is crucial to underline the difference between our meaning of the
word elliptic and the one of [54]: the fact that our elliptic sets may not admit elliptic tangent spaces at all
points is the crux of the matter in Question (Q). In simple terms, our notion of ellipticity is equivalent to
approzimate rigidity of K:

Definition. A compact set K C R™*™ is called elliptic if, given any equi-Lipschitz sequence (ug)r on By,
d(Duy, K) = 0in D'(B;) = (uy) is W, strongly precompact. (1.10)
Remark. Equivalently, K is elliptic if it only supports trivial homogeneous gradient Young measures. For a
thorough introduction on Young measures, see for example [46].
The primary examples of elliptic sets are precisely those with property (1.9), compare [54, Theorem 1]:
Theorem 1.1. If K C R?*2 js a compact set fulfilling (1.9), then K is elliptic.

Showing that a set in R™*™ is elliptic is, in general, very hard. In many situations, for instance in some
convex integration schemes [47, 52], it is actually sufficient to show that the set is not elliptic by finding
special subsets of matrices inside K: common choices of such special sets are rank-one connections and Ty
configurations, see [53, Definition 1]. If K C R?*2 we have a much clearer picture. In particular, from the
deep works [22, 53] we have the following very simple way of deciding whether a given set in R?*? is elliptic.

Theorem 1.2. Let K C R?*2 be a compact set. Then K is elliptic if and only if K does not contain
rank-one connections and Ty configurations.

This result sheds a much clearer light on the notion of ellipticity for (1.8), since it provides an algorithmic
way of checking it. We can then reformulate question (Q) in the language of differential inclusions:

Let K be compact and elliptic. Are solutions to (1.8) C*, or at least partially regular? (Q:DI)

A deep fact is that Question (Q:DI) can be completely reduced to its, a priori, simpler counterpart
Question (Q). This is done in two steps:
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Theorem 1.3 ([32]). Let K C R?*2 be a compact elliptic set. Then, the gradient of any solution w €
Lip(B1,R?) to (1.8) has connected essential range.

Here, if  C R™ is an open set, for a map f € L'(Q,RY) we denote by [f](€') its essential range in
Q' C Q, namely the smallest closed set with the property that

f(x) € [fl(Y) for a.e. z € Q. (1.11)
We will write [f] for [f](Q) (and call it simply the essential range of f) and we also set:

[F1(z0) = [f] (ﬂ Br(fﬂo)> : (1.12)
r>0

We will add a few words on the essential range of the gradient of a map and its relation with Clarke’s

generalized differential in §2.1.1.

Remark 1.4. The statement of [32, Theorem 1] is more general than Theorem 1.3. It asserts that, for
any w € Lip(By,R?), the rank-one convex hull [Dw]™ is connected. This implies Theorem 1.3 because
[Dw]*® = [Dw] if [Dw] C K for an elliptic set K. Indeed, the ellipticity assumption ensures that the
quasiconvex hull of [Dw], [Dw]%°, which fulfills [Dw] C [Dw]" C [Dw], is equal to [Dw], see [46, §4.4].

To show how to reduce Question (Q:DI) to Question (Q) we need a second, and last, ingredient:

Lemma ([54]). Let K C R?**? be a compact, connected set without rank-one connections. Then there exists
¢ € R such that cdet(X —Y) >0,VX, Y e K, X #Y.

In other words, up to a global multiplication by a matrix with determinant —1, a compact, connected,
elliptic set fulfills (1.9). This, combined with Theorem 1.3, allows us to say that, if w is a Lipschitz solution
to (1.8) for an elliptic set K, then actually (up to passing to a connected component and up to a global
change of sign of determinants) we can assume that K fulfills (1.9), hence there is no real difference between
questions (Q) and (Q:DI). This represents a weak converse to Theorem 1.1.

As we see from the above results, the theory of 2 x 2 elliptic differential inclusions is extremely rich,
and this wealth of results and techniques will be essential in our paper. Conversely, our results, especially
Theorems A-B-C, represent a step towards a complete understanding of Question (Q:DI).

1.2. General results. Our first main theorem asserts that local W bounds are stable with respect to
local L* convergence for equi-Lipschitz solutions of (1.8).

Theorem A. Let K C R**? fulfill (1.9), (w;); C Lip(Bi1,R?) be equi-Lipschitz solutions to (1.8), z; € By,
and assume w; converges locally uniformly in By to weo, x; = xo € By1. Then we have

limjsup diam([Dw;](z;)) < 2diam([Dweo|(z0)) ,

where the essential range at a point is defined in (1.12).

It is particularly interesting to apply this result to sequences w; obtained from rescalings of a single
solution w. To that end, it is convenient to set some notation. Given a Lipschitz map w € Lip(Bj, R?) and
any point xy € By, we can consider the rescalings

w(zo + rh) — w(xo)

Wy () = - . (1.13)

As w is Lipschitz, this sequence is precompact in C°(B), for any ball B C R2. Therefore, we can introduce
the set B(w)(zo) of blow-ups of w at g to be the collection of maps obtained as locally uniform limits of
any subsequence extracted from w, ;,. By Rademacher’s theorem w is differentiable at a.e. ¢ € B;. For
any such xo, B(w)(2o) = {Lpuw(zy)}- In general we observe that, for K compact and fulfilling (1.9),

any map W € B(w)(xp) still solves (1.8), (1.14)
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due to the strong Wi)cl convergence of the gradients of rescalings provided by Theorem 1.1.

We may apply Theorem A to a sequence of rescalings as in (1.13) of a given solution w, and z; = x¢ for
all j. In that case we infer, in particular, that if some blowup ws € B(w)(x¢) is linear, say ws (h) = Ah,
then diam([Dweo](zg)) = 0, and just by using the definitions, see (1.12), we obtain that

Ve > 0,36 >0: |Dw(z) — A| <e, forae. € Bs(xg). (1.15)

We can then say that Dw localizes near the matrix A in sufficiently small neighborhoods of xy. Furthermore,
(1.15) implies that ws, is the only element of B(w)(zp). Using Theorem A, we see that to obtain the
localization property (1.15) we do not need wy, to be linear in R?, but we only need it to be differentiable
at 0, with differential A. Indeed, since Dw., € K a.e. in R?, compare (1.14), then we can employ Theorem
A on we itself to deduce that (1.15) holds for we, which in turn implies that (1.15) holds for w. These
considerations allow us to define the regular and the singular set of w. To keep the definitions as general as
possible, we assume Q C R? is open and w € Lip(2,R?) solves Dw € K a.e. in €, for K fulfilling (1.9).

Definition 1.5. We let
Reg(w) = {x € Q : B(w)(z) contains a map which is differentiable at 0} and Sing(w) = Q\ Reg(w).

The above discussion shows that, thanks to Theorem A, z € Reg(w) if and only if B(w)(x) consists of a
single linear map, that is, w is differentiable at x. If Reg(w) contains an open ball B, then we infer that w
is C* on B, see Lemma 2.1, whence the name regular points. We cannot show that Reg(w) is open in this
generality, and we will need to restrict ourselves to cases where K has more structure. Nonetheless, our
second result still holds for any elliptic inclusion set K, and concerns the size of Sing(w). We denote by
H® the a-dimensional Hausdorff measure.

Theorem B. Let K C R?*2 fulfill (1.9) and w € Lip(B1,R?) solve (1.8). Then H!(Sing(w)) = 0.

Finally, we will show another remarkable property of solutions to general elliptic differential inclusions.
Recall that the Hessian determinant of a smooth function u of two variables can be written as det(D?u) =
divdiv(Dut ® Du'), see (5.1), and the latter expression makes sense as a distribution if u is merely H'.

Theorem C. Let K C R**2 fulfill (1.9) and w = (u,v) € Lip(By1,R?) solve (1.8). Then, det(D?u) is a
non-positive measure pr. Moreover, if Woo = (Uno, Vo) € B(w)(z0), then det(D?us) = u({xo})do.

Similar properties hold for infinity harmonic functions [33, Theorem 1.5]. Let us add a few words
on Theorem C. Ideally, one could hope to deduce from it that we € B(w)(zg) is linear at points where
#({zo}) = 0 and that ws is one-homogeneous at points where p({zo}) # 0. This would tell us that Sing(w)
is actually countable, since a finite measure can have at most countably many atoms. The reason for this
hope is that the equation det(D?u) = 0 in an open set 2 implies a very rigid structure of Du: essentially,
that Du is constant along segments connecting the boundary. This, in turn, yields that Dw is constant if u is
defined in R?. Such rigidity property has been shown assuming u € C? [26], u € W2 [31, §2.6], u € W22
[49] and w in the class MA [29]. In all of these cases, Du is (at least weakly) differentiable. Here, however,
the only way we can interpret the distribution det(D?u) is in the very weak sense, see the distribution
D(u,u) in (5.1). The equation D(u,u) = 0 is extremely flexible, even if u € CH* for a > 0, see [6, 7, 38].
In a sense, a function w which satisfies D(u,u) = 0 and also (1.1) for a strictly monotone G, lies in a realm
between the known rigidity and flexibility statements. The fact that some rigidity can be expected can be
seen in Proposition 7.5, where Theorem C will be instrumental to exclude some types of blowups.

1.3. Regularity for inclusions in elliptic curves. Assume now that K = I' C R?*? satisfies (1.9) and
is a C! curve, that is, a connected, compact C' submanifold of R2*? of dimension one, which may have
a nonempty boundary. Hence it is given by I' = v(I) for some I = [a,b] or R/LZ and v € C*(I,R?*?) a
homeomorphism onto I" with || > 0 on I. As previously mentioned, the next Theorem generalizes the
main result of [37], where the same conclusion was obtained under the assumption that (1.9) is satisfied
with o(t) = ct* for some ¢ > 0.
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Theorem D. Let Q C R? be open. If w € Lip(Q, R?) satisfies Dw € T a.e. in Q, then Sing(w) is locally
finite. If Q is convex, then Sing(w) contains at most two points. Moreover, Sing(w) is empty if one of the
following sufficient conditions is satisfied.

o T is simply connected, that is, I = [a,b];

o [ is not fully degenerate, that is, it admits a tangent line generated by a rank-2 matriz;

e there exists a € St such that the projection al' C R? is the boundary of a strictly convex open set.

In fact, under the last assumption, the conclusion holds even if T' is not assumed C*, see Corollary 6.3.
We also show that the map Dw is locally constant along characteristic lines outside its singular set, see
Proposition 6.9, and that the singularities have a rigid structure, see Proposition 6.18.

1.4. Regularity for solutions to degenerate equations. Following [20, 35], for a strictly monotone
G € C°(R? R?) we define its degeneracy set D = D_ N D, which can be interpreted as the set of points
where the symmetric parts of DG and (DG)~! both have zero eigenvalues. More precisely, the sets Dy are:

D_=D_(G)=) {X € R?: lim inf (G(XJFHLTQG(X)’H) < A},
A>0

_ _ e (GX 4+ H) — G(X), H)
D+—D+(G)—QO{X€R2.11LH_1)I(}f GIX T H) —GX)]? <)\}.

(1.16)

They correspond to the smallest closed sets outside which G is locally elliptic from below or above:
XeD <= 3INI>0: (G(Xy) —G(X1), X2 — X1) > MNXo — X1 VX, X, € Bs(X),
XeD] <+ 3INI>0: (G(Xa2)—G(X1), X2 — X1) > NG(X2) — G(X1)]? VXi,X, € Bs(X).
The latter is also equivalent to G(X) € D¢ (G™1), justifying its interpretation as local ellipticity from
above. In [34], it is shown that blow-up limits of solutions to (1.1) are either affine or take values into D.

Combining this remarkable fact with the previous Theorems, we obtain a new partial regularity result
under structural assumptions on the connected components of D.

Theorem E. Assume that each connected component of D = D_ NDy has image through the graph map

R29xn—><G?x)>eR2X2,

contained in a C* curve. If all but a finite number of these components are
either simply connected or boundaries of strictly convex open sets, (1.17)

then any Lipschitz solution u of (1.1) is C outside a locally finite singular set. Moreover, that singular set
is empty if all components satisfy (1.17).

This result is sharp, namely solutions can indeed develop singularities, as shown in [35, Theorem 1.5].
Note that Theorem E applies to the field G constructed in [35, Theorem 1.5], for which D is the first-row
projection of a smooth curve, hence all solutions of (1.1) have a discrete singular set. It is also interesting
to apply Theorem E in the variational case G = D f with f strictly convex and radial, that is, f(z) = g(|z]|)
for some increasing and strictly convex C! function g: [0,00) — [0, 00) such that g(0) = ¢’(0) = 0. Then
we have X € D if and only if | X| € D,, where

. g(Ir+h) —g'(r) : g'(r+h)—g(r) _ 1
= >0: < >0: > — 5.
D, )\|>O| {r >0 hzn_glf Y < )\} N )\|>O| {r >0 hriljgp ’ > )\}

If we assume that D, is totally disconnected, then all connected components of D are (possibly degenerate)
circles, whose image through the graph map is either the zero matrix or a C'* curve, and we deduce that
any Lipschitz minimizer of (1.3) is C'.
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Structure of the paper. In §2 we will introduce the notation, and recall some well-known facts about
the essential range that we will need in the sequel. Importantly, we will also explain how to translate
elliptic equations into differential inclusions and nonlinear Beltrami systems, and viceversa. Next, §3-4-5-6-7
contain the proofs of Theorems A-B-C-D-E; respectively. Some sections are lengthier than others: in that
case we will explain the structure of the section at the start of it.

Acknowledgments. XL is supported by the ANR project ANR-22-CE40-0006.

2. PRELIMINARIES

Let us first recall the notation and some results we will use in the course of our paper.
2.1. General notation and some elementary facts.

Topology. Let E C R™ be any set. Then, E denotes its closure, OF its topological boundary, E° its
complement in R and diam(F) its diameter. For two sets A, B, we denote by d(A, B) the distance between
them. Moreover, A € B means that A C B. The open ball of radius r centered at X in R™ or in R»*™ is
denoted by B, (X). If X = 0, we will simply write B,. Finally, given a Lipschitz function f : E C R™ — R",
we write Lip(f) for its Lipschitz constant.

Measure theory. |E| denotes the Lebesgue measure of a measurable set E C R™. We write 1g for the
indicator function of F, namely 1g(x) = 1if € E and 1g(z) = 0 otherwise. In the case of super-level sets
of a function u : FF C R™ — R (and analogously for sub-level sets and for preimages of intervals) we will use
expressions such as 1,54} to denote the function that, at € F', returns 1 if u(z) > a and 0 otherwise.
Let |E| < 400, then fE f(x)dx denotes the average of f over E. In most cases we will consider only LP
spaces with respect to the Lebesgue measure. If we need to say that ® € LP with respect to another finite
measure, we will write LP(£2, X; i), the space of LP functions with respect to the measure p on 2 and with
values in the set X.

Linear Algebra. We use the notation e; for the vectors of the canonical basis of R? e; = (1,0) and
es = (0,1). For a matrix A € R™™™ we denote by L4 the linear map associated to A, La(z) = Az. The
image of L4 is the range of A, ran A. det(A), AT and |A| denote the determinant, the transpose and the
Euclidean norm of the matrix A, respectively. The (standard) scalar product between matrices is denoted
by (A, B), while for vectors a,b we use (a,b) or, if confusion may arise, a - b. The cofactor matrix is

cof (A) = ( 4o ) it A= ( “! ) so that cofT(4)A = AcofT(A) = det(A)id . (2.1)

Complex derivatives. Tt will be convenient to use complex notation to represent matrices A € R?*2. Let A
be as in (2.1). Its conformal and anti-conformal parts are defined, respectively, as follows:

1 1
[Aly = 5[(a +d)+i(c—0b)] and [Alz7= 5[((1 —d)+i(c+b)]
In particular, we have the fundamental identity:
Az = [Alyz + [Al7z, Vz€R?, (2.2)

where the product on the left-hand side is the classical one between a matrix and a vector and the one on
the right-hand side is the complex multiplication. We have the following relations:

det(A) = [[A]n]?> - |[4] |A]? = 2|[A]n|? + 2|[Al5*- (2.3)
As a short-hand notation, we will write expressions such as:
A= (a,b), (2.4)

which mean that a is the conformal part of A and b is the anti-conformal part of A.

2
7l
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Finally, if Q C C is an open set and f : 2 — C, whenever its differential makes sense we can set

O0.f = f. = [Dfln = 5[(01f1 + 0af2) +i(01fa — D2 f1)],

0:f = fz=[Dflz = %[(51f1 — O02f2) + (01 f2 + 02 f1)].

DN =

(2.5)

2.1.1. Essential range and generalized differentials. As defined in (1.11), given any w € Lip(Q2, R™), Q@ C R™
open, we let [Dw] be its essential range over 2, defined as the smallest closed set K’ such that Dw(z) € K’
for a.e. x € Q. It is immediate to see that if E C ) is the set of Lebesgue points for Dw, then,

[Dw] = {Dw(z) € R**™ : z € E}.

This, together with (1.12), is closely related to the set of reachable gradients of w, see for instance [5,
Definition 3.1.10], which is typically defined by considering the set E of differentiability points of w. In the
case we are interested in, namely for solutions w to (1.8), there is no difference between the two sets: if K
fulfills (1.9) and w solves (1.8), then z is a differentiabilty point for w if and only if z¢ is a Lebesgue point
for Dw. Finally, let us show a simple but crucial property of the set Reg(w), which justifies its name.

Lemma 2.1. Let K C R?**2 fulfill (1.9). Let w solve (1.8) and let Reg(w) be as in Definition 1.5. If
Reg(w) contains a ball B, then w € C1(B,R?).

Proof. By Theorem A and the discussion preceding Definition 1.5, for all g € Reg(w) we have [Dw](zo) =
{A(x0)}, for some A(zg) € R*>*2. But then the blow-ups at g, w4, actually converge in W™ to
L A(z,), as can be seen by using (1.12). We infer that w is differentiable everywhere in B. Then, continuity
follows, again, from (1.12), as [Dw](xo) = {A(x0)} implies that for all € > 0, there exists r > 0 such that
(Dw)(B, (v0)) € Bo(A(xo)) = B-(Duw(zo)). O

2.2. Three equivalent viewpoints. We have the following equivalence:

Proposition 2.2. Let u € Lip(By) be a solution to (1.1), where G is defined on F' O [Du|. Then, there
exists v € Lip(Byq) such that w = (u,v) solves

DweK = {( 7G;Ex,y) Glé,y) ) : (z,y) EF}, a.e. in By.

Moreover, G satisfies (1.5) for all (x,y) € F 2 [Du] with a function o if and only if K fulfills (1.9) with the
same o. Conversely, if w = (u,v) € Lip(B1,R?) satisfies (1.8) and K fulfills (1.9), then there eists a field
G € C%m (K),R?) fulfilling (1.5) such that u solves (1.1). Here, m is the projection onto the first row.

Proof. To show the first statement we simply use (1.1) and the convexity of By to find v € Lip(By) such
that Dv = —JG(Du) a.e. in B;. The rest of the properties are straightforward. Here and in what follows,

Jﬁ(_ol é) (2.6)

For the converse statement, we notice that inequality (1.9) reads as
(JXo = JY2, X1 — V1) 20(|X —Y]), VX Y€K, (2.7)

if X;,Y; are the i-th row of X and Y respectively. We thus see that the map Z € K — Z; € R? is injective.
Therefore, it must be invertible when the target is restricted to m(K). Let I(Z1) be such inverse, and
define also G(Z1) = mo(I1(Z1)). Finally, set G(z,y) = JG(x,y), for all (z,y) € 7 (K). By definition,

G(Du) = JG(Du) = JDv,
so that u solves (1.1). From (2.7), (1.5) also follows, and the proof is concluded. O

In the same spirit, as observed in [55, Theorem 3.2], we have:
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Proposition 2.3. Let w € Lip(By, R?) be a solution to
Ozw = h(0,w) a.e. in By, (2.8)

for h: F D [0, w] — C. Using notation (2.4), if K = {(a,h(a)) : a € F}, then w solves (1.8) for such K.
Moreover, if h is strictly contractive, in the sense that there exists

an increasing function &: [0,00) — [0,1] (2.9)

such that
|h(a) = h(®)| < (1 —6(la—1b]))la—0bl,  VabeF, (2.10)

then K fulfills (1.9) for some function o with properties (1.6). Conversely, let w € Lip(By, R?) solve (1.8),
and assume K is a compact set fulfilling (1.9). Then, there exists a strictly contractive h : [K]y — C such
that w solves (2.8). We denoted by (K] = {[X]y : X € K}.

Proof. The fact that w solves (1.8) for K given by the graph of h is immediate. Now (1.9) follows from
(2.9)-(2.10) by direct computations that exploit (2.3). The converse statement is less direct, but it follows
from the same arguments as the previous proposition: we rewrite the ellipticity (1.9) using (2.3) as

o(IX =Y+ (Xl — V" < [IXIn — Y]u]” VXY €K.

Then, this inequality implies that the projection map g: K — C, X — [X]y is injective and that the map
h: K]y = C, z = [g7 ! (2)]5, is strictly contractive. O

The last viewpoint we introduced in Proposition 2.3, the one of nonlinear Beltrami systems, is another
rather useful one, see [2, 22] and references therein. We exploit it now to show how all of our problems
(1.1)-(1.8) and (2.8) can be extended in a suitable way so that, for instance, instead of working with G
defined on [Du] in (1.1) we can work with G € C°(R? ,R?) fulfilling some special properties at infinity.
Thanks to Propositions 2.2-2.3, it is enough to present this extension for nonlinear Beltrami systems.

Lemma 2.4. Let F' C C be compact and h: F — C be a strictly contractive mapping, that is, h satisfies
(2.9)-(2.10). Then h admits a strictly contractive extension H: C — C, for a possibly different & than h
still fulfilling (2.9). Moreover, H can be chosen to be constant outside a large ball.

Proof. The existence of a contractive extension H; of h follows from [13, Theorem 3.1]. Then it suffices to
set H = H; o ®, where ®: C — C is 1-Lipschitz, is the identity on Br for some R > 0 such that F' C Bp,
and has compact support. To obtain such a map ®, one can set for instance ®(z) = x(|z|)z with

1 for0<r <R,
x(r)=q1-Ing for R<r<eR,
0 for R > eR.

The differential of ® at z = re? is symmetric with eigenvalues x(r) € [0,1] and x(r) +rx'(r) € [-1,1]. Tt
has therefore operator norm at most 1, hence ® is 1-Lipschitz. ([

3. THEOREM A: ELLIPTIC CURVES AND SEPARATION

3.1. Setup and reduction. This section is devoted to the proof of Theorem A. To show it, we need to
make a few simplifications. Firstly, we reduce it to the following, cleaner, upper semicontinuity property:

Theorem 3.1. Let K C R?*? be compact and fulfill (1.9), (w;); C Lip(B1,R?) be equi-Lipschitz solutions
to (1.8), ¢; € By, and assume w; converges locally uniformly in By to we, x; — xo € B1. Then,

limjsup diam([0,w;](x;)) < diam([0,weo](20)).
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To pass from Theorem 3.1 to Theorem A, we can simply exploit Proposition 2.3 and write K as the
graph of a 1-Lipschitz map h. Hence it suffices to show Theorem 3.1. Lemma 2.4 tells us that we can,
without loss of generality, assume that A is defined in C and:

|h(a) — h(D)] < (1 =6(Ja—10]))|a —b|, foralla,beC, (3.1)
[l o= (c,c) < +o00, (32)
for some & fulfilling (2.9). Now the property of solving (1.8) for a Lipschitz map w is equivalent to solving
wz = h(w,) a.e. in C. (3.3)
Notice that, by Theorem 1.1, wy, also solves (1.8)-(3.3). From now on we will consider K to be the graph of
h. Furthermore, by considering W;(z) = w;(z + x;) — w;(x;) and W () = Weo (z + o) — Woo (o) instead
of w; and ws,, we can assume in addition that

z; =x0 =0and w;(0) = we(0) =0, VjeN. (3.4)

By rescaling the domain, we can then still assume these maps are defined in Bj.

Finally, we reduce the proof of Theorem 3.1 to the following;:

Theorem 3.2. Let wj,ws be as in Theorem 5.1. Let C' C R? be an open, bounded convex set with

[0,weo](By) C C for some r > 0. Then, given a € (C)°, there exist § and J depending on r and a such that
[0:w;](Bs) C Biw.e (a), Vj=J.

Lemma 3.3. Under the simplifications (3.4), Theorem 3.2 implies Theorem 3.1.

Proof. Let C' € C" C R? be open convex sets containing [0,w.](0) with diam(C") < diam([0,ws](0)) + v,
a >0 to be chosen. Let L = 1+ sup,{||Dw;| = }. We can cover the compact set (C")° N By, with finitely
many balls taken from the open cover given by the balls Ba.c) (a), centered at a € (C”) N Br. Let a; be

2

the centers of these balls, for i = 1,..., N. By (1.12), we find r > 0 such that [0, ws](B,) C C’. Hence, by
Theorem 3.2 for each ¢ we find §; and J; for which

[0.00;](Bs,) € Bl on (@), ¥ = Ji.

Let 6 = min; §; > 0 and J = max; J; < 4+o00. Then,
[0:w;)(Bs) C () Bliay.cn (i) = (U Baa;.cn (az‘)) c ((C"M*NBL) =C"UBr), Vj=>J
P 5

We also have, for all j, [0,w;](0) C [0,w;](Bs) C Br, and hence
diam([0,w;](0)) < diam(C") < diam([0,w](0)) + o, Vj > J.
The arbitrariness of « concludes the proof. O
We will show Theorem 3.2 in §3.3, and we start by collecting a few preliminary results.
3.2. Preliminary results.

3.2.1. Topological degree. In this section we recall some well-known results on the topological degree
deg(u, Q, p). We refer the reader to [23] and references therein for the definition and a detailed introduction.

Proposition 3.4. Let Q C R" be an open, bounded and connected set and let u € WP (2, R™) for p > n.
Then for all open sets U € 2 with |0U| = 0:

/Uv(u(x))det(Du)(m)dx:/ v(y) deg(u, U, y)dy, Vv e L>®(R"), (3.5)

n

and, if det(Du) > 0 a.e. in Q, then
deg(u,U,y) = N(u,U,y), for a.e. y € R", (3.6)
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where N(u,U,y) = #{z € U : u(z) = y}.
Proof. (3.5) is shown in [23, Theorem 5.31]. Through (3.5) and [23, Theorem 5.30], we also get (3.6).

O
Proposition 3.5. Let Q C R"™ be open and bounded, v € C°(2,R™), and let p € R™ \ v(0). Then:
deg(v, Q, p) = deg(u, Q, p) if u € C(Q,R™) and ||u — v||e < d(p,v(0Q)); (3.7
Moreover, the degree is invariant under homotopies, namely
deg(H(-,1), €2, p) = deg(H(-,0), 2, p), (3.8)
for every homotopy H € C°(Q2 x [0,1],R™) such that p ¢ H(OQ,t) for all t € [0,1].
Proof. This is classical and can be found e.g. in [23, Theorem 2.3]. O

Remark 3.6. The degree deg(u, 2, p) is, in general, not defined if p € u(9€). Therefore, every time we write
expressions involving deg(u, Q, p) and p € B, for some set B, this will implicitly entail that w(9Q) N B = (.

3.2.2. Quasiregular mappings. We start by recalling the definition.
Definition 3.7. Let Q C R? be open. ¢ € W12(Q, R?) is (K-)quasiregular if there exists K > 1 such that

|Do|*(z) < K det(Dg(z)), for ae. x € Q. (3.9)
Equivalently, f € Wli)’cz(ﬂ, R?) is quasiregular if and only if there exists x € [0,1) such that
If2](2) < &|f:|(2) for ae. z € Q. (3.10)

Remark 3.8. For instance, if we consider equation (2.8) for some k-Lipschitz map h for some 0 < k < 1,
then the difference u = v — w of any two solutions v, w to (2.8) is quasiregular:

uz|? = [0z — wz]* = [h(v2) = h(w.)[* < Ko, —w.|? = K?|u.[*.
Let us recall a few properties of quasiregular maps, referring the reader to [2, 3, 28] for more details.

Proposition 3.9. Let p € W12(Q, C) be quasiregular. Then:
(1) there exists p = p(K) > 2 such that ¢ € WP(Q,R2). In particular, ¢ is continuous;

loc
(2) ¢ is either constant, or open and discrete;
(3) ¢ is either constant, or det(Dyp) > 0 a.e. in Q;

(4) if U W C R? are open sets and N(p,U,y) =1 for a.e. y € W, then ¢ is injective on U N @~ (W).

Proof. (1) can be found in [3, Theorem 5.1] (see also [1] for the precise expression of p). (2)-(3) can be
found in [2, Corollary 5.5.2]. Let us show (4), following the same argument of [19, Lemma 4.3]. Observe
that ¢ is open by (2). Suppose by contradiction that there exist distinct x1, 2 € U N~ (W) such that
o(x1) = p(x2) = y. Then, taking a sufficiently small » > 0 such that

B.(z1) N By(z2) =0 (3.11)

and B,.(z;) C UnN e Y(W) for all i, define the open set V = ¢(B,(x1)) N ¢(B,(x2)) C W. Observe
that y € V. Since V is open and nonempty, our assumption implies that we can find p € V for which
N(p,U,p) = 1. This yields a contradiction with the definition of V' and (3.11). O

We state the stability result for quasiregular maps established in [32, Proposition 1]. In that reference,
the statement is shown in R™, but we will only need it for planar maps. We derive from it Corollary 3.12,
which is essentially contained in [32, Proposition 2].

Proposition 3.10. Let u: Q C R? — R? be a K-quasiregular mapping such that |Du(z)| > ¢ a.e. in Q. Let
G € Q and assume that M = sup,cg= N(u,G,y) < +00. Then there exist a constant § = (e, K, M) >0
and for any o € G a radius 7(xg) > 0 such that for any Lipschitz mapping ¢ : Q@ — R? with || D¢||s < 0,

min |u’(z) — u'(z0)| > 6r,  for all v < r(z0),t € [0,1], if u' = u+te.

|lz—xo|="7
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Remark 3.11. There are several ways to see that the assumption M < +o0o in the previous proposition is
automatically satisfied. One can use, for instance, Stoilow Factorization [2, Theorem 5.5.1] or more purely
topological methods valid in all dimensions [51, Proposition 4.10(3)].

Corollary 3.12. Let R,e > 0, u € Lip(Bgr,R?) such that u(0) = 0, and T' C R**2 be a compact and
path-connected set of matrices such that

det(Du— A) > ¢ a.e. in Bp, VAeT. (3.12)
Then there exists ro = ro(u,I') € (0, R) and 6 = 6(¢,T’) > 0 such that
A deg(u — La, By, y) is defined and constant on T for all r € (0,79) and y € Bs, .

Proof. Fix A > 0 such that |Du| + |A| < A for all A €T and a.e. © € Bg. The finiteness of such A and
(3.12) imply that the map u? = u — L 4 is a nonconstant quasiregular mapping in Bg for all A € T'. Thanks
to Remark 3.11 we may apply Proposition 3.10 to u“ at 2o = 0. Recalling that u?’ (0)=0for all A’ € K,
this yields the existence of r4 = r4(u) € (0, R) and 64 = da(e, A) > 0 such that
A(0,u? (8B,)) > dar Vr e (0,14), VA € Bs,(A).
Covering I" with a finite number of open balls Bs, (A), we infer the existence of 7o > 0 and § > 0 such that
d(0,u(0B,)) > 6r Vre (0,7), VAET.

Thus for all A € I' we have u?(0B,) N Bs, = 0, hence the degree deg(u®, B,,y) is well-defined for all
y € Bys,. Moreover it is independent of A € I' by path-connectedness of I' and homotopy invariance of the
degree, see Proposition 3.5. Il

3.2.3. Approximation of the problem. Let w be a solution to (3.3) and h satisfy (3.1)-(3.2). We want to
obtain w as limit of solutions to strongly elliptic problems.

Lemma 3.13. For every e € (0,1), the nonlinear Beltrami system

35w5 = (1 — 5)h(8zw5) m Bl7 (313)

Re(w®) = Re(w) on 0By.
admits a unique solution w® € W42(By, C) with w§ of zero average. Furthermore, w. — w locally uniformly
and locally strongly in WYP for all p € [1,00).
Proof. The solvability of this system can be found in [22, Proposition 2], where it is shown that if
H : By x C — C is a measurable function satisfying H(z,0) = 0 for a.e. z € By and

|H(z,w1) — H(z,we2)| < k|wy — ws|, for a.e. z € By and all wy,wy € C for some k < 1,

then for any o € L?(By,C) there exists a W12(By, C) solution v (which is unique up to the addition of a
constant to the second component) of

0zv = H(z,0,v) + o(z) in By, (3.14)
Re(v) =0 on 0B;.
To solve (3.13) we can just consider a solution v¢ to (3.14) with
H.(2,8) = (1 —¢)(h(0,w+ &) — h(d,w)) and o(z) = —ch(d,w).

and then set w® = v + w. We will now show the required estimates. We start by obtaining W2 bounds
uniform in ¢ > 0. Using complex notation, see (2.3):

/ | Dwf|?dx = 2/ |we|? + |wE|2de = 2/ |we | — |wE|*da + 4/ |wE | da.
By B; B,

B,
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The last addendum is bounded, since our assumptions on h, see (3.2), and (3.13) imply that actually wg is
equibounded in L°. It then suffices to estimate the first addendum using the boundary conditions:

/ |we|? — |wE|2dx 2 / det(Dw®)dx = / det(Dvy*)dz,
By By B
where ¢° = (Re(w), w5). Now by Young’s inequality, for any § > 0 we find:

/ det(Dz/)E)dng((S)/ |Dw|*dz 46 | |Dw®|*dz.
B B, B

Combining all these estimates, we get a universal constant C' such that

/ Dw5|2dx§0<0(6)/ \Dw|2dz +
B, B, By

By choosing § small, we deduce the required uniform bound. Now we can use the boundedness of the
Beurling transform [2, Theorem 4.5.3] to obtain interior W1 bounds for all p > 1, uniformly in & > 0:
indeed, for any test function n € C2°(By), the derivative (nw®)z; = nzw® + (1 — e)nh(wf) is uniformly
bounded in LP since W12(By) C LP(B;) and h € L>(C), and thus D(nw,) is uniformly bounded in L”.
We are only left to show the convergence of w® to w. Using the boundary conditions,

| Dwe|?dx + C(h)) .

0= / det(Dw® — Dw)dx = / |0,w" — 0, w|* — |0zw° — Ozw|*dx
Bl Bl

= / 10,0 — 0.w|* — |(1 — e)h(d,w®) — h(d,w)|*dx
B1
Thanks to the uniform bounds shown above, this gives us for all £ > 0:
/ |00 — D,w|? — |h(D.w®) — h(D.w)|*dx < Ce.
B,
From (3.1) and (2.9), this readily yields the convergence in measure of d,w® to d,w as € — 0. In turn
(3.13) tells us that 9zw® does the same and this concludes the proof. O
3.3. Proof of Theorem 3.2. We write K as the graph of h, as in (3.1)-(3.2)-(3.3). For simplicity, we let
g:R* — K be defined as g(z) = (z,h(z)), and U = g ((C)°),

and we also let 7 = @. We also recall (3.4).

Step 1: degree of wj — La for A€ U. ‘ We show the existence of J € N, R € (0,7) and « > 0 such that

deg(w; — La,Br,y) =1, Yy € Bay, VA€U, Vj>J. (3.15)

Recall from Remark 3.6 that this assertion implicitly entails (w; — La)(0Bg) N Baq = 0. Thanks to the
uniform convergence of w; to ws, and Proposition 3.5, it suffices to show

deg(woo — La, Br,y) =1, Vy€ Bz, VAEU. (3.16)
From (1.9) and the facts that Dw,, € K a.e., U C K and U N [Dwy](B,) =, we see that
det(Dws, — A) > ¢ ae. in B., VAcU,

where ¢ = o(d(U, [Dwso(Br))) > 0. Noting that the set U N g(B) is compact and path-connected for
any M > 0 such that C' C By, we apply Corollary 3.12 and deduce the existence of R = R(M) € (0,r),
0 = 0(M) > 0 such that

A deg(woo — La, Br,y) is defined and constant on U N g(Byy), for all y € By .
To conclude the proof of (3.16), it suffices therefore to find M > 0 such that
deg(woo — La, Bpyy) =1 Vye B,, Vpe (0,r), VA € g(Bf), (3.17)
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apply this to p = R and choose 3o = min{d, R}, for R,d given by this choice of M. To establish (3.17), let
M > 2||h||co, 2 € B, so that |z] > M > 2||h||x, and A = g(z) = (2, h(z)). Recalling (2.3), we have
1
62 < AP = 2 4 () < 2027, S < det(A) = |2 [h(2)P < |=P .
This implies that A is invertible and |[A™!| = (det A)~}|A| < 4/M, so M|z| < 8|Az| for all z € R?\ {0}.
Hence we have L (0B,) N Byy,/s = 0 for all p > 0, and
deg(_LAvavy) =1, Vy € BMp/S .

Assume moreover M > 16 Lip(ws, ). Then for 0 < p < r we have |[we||L>~(5,) < Mp/16 and we can invoke
Proposition 3.5 to deduce

deg(woo_LAaBp7y):17 vyE-BMp/lﬁa VPG(O,T)7
which gives (3.17) if we impose in addition M > 16.

‘Step 2: Jordan curves and the degree of the approzimating maps. ‘ For t € [0,1] and j € N we define

y(t) =T fa, T(t)=g(y(t), fix=w;— Lrgy - (3.18)
Since I'(¢) € U for all ¢ € [0, 1], from (3.15) we infer
deg(fj+, Br,y) =1 forally € Ba,, j>J, t€[0,1]. (3.19)

Now we fix j > J and let w§ be the family parametrized by ¢ € (0,1) provided by Lemma 3.13 applied to
w = w;. Then we define the maps

Wi et = wjg - LFE(t)7 FE = (73 (1 - E)h(’}/)) )

which are quasiregular for all j € N, € € (0,1) and for all ¢ € [0,1], compare Remark 3.8. For this fixed
j > J, we see from Lemma 3.13 that w; .+ converges locally uniformly in B; to f;; as € — 0, uniformly
with respect to ¢ € [0, 1]. Recall from Remark 3.6 that (3.19) contains the information f;;(0Br) N Bas = 0.
Choosing €9 = €¢(j) > 0 such that ||wj.: — fj¢l LBy < a forall € € (0,&¢), by Proposition 3.5 we infer

1“2 deg(f;.0, Br, y) = deg(w;c., Br,y) for all ¢ € [0,1] and y € B,. (3.20)

Further, recalling that f;+(0) = 0 and Lip(f;:) < C, we may fix § = 6(C, R) > 0 such that
Bys € BrN (fi0) " (Baj2), Vt€[0,1],Vj €N,
hence, for a possibly smaller €9 = q(j),
Bos C BN (wjet) "(Ba), forallte[0,1],0<e < e. (3.21)
We now claim that
wj e+ is injective on Bos,  forall t € [0,1],0 < e < &. (3.22)
To see this, note first that w;.; cannot be constant on Br by (3.20), so it has positive Jacobian a.e. in
Bpr by Proposition 3.9(3). Recalling also from Lemma 3.13 that w; . € W'P(Bg) for all p > 1, we can
apply (3.6) and deduce that, for 0 < & < gy and ¢ € [0, 1]:
(3.20)
N(wje,Br,y) =deg(wjei, Br,y) = 1, forae. y€ By, (3.23)
Through Proposition 3.9(4), we infer that w; . is injective on w;;,t(Ba) N Bpg, hence on Bys by (3.21),
thus proving (3.22).

Step 3: Separation and conclusion. ‘ We can finally conclude the argument. Fix for the moment j > J,

where J was found in Step 1. By (3.22), we can write:

Wjet(x +rer) # wje(z), Ve<eo,r<d,xe Bs.
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The definitions yield
wi(x +rey) —wi(z) #rle(t)er, Ve <eg,r < 0,7 € Bs. (3.24)

Now we need to observe that t — I'.(t)e; is a Jordan curve. Hence, it divides R? into two connected
components, the bounded one, w,, and the unbounded one, R? \ w.. From (3.24), we deduce that

w5 (z +7rer) — ws(z)

r

does not intersect this Jordan curve. Hence, for fixed j > J,& < ¢, for all < § and for every = € By,

ws(z +rep) —ws(x ws(x +rey) — ws(x
either i D) —wj(@) €Ew, or i D~ wj(@) € R?\ w.. (3.25)
r r

Let us characterize w,.. If we consider, for any ¢ € [0, 1], the continuous map defined in complex notation by:
D.(2) =ze1 + (1 —e)h(z)er = z+ (1 —e)h(2),

then @, is injective from R? to R?, thanks to (3.1). Thus, it is a homeomorphism onto its open image. The
image is also closed thanks to the boundedness of h (3.2), and hence ®.(R?) = R?, Ve € [0,1]. Noticing
that ®.(y(t)) = Te(t)ey for all t € [0, 1] by (2.2) and recalling (3.18), we deduce:

we = @ (B (a)). (3.26)
Letting ¢ — 0 in (3.25), since ®. converges uniformly to ®, on R? we find that for all r < §:

wiare) —wi@) et ren) - wi(@)
r T

either € R?\ wy, forall z € Bs. (3.27)

If, by contradiction, the first alternative occurred for infinitely many j, then we would find

Dwj(z)er = ®o(0w(z)) € o = Po(B,(a)), for a.e. x € B;s.

In turn, since ®q is a homeomorphism, we deduce that d,w;(z) € B-(a), for a.e. x € Bs and infinitely
many j > J. By Theorem 1.1, this would also imply that

0, w0 (h) € Br(a) C (C)° a.e. in By, (3.28)

which is against our assumption [0,w.](B,) C C. Therefore, the second alternative in (3.27) must occur.
Following the same reasoning of the previous contradiction argument, this leads to

|0, wj(x) —a| >7, forae. xe€B;Vj>J,

which is precisely the conclusion of Theorem 3.2. (I

4. THEOREM B: THE SIZE OF NON-DIFFERENTIABILITY POINTS

In this section we give the proof of Theorem B, that we deduce from the following result valid in R™.
Proposition 4.1. Let u € Lip(B1), By C R", be a solution to (1.1), where G € CO([Du],R™) fulfills
(G(b) — G(a),b—a) > o(|b—al) Ya,b € [Du], (4.1)

> dy > O} . (4.2)

for some o as in (1.6). Then, H"~(S) = 0, where S is the set

S={x€Bq:lim inf][ o | [Duly) — ][ Du(z)dz
r—0 BT(I) Br(m)
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Proof. As the statement is local, we can assume that v is defined in By. We start with a preliminary
estimate. Let |h| <  and ¢ be a smooth cut-off function of B; inside Bp. Then, (1.1) implies:

/B (G(Du(z + h)) — G(Du(x)), Dlp()(u(z + h) — u(x))])dz = 0.
Routine calculations and (4.1) then yield

/ o(|Dulz + h) — Du(x)|)dz < / co(|Du(x + h) — Du(z)|)dz
B Bs

3
2

< / |[Do||u(x + h) — u(z)||G(Du(z + h)) — G(Du(z))|dx (4.3)

B2
< C|h|/B |Do||G(Du(z + h)) — G(Du(z))|dz < Clh|D(|h]),
for C = Lip(u) and
D(#t) = sup / De||G(Du(z + b)) — G(Du(x))|de.
h:|h|<t J B2

Observe that
lim D(t) = 0. (4.4)
t—0

We now turn to our main goal, i.e. showing that H"~1(S) = 0. We notice that

SCUUS,m:UU m E,ru (45)
Du(y) — ]i ( )Du(z)dz

p>1m=>10 p=21m>100<r<t
1
dy > —».
p
Let us recall that H"~1(E) = lim,_,o H* 1 (E), where, for r > 0,

Ep,ri{zeBlz][ a(
B, (x)
HY(E) = inf {Z diam(C;)" ™' : E C U C;,diam(C;) < r}

i=1

where

see [21, Definition 2.1]. Our definition differs from that of [21, Definition 2.1] by a constant factor, which is
anyway irrelevant for what we need to show. We claim that:

hm 7—[5 YE,,)=0. (4.6)
If this holds, then H"~1(S) = 0, since
HE T (Spm) < HETH(E,,), forall r < % (4.7)
and again by [21, Definition 2.1]:

(1647 |

0 m HE (Spm) = H* " (Spm).

7—>O

The o-subadditivity of H"~!, [21, Theorem 2.1, Claim # 2], and (4.5) would then conclude the proof. We
are only left to show (4.6). To this aim, pick any = € E, . Then, monotonicity and convexity of o imply:

119 = ]{gr(m y ( Duly) - ]{arm ) W= ]{3 (@) ][ 7([Duty) = Duz)) dudz
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Hence there exists ¢ = ¢(n,p) > 0 such that for all a € B,.(z):
cp)<f o o(Duly) - Dula))dyd
Bzr(a) Bzr(a)

In the next lines, ¢(n, p) may decrease, but for the sake of brevity we will not denote it differently. Integrating
over every such a and changing variables, we see that:

rc(n, p) < /T(m) ]i% ]iw o (|Du(y + a) — Du(z + a)|) dydzda (4.8)

As r is fixed and E, . C By, we can cover E,, with finitely many balls B, (z;) centered at {z;}Y, C E, .
From Vitali’s Covering Theorem, [21, Theorem 1.24], we find a subset of centers x;,, ..., z;,, such that

N M
Epr C|JBr(wi) € | Bsr(wi,)  and  By(wi,) N Bp(wi,) =0 if j # k. (4.9)
i=1 j=1
Let E = ij:l By(z;;). Summing (4.8) over this subset of centers, we obtain

Mr™e(n,p) < /E]i ]i o (|Du(y + a) — Du(z + a)|) dydzda (4.10)

For any y, z € Bs,, and since 10r < 1, we get

/ o (|Du(y + a) — Du(z + a)|) da < / o (|Du(y + a) — Du(z + a)|) da.
E By

Changing variables and renaming z — y = h, we finally obtain

J

for a dimensional constant C. Combining this inequality with (4.10), we infer that

(4.:
o (|Du(y + a) — Du(z + a)|) da < /B‘ o (|[Du(a + h) — Du(a)]) da Sg) C|h|D(|h]) < CrD(4r),

Mr"=t < C(n,p)D(4r). (4.11)
Therefore, from (4.9) and (4.11) we infer
M (4.11)
HE N (Epy) <Y diam(Bs,(z;,)" " = (10)" ' Mr"™' < C(n,p)D(4r),
j=1
for a possibly larger constant C(n,p). This and (4.4) show (4.6) and conclude the proof. O

4.1. Proof of Theorem B. Let w solve (1.8). Writing w = (u,v), by Proposition 2.2 we can find a
monotone field G : [Du] — R? fulfilling (4.1) such that u solves (1.1). To show Theorem B we prove that
S¢ C Reg(w). Let then zp € S¢. This means that there exists a sequence r,, — 0 such that

lim][ o | |Duly) — ][ Du(z)dz
n BTn (2?0) Bml (xU)

We may assume, up to a non-relabeled subsequence, that JCB,. (o) Du — a € R?. Up to considering another

) dy =0. (4.12)

non-relabeled subsequence, we can assume that wy., 4, recall (1.13), converges locally uniformly and, thanks
to Theorem 1.1, strongly in WI})’Cl t0 Woo = (Uno, Uso ). Now the strong convergence and (4.12) imply that
Duy, = a on By. From (1.9)-(1.6)-(1.14), we infer that Dws, = A in Bp, where A € K is the only matrix
in K whose first row is a. Hence wy, is differentiable at 0, and x¢ € Reg(w).
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5. THEOREM C: MONGE-AMPERE MEASURE ASSOCIATED TO SOLUTIONS OF ELLIPTIC PDES
This section is devoted to showing Theorem C. For u,v € W12(By), we define the distribution
1
D(u,v) = ~1 div(div(JDu ® JDv + JDv ® JDu)), (5.1)

)

where J is defined in (2.6). Recalling (2.1), if u,v € W22, a direct computation shows that D(u,v
1(D?u, cof D?v), so that D(u,u) = det(D?u). Theorem C follows from Theorem 5.1 and Corollary 5.

Theorem 5.1. Let K C R**2 fulfill (1.9),  C R? be open, and let w = (u,v) € Lip(Q, R?) be a solution
to (1.8). Define the symmetric matriz of distributions

. { D(u,u) D(u,v)
D(w) = ( D(u,v) Dlu,v) ) (5.2)

Then, for any ¢ € C(Q) with ¢ > 0 everywhere,
D(w)(p) < 0 in the sense of quadratic forms.

Thus, D(w) is a locally finite measure on Q with values in the set of nonpositive semidefinite symmetric
matrices, Sym™ (2).

Proof. We can assume 2 = B;. We only need to show that the distribution D(u,u) is a non-positive
measure. Let us show how to conclude the proof assuming this claim. Consider w = wA, for A € R2%2 with
det(A) > 0. Then, Dw € K = AT K, which fulfills (1.9), and by the claim applied to @ we deduce that:

D(au + b, au + bv) = a*D(u, u) + 2abD(u,v) + b*D(v,v) <0, Va,b € R,

which would conclude the proof. Let us show the claim. By Proposition 2.2 we have that u is a Lipschitz
solution to (1.1) with G € C°(R?,R?) satisfying (1.5). By [35, Lemma A.4], u is a strong H' limit of
smooth functions u. solving

div(G®(Du)) = (DG*(Duf), D*u®) =0, (5.3)

where G¢ are smooth fields satisfying (1.5) with o(¢) = c.t? for some c. > 0, hence DG® + (DG?)T > 2¢..
This and (5.3) imply that D(u®, u®) = det(D?*u) < 0 in D'(By). By the strong H! convergence provided
by [35, Lemma A.4], we deduce the same for D(u,u). O

Corollary 5.2. Let K C R?*2 fulfill (1.9), and let w = (u,v) € Lip(B1,R?) be a solution to (1.8). Consider
the matriz-valued measure D(w) defined as in (5.2). Factorize it as a D(w) = Pu, where p is a finite,
positive measure on By, and P € L (By,Sym™ (2); ). Then, for any we € B(w)(xg), recall (1.14),

D(weo) = P(xo)p({xo})do, (5-4)
i-e. D(woo) = P(zo)p({zo}) if p({zo}) # 0 and D(wee) = 0 if p({zo}) = 0.

Proof. Recalling (1.13), by definition we = lim,, wy, ., for a sequence r,, — 0, where the convergence
is locally uniform and in W\ for all p € [1,00) in R?, see Theorem 1.1. Take any ¢ € C°(R?) and set

r—Iq

on(z) =9 ( - ) . Notice that ¢,, converges pointwise to 0 in {z¢}¢ and to ¢(0) at xg. On one hand:
lim D(w)(1) = Dlwac) (¢). (5.5)
because of D(w)(¢y) = D(we, 1, )(¢) and the strong W2 convergence of wy, ., t0 ws. On the other hand:
Dw)(en) = | pnlo)Pla)di(a),
1

so that dominated convergence and (5.5) conclude the proof. (]
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6. THEOREM D: REGULARITY OF INCLUSIONS INTO CURVES

In this section we show Theorem D. The proof is quite long, so it is useful to split it into steps.
Throughout, we denote by I' the C! curve fulfilling (1.9) for which, as in Theorem D, w solves

Dw eT a.e. in Q. (6.1)

As some results depend on the global geometry of the domain, it is convenient to consider a general open,
connected, simply connected set 2 in (6.1). We let I' = ~(I) for some I = [a,b] or R/LZ and v € C*(I,R?*?)
a homeomorphism onto I with |7/| > 0 on I. The proof will be split into steps:
e First, in §6.1, we show that, for any a € R?, ¢ = (a,w) is a viscosity solution in the sense of [10] to
two Hamilton-Jacobi equations simultaneously: +f(D¢p) = 0, where f depends only on I" and a;
e next, in §6.2 we will reduce the proof to the case where rank(y/(t)) =1, for all ¢t € I;
e §6.3 considers a special case, the one where I" is graphical, see the special form (6.5). The main
result of that subsection is that, for such curves, solutions to (6.1) are everywhere C*;
e In §6.4, we deduce as a consequence the partial regularity result for general curves I';
e The fifth and sixth step, contained in §6.5-6.6, are devoted to show that w is an entropy solution
to Dw € I and to deduce from this the structure of the singular set, respectively.

Theorem D is then a direct consequence of Corollary 6.3, Lemma 6.4, Propositions 6.13-6.17 and Lemma 6.18.
6.1. Step 1: Viscosity properties. We wish to establish the following viscosity-type property.

Proposition 6.1. Assume K C R?*2 s compact and satisfies (1.9). Let w € Lip(©2,R?) solve Dw € K
a.e. and define, for any a € R?, ¢ = w-a. Then, ¢ is a strong viscosity solution of the differential inclusion
Dy € aK, i.e. if ( € CY(Q) is such that p — ( has an extremum at x¢ € €, then D{(xq) € aK C R2.

Let us first recall the following properties of probability measures on K.

Lemma 6.2. If K C R**2 satisfies (1.9), then for any probability measure p supported in K we have

Alp) = /det(X)du(X) — det (/Xdu( > w /)X /Yd,u dp X)) (6.2)
for some nondecreasing function w: [0,00) — [0,00) such that w(0) =0 and w(t) > 0 for all t > 0.

Proof. This proof is essentially contained in [54, Lemma 3]. Indeed we have:

// det(X = Y) du(X)du(Y // det(X) + det(Y) — (X, cof(Y))) du(X)du(Y)

—2/det ) du(X </Xdu cof(/Yd,u >>=2A(u).

Thus A(p) > 0, with equality if and only if © ® p is supported on the diagonal, which is equivalent to
being a Dirac mass. Then one can take w(t) to be the minimum of the weak-* continuous function A over
the weak-+ compact set of probability measures p on K such that

J1x = [ yaur)P duce) = v O

Proof of Proposition 6.1. If a = 0 there is nothing to show. If a # 0, then we can write a = e; @, for some
Q € R?*? with det(Q) > 0. The map @ = wQ satisfies Do € K = QTK, and K still satisfies (1.9), so it
suffices to prove Proposition 6.1 for a = e;. Letting, as usual w = (u, v), we then wish to show the property
for ¢ = u. Let us notice that, applying the previous observation with a = +ey, it suffices to consider
the case where the extremum of v — ¢ is a minimum. As a further simplification we can, without loss of
generality, assume that such minimum point is at o = 0, that «(0) = {(0), and that the minimum is strict.
Indeed, if the latter is not satisfied, then we can simply replace ¢ by (.(z) = ((z) +¢|z|? for 0 < e < 1.
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Thanks to the previous reductions, we now fix ¢ € C'(B;) such that u — ¢ has a strict minimum at 0,
and we let K1 = 7 (K) C R?, as in Proposition 2.2. To show D((zg) € K1, we follow the strategy of [18,
§4.2]. For small § > 0, we consider the open set 25 CC Q given by the connected component of {u— ¢ < §}
which contains 0. Denote by vs and ugs the following probability measures:

vs = 1o, dz and ps = (Dw)yvs .

1
€25
Notice that vs is a probability measure on 2, while ug, its pushforward through Dw, is a probability
measure on K. Since u — ¢ — 6 = 0 on 9, the divergence theorem and curl(Dv) = 0 imply, respectively:

/al(u—C—é)dug :/82(u—§—5)dV5=O and /32v81(u—g“—§)dyg:/811)62(u—(—5)dug. (6.3)

From these two identities we readily infer that:

Aps) 2 /det(Dw) dvs — det (/Dw d1/5> - /321)(({9147/31Cdug) falv(azgf/agdw) dvs .

Since ¢ € C*! and diam(Qs) — 0 as § — 0, we deduce A(us) — 0 as 6 — 0. Notice that the properties of w
in (6.2) ensure that if w(ty) — 0, then t;, — 0, for any sequence t; > 0. Thus, A(us) — 0 and (6.2) imply:

/‘Du(m) - /Du(y) du(;(y)rdyg(x) —0 asd—0.

Since Du € K; a.e. and [ D({dvs = [ Dudvs by the first equation of (6.3), we infer

d(/DCdVg,Kl) —0.

As K is closed, D¢ € C°(Q,R?), lims_,o diam(€s) = 0 and 0 € Ns>082s, we conclude that D¢(0) € K;. O

It is important to note that the viscosity property established in Proposition 6.1 is very strong: for
any continuous function f: R? — R that vanishes on aK, the function ¢ = w - a is a viscosity solution of
f(Dyp) =0, but also of —f(Dy) = 0. If f is strictly convex, this already implies C! regularity.

Corollary 6.3. Let K C R?*2 be a compact set fulfilling (1.9). Assume that there exists a € S' such that
aK C R? is contained in the boundary of a strictly convex open set. Then any w € Lip(B1,R?) solving
(1.8) is C' in By.

Proof. A strictly convex open subset of R? is the sublevel set of its gauge function with respect to any
interior point, see e.g. [4, Lemma 1.2], so aK is contained in the zero set of a strictly convex Lipschitz
function f: R? — R. We assume without loss of generality that a = e;. According to Proposition 6.1, the
function ¢ = wy is a viscosity solution of f(D¢y) = 0, and so is ¢(x) = —p(—=z). By [5, Theorem 5.3.7] this
implies that both ¢ and @ are locally semiconcave in the sense of [5, Definition 2.1.1], hence ¢ is both locally
semiconcave and locally semiconvex. We infer that ¢ is C! by [5, Theorem 3.3.7], and finally that w is C*
since the differential inclusion Dw € K gives Dws as a continuous function of Dw;, see Proposition 2.2. [

6.2. Step 2: Reduction to degenerate curves.

Lemma 6.4. If w € Lip(Q2, R?) satisfies (6.1), then either Dw is constant in By or Dw € T a.e., where
I = (1) for some I, = [a.,bs] or R/LZ and det(v') =0 on I,.

Proof of Lemma 6.4. Thanks to the unique continuation result of [19], see [37, Proposition 3.1] and
Remark 6.5, Dw is either constant in € or takes values into the degenerate part I'y = v({det(y") = 0}). We
can assume that we are in the latter case. According to Theorem 1.3, Dw takes values at almost every
point in one single connected component C of I'y. The required interval is then I, =~~1(C). O
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Remark 6.5. Note that [37, Proposition 3.1] is stated for C? curves. The results of [37] are restricted to C?
curves for other reasons, but [37, Proposition 3.1] relies on [19], which does not require any smoothness, and
on [36], where the proof is written for smooth curves, but works for C! curves modulo minor adaptations.

Thanks to Lemma 6.4 we assume from now on, in addition to (1.9), that K = I" = ~(I) for some
I =[a,b] or R/LZ and v € C*(I,R?*2) is a homeomorphism onto T' with

|7'| > 0 and det(y") =0 on I. (6.4)

6.3. Step 3: Degenerate graphical curves. In this subsection we assume that I = [a,b] and that T is a
graph over one of its four components. Without loss of generality, we assume that:

_( )t
’y(t)—(_q(t) Tl(t)) fortel, (6.5)

for some f,n,q € C(I) satisfying, thanks to Lemma 6.4, the degeneracy condition det(y") = ¢’ —n'f’ = 0.
This, together with the ellipticity condition (1.9), implies that f cannot be affine on any open interval.

Proposition 6.6. If w: Q — R? satisfies Dw € T a.e. in Q, then w is C', and Dw is constant along
characteristic lines directed by (1, f'(Oawn)), if w = (w1, ws).

Proof. Let h = w;. By Proposition 6.1 h is a viscosity solution in € of the Hamilton-Jacobi equation
O1h + f(92h) = 0. This implies that uw = doh is an entropy solution of the scalar conservation law

Ou+02f(u) =0, (6.6)
see e.g. Lemma 6.7 below. In other words, all entropy productions of w are nonpositive distributions:

01A(u) + 05 B(u) <0, for all A, B € C*(R) such that B’ = f'A’.

Since w(x) = —w(—=x) satisfies the same differential inclusion, the function 4(x) = u(—=z) also has this
property. As a consequence, all entropy productions of u are both nonpositive and nonnegative:
01A(u) + 0:B(u) =0 in D'(Q), for all A, B € C*(R) such that B’ = f'A’. (6.7)

Fixing any v € R and continuous p with support in (0,1) and fol p = 1, we use the previous equality with

Ap(t) = / hpks) s, Bi(t) = L F(s)AL(s) ds.

It is not hard to check that Ag(t) — 15,y and By (t) — f'(v)1fs,) forallt € R as & — oo. By dominated
convergence, we deduce that the indicator function x.,(z) = 1y(z)>v) solves the free transport equation

61)(1) + f’(v)(?ng =0 in 'D/(Q) y (68)

for all v € R. This is the kinetic formulation [39] associated with the scalar conservation law (6.6), in
the case of zero entropy production. The fact that f cannot be affine on any open interval ensures that
for any v1 < vy € [a,b] one can find v; < 1 < ¥y < vy such that (1, f/(¢1)) and (1, f'(92)) are linearly
independent in R?. This property, combined with the free transport equation, implies that u is continuous,
see e.g. [17, Proposition 6]. We sketch here the argument for the readers’ convenience: to prove e.g. upper
semicontinuity it suffices to show, for all v; < vs, the existence of 0 < ¢ < 1 such that

u(zo) <vi = wu<wvya.e. in Bs.(z0),

for any Lebesgue point g € 2 with B,.(zg) C . (Upper semicontinuity follows thanks to the fact that ¢ is
independent of the Lebesgue point xq, see [17] for details, and lower semicontinuity is proved in the same
way.) To prove this implication, note that z( is a Lebesgue point of x5, with value x3, (x9) = 0. Using
(6.8) we deduce that all points in the line interval T = [z; + R(1, f'(%1))] N B,(20) are Lebesgue points of
X#,, with value 0. As 03 > 01, they are also Lebesgue points of x5, with value 0, and using again (6.8)
we see that all points in the set [I + R(1, f/(#2))] N B,(x0) are Lebesgue points of y;, with value 0. Since
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(1, f/(01)) and (1, f'(02)) are linearly independent, this set contains Bs,(zo) for some § € (0,1) depending
on 01,0y (hence only on v1,vs), and we conclude that u < vq a.e. in By, (x9).

The fact that u is constant along the characteristic lines directed by (1, f'(u)) is also a consequence of
the free transport equation. In fact, any continuous weak solution of (6.6) has this property, see [11]. We
conclude that Dw = 7(u) is continuous and constant along characteristics, as wanted. O

Lemma 6.7. If f € C1(R), Q C R? is open and h € Lip(Q) is a viscosity solution of
O+ F(9,h) =0, (6.9)
then uw = Oyh is an entropy solution of dyu + O[f(u)] = 0.

Proof. Let L = ||0yh|| () and C = max|_r, 1| f’| . To show that u is an entropy solution it suffices to do
so in a neighborhood of any (to,zo) € Q. Pick T > 0 such that [to —T/2,t0+1/2] X [xg — CT, zo +CT] C Q.
Translating the coordinates, we assume to — 7/2 = 0 and zp = 0. We choose a bounded, compactly
supported, L-Lipschitz function hg: R — R such that ho(z) = h(0,z) for z € [-CT,CT], and we
consider the unique viscosity solution h: [0,7] x R — R of (6.9) in [0,7] x R, see for instance [10,
Theorem VI.2]. Thanks to the local comparison principle [10, Theorem V.3] it coincides with h in the cone
C={0<t<T,|z| <C(T —t)}. Moreover h can be obtained as h = lim h., in the sense of distributions,
of the vanishing viscosity approximation h. solving

Ohe + f(8phe) =ed? h. in[0,T] xR, and h(0,-)=hy inR. (6.10)
Thus the function @, = d,he solves

Olie + O0;[f ()] = €0gatic in [0,T] xR, and @.(0,-) =19 inR, (6.11)

with @y = dyho. Thanks to [12, § 6.3], we have @, — @ as distributions, where @ is the unique entropy
solution such that @(0,-) = @p. Moreover we also have @, — 9,h as distributions, and since h = h in C we
deduce that @ = u in C, so u is an entropy solution in C, and therefore in a neighborhood of (tg,xz¢). O

Remark 6.8. Lemma 6.7 is surely well-known to experts, and is in fact an "if and only if" statement. For
brevity, we only recalled the argument to show the implication we used in the proof above.

6.4. Step 4: Partial regularity. We infer a regularity result under small pointwise oscillation. Recall
that we work, without loss of generality, with a curve I satisfying (6.4).

Proposition 6.9. Let I satisfy (1.9) and (6.4). Then, there exists e = e(I') > 0 such that, if w € Lip(2, R?)
solves (6.1) and diam([Dw](Q)) < e, then w € C1(2,R?), and is constant along characteristic lines: for
any x ¢ Sing(w), the matrix Dw 1is constant on the connected component of (x + Rv) N Q containing x,
where v is any vector v € ran(cof M) for M € Tpy, )T

Proof. There exists € > 0 such that, for any M € T, the intersection I' N B (M) is a graph over one of its 4
components. Therefore the small oscillation assumption diam([Dw](B1)) < € allows to assume that I is
such a graph. Possibly permuting coordinates in the domain and in the target, we may moreover assume
that T is a graph over its (1,2) component as in (6.5). We can then apply Proposition 6.6 and deduce that
w = (wy,ws) is C! in Q, and constant along a segment directed by (1, f’(d2wy)) and containing x. A direct
calculation shows that, for v as in (6.5) with ¢’ = f'5/, the range of (cof 7/(¢))7 is the line spanned by
(1, f'(t)), so this is consistent with the characteristic lines described in the statement of Proposition 6.9. O

Note that, since (6.4) holds, the characteristic direction v = ¥(t) € ran(cof 7/(¢))T is uniquely determined
in the projective line RP*. One can also check that it depends continuously on ¢.

Lemma 6.10. There exists a unique continuous map ¥: I — RP' such that ran(cof v/ (t))T = RU(t) for
allt € R. Moreover ¥ is not constant on any open interval.
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Proof. The continuity of ¥ is contained in [37, Lemma 5.1], we provide the proof for completeness. Without
loss of generality we assume that « is an arc-length parametrization, that is, |y/| = 1 on I. This, together
with the degeneracy det(y") = 0, implies that a = [y']y and b = [y'];; satisfy |a| = |b| = 1/2, compare (2.3).
As continuous maps from I to 3S', they can be written as 2a = €', 2b = ¢??, for some liftings o, 3: I — R.
These liftings are continuous in the case I = [a, b], but may fail to be periodic in the non-simply-connected
case [ = R/LZ, so that they may not be continuous maps from I to R. However, in this case they can still
be identified with continuous functions on R which satisfy a(t + L) = a(t) + 2k7, 8(t + L) = 5(t) + 2¢r for
some k, ¢ € Z. Direct calculation then shows that

cof ¥/ (t) =ie' 2 ®ie =z |

so ran(cof 4/)T = RV, where ¥ = iei”= is continuous from I to S! in the case I = [a, b], and identified with
a continuous map from R to S! in the case I = R/LZ. In this latter case it satisfies (¢ + L) = e?“~R7(¢),
so W is continuous when seen as a map into RP'. Moreover, if ¥ is constantly equal to ¥y on an open
interval (s,t), then integrating 7/ over (s,t) we find that ran cof(y(t) — v(s))T C R¥y, in contradiction
with the ellipticity assumption (1.9). O

Finally, Proposition 6.9 and our previous analysis imply the following partial regularity result.
Proposition 6.11. Let w solve (6.1). Then Sing(w) is closed, H'(Sing(w)) = 0 and w € C*(Q \ Sing(w)).

Proof. Thanks to Theorem A and Theorem B, it suffices to show that the set Reg(w) defined in Definition 1.5
is open. Let € > 0 be as in Proposition 6.9. Thanks to Theorem A, if x € Reg(w) then there exists
§ = () > 0 such that diam([Dw](Bs(x))) < &, so w is C! in Bs(x), hence Bs(z) C Reg(w). O

6.5. Step 5: Entropy productions. In this section and the next one, the goal is to analyze the structure
of the solution w to Dw € T" a.e. around singular points, thus completing the proof of Theorem D. Recall
that we work under assumption (6.4) for I".

Heuristically, one can expect a rigid structure of w near singularities because of the local constancy of
Dw along characteristic lines outside Sing(w) combined with the fact that generic lines do not intersect the
H!-negligible singular set Sing(w), i.e. Propositions 6.9-6.11. One difficulty is that characteristic lines are
not generic since their direction depends on the value of Dw, so it is not at all obvious that their typical
behavior is not to intersect Sing(w). This difficulty can be overcome by taking inspiration from the kinetic
formulation (6.8) of the scalar conservation law (6.6) used in the proof of Proposition 6.6. There, the
kinetic variable v is decoupled from the value of the solution u(x), and for generic v the line 2 + R(1, f/(v))
will not intersect a H!-negligible set. Since the kinetic formulation (6.8) is related to the vanishing of
entropy productions it becomes natural to introduce similar tools here. We refer the reader to [50] for a
systematic treatment of the link between entropies and kinetic formulations of conservation laws.

The notion of entropy production for the differential inclusion into I' = v(I) has been used already in
[37]. It stems from the system of conservation laws div cof (Dw) = 0 satisfied by the map Dw: Q — I". If
Duw is O, an application of the chain rule provides a whole family of conservation laws div ¥ (Dw) = 0, for
any vector field ¥ € C1(I', R?) whose tangential derivative 9, (y(t)) € R? is orthogonal to the kernel of
cof 7/ (t) for all t € I. These vector fields ¥ are called entropies and we denote their class by

&r = {2 e C'(I,R?): 0,%(A) € (ker(cof M))" =ran(cof M), VA €T, M € T4I'\ {0}}
={X e CY(T,R?): (Z07)(t) € (ker(cof 7/ (t)))* = ran(cof v'(t))", Vt € I'}.
If w is just a Lipschitz solution to Dw € I' a.e. then there is no direct reason for the entropy productions
div ¥(Dw) to vanish. The first step is to show that this actually happens, as for smooth solutions.

Proposition 6.12. If w € Lip(Q,R?) satisfies (6.1), then divX(Dw) = 0 in D' () for all ¥ € Es.
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Proof of Proposition 6.12. Recall from Proposition 6.11 that w is C'' outside a closed H!-negligible set
Sing(w). We fix 3 € & and start by showing that, for any « € Q \ Sing(w) there exists r > 0 such that
divE(Dw) = 0 in D'(B,(z)). Since Dw is continuous in Q \ Sing(w), we may choose r > 0 such that
Dw(B,(z)) is contained in a portion Iy = v, (I.) C T where v* can be written as in (6.5), without loss of
generality. With that notation, the kernel of cof v, (t) is spanned by the vector (—f’(¢),1), and the condition
0:2(y) L ker cof (') therefore implies 0,35(y) = f/0;X1(7) on I, that is, (33 0v.) = f'(X1 074)" on L.
Now recall from the proof of Proposition 6.6 that u = daw; solves (6.7), namely

O1A(u) + 9,B(u) =0 in B,(z), for all A, B € C*(R) such that B’ = f'A’.
Applying this to A = %1 oy and B = X5 0, and noting that X(Dw) = X(y(u)), we get divX(Dw) =0 in

B,.(x). This is valid for any = € Q\ Sing(w) and some r = r(z) > 0, hence divX(Dw) = 0 in D’'(Q\ Sing(w)).
Since X(Dw) € L*°(2) and H*(Sing(w)) = 0, [27, Theorem 4.1(b)] yields div X(Dw) = 0 in D'(Q). O

Through this Proposition, we could in principle apply the strategy of [37, §7] to conclude the proof.
However, in [37] the curve T is assumed to have C? regularity, and some nontrivial adaptations are required
to deal with our lower C! regularity.

6.5.1. The case of a nonclosed curve. In the case of a nonclosed curve, I = [a, b], Proposition 6.12 implies
quite directly the continuity of Dw, the argument being essentially the same as the one of Proposition 6.6.

Proposition 6.13. Assume I = [a,b] and w solves (6.1). Then w is C* in .

Proof. Since I = [a, b], we can lift the map ¥ from Lemma 6.10 to a continuous map from I to S!, which we
still denote by W. For any « € [a, b], the map X®: ' — R? given by X% o y(t) = U(a)1{s>q) is a pointwise
limit X% = lim ¥; of entropies ; € &r. One can see this for instance by setting:

t
Y =%077Y,  with £;(t) = / pi(s —a)¥(s)ds,

where p;(s) = jp(sj) for some continuous nonnegative function p with support in (0,1) and unit integral.
Let §: Q — I be such that Dw = ~(#). By Proposition 6.12, we have divX;(y(#)) = 0 in D’'(2) for all
j > 1 and therefore, by dominated convergence, div X%(~(0)) = 0. This amounts to the kinetic formulation

U(a) - D(1fps0) =0 in D'(Q), for all o € [a,b]. (6.12)
Recall from Lemma 6.10 that ¥ is not constant on any open interval. Thus, for any ay < oy € [a, b], there
exist @1 < &1 < @y < ag such that U(a;) and ¥(as) are linearly independent in R2. Combining this with

(6.12), we conclude that 6 is continuous by [17, Proposition 6] (whose argument is recalled in the proof of
Proposition 6.6), and hence so is Dw = (). O

6.5.2. The case of a closed curve. We focus now on the case I = R/LZ. The first step is to observe, as in
[37], that the map v = ¥(#): Q — RP', which indicates the direction of characteristics, is a zero-state of
the unoriented Aviles-Giga functional, as defined in [25].

Lemma 6.14. The map v satisfies

div®(v) =0 V® e C'(S',R?) even such that %@(e“) e =0 VteR. (6.13)
Proof. Denote U(t) = e™(®) with ¢» € C°(R) such that (¢t + L) = ¢(t) + kr for some k € Z. Define also
A d
by ity it _-P it
() = - Sap(e)

so that A € C°(S!) is odd since ® is even. If I' is C2, then ¥ and v are C!, and we may simply apply
Proposition 6.12 to ¥ = ® o ¥ o y~1, which satisfies

(Soy)(t) = (B o W) (t) = A D)y (t)e*® |
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and belongs therefore to & by definition of ¥ = ¥, Given that I' is merely C'!, we cannot use this direct
calculation. It would be natural to argue by approximation, but it is not clear how to construct a sequence
of entropies ¥; € &r converging pointwise to . We rely instead on the removability of Sing(w) as in
Proposition 6.12 and on the kinetic formulation obtained in Proposition 6.13 for nonclosed curves. Thus, as
in Proposition 6.12, it suffices to show that, for fixed z € Q \ Sing(w):

div®(v) =0, in D'(B,(z)) for some r = r(z) > 0. (6.14)

We choose r > 0 small enough that Dw(B,(x)) C v([a,b]) for some a < b < a + L such that ¥ admits
a continuous lifting from [a,b] into the arc A = {e®: 51 < s < so} for some s1 < 53 < 51 + 7. We write
U = e™ on [a,b], with ¢ € C°([a,b]) such that s; < 1) < s3. Then, by the proof of Proposition 6.13, the
function 0: Q — [a, b] such that Dw = ~(0) satisfies (6.12), namely

div (U(a)lipsay) =0 in D'(B.(x)), forall a€ [a,b].

Similarly, we get that ¥(a)lg<sy and ¥(a)lig<qy are divergence-free in B,.(x). Moreover, we can assume,
without loss of generality, that [{¢ = a} U {0 = b}| = 0. These observations lead to

div (§1{a<o<py) =0 in D'(B.(z)), forall{ € Aand a,B € {a,b} UT ' ({¢}), a < B. (6.15)

Given s € (s1,52) and & = €'*, the open set {t : ¢(t) > s} C (a,b) is a countable union of intervals («;, 3;)
with o < B8 € {a,b} UP~({¢}). By dominated convergence and (6.15) we infer

div (e”1(y@)>sy) =0 in D'(B.(x)), Vs € (s1,s2). (6.16)

Moreover for s € (s1, $2) we have

. . (92 . .
D) = d(e"1) +/ Ae ) reqe”dr,

S1

so we deduce, for any ¢ € C}(B,(z¢)) using Fubini’s theorem,

(div ®(v), ) = / )\(ei‘r)<div (eiT1{¢(9)>T}) Q) dr (626) 0,

S1

thus concluding the proof. O

Lemma 6.14 allows us to use [25, Theorem 6.5], which we recall for the reader’s convenience.

Theorem 6.15 ([25]). Ifv: Q — RP' satisfies (6.13), then it has the following properties.

(1) The map v is locally Lipschitz in Q\ S, for a locally finite set S, C Q.
(2) For x € Q\'S,, v =v(z) on the connected component of [x + Ru(x)] N (Q\ S,) containing x;
(8) if B = B,(xg), Bar(x0) CQ, and 2BN S, = {xo}, then either
() v(w) = V¥o(a) = =22 in B\ {ao};
(b) or there exists & € St such that
o v(z)=V"(z) in {z € B: (x — x0,&) > 0};
e v is Lipschitz in {x € B: (x — z0,&) < 0}.

Remark 6.16. Here and in what follows we implicitly identify a map v: Q — RP' = S'/{41} with any
lifting o: Q — S! such that v = {£}. In [25, Theorem 6.5], this result is stated for the map ©* which
uniquely determines v and still satisfies (6.13). Theorem 6.15 is a direct translation of that statement,
taking into account the aforementioned implicit identification.

Proposition 6.17. Assume I =R/LZ and w solves (6.1), for T' fulfilling (1.9). Then, the field v = ¥(0)
of characteristic lines is continuous in Q\ S,, where S, is locally finite. Moreover, S, = Sing(w).
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Proof. Lemma 6.14 and Theorem 6.15 imply that the field v of characteristic lines is continuous in 2\ S,,
where S, is locally finite. Let us show that S, = Sing(w). Clearly S, C Sing(w), since v = ¥ o y~1(Dw)
and ¥ oy~ ! is continuous by Lemma 6.10. To show the other inclusion we fix zo € Q \ S, and argue that
xo must be a regular point of w. Since Dw = v(6) and v = ¥U(#) we can write, for all § > 0,

[Dw](Bs(x0)) € v(¥~"(A;)), where A5 = v(Bs(x0))-

By continuity of v at zg, (559 As = {v(x0)}, and hence [Dw](z0) C ¥(¥~*({v(x0)})). By Theorem 1.3
and (1.9) we infer that [Dw](z¢) is connected, so it is contained in a single connected component of
(¥~ ({v(xg)})), which must be of the form ~(C) for a single connected component C of ¥~1({v(xq)}) C I.
Thus C is an interval, and since W is not constant on any open interval by Lemma 6.10, we get that C is a
singleton, thus diam([Dw](z)) = 0. This yields zy € Reg(w) and concludes the proof. O

6.6. Step 6: Structure of the singular set. Elementary geometric considerations give a quite strong
constraint on the structure of the characteristic lines. To see this, let 8: Q — T be such that Dw = (),
and let v = Vo 0: Q — RP', where ¥ is the characteristic direction defined in Lemma 6.10. The map v is
continuous in  \ S, and locally constant in its own direction.

Lemma 6.18. If Q C R? is convex and v: Q — RP' is continuous and locally constant in its own direction
in Q\ Sy, for a locally finite set S, of discontinuity points, then S, contains at most two points, and for
any xo € S, there exists & € St such that v(zg + x) = x/|x| for all x € Q — zo with z - & > 0.

Proof. From Theorem 6.15, we know that there exist § > 0 and &, € S* such that

v(z) = Voo () = — 20

= | for all x € Bs(xg) with (x — xg) - & > 0. (6.17)
— %o

The following crucial property is used to show (6.17) and we will make use of it in our proof as well: due to
the convexity of €2, for any = # y € 2\ S,, if the characteristic lines = + Rv(z) and y + Ru(y) intersect at a
single point z € Q, then at least one of the segments [z, z] and [y, z] contains a singular point.

As a preliminary step in our proof, we claim that formula (6.17) is actually valid in the whole half-domain

Qo eo ={z € Qi (@ —20) - & > 0}.

By convexity of £ and local constancy of v in its own direction, this is equivalent to €2, ¢, NS, = (. Assume,
by contradiction, that there exists x1 € {23, ¢, NS,. We can choose 1 to be the closest element of S, to zo,
and hence a neighborhood of [z, z1] contains only xg,z; as singular points. Employ again Theorem 6.15
at z1: there exist 41 > 0 and & € S! such that Bs, (z1) NS, = {x1} and v = V®* in Bs, (1) N Ly, ¢, -
For small ¢ > 0 and any y € B:(x1) N Qy, ¢, such that y — 21 is not parallel to 1 — o, the segment
[y, o] contains no singular point, so v must be constant along it, that is, equal to (y — zo)/|y — 20|, in
contradiction with the form of v near ;. Hence our claim holds: (6.17) is valid in Q4 ¢,

Assume now that S, contains at least two singular points x; # x5 € S,. Then there exist &;, & € S! such
that v = V% in (), ¢, for j = 1,2. This implies in particular that the two sets {1, ¢, and {2, ¢, must be
disjoint. Consider, for j = 1,2, the two lines L; = z; + Rfj‘ which bound €, ¢,. Assume by contradiction
that there exists a third, distinct singular point z3, and let &5 € S be such that v = V®* in Q,, ¢,. Clearly,
this set must be disjoint from Q,; ¢, j = 1,2. From this, we deduce immediately that x3 ¢ L;. We notice
that if Ly = Lo, then Q = Qg ¢, UQy, ¢,. In that case, since (L1 U L2) NS, = {z1, 22}, Sy = {x1,22}. We
can therefore assume that L # Lo, so that the open set lying between them is nonempty:

U =0\ (U Ulne) #0.),

Necessarily x3 € U N S, and we can assume without loss of generality that z3 is the point in U N S,
closest to [z1,z2]. As Qg ¢, must be disjoint from Q, ¢, UQy, ¢,, 23 does not belong to [z1, z2], hence
the open interval X = [z1, 2] \ {21, 22} does not contain any singular point (since z3 is a singular point
in U closest to that segment), and x1, x5 are the only singular points in a neighborhood of the segment
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[x1,x2]. Assume without loss of generality that [z1, za] is horizontal, that 2 lies left of xo, and that x3 lies
above [x1,x2]. Hence the lines Ly, Ly enclosing U are not horizontal. For « € X | the line ¢, = 2 4+ Ro(x)
cannot be horizontal: otherwise, the characteristic line from any point above and close enough to z is
nearly horizontal, its intersection with U is contained in the regular neighborhood of [z1, 23], and intersects
the characteristic lines L; and Ly at regular points, which is impossible. Hence, each line ¢, for x € X,
intersects the horizontal line H passing through x3 at a point y(x). Since v is continuous along X, the
map z — y(z) is continuous on X. As lim, ., zex v(x) = &, y(x) lies left /right of 23 on H for x € X
sufficiently close to x1/z2. As a consequence, there exists x € X such that y(z) = x3. This yields a
characteristic segment L connecting x to x3. Set Ly = z3 + R{z)f. Observe that z € Q,, _¢, and that
LNnLs= {x3}, otherwise = € Q, ¢, and thus either x; or x5 belongs to {1, ¢,, a contradiction. Therefore,
Lc Quy, ¢y, and LN L3 = {x3}. This implies that all characteristic lines starting from z € Qy,,—¢, close
enough to xs must stay in a sector delimited by Land Ly = 25+ R{é, and must therefore intersect xs.
Hence, v = V* in B, (x3) N Qg ¢, for some small r > 0 and the same holds for Q, ¢, by the first claim
of the proof. For the same reason, v = V*3 in 2, in contradiction with the fact that {z1, 22} C S,. Thus
such x3 could not exist, and we conclude the proof. ([

Corollary 6.19. If v is as in Lemma 6.18 and Q@ = R2, then there erist s = (s1,82),t = (t1,t2),
51 € [—00,4+00), t] € (—00,+00] with 81 < t1, ta, 82 € R, and Q € SO(2) such that for x # s,t

ey i <s,
Q" v(Qx) =1 e if st <wp <ty (6.18)
ret et

Remark 6.20. Corollary 6.19 characterizes all possible entire configurations of characteristic lines with locally
finite singular set, as members of a 5-dimensional family. Special cases are the constants, corresponding to
t1 = —s1 = +oo, the single half-vortices, corresponding to (s1,t1) € ({—00} X R) U (R x {+0o0}), and the
single vortices, corresponding to (s1 — t1, 82 — t3) = (0,0).

Proof of Corollary 6.19. We distinguish three cases depending on the cardinality of S,,.

If S, = 0 then the characteristic lines cannot intersect and must then all be parallel to a single direction
Qes for some Q) € SO(2), which corresponds to the case t; = —s; = +o0.

If S, = {70}, then there exists { € S! such that v = V*0 in Qgo.e0- Writing §o = —Qe; for some
Q € SO(2) and replacing v by Qv o Q we assume without loss of generality that £ = —e;. Hence
v(x) = V*(z) for z1 < 81 = g -e1. Let so = x¢ - €2, so that g = (s1, 82). The characteristic lines starting
from any z € R? with 21 > s; can only intersect the characteristic vertical line {x; = s1} at z = x¢. So
they must either all be vertical, namely ¢; = 400, or all pass through zo, i.e. (t1,t2) = (s1,52).

Assume finally that S, = {z1,z2}. Let §; € S! be such that v = V% in Qg ¢, for j =1,2. Since these
two half-planes must be disjoint, their boundaries are parallel, hence £&; = —&;. Applying a rotation, we
assume without loss of generality that £ = —&; = e;. Then v(z) is as in (6.18) for x; < s1 and x1 > t1,
where s = x1 - e and tp, = o - e for k = 1,2. If s; = t; we are done. If s; < t1, the characteristic lines
starting from any point z € {s1 < x1 < t1} can intersect the vertical characteristic lines which form the
stripe’s boundary only at z; or z». But if such an intersection happens, then v must be a vortex in R2,
and S, contains only one element. So they must all be vertical, and we conclude the proof. (Il

7. SOLUTIONS OF DEGENERATE EQUATIONS

Let G: R? — R? a continuous and strictly monotone vector field and let u € Lip(B;) be a solution of
(1.1). In [34] it is shown that, for xg € By, any blow-up limit u., € B(u)(zo) is either affine or satisfies
Du € D=D_ND; ae,

where D1 are defined in (1.16). Recalling from Proposition 2.2 the correspondence between (1.1) and (1.8),
there is a direct reformulation in terms of differential inclusions.
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Theorem 7.1 ([34]). Let K C R**? satisfy (1.9), w € Lip(B1, R?) solve Dw € K a.e. in By, and z¢ € By.
Any blow-up limit we € B(w)(xo) is either affine or satisfies Dws, € Ky a.e., where

- o det(A — B)
= 1 2 J = N _— <
K.=K,NKz:, Kl )\>0{A€K. [l(gr]lglng L, (A-B)P )\}, (7.1)

and L;(M) denotes the j-th row of a matriz M, for j =1,2.

In this section, we combine this property of blow-up limits with Theorems A-B-C-D and structural
assumptions on the degenerate set D, or equivalently /C., in order to deduce partial regularity properties of
(1.8), or equivalently (1.1), obtaining in particular Theorem E.

7.1. Regularity threshold. For any K C R?*2, let us introduce the nonnegative number
e.(K) =sup{e > 0: (Dw € K a.e. in By and diam([Dw]) <¢) = w € C'(B1)}, (7.2)

which is the threshold for regularity of solutions of (1.8) with small gradient oscillations. With this notation,
the first statement in Proposition 6.9 can be reformulated as e, (I') > 0 for any compact connected C*
curve I satisfying (1.9). Moreover, Corollary 6.3 and Proposition 6.13 imply ,(T") = 400 if there exists
a € S! such that the projection aI' C R? is the boundary of a strictly convex open set or if ' is simply
connected. We can also reformulate partial regularity in terms of positivity of e, (K):

Lemma 7.2. Let K C R?*2 satisfy (1.9) and e.(K) > 0. For any Lipschitz solution w of (1.8), we have
that Sing(w) is closed, H'(Sing(w)) = 0 and w € C*(Q\ Sing(w)).

Proof. Thanks to Theorem A and Theorem B, it suffices to show that the set Reg(w) defined in Definition 1.5
is open. Let ¢ = e,(K)/2 > 0. By Theorem A, if z € Reg(w) then there exists 6 > 0 such that
diam([Dw](Bs(x))) < €, so w is C! in Bs(z) by definition (7.2) of ,(K), hence Bs(z) C Reg(w). O

Thanks to Theorem 7.1 and Theorem A, we can relate the regularity threshold e, of K with the regularity
thresholds of the connected components of /C,.

Proposition 7.3. For any K C R?>*? satisfying (1.9), let K. as in (7.1). Then,
e«(K) > inf {E* (C): C connected component of IC*} .

Proof. If the infimum is zero, there is nothing to show. Assume therefore that it is positive, and fix
0 < e < inf{e,(C)}. Let w: By — R? satisfy Dw € K a.e. and diam([Dw](B;)) < e. This pointwise
constraint is preserved under blow-up: for any zo € By and we € B(w)(zg) we have diam([Dweso])(B1) < e.
By Theorem 7.1, the blow-up limit we, is either affine or satisfies Dw., € K, a.e., hence Dwy, € C a.e. for
some connected component C of K, by Theorem 1.3. By definition of £, (C) this implies w., € C*(By, R?),
hence zy € Reg(w) by Definition 1.5. Thus Reg(w) = B; and £,(K) > e. O

Of course, Proposition 7.3 is only interesting if we know that the connected components of K, have a
positive regularity threshold (7.2). Thanks to Proposition 6.9, this is the case if we assume that

every connected component of K, is included in a C* curve. (7.3)

Under this assumption, every connected component C of K, is either a point, or satisfies C C I" = y(I)
for some I = [a,b] or R/LZ and : I — I' a C* homeomorphism with |y'| > 0. In the latter case, since C
is compact and connected and « is a homeomorphism, we must in fact have C = ~(J) for some compact
interval J C I. So assumption (7.3) is actually equivalent to every connected component C of K, being
either a point or a compact C! curve, which implies €,(C) > 0 by Proposition 6.9. In fact, we will see in
the next §7.2 that under assumption (7.3), the property e,(K) > 0 implies a much stronger conclusion
than that of Lemma 7.2.
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Remark 7.4. Condition (1.9) is not sufficient to ensure ,(K) > 0. Consider indeed, for any n € N,

.oo2" o1 .
fa(z) = T h(z) = —§f3(2)a w(z) = fa(2). (7.4)
Direct computations yield
n+1 zn1 1—n !

0. fn(2) = and 0z f,(2) = (7.5)

2 |zt
so that w solves (2.8) for h defined in (7.4). Through (7.5)-(2.3), we deduce that w is Lipschitz. Moreover,
for any v € S, (7.5) and (2.2) imply that

2 ‘Z|n71

Do = |20 L2 0l 25 A g (2 592 < 1. with equality if and only if (v,2) = 0
2" = |gv 3‘Z|2v =35 " gRe |Z|2v <1, with equality if and only if (v, z) = 0.
In particular, if a,b € C are such that |h(b) — h(a)| = |b — a|, we see that

(b—a,a+t(b—a))=0, forall t € [0,1].

This can only happen if @ = b, and hence we conclude that h fulfills (2.10). Since h is one-homogeneous, we
have that wq(2) = aw(z) solves (2.8) for h as in (7.4) for all & € R. Moreover Sing(w,,) = {0}, regardless of
how small « is, showing that no e-regularity theorem can hold for the PDE (2.8) for such h. In other words,
the regularity threshold (7.2) of the set K = {(a, h(a)): |a| <1} is €.(K) = 0. The problem in this case is,
in fact, fully degenerate: for h as in (7.4), passing to the equivalent formulation in terms of a monotone
field G as in (1.1) (see Propositions 2.2-2.3), we find that Dy N D_ = R2, or equivalently K = K,.

7.2. Characterization of blow-up limits. Since blow-up limits ws, are entire solutions of Dw., € C a.e.
for some connected component C of K, under assumption (7.3) we know by Theorem D that they are C*
away from at most two singular points. This statement is valid for any entire solution, but blow-up limits
have the additional property that their Hessian determinant vanishes away from the origin by Theorem C.
Using this, we establish that they have in fact at most one singularity.

Proposition 7.5. Assume (1.9) and (7.3). Let w € Lip(By,R?) solve Dw € K a.e., and xo € By. Any
blow-up limit we € B(w)(zg) can only be singular at 0 and Dwe, is 0-homogenenous.

The proof of Proposition 7.5 uses the structure of characteristic lines established in Corollary 6.19,
combined with Theorem C and the following lemma.

Lemma 7.6. Let u € CY(Bjy \ {0}) be Lipschitz, 1-homogeneous, and satisfy D(u,u) = 0 in By. If u
coincides with a linear function on By = By N {x1 < 0}, then u is linear.

Proof. Write u(re®®) = rf(0) for some f € C}(T), T = R/27Z. Recalling (5.1), D(u, u) = 0 is equivalent to
/ (D*pJDu, JDu)dx =0, V¢ € C%(By). (7.6)
By

Since JDu is divergence-free, this identity is preserved after substracting a linear function from u, so we
may without loss of generality assume that « = 0 on By, that is, f =0 on [r/2,37/2]. Choosing radial
test functions ¢(re’®) = o (r) with ¥ € C2([0,1)) such that 1’ (0) = " (0) = 0 and (0) = 1, (7.6) becomes

O:AI/T(f’(G)Qw”(r)+f(0)2W) d0rdr

r

:/Tf’(H)ZdG/Olw”(r)rdr—&—/Tf(O)QdG/Olz//(r) dr:/Tf’(G)ZdQ—/Tf(H)QdH.

As f =0 on [r/2,37/2], we see that f fulfills the equality case in Wirtinger’s inequality on [—7/2, 7 /2]
with Dirichlet conditions. We infer f(0) = al|g|<x/2 cos @ for some a € R, thus f = 0 since f is C'onT. O
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Proof of Proposition 7.5. As argued above, by Theorem 7.1 and Theorem 1.3, under assumptions (1.9)-
(7.3), the blow-up limit we, is either linear or it satisfies Dws, € I' a.e. in R?, where I' = y(I) is a compact
connected C'! curve satisfying (1.9), as in § 6. We can assume we are in the latter case, as otherwise there is
nothing to show, and for the same reason we can assume that 0 € Sing(we ), since otherwise zy € Reg(w)
and we is affine by Theorem A. Letting § = v~ 1(Dws,) and ¥ as in Lemma 6.10, we have therefore that
the field of characteristic lines v = ¥ o § must be of the form (6.18). On any subset A C R? \ Sing(w,) on
which v is constant, say v = vg, Dws, must belong to ¥~ ({vg}), a totally disconnected set by Lemma
6.10, and therefore be constant. Combining this with the structure (6.18) of the map v, we deduce that
Dw,, is either constant, or 0-homogeneous, or that it has two discontinuity points, 0 and yo # 0.

To prove Proposition 7.5 we just need to rule out the latter case. To do so, by Theorem A it suffices to
show that there exists a linear blow-up of w., at yo. Let W be any such blow-up. Due to the structure of the
characteristic lines of wy, (6.18), we infer that DW is 0-homogeneous and constant in P, = {(z,€!®) < 0}
for some e’ € S. Up to a rotation, we can assume without loss of generality that o = 0. Hence its first
component, u € C1(R?\ {0}), is 1-homogeneous and coincides with a linear function on Py. In addition,
since woo € B(w)(xo), then yo ¢ spt(D(weo)) by Corollary 5.2, and hence for the same reason D(u,u) =0
in R?. Combining this information with the structure of u we can infer from Lemma 7.6 that u is linear,
and hence yg ¢ Sing(w), a contradiction. O

If we know in addition that the regularity threshold (7.2) of K is positive, Proposition 7.5 implies
discreteness of the singular set.

Corollary 7.7. Assume (1.9), (7.3), and e,(K) > 0. Then any Lipschitz solution w of (1.8) has a locally
finite singular set Sing(w).

Proof. Let xy € Sing(w) such that Bs(xg) C 2, and assume that xo is not isolated. Then there exists
a sequence z; € Sing(w) \ {zo} such that z; — z¢. Let r; = |z; — 29| — 0 and consider the maps
W; = Wy, 2y, see (1.13). They satisfy 0,y; € Sing(w;) where y; = (z; — x0)/r; € S'. Consider a (non
relabeled) subsequence such that w; — we € B(w)(zo) and y; — Yoo € S'. By Theorem A and the
assumption e, (K) > 0 we have 0, Yoo € Sing(ws), in contradiction with Proposition 7.5. |

Combining Corollary 7.7 with Propositions 7.3 and 6.9, we deduce the following partial regularity result.

Corollary 7.8. Assume (1.9), (7.3), and that all but a finite number of connected components C of the
degenerate set K, satisfy .(C) = +o0o. Then any w € Lip(B1,R?) solving (1.8) has a locally finite singular
set Sing(w).

Finally, recalling that I' C R?*?2 has ¢, (T') = +oc if its first-row projection is the boundary of a strictly
convex open set, or if it is a compact and simply connected C* curve I' C R?*? satisfying (1.9), we see that
Theorem E follows from Corollary 7.8 and Proposition 2.2.
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