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Abstract

Let Ω be a smooth bounded simply connected domain in R
2. We investigate the existence of critical points of the energy

Eε(u) = 1/2
∫
Ω |∇u|2 + 1/(4ε2)

∫
Ω(1 − |u|2)2, where the complex map u has modulus one and prescribed degree d on the

boundary. Under suitable nondegeneracy assumptions on Ω , we prove existence of critical points for small ε. More can be said
when the prescribed degree equals one. First, we obtain existence of critical points in domains close to a disk. Next, we prove that
critical points exist in “most” of the domains.
© 2013 Elsevier Masson SAS. All rights reserved.

Résumé

Soit Ω un domaine borné lisse simplement connexe de R
2. On édutdie l’existence de points critiques de l’énergie

Eε(u) = 1/2
∫
Ω |∇u|2 + 1/(4ε2)

∫
Ω(1 − |u|2)2, où u est une fonction à valeurs complexes, dont la trace au bord est de module un

et de degré prescrit d. Sous des hypothèses appropriées de non dégénérescence sur Ω , on démontre l’existence de points critiques
pour ε petit. Dans le cas où le degré prescrit est égal à un, on peut préciser ce résultat. Premièrement, on obtient l’existence de
points critiques dans tout domaine proche d’un disque. De plus, on démontre qu’il existe des points critiques dans la « plupart » des
domaines.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let Ω ⊂R
2 be a smooth bounded simply connected domain. Let a map u belong to the space

E := {u ∈ H 1(Ω,C); | tru| = 1
}
,

where tru denotes the trace of u on the boundary ∂Ω . Then the trace tru of u on ∂Ω belongs to the space
H 1/2(∂Ω;S1), and therefore we can define its winding number or degree, which we denote by deg(u, ∂Ω)

(see [1, Appendix]; see also [2, Section 2] for more details). This allows us to define the class

* Corresponding author.
E-mail addresses: xlamy@math.univ-lyon1.fr (X. Lamy), mironescu@math.univ-lyon1.fr (P. Mironescu).
0021-7824/$ – see front matter © 2013 Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.matpur.2013.11.014

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.matpur.2013.11.014
http://www.elsevier.com/locate/matpur
mailto:xlamy@math.univ-lyon1.fr
mailto:mironescu@math.univ-lyon1.fr
http://dx.doi.org/10.1016/j.matpur.2013.11.014


386 X. Lamy, P. Mironescu / J. Math. Pures Appl. 102 (2014) 385–418
Ed = {u ∈ H 1(Ω;C); | tru| = 1,deg(u, ∂Ω) = d
}
.

In this paper we study the existence of critical points of the Ginzburg–Landau energy functional

Eε(u) = 1

2

∫
Ω

|∇u|2 + 1

4ε2

∫
Ω

(
1 − |u|2)2

in the space Ed , i.e., of critical points with prescribed degree d . More specifically, we are interested in nontrivial
critical points, that is critical points which are not constants of modulus one.

The prescribed degree boundary condition is an intermediate model between the Dirichlet and the Neumann
boundary conditions. The asymptotic of minimizers of the Ginzburg–Landau energy Eε with Dirichlet boundary
condition was first studied by Bethuel, Brezis and Hélein in their classical work [3]. In particular, it was shown in
[3] that minimizers uε have zeros “well-inside” Ω , and that these zeros approach the singularities (vortices) of the
limit u∗ of the uε’s as ε → 0. In contrast, the only minimizers of Eε with no boundary condition are constants. The
same holds even for stable critical points of Eε with Neumann boundary conditions [4]. The analysis of the prescribed
degrees boundary condition (in domains which may be multiply connected) leads to a richer global picture [5–10,2].
More specifically, in multiply connected domains minimizers of Eε may exist [6,7] or not [8]. However, in such
domains critical points of Eε always exist [9,10]. In simply connected domains, minimizers never exist [7]. More
involved is the study of the existence of critical points in simply connected domains; this is our purpose. Typical meth-
ods in absence of absolute minimizers consist in constructing local minimizers, or in constructing critical points by
minimax methods. Construction of local minimizers proved to be successful in multiply connected domains [9], but the
arguments there do not adapt to our case. Minimax techniques led in [2] to the proof of the existence of critical points
in simply connected domains for large ε, but again these techniques do not seem to work for small ε.

The present paper is devoted to the existence of critical points for small ε and thus complements [2]. Our approach
relies on singular perturbations techniques, in the spirit of Pacard and Rivière [11]. We explain this approach in the
special case where the prescribed degree is d = 1. We first recall the main result in [3]. Consider the minimization of
Eε with Dirichlet boundary condition:

min
{
Eε(u); tru = g on ∂Ω

}
.

Here, g : ∂Ω → S
1 is smooth, and we assume that deg(g, ∂Ω) = 1. Then there exists some a ∈ Ω such that, possibly

up to a subsequence, minimizers uε satisfy uε → u∗, with

u∗(z) = u∗,a,g(z) = z − a

|z − a|e
ıH , with H = Ha,g harmonic. (1.1)

In (1.1), the function H is uniquely determined (mod 2π ) by the condition

u∗ = g on ∂Ω. (1.2)

The point a is not arbitrary: it has to be a critical point (actually, a point of minimum) of the “renormalized energy”
W(·, g) associated with g.

In order to explain our main results in the case of prescribed degree boundary condition, we perform a handwaving
analysis of our problem when d = 1. Assume that uε is a critical point of Eε in E1. Then uε has to vanish at some
point aε , and up to a subsequence we have either

(i) aε → a ∈ Ω ,
or

(ii) aε → a ∈ ∂Ω .

Assume that (i) holds. Assume further, for the purpose of our discussion, that aε is the only zero of uε . Then the
analysis in [3] suggests that the limit u∗ of the uε’s should be again of the form u∗(z) = z−a

|z−a|e
ıψ . Formally, the fact

that uε is a critical point of Eε leads, as in [3], to the conclusion that the limiting point a is a critical point of a suitable
renormalized energy Ŵ (·). Some basic properties of the energy Ŵ are studied in [12]; we will come back to this in
Section 2. Of interest to us is the fact that Ŵ is smooth and does have critical points.
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Let a be a critical point of Ŵ , and let u∗ be as in (1.1)–(1.2). We plan to construct critical points uε of Eε in E1
such that uε → u∗ as ε → 0. Our approach is inspired by the one of Pacard and Rivière [11]. In [11], critical points
of Eε with Dirichlet boundary condition g are constructed under a nondegeneracy assumption for the corresponding
renormalized energy W(·, g). We encounter a similar situation in our problem: we are able to construct critical points
of Eε under some nondegeneracy assumptions that we explain below.

To start with, we will see in Section 2 that we may associate with each point a ∈ Ω a natural boundary datum ga ,
solution of the minimization problem

min
{
W(a,g);g : ∂Ω → S

1,deg(g, ∂Ω) = 1
}
.

It turns out that, if a is a critical point of Ŵ , then a is also a critical point of W(·, ga) (Section 2). Since Ŵ has
a global maximum (Section 11), Ŵ has critical points, and thus there exists some a ∈ Ω critical point of W(·, ga).
Our first nondegeneracy assumption is

(ND1) there exists some a ∈ Ω nondegenerate critical point of W
(·, ga

)
.

Assuming that (ND1) holds, set g0 := ga . Then we may prove that, for each g “close” to g0 in a suitable sense, W(·, g)

has a critical point a(g) close to a (Section 5). Thus, to such g ∈ C1,β(∂Ω;S1) we may associate the function

T∗(g) ∈ Ċβ(∂Ω;R), T∗(g) := u∗ ∧ ∂u∗
∂ν

,

where u∗ = u∗,a(g),g is given by (1.1)–(1.2). One may prove that the map g �→ T∗(g) is C1 near g0, and that its
differential L at g0 is a Fredholm operator of index one (Section 10). Our second nondegeneracy assumption is

(ND2) L is onto.

We may now state our first result.

1.1. Theorem. Assume that (ND1) and (ND2) hold. Then, for small ε, Eε has critical points uε with prescribed degree
one.

A similar result holds for an arbitrary prescribed degree d .
The conditions (ND1) and (ND2) seem to be “generic”.1 However, it is not clear whether the assumptions (ND1)

and (ND2) are ever satisfied. Therefore, our next task is to exhibit nondegeneracy situations.

Loose Theorem. Assume that d = 1 and that Ω is “close” to a disk. Then (ND1) and (ND2) hold. In particular, for
small ε, Eε has critical points of prescribed degree 1.

The above theorem applies to the unit disk D. However, no sophisticated argument is needed for a disk. Indeed,
when Ω = D it is possible to construct explicit hedgehog type critical points of Eε by minimizing Eε in the class of
the maps of the form f (|z|) z

|z| .
Concerning the existence of critical points of Eε in arbitrary domains, we do not know whether (ND1) and (ND2)

do always hold. However, we have the following result:

Loose Theorem. Assume that d = 1. Then every Ω can be approximated with domains satisfying (ND1)–(ND2).

Our paper contains the proof of the three above theorems, as well as generalizations to higher degrees d and a
discussion about the “generic” nature of our results. The plan of the paper is the following. In Section 2, we recall the
definition and the main properties of the renormalized energies corresponding to either Dirichlet or prescribed degree
boundary condition, and establish few new properties. In Sections 3 and 4, we derive new useful formulas for the
renormalized energies. In Section 5, we prove that nondegeneracy of critical points of W(·, g) is stable with respect
to small perturbations of g. Section 6 is devoted to the proof of a variant of the Pacard–Rivière [11] construction of

1 Critical points of smooth functionals are “generically” nondegenerate, and Fredholm operators of index one are “generically” onto.
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critical points with Dirichlet condition; this is a key step in our proof. We prove Theorem 1.1 (for arbitrary degrees d)
in Section 8. The proof relies on a Leray–Schauder degree argument, and the corresponding key estimate is obtained
in Section 7. In Section 9, we prove that the couple of conditions (ND1)–(ND2) is stable with respect to small pertur-
bations of the domain. This and the fact that Ω = D satisfies (ND1)–(ND2) (Section 10) implies (a rigorous form of)
the first Loose Theorem. We finally discuss in Section 11 the “generic” nature of our results, and establish (a rigorous
form of) the second Loose Theorem.

Notation.

1. Points in R
2 are denoted z in the Sections 3 and 4 relying on complex analysis techniques, and x or y elsewhere.

2. D(z, r), D(z, r) and C(z, r) denote respectively the open disk, the closed disk and the circle of center z and
radius r . We let D=D(0,1) denote the unit disk and set Dr =D(0, r). S1 is the unit circle.

3. ∧ stands for the vector product of complex numbers or vectors. Examples: (u1 + ıu2)∧ (v1 + ıv2) = u1v2 −u2v1,
(u1 + ıu2) ∧ (∇v1 + ı∇v2) = u1∇v2 − u2∇v1, (∇u1 + ı∇u2) ∧ (∇v1 + ı∇v2) = ∇u1 · ∇v2 − ∇u2 · ∇v1.

4. If A is a set and k an integer, then we let

Ak∗ = {a = (a1, . . . , ak) ∈ Ak;aj 	= al,∀j 	= l
}
.

5. When k = 1, we identify a collection a = (a1) with (the point or number) a1.
6. Additional indices emphasize the dependence of objects on variables. E.g.: ψa = ψa,g recalls that ψ depends not

only on a, but also on g.

2. Renormalized energies and canonical maps

In the first part of this section, we follow [3] and [12].
We fix k ∈ N and a collection d = (d1, . . . , dk) ∈ Z

k , and we let d := d1 + · · · + dk . The bounded domain Ω ⊂ R
2

is assumed to be simply connected and C1,β .
We consider a collection of mutually distinct points in Ω , a = (a1, . . . , ak) ∈ Ωk∗ (the prescribed singularities), and

also a boundary datum g ∈ H 1/2(∂Ω;S1), of degree d . We denote by Bd the space of all such boundary data. Thus

Bd := {g ∈ H 1/2(∂Ω;S1);deg(g, ∂Ω) = d
}
.

For small ρ > 0, we define the open set Ωρ = Ω \⋃k
j=1 D(aj , ρ), and the classes of functions

Fρ,g = {v ∈ H 1(Ωρ;S1); trv = g,deg
(
v,C(aj , ρ)

)= dj

}
, (2.1)

F̂ρ = {v ∈ H 1(Ωρ;S1);deg(v, ∂Ω) = d,deg
(
v,C(aj , ρ)

)= dj

}
. (2.2)

The functions in these classes have prescribed winding number dj around each aj , and prescribed boundary condition
g (respectively prescribed degree d) on ∂Ω . Of course, although we do not make this dependence explicit, the above
classes depend not only on ρ and g, but also on a.

In [3] and [12], minimization of the Dirichlet energy 1/2
∫ |∇v|2 over these spaces is studied, and the following

asymptotic expansions are obtained as ρ → 0:

inf

{
1

2

∫
Ωρ

|∇v|2;v ∈ Fρ,g

}
= π

(
k∑

j=1

d2
j

)
log

1

ρ
+ W(a,g) + O(ρ), (2.3)

inf

{
1

2

∫
Ωρ

|∇v|2;v ∈ F̂ρ

}
= π

(
k∑

j=1

d2
j

)
log

1

ρ
+ Ŵ (a) + O(ρ). (2.4)

In the above expressions, W(a,g) and Ŵ (a) are the so-called renormalized energies. These quantities depend not
only on a and g, but also on d and Ω .

Explicit formulas for the above renormalized energies can be found in [3] and [12], and involve the functions Φa,g

and Φ̂a defined as follows. Φa,g is the unique solution of
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⎧⎪⎨⎪⎩
�Φa,g = 2π

∑k
j=1 dj δaj

in Ω,

∂Φa,g

∂ν
= g ∧ ∂g

∂τ
on ∂Ω,∫

∂Ω
Φa,g = 0

(2.5)

while Φ̂a is the unique solution of {
�Φ̂a = 2π

∑k
j=1 dj δaj

in Ω,

Φ̂a = 0 on ∂Ω.
(2.6)

For further use, let us note that, if α ∈ S
1, then Φa,g = Φa,αg . Therefore, we may naturally define Φa,g when g is an

equivalence class in H 1/2(∂Ω;S1)/S1.
We also define the regular parts Ra,g and R̂a of Φa,g and Φ̂a as follows:

Ra,g(x) = Φa,g(x) −
k∑

j=1

dj log |x − aj |, ∀x ∈ Ω, (2.7)

respectively

R̂a(x) = Φ̂a(x) −
k∑

j=1

dj log |x − aj |, ∀x ∈ Ω. (2.8)

The expressions of W and Ŵ are

W(a,g) = −π
∑
j 	=l

dj dl log |aj − al | + 1

2

∫
∂Ω

Φa,g

(
g ∧ ∂g

∂τ

)
− π

k∑
j=1

djRa,g(aj ), (2.9)

respectively

Ŵ (a) = −π
∑
j 	=l

dj dl log |aj − al | − π

k∑
j=1

dj R̂a(aj ). (2.10)

The next result was proved in [12].

2.1. Proposition. We have

Ŵ (a) = inf
{
W(a,g);g ∈ Bd

}
, (2.11)

and the infimum is attained in (2.11).

Recall that Bd := {g ∈ H 1/2(∂Ω;S1);deg(g, ∂Ω) = d}.
We present here an alternative proof of Proposition 2.1, in the course of which we exhibit a formula of the form

W(a,g) = Ŵ (a) + non-negative terms,

which will be useful in the sequel.

Proof of Proposition 2.1. We identify a map ψ ∈ H 1/2(∂Ω;R) with its harmonic extension to Ω , still
denoted ψ . Given ψ ∈ H 1/2(∂Ω;R), we define its (normalized) harmonic conjugate ψ∗ ∈ H 1/2(∂Ω;R) as follows.
The harmonic extension of ψ∗ (still denoted ψ∗) is the unique solution of{

ψ + ıψ∗ is holomorphic in Ω,∫
∂Ω

ψ∗ = 0.
(2.12)

Note that the Cauchy–Riemann equations imply

∂ψ∗
= −∂ψ

and
∂ψ∗

= ∂ψ
, (2.13)
∂ν ∂τ ∂τ ∂ν
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at least when ψ is smooth. When ψ is merely H 1/2, the distributions ∂ψ
∂ν

,
∂ψ∗
∂ν

∈ H−1/2 are respectively defined as the
trace on ∂Ω of the normal derivatives of ψ and ψ∗, and the equalities in (2.13) are to be understood as equalities of
distributions in H−1/2.

We consider the space

H 1/2(∂Ω;R)/R � Ḣ 1/2(∂Ω;R) :=
{
ψ ∈ H 1/2(∂Ω;R);

∫
∂Ω

ψ = 0

}
, (2.14)

which is endowed with the natural norm

|ψ |2
H 1/2 =

∫
Ω

|∇ψ |2 =
∫
Ω

∣∣∇ψ∗∣∣2 =
∫

∂Ω

∂ψ∗

∂ν
ψ∗ = −

∫
∂Ω

∂ψ

∂τ
ψ∗. (2.15)

If ψ not smooth, then the two last integrals are to be understood as H−1/2–H 1/2 duality brackets.
Given a ∈ Ωk∗ , we define the canonical boundary datum associated with a as the unique element

g = ga ∈ H 1/2(∂Ω;S1)/S1 such that deg(g, ∂Ω) = d and

ga ∧ ∂ga

∂τ
= ∂Φ̂a

∂ν
. (2.16)

Our first observation is that ga is well-defined and smooth. (It would be more accurate to assert that every map in
the equivalence class defining ga is smooth.) Indeed, existence of a smooth g : ∂Ω → S

1 satisfying g ∧ ∂g
∂τ

= h (with
given h) is equivalent to h smooth and ∫

∂Ω

h = 2πd. (2.17)

In addition, g (if it exists) is unique modulo S
1. In our case, we have h = ∂Φ̂a

∂ν
, which is smooth (since Φ̂a is smooth

near ∂Ω). In addition, using Eq. (2.6), we see that (2.17) holds. If we compare the definition of ga to the one of Φa,g ,
we see that the canonical datum ga is the unique g (modulo multiplication by a constant in S1) such that

Φ̂a = Φa,g. (2.18)

Given g ∈ H 1/2(∂Ω;S1) with deg(g, ∂Ω) = d , we have deg(g/ga, ∂Ω) = 0. Therefore, we may find
ψ = ψa,g ∈ H 1/2(∂Ω;R), unique modulo a constant, such that [13]

g = gaeıψ = gaeıψa,g . (2.19)

Thus we have ⎧⎪⎨⎪⎩
�[Φa,g − Φ̂a] = 0 in Ω,

∂
∂ν

[Φa,g − Φ̂a] = ∂ψ
∂τ

on ∂Ω,∫
∂Ω

(Φa,g − Φ̂a) = 0.

(2.20)

Combining the above with the definition of the harmonic conjugate, we find that

Φa,g = Φ̂a − ψ∗ = Φ̂a − ψ∗
a,g. (2.21)

Plugging (2.21) into the expression of W(a,g) given by formula (2.9), we find

W(a,g) = −π
∑
j 	=l

dj dl log |aj − al | + 1

2

∫
∂Ω

(
Φ̂a − ψ∗)(ga ∧ ∂ga

∂τ
+ ∂ψ

∂τ

)

− π

k∑
j=1

dj

(
R̂a(aj ) − ψ∗(aj )

)
= Ŵ (a) − 1

2

∫
ψ∗
(

ga ∧ ∂ga

∂τ

)
− 1

2

∫
ψ∗ ∂ψ

∂τ
+ π

k∑
j=1

djψ
∗(aj ). (2.22)
∂Ω ∂Ω
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In the last equality we used the fact that Φ̂a = 0 on ∂Ω . Furthermore, using the definition of ga and the fact that ψ∗
is harmonic, we obtain ∫

∂Ω

ψ∗
(

ga ∧ ∂ga

∂τ

)
=
∫

∂Ω

ψ∗ ∂Φ̂a

∂ν

=
∫

∂Ω

∂ψ∗

∂ν
Φ̂a +

∫
Ω

ψ∗�Φ̂a = 2π

k∑
j=1

djψ
∗(aj ). (2.23)

Using (2.15), (2.22) and (2.23), we finally obtain

W(a,g) = Ŵ (a) + 1

2
|ψa,g|2H 1/2 . (2.24)

In particular, we recover the conclusion of Proposition 2.1 in the following stronger form: the minimum of W(a, ·) is
attained (exactly) when g = ga (modulo S

1). �
2.2. Remark. The canonical boundary datum ga will play a crucial role in our subsequent analysis. We emphasize
here the fact that ga is the (unique modulo S

1) solution of

ga ∧ ∂ga

∂τ
= ∂Φ̂a

∂ν
on ∂Ω. (2.25)

The limit (as ρ → 0) of the variational problem (2.3) is also connected to the so-called canonical harmonic map
u∗,a,g associated to prescribed singularities a ∈ Ωk∗ and to the Dirichlet condition g ∈ H 1/2(∂Ω;S1). In fact, in [3,
Chapter I] it is proved that the unique solution uρ,g of the minimization problem inf{∫ |∇u|2;u ∈ Fρ,g} tends to
u∗,a,g , in Ck

loc(Ω \ {aj }) as ρ → 0.2

The canonical harmonic map is defined by the formula⎧⎪⎨⎪⎩
u = u∗,a,g = eıH

∏k
j=1(

z−aj

|z−aj | )
dj in Ω,

�H = 0 in Ω,

u = g on ∂Ω.

(2.26)

The fact that deg(g, ∂Ω) = d =∑dj guarantees that H = Hg is well defined. Indeed, there exists ψ ∈ H 1/2(∂Ω;R)

such that

g

k∏
j=1

(
z − aj

|z − aj |
)−dj

= eıψ ,

and then we can simply let H be the harmonic extension of ψ . On the other hand, we note that H is uniquely defined
up to a multiple of 2π .

Equivalently, u in (2.26) is characterized by [3, Chapter I]⎧⎪⎪⎪⎨⎪⎪⎪⎩
|u| = 1,

u ∧ ∂u
∂x1

= − ∂Φa,g

∂x2
,

u ∧ ∂u
∂x2

= ∂Φa,g

∂x1
,

u = g on ∂Ω.

(2.27)

In particular, we have

u∗,a,g ∧ ∂u∗,a,g

∂ν
= −∂Φa,g

∂τ
on ∂Ω (2.28)

and

2 Actually, in [3, Chapter I] the map g is supposed smooth, but the argument adapts to a general g ∈ H 1/2(∂Ω;S1).
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∫
∂Ω

u∗,a,g ∧ ∂u∗,a,g

∂ν
= 0. (2.29)

2.3. Remark. For the minimization problem (2.4), the situation is similar. As established in [12], the solution vρ to
inf{∫ |∇v|2;v ∈ F̂ρ} converges (in an appropriate sense) as ρ → 0, to v∗,a := u∗,a,ga . Since ga is defined modulo S

1,
v∗,a is also defined modulo S

1. Therefore, in this context the convergence actually means that subsequences of (vρ)

converge to representatives (modulo S
1) of v∗,a .

We end this section with the definition of the following quantity, which will play a very important role in what
follows. For a ∈ Ωk∗ and g ∈ H 1/2(∂Ω;S1), we set

N(a,g) := u∗,a,g ∧ ∂u∗,a,g

∂ν
= −∂Φa,g

∂τ
∈ H−1/2(∂Ω;R). (2.30)

3. Transport of formulas onto the unit disk

Let f : D → Ω be a conformal representation. The assumption Ω ∈ C1,β ensures that f and its inverse
ϕ := f −1 : Ω →D are C1,β up to the boundary.

The goal of this section is to understand how the objects defined in Section 2 are transported by ϕ and f .
We will stress the dependence on the domain by using superscripts (e.g. W = WΩ ). For α ∈ D

k∗, the notation
a = f (α) stands for a := (f (α1), . . . , f (αk)) ∈ Ωk∗ .

First of all, for a ∈ Ωk∗ , we have

ΦΩ
a,g = ΦD

ϕ(a),g◦f ◦ ϕ + C, (3.1)

where C = C(a,g,f ) = − ∫
S1 ΦD

ϕ(a),g◦f |f ′|. Indeed, (3.1) is justified as follows: By a direct calculation, both sides
of (3.1) satisfy the same Poisson equation, with the same Neumann boundary condition. The constant C comes from
the normalization condition

∫
∂Ω

Φa,g = 0. The same argument applies to show that

Φ̂Ω
a = Φ̂D

ϕ(a) ◦ ϕ. (3.2)

Here there is no renormalization constant since Φ̂a satisfies a Dirichlet boundary condition.
Normal and tangential derivatives transform in the following way. If v :D→ C, then

∂

∂τ
[v ◦ ϕ](z) = ∣∣ϕ′(z)

∣∣∂v

∂τ

(
ϕ(z)
)
, z ∈ ∂Ω, (3.3)

∂

∂ν
[v ◦ ϕ](z) = ∣∣ϕ′(z)

∣∣∂v

∂ν

(
ϕ(z)
)
, z ∈ ∂Ω. (3.4)

Using (3.2), (3.3), (3.4) together with formula (2.16) characterizing ga , we find, for a ∈ Ωk∗ ,

ga ◦ f = gϕ(a). (3.5)

On the other hand, we claim that

uΩ∗,a,g = uD∗,ϕ(a),g◦f ◦ ϕ. (3.6)

Indeed, this follows from the observation that the two sides of (3.6) agree on ∂Ω , combined with (2.26) and with the
fact, when H is harmonic in D, we may write

ϕ(z) − ϕ(a)

|ϕ(z) − ϕ(a)|e
ıH◦ϕ(z) = z − a

|z − a|e
ıK(z), with K harmonic in Ω.

As a consequence of (3.6) and (3.4), we obtain, recalling the definition (2.30) of N ,

NΩ(a,g) = ∣∣ϕ′∣∣ND
(
ϕ(a), g ◦ f

) ◦ ϕ. (3.7)

The formulas of the renormalized energies Ŵ and W transport in a more complicated way.
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3.1. Lemma. Let α ∈ D
k∗, a := f (α) and g : ∂Ω → S

1. Then

WΩ(a,g) = WD(α, g ◦ f ) + π
∑
j

d2
j log
∣∣f ′(αj )

∣∣, (3.8)

ŴΩ(a) = ŴD(α) + π
∑
j

d2
j log
∣∣f ′(αj )

∣∣. (3.9)

Proof. Using definition of Ra,g (2.7), together with (3.1), we compute, for z ∈D,

RΩ
a,g

(
f (z)
)= ΦD

α,g◦f (z) −
k∑

l=1

dl log
∣∣f (z) − f (αl)

∣∣+ C

= RD

α,g◦f (z) −
k∑

l=1

dl log

∣∣∣∣f (z) − f (αl)

z − αl

∣∣∣∣+ C. (3.10)

The above is well-defined when z 	= αj , and extends by continuity at z = αj . In particular,

RΩ
a,g

(
f (αj )

)= RD

α,g◦f (αj ) −
∑
l 	=j

dl log

∣∣∣∣f (αj ) − f (αl)

αj − αl

∣∣∣∣− dj log
∣∣f ′(αj )

∣∣+ C. (3.11)

Finally, we plug (3.1) and (3.11) into formula (2.9) expressing W in terms of Φa,g and Ra,g . We obtain, using also
the fact that deg(g, ∂Ω) = d =∑dj ,

WΩ(a,g) = −π
∑
j 	=l

dj dl log |αj − αl | + 1

2

∫
∂Ω

ΦD

α,g◦f ◦ ϕ

(
g ∧ ∂g

∂τ

)

+ 1

2
C

∫
∂Ω

g ∧ ∂g

∂τ
− π
∑
j

djC − π

k∑
j=1

djR
D

α,g◦f (αj ) + π

k∑
j=1

d2
j log
∣∣f ′(αj )

∣∣
= −π

∑
j 	=l

dj dl log |αj − αl | + 1

2

∫
∂D

ΦD

α,g◦f (g ◦ f ) ∧ ∂

∂τ
(g ◦ f )

− π

k∑
j=1

djR
D

α,g◦f (αj ) + π

k∑
j=1

d2
j log
∣∣f ′(αj )

∣∣
= WD(α, g ◦ f ) + π

∑
j

d2
j log
∣∣f ′(αj )

∣∣.
Formula (3.9) can be proved following the same lines (the calculations are even simpler than for (3.8)). Alternatively,
we can obtain (3.9) via the relation Ŵ (a) = W(a,ga). �
4. Explicit formulas in the unit disk

In this section we derive explicit formulas for ŴD, WD and ND.
We start by recalling the explicit formulas for Φ̂D

α and ŴD [12]: for α ∈ D
k∗, we have

Φ̂D

α (z) =
k∑

j=1

dj

(
log |z − αj | − log |1 − αjz|

)
, ∀z ∈D, (4.1)

ŴD(α) = − π
∑
j 	=l

dj dl log |αj − αl | + π
∑
j 	=l

dj dl log |1 − αjαl |

+ π
∑

d2
j log
(
1 − |αj |2

)
. (4.2)
j
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The formulas for W and N are more involved.

4.1. Lemma. Let α0 ∈ D
k∗ be fixed, and g0 := gα0 : S1 → S

1 be an associated canonical boundary map. (Recall that
g0 is defined up to a multiplicative constant.) Then it holds:

(i) For α ∈ D
k∗ and for ψ ∈ H 1/2(S1;R),

WD
(
α,g0eıψ

)= ŴD(α) + 1

2

∫
D

∣∣∇(ψ∗
α,g0 + ψ∗)∣∣2, (4.3)

and, for z ∈D,

∇ψ∗
α,g0(z) = 2

k∑
j=1

dj

(
αj (1 − αjz)

|1 − αjz|2 − α0
j (1 − α0

j z)

|1 − α0
j z|2
)

∈ C�R
2. (4.4)

(ii) For α ∈ D
k∗ and for ψ ∈ H 1/2(S1;R),

ND
(
α,g0eıψ

)= ∂ψ∗

∂τ
+ 2
∑
j

dj

α0
j ∧ z

|z − α0
j |2

− 2
∑
j

dj

αj ∧ z

|z − αj |2 . (4.5)

Proof of (i). Since we will always work in the unit disk, we drop the superscript D.
We know from (2.24) that for g ∈ H 1/2(S1;S1),

W(α,g) = Ŵ (α) + 1

2
|ψα,g|2H 1/2, (4.6)

where ψα,g is defined (modulo a constant) in (2.19) by

g = gαeıψα,g . (4.7)

Taking g = g0eıψ , and using g0 = gαe
ıψ

α,g0 , we find

g = gαe
ıψ

α,g0 eıψ = gαe
ı(ψ

α,g0+ψ)
, (4.8)

so that it holds

ψα,g = ψα,g0 + ψ. (4.9)

This leads to

W
(
α,g0eıψ

)= Ŵ (α) + 1

2
|ψα,g0 + ψ |2

H 1/2 = Ŵ (α) + 1

2

∫
D

∣∣∇(ψ∗
α,g0 + ψ∗)∣∣2, (4.10)

i.e., (4.3) holds. In order to complete the proof of (i), it remains to compute ∇ψ∗
α,g0 .

Recall that ψ∗
α,g0 is characterized by ⎧⎪⎪⎨⎪⎪⎩

�ψ∗
α,g0 = 0 in D,

∂
∂ν

ψ∗
α,g0 = − ∂

∂τ
ψα,g0 on S

1,∫
S1 ψ∗

α,g0 = 0.

(4.11)

Since e
ıψ

α,g0 = g0/gα , we have

∂ψα,g0

∂τ
= g0 ∧ ∂g0

∂τ
− gα ∧ ∂gα

∂τ
. (4.12)

By definition of gα and g0 = gα0
, and using (4.1), we obtain
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gα ∧ ∂gα

∂τ
= ∂Φ̂α

∂ν
=
∑
j

dj

∂

∂ν

[
log |z − αj | − log |1 − αjz|

]
,

g0 ∧ ∂g0

∂τ
= ∂Φ̂α0

∂ν
=
∑
j

dj

∂

∂ν

[
log
∣∣z − α0

j

∣∣− log
∣∣1 − α0

j z
∣∣]. (4.13)

We also note the identity

1 = ∂

∂ν
[log |1 − αz| + log |z − α|], ∀α ∈ D. (4.14)

Combining (4.12)–(4.14), we obtain

∂ψ∗
α,g0

∂ν
= −∂ψα,g0

∂τ
= ∂

∂ν

[
2
∑
j

dj

(
log
∣∣1 − α0

j z
∣∣− log |1 − αjz|

)]
. (4.15)

Therefore, there exists a constant c(α) ∈R such that

ψ∗
α,g0(z) = 2

∑
j

dj

(
log
∣∣1 − α0

j z
∣∣− log |1 − αjz|

)+ c(α), ∀x ∈D. (4.16)

Indeed, the right-hand side of (4.16) satisfies (4.11), and so does ψ∗
α,g0 . The constant c(α) is determined by the

normalization condition
∫

ψ∗
α,g0 = 0. From (4.16) we immediately obtain (4.4). �

Proof of (ii). In view of formula (2.26), we have

N
(
α,g0eıψ

)= ∂H

∂ν
+ ∂

∂ν

[∑
j

dj θ(z − αj )

]
= ∂H ∗

∂τ
−
∑
j

dj

∂

∂τ

[
log |z − αj |

]
, (4.17)

where H ∗ is the harmonic conjugate of H , characterized (up to a constant) by{
�H ∗ = 0 in D,
∂H ∗
∂ν

= − ∂H
∂τ

on S
1.

(4.18)

On the boundary S
1, we have

eıH =
∏
j

(
z − αj

|z − αj |
)−dj

g =
∏
j

(
z − αj

|z − αj |
)−dj

g0eıψ , (4.19)

so that

∂H

∂τ
= ∂ψ

∂τ
+ g0 ∧ ∂g0

∂τ
−
∑
j

dj

∂

∂τ

[
θ(z − αj )

]
= −∂ψ∗

∂ν
+ ∂Φ̂α0

∂ν
−
∑
j

dj

∂

∂ν

[
log |z − αj |

]
= −∂ψ∗

∂ν
+
∑
j

dj

∂

∂ν

[
log
∣∣z − α0

j

∣∣− log
∣∣1 − α0

j z
∣∣]−∑

j

dj

∂

∂ν

[
log |z − αj |

]
. (4.20)

Here we have used the definition of g0 = gα0
and the explicit formula (4.1) for Φ̂α . Using (4.14), we obtain

∂H

∂τ
= − ∂

∂ν

[
ψ∗ +

∑
j

dj

(
2 log
∣∣1 − α0

j z
∣∣− log |1 − αjz|

)]
. (4.21)

We deduce that there exists a constant c = c(ψ,α) such that
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H ∗ = ψ∗ +
∑
j

dj

(
2 log
∣∣1 − α0

j z
∣∣− log |1 − αjz|

)+ c. (4.22)

From (4.22) and (4.17) we obtain

N
(
α,g0eıψ

)= ∂ψ∗

∂τ
+
∑
j

dj

∂

∂τ

[
2 log
∣∣1 − α0

j z
∣∣− log |1 − αjz| − log |z − αj |

]
. (4.23)

Using the fact that for every α ∈ D we have

∂

∂τ

[
log |z − α|]= ∂

∂τ

[
log |1 − αz|]= α ∧ z

|z − α|2 , ∀z ∈ S
1, (4.24)

we finally obtain

N
(
α,g0eıψ

)= ∂ψ∗

∂τ
+ 2
∑
j

dj

α0
j ∧ z

|z − α0
j |2

− 2
∑
j

dj

αj ∧ z

|z − αj |2 , (4.25)

as claimed. �
5. Nondegeneracy of W is stable

In this section we show that, if a0 ∈ (Ω0)
k∗ is a nondegenerate critical point of WΩ0(·, g0), with g0 : ∂Ω0 → S1,

then for Ω “close to” Ω0, and for g : ∂Ω → S
1 “close to” g0, there exists a unique nondegenerate critical point a of

WΩ(·, g) “close to” a0. Unlike the analysis we perform in subsequent sections, smoothness (of the domain or of the
boundary datum) is not crucial here. In order to emphasize this fact, we first state and prove a result concerning rough
boundary datum (Proposition 5.1). We next present a “smoother” variant of the stability result (Proposition 5.3).

The notion of closeness will be expressed in terms of conformal representations. Let us first introduce some
definitions. Let X be the space

X := {f ∈ C1(D;C);f is holomorphic in D
}
, (5.1)

which is a Banach space with the ‖ · ‖C1 norm. In X we will consider the open set

V := {f ∈ X;f is bijective and f −1 ∈ X
}
. (5.2)

Every f ∈ V induces a conformal representation f : D → Ω := f (D), which is C1 up to the boundary. In what
follows, we denote by f −1 both the inverse of f : D→ Ω and of f|S1 : S1 → ∂Ω .

Similar considerations apply to the space

Xβ := {f ∈ C1,β(D;C);f is holomorphic in D
}
, (5.3)

and to the open set

Vβ := {f ∈ X;f is bijective and f −1 ∈ Xβ

}
. (5.4)

Here, 0 < β < 1.

5.1. Proposition. Let Ω0 be a smooth bounded simply connected C1,β domain and f0 : D → Ω0 be a conformal
representation. Assume that there exist α0 ∈ D

k∗ and g0 ∈ H 1/2(S1;S1) such that a0 := f0(α
0) is a nondegenerate

critical point of WΩ0(·, g0 ◦ f −1
0 ).

Then there exist a neighborhood V of (f0,0) in V × H 1/2(S1;R), a smooth map α : V → D
k∗, and some δ > 0,

such that the following holds.
Let (f,ψ) ∈ V and consider the domain Ω := f (D) together with the boundary datum g := (g0e

ıψ) ◦ f −1 ∈
H 1/2(∂Ω;S1). Then WΩ(·, g) admits a unique critical point a ∈ Ωk∗ satisfying |f −1(a) − α0| < δ. This a is given by
the map a(f,ψ) = f (α(f,ψ)). Furthermore, a is a nondegenerate critical point of WΩ(·, g).

Before proving Proposition 5.1 we state as a lemma the following smoothness result:
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5.2. Lemma. The map W̃ : Dk∗ × V × H 1/2(S1;R) → R, defined by

W̃ (α,f,ψ) = Wf (D)
(
f (α),

(
g0e

ıψ
) ◦ f −1), (5.5)

is smooth.
Similarly, the map W̃β :Dk∗ × Vβ × C1,β(S1;R) →R, defined by

W̃β(α,f,ψ) = Wf (D)
(
f (α),

(
g0e

ıψ
) ◦ f −1), (5.6)

is smooth.

Proof of Lemma 5.2. The idea is to rely on the formulas derived in Sections 3 and 4 in order to obtain an explicit
formula for W̃ , from which it will be clear that W̃ is smooth.

To start with, formula (3.8) gives

W̃ (α,f,ψ) = WD
(
α,g0e

ıψ
)+ π

∑
j

d2
j log
∣∣f ′(αj )

∣∣. (5.7)

Using the fact that for holomorphic f all derivatives can be estimated locally using only ‖f ‖∞, it can be easily
shown that the maps

D
k∗ × V � (α,f ) �→ log

∣∣f ′(αj )
∣∣ (5.8)

are smooth.
Therefore the second term in the right-hand side of (5.7) is smooth, and in order to complete the proof of Lemma 5.2

it suffices to prove that

D
k∗ × H 1/2(

S
1;R) � (α,ψ) �→ WD

(
α,g0e

ıψ
) := Pg0(α,ψ) (5.9)

is smooth. Clearly, if g ∈ H 1/2(S1;S1) is such that deg(g,S1) = deg(g0,S
1), then we may write g = g0e

ıψ0 for some
ψ0 ∈ H 1/2(S1;R), and then we have Pg(α,ψ) = Pg0(α,ψ + ψ0). This implies that the smoothness of Pg0 does not

depend on the choice of g0. Therefore, we may assume that g0 = gα0
for some α0 ∈ D

k∗. This assumption allows us to
use Lemma 4.1. Using (4.3), we obtain

WD
(
α,g0e

ıψ
)= ŴD(α) + 1

2

∫
D

∣∣∇ψ∗
α,g0

∣∣2 + 1

2

∫
D

∣∣∇ψ∗∣∣2
+
∫
D

∇ψ∗
α,g0

· ∇ψ∗. (5.10)

We examine the smoothness of the four terms on the right-hand side of (5.10). The first term depends only on α

and is smooth thanks to formula (4.2). The second term depends only on α and is smooth thanks to formula (4.4).
The third term depends only on ψ and is a continuous quadratic form, hence it is smooth. The fourth and last term
depends linearly on ψ and is smooth thanks to formula (4.4) again.

Hence the map (5.9) is smooth, and the proof of the H 1/2 part of the lemma is complete.
The proof of the C1,β part of the follows the same lines and is left to the reader. �

Proof of Proposition 5.1. Let us first remark the following fact. Fix f ∈ V and ψ ∈ H 1/2(∂D;R) and consider
the domain Ω = f (D) together with the boundary datum g = (g0e

ıψ) ◦ f −1. Then, for any α ∈ Dk∗ , f (α) is a
nondegenerate critical point of WΩ(·, g) if and only if α is a nondegenerate critical point of W̃ (·, f,ψ). This is
a simple consequence of the fact that f induces a diffeomorphism from D

k∗ into Ωk∗ .
We consider the map F : Dk∗ × V × H 1/2(S1;R) → R

2k ,

F : (α,f,ψ) �→ ∇αW̃ (α,f,ψ). (5.11)

Lemma 5.2 ensures that F is smooth. Moreover, the assumption that a0 is a nondegenerate critical point of
WΩ0(·, g0 ◦ f −1) ensures that α0 is a nondegenerate critical point of W̃ (·, f0,0). Therefore F(α0, f0,0) = 0, and
DαF(α0, f0,0) is invertible.
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This enables us to apply the implicit function theorem: there exist of a neighborhood V of (f0,0) in
V × H 1/2(S1;R), a smooth map α : V →D

k∗, and δ > 0, such that, for (f,ψ) ∈ V and |α − α0| < δ,

F(α,f,ψ) = 0 ⇐⇒ α = α(f,ψ). (5.12)

We may also assume that DαF(α(f,ψ),f,ψ) is invertible, so that α(f,ψ) is a nondegenerate critical point of
W̃ (·, f,ψ). This implies that a := f (α(f,ψ)) is a nondegenerate critical point of WΩ(·, g), where Ω = f (D) and
g = (g0e

ıψ) ◦ f −1. In view of (5.12), a is the unique critical point of WΩ(·, g) satisfying |f −1(a) − α0| < δ.
The proof of Proposition 5.1 is complete. �
In what follows, we will use the following smoother version of Proposition 5.1.

5.3. Proposition. Let Ω0 be a smooth bounded simply connected C1,β domain and f0 : D → Ω0 be a conformal
representation. Assume that there exist α0 ∈ D

k∗ and g0 ∈ C1,β(S1;S1) such that a0 := f0(α
0) is a nondegenerate

critical point of WΩ0(·, g0 ◦ f −1
0 ).

Then there exist a neighborhood V of (f0,0) in Vβ × C1,β(S1;R), a smooth map α : V → Dk∗, and some δ > 0,
such that the following holds.

Let (f,ψ) ∈ V and consider the domain Ω := f (D) together with the boundary datum g := (g0e
ıψ) ◦ f −1 ∈

C1,β(∂Ω;S1). Then WΩ(·, g) admits a unique critical point a ∈ Ωk∗ satisfying |f −1(a) − α0| < δ, given by the map
a(f,ψ) = f (α(f,ψ)). Furthermore, a is a nondegenerate critical point of WΩ(·, g).

Here, Vβ is given by (5.4). The proof of Proposition 5.3 is identical to the one of Proposition 5.1 and is left to the
reader.

We will need later the following special case of Proposition 5.3, where Ω is fixed.

5.4. Corollary. Let a0 ∈ Ωk∗ be a nondegenerate critical point of W(·, g0), for some g0 ∈ C1,β(∂Ω;S1). Then, for g

in a small C1,β -neighborhood A of g0, W(·, g) has, near a0, a unique nondegenerate critical point a(g). In addition,
the map ψ �→ a(g0e

ıψ), defined for ψ in a sufficiently small neighborhood of the origin in C1,β(∂Ω;R), is smooth.

We note here that Corollary 5.4 allows us to define a map

T∗ = T Ω
∗,a0,g0

: A→ Cβ(∂Ω;R), T∗(g) := NΩ
(
a(g), g

)= u∗,a(g),g ∧ ∂u∗,a(g),g

∂ν
. (5.13)

Since WΩ(·, g) does not depend on the class of g modulo S
1, neither do a(g) and T∗. Moreover, in view of (2.28) and

(2.29) we have ∫
∂Ω

u∗,a,g ∧ ∂u∗,a,g

∂ν
=
∫

∂Ω

∂Φa,g

∂τ
= 0.

We find that the map T∗ induces a map, still denoted T∗, from A/S1 into Ċβ(∂Ω;R). Here, we define

Ċβ(∂Ω;R) :=
{
ψ ∈ Cβ(∂Ω;R);

∫
∂Ω

ψ = 0

}
.

It is also convenient to consider, in a sufficiently small neighborhood B of the origin in C1,β(∂Ω;R), the maps (both
denoted U∗)

U∗ = UΩ
∗,a0,g0

:B→ Ċβ(∂Ω;R), U∗(ψ) = T∗
(
g0e

ıψ
)

(5.14)

and

U∗ = UΩ
∗,a0,g0

:B/R → Ċβ(∂Ω;R), U∗(ψ) = T∗
(
g0e

ıψ
)
. (5.15)

The above U∗’s are smooth. Indeed, this is obtained by combining (3.7) with (4.5) and with the fact that ψ �→ a(g0e
ıψ)

is smooth.
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6. A uniform version of the Pacard–Rivière construction of critical points

We start by explaining how the results established in this section compare to the existent literature.
Let us first briefly recall the Bethuel–Brezis–Hélein analysis of critical points of the Ginzburg–Landau energy Eε

with prescribed Dirichlet boundary condition g ∈ C∞(∂Ω;S1) [3, Chapter X]. Consider a fixed boundary condition
g ∈ C∞(∂Ω;S1), with deg(g, ∂Ω) = d =∑k

j=1 dj . Given a critical point a ∈ Ωk∗ of W(·, d1, . . . , dk, g), consider the
canonical harmonic map given by (2.26). The fact that a is a critical point of W(·, d1, . . . , dk, g) is equivalent to the
fact that the harmonic function Hj , defined near aj by

u∗ = eıHj

(
z − aj

|z − aj |
)dj

, (6.1)

satisfies ∇Hj(aj ) = 0 [3, Chapter VII].
The main result in [3, Chapter X] asserts that, when Ω is starshaped critical points of Eε converge, as ε → 0 (up to

subsequences and in appropriate function spaces), to a canonical harmonic map u∗ = u∗,a,g associated with a critical
point a ∈ Ωk∗ of W(·, d1, . . . , dk, g).

Granted this result, one can address the converse: given a critical point a ∈ Ωk∗ of W(·, d1, . . . , dk, g), does there
exist critical points uε of Eε with prescribed boundary condition g, such that uε −→ u∗,a,g as ε → 0? Here we will
be interested in the answer provided by Pacard and Rivière [11].

6.1. Theorem. (See [11, Theorem 1.4].) Let 0 < β,γ < 1. Assume that g ∈ C2,β(∂Ω;S1) and dj ∈ {±1}. Let a ∈ Ωk∗
be a nondegenerate critical point of W(·, d1, . . . , dk, g).

Then there exists ε0 > 0 such that for every ε ∈ (0, ε0), there exists uε a critical point of Eε with uε = g on ∂Ω ,
and

uε −→ u∗,a(g),g as ε → 0 (6.2)

in C
2,γ

loc (Ω \ {a1, . . . , ak}).

The purpose of this section is to establish a variant of Theorem 6.1, in which g is assumed to be merely C1,β and
is not fixed anymore. In addition, we will obtain a uniform existence theorem, and uniform convergence rate. More
specifically, we fix integers d1, . . . , dk . Since these integers do not depend on the boundary datum g we consider, we
will omit the dependence of W with respect to d1, . . . , dk : we write W(·, g) instead of W(·, d1, . . . , dk, g). We consider
a0 ∈ Ωk∗ a nondegenerate critical point of the renormalized energy W(·, g0) associated with g0 ∈ C1,β(∂Ω;S1).
By Corollary 5.4, we know that, for g in a small C1,β -neighborhood A of g0, W(·, g) has, near a0, a unique non-
degenerate critical point a(g).

In this section, we establish the following variant of Theorem 6.1.

6.2. Theorem. Let 0 < β,γ < 1. Let g0 ∈ C1,β(∂Ω;S1). Let d1, . . . , dk ∈ {−1,1}. Let a0 be a nondegenerate critical
point of W(·, g0). Then there exist δ > 0 and ε0 > 0 such that the following holds. For every g ∈ C1,β(∂Ω;S1)

satisfying ‖g − g0‖C1,β � δ, and for every ε ∈ (0, ε0), there exists uε = uε,g a critical point of Eε with prescribed
boundary condition g, such that

uε,g −→ u∗,a(g),g as ε → 0 (6.3)

in C
2,γ

loc (Ω \ {a1, . . . , ak}).

As announced, the difference with Theorem 1.4 in [11] is that we merely assume that g ∈ C1,β ; in addition, we prove
that ε0 can be chosen independent of g. Theorem 6.2 allows us to define a map Fε : g �→ uε,g for every ε ∈ (0, ε0).

Theorem 6.2 is obtained by following the proof of Theorem 6.1 in [11]. All we have to check (and we will do in
what follows) is that the estimates in [11] are uniform in g; we also have to modify some arguments relying on the
regularity assumption g ∈ C2,β .
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Proof of Theorem 6.2. For the convenience of the reader, we recall the main steps of the proof of Theorem 6.1 in
[11], and examine the crucial points, where the estimates depend on g, respectively where the regularity of g plays
a role.

The general strategy in [11] is to construct an “approximate solution” ũε of the Ginzburg–Landau equation

Nε(u) = 0, where Nε(u) := �u + u

ε2

(
1 − |u|2), (6.4)

using the fairly precise knowledge we have of the form of solutions for small ε. Then, using a fixed point argument,
one can prove that some perturbation of ũε is in fact an exact solution of (6.4). The main difficulty lies in finding the
good functional setting that makes the linearized operator Lε = DNε around ũε invertible, uniformly with respect
to ε. This is achieved in [11] in the frame of appropriate weighted Hölder spaces.

In [11] the proof of Theorem 6.1 is divided into five chapters: Chapters 3 through 7. In what follows, we detail the
content of these chapters and explain how to adapt the arguments for the need of Theorem 6.2.

Chapters 3 and 4 in [11]
[11, Chapter 3] is devoted to the study of the radially symmetric solution u(reıθ ) = f (r)eıθ of the

Ginzburg–Landau equation in C satisfying limr→∞ f (r) = 1. In particular, [11, Chapter 3] characterizes the bounded
solutions of the linearized equation about this radial solution. This characterization is used in [11, Chapter 4] in the
study of the mapping properties of the linearization of the Ginzburg–Landau operator (at the radial solution) in the
punctured unit disk D \ {0}. In particular, it is shown that the linearized operator is invertible between appropriate
weighted Hölder spaces.

These two chapters (3 and 4) are independent of the boundary condition g, so that they can be used with no changes
in the proof of Theorem 6.2.

Chapter 5 in [11]
The next step, in [11, Chapter 5], consists in constructing and estimating the approximate solution ũε . This

approximate solution looks like u∗ = u∗,g,a(g) away from its zeros (which are close to the singularities of u∗), and
like the radial solution studied in [11, Chapter 3] near its zeros. Since ũε is built upon u∗, the estimates satisfied by ũε

involve u∗, and thus g.
More specifically, in [11, Chapter 5], various quantities are estimated in terms of constants c(u∗) depending on u∗

and its derivatives. An inspection of the proofs there combined with (2.26) shows that these constants depend only on
a(g), on the harmonic function H = Hg and on the derivatives of Hg .

We claim that the constants c(u∗) can be chosen independent of g satisfying

‖g − g0‖C1,β (∂Ω) � δ. (6.5)

Here, δ is sufficiently small in order to have the conclusion of Corollary 5.4. Indeed, the key observation is that there
exists a constant C > 0 independent of g such that

‖H‖C1,β (Ω) � C; (6.6)

this follows from the fact that H is harmonic and ‖H‖C1,β (∂Ω) � C.
In particular, we have

‖H‖Ck(ω) � C(k,ω) for k ∈ N and ω ⊂ Ω. (6.7)

Estimate (6.7) implies that all the interior estimates in [11, Chapter 5] are satisfied uniformly in g ∈ C1,β satisfying
(6.5). This settles the case of estimates (5.8), (5.9), (5.33), (5.42) and (5.43) in [11, Chapter 5].

It remains to consider the global and boundary estimates (5.29), (5.32) and (5.41) in [11]. These estimates rely on
bounds on the solution ξ of the problem⎧⎪⎨⎪⎩

�ξ − |∇u∗|2ξ + 1−ξ2

ε2 ξ = 0 in Ωδ/2,

ξ = Sε + wj,r on ∂Dδ/2(aj ), (6.8)
ξ = 1 on ∂Ω.
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Here, Ωσ := Ω \⋃j Dσ (aj ) (for sufficiently small σ > 0), and δ := ε2. The auxiliary function Sε is independent of
g and is defined in [11, Section 3.6]. Finally, wj,r , defined in [11, (5.7)], depends only a(g) and on the restriction of
Hj to compacts of Ω ; therefore, the estimates involving wj,r are uniform in g.

In [11, Lemma 5.1] the following estimates (numbered as (5.29) in [11]) are shown to hold:

1 − cε2 � ξ � 1 in Ωσ , (6.9)

1 − cε2r−2
j � ξ � 1 in Dσ (aj ) \Dδ/2(aj ), (6.10)∣∣∇kξ

∣∣� ckε
2r−2−k

j in D2σ (aj ) \Dδ(aj ) (k � 1). (6.11)

Here σ > 0 is fixed, and rj = rj (x) denotes the distance from x to aj . Estimates (6.10) and (6.11) are interior
estimates, and therefore they hold uniformly in g ∈ C1,β satisfying (6.5), as explained above. We claim that the same
conclusion applies to (6.9). Indeed, an inspection of the proof in [11] shows that the constant c in (6.9) is controlled by
supΩσ

|∇u∗|. The latter quantity is uniformly bounded, thanks to (6.6), whence the conclusion. This settles the case
of the estimate (5.29) in [11].

We next turn to the estimate (5.32) in [11, Lemma 5.2]. Under the assumption that g ∈ C2,β , this lemma
asserts that

sup
Ωσ

∣∣∇kξ
∣∣� cε2−k, k = 1,2. (6.12)

In our case, we only assume g ∈ C1,β . The corresponding estimates are given by our next result.

6.3. Lemma. Assume that (6.5) holds. Then we have

sup
Ωσ

|∇ξ |� cε and |∇ξ |β,Ωσ � cε1−β. (6.13)

Here, | · |β,Ωσ denotes the Cα semi-norm in Ωσ :

|u|α,Ωσ := sup

{ |u(x) − u(y)|
|x − y|β ;x, y ∈ Ωσ

}
.

Proof. We apply Lemma 11.5 in Appendix A with w = ξ − 1 in G := Ωσ/2, and find that

sup
Ωσ

|∇ξ |� C
(‖w‖1/2

L∞(Ωσ )‖�w‖1/2
L∞(Ωσ ) + ‖w‖C1,β (∂Ωσ )

)
, (6.14)

|∇ξ |β,Ωσ � C
(‖w‖1/2−β/2

L∞(Ωσ )
‖�w‖1/2+β/2

L∞(Ωσ )
+ ‖w‖C1,β (∂Ωσ )

)
. (6.15)

The conclusion then follows by combining (6.14)–(6.15) with Eq. (6.8) and with estimates (6.9) and (6.11). �
Finally, we examine estimate (5.41) in the last section of [11, Chapter 5]; this is a global estimate for Nε(̃uε).

Recall here that Nε is the Ginzburg–Landau operator, and that ũε is the approximate solution of (6.4) constructed in
[11, Chapter 5]. The estimate [11, (5.41)] involves an interior estimate and a boundary estimate. As above, the interior
estimate is settled with the help of (6.7). We now turn to the boundary estimate, which is the following:∥∥Nε(̃uε)

∥∥
Cβ(Ωσ )

� cε1−β. (6.16)

The proof of (6.16) in [11] relies on the estimates (6.12) above (see [11, Proof of Lemma 5.2]). In our case, (6.12)
need not hold, since we only assume that g ∈ C1,β . However, we still obtain (6.16) as follows. We note that

Nε(̃uε) = 2∇u∗ · ∇ξ in Ωσ (6.17)

(this is formula (5.46) in [11]). By (6.17), we have∥∥Nε(̃uε)
∥∥

Cβ(Ωσ )
� c‖∇u∗‖Cβ(Ωσ )‖∇ξ‖Cβ(Ωσ ). (6.18)

We obtain (6.16) as a consequence of (6.6) and of Lemma 6.3.
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As a conclusion of this inspection, we find that all the estimates in [11, Chapter 5] are uniform in g satisfying (6.5);
the arguments there need only minor changes. The most relevant change is that [11, Lemma 5.2] has to be replaced
by Lemma 6.3.

Chapter 6 in [11]
We now turn to [11, Chapter 6], which deals with the conjugate linearized operator L̃ε around the approximate

solution. The main result of this chapter is [11, Theorem 6.1], which states that L̃ε is invertible for ε ∈ (0, ε0), with
the norm of its inverse bounded independently of ε. In order to adapt this theorem to our situation, we need to check
that this ε0, and the bound on L̃−1

ε , can be chosen independently of g satisfying (6.5).
The proof of [11, Theorem 6.1] is divided into three parts:

(a) The “interior” problem, consisting in the study of the linearized operator L̃ε near the zeros of ũε [11, Section 6.2].
(b) The “exterior” problem, requiring the study of the linearized operator L̃ε away from the zeros of ũε [11, Sec-

tion 6.3].
(c) The study of the Dirichlet-to-Neumann mappings [11, Section 6.4]. (These mappings are used later in order to

“glue” the two first steps together.)

The interior and the exterior problem rely on the estimates obtained in [11, Chapter 5]. An inspection of the
proofs shows that all the estimates obtained there are uniform in g, with one possible exception: the estimates
in [11, Proposition 6.2]. Indeed, these estimates rely on [11, Lemma 5.2], and more specifically on (6.12) (which
does not hold in our setting). However, a closer look to [11, Proof of Proposition 6.2] shows that the conclusion of
[11, Proposition 6.2] still holds if we replace (6.12) by Lemma 6.3. In conclusion, the first two steps can be carried
out with uniform estimates, provided (6.5) holds.

The third step (Dirichlet-to-Neumann mappings) requires more care. In [11, Section 6.4], the following two oper-
ators are defined, for fixed small ζ > 0 and for sufficiently small ε:

DNint,ε,DNext,ε :
k∏

j=1

C2,β
(
C(ζ, aj )

)−→
k∏

j=1

C1,β
(
C(ζ, aj )

)
. (6.19)

(These are the interior and exterior Dirichlet-to-Neumann mappings.) The crucial result in part (c) is [11, Proposi-
tion 6.5], which states the existence of some ε0 such that DNint,ε − DNext,ε is an isomorphism for ε ∈ (0, ε0). The
proof of this fact goes as follows. First the convergence

DNint,ε − DNext,ε −→ DNint,0 − DNext,0 as ε → 0 (6.20)

is shown to hold in operator norm. The proof of (6.20) relies on the interior estimate (6.7). Therefore, the convergence
in (6.20) is uniform in g satisfying (6.5).

We now return to the proof in [11, Chapter 6]. Once (6.20) is established, it remains to prove that the limiting
operator DNint,0 − DNext,0 is invertible. This is done in [11, Proposition 6.5]; this is where the nondegeneracy of a

as a critical point of W(·, g) comes into the picture. In order to extend the conclusion of [11, Proposition 6.5] to our
setting, and to obtain a uniform bound for the inverse of DNint,ε −DNext,ε , it suffices to check that DNint,0 −DNext,0
depends continuously on g. Indeed, this will lead to a uniform bound for the inverse of DNint,ε − DNext,ε provided
ε is sufficiently small, uniformly in g satisfying (6.5) (possibly with a smaller δ). For this purpose, we examine the
formulas of DNext,0 and DNint,0. The definition of DNext,0 is given in [11, Proposition 6.4], and it turns out that
DNext,0 does not depend on g. As for DNint,0, it is a diagonal operator of the form

DNint,0(φ1, . . . , φk) = (DN1
int,0(φ1), . . . ,DNk

int,0(φk)
)
, (6.21)

with DN
j

int,0 : C2,β(C(ζ, aj )) → C1,β(C(ζ, aj )), ∀j ∈ �1, k�.

Furthermore, from [11, Proposition 6.3] we know that DN
j

int,0 further splits as

DN
j

int,0 = T1 ⊕ T2, with

{
T1 : span{e±ınθ }n�2 → span{e±ınθ }n�2,

±ıθ ±ıθ
(6.22)
T2 : span{e } → span{e }.
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Here, the operator T1 does not depend on g. Therefore, we only need to check that T2 depends continuously on g. As
a linear operator on a two-dimensional space, T2 is represented by a 2 × 2 matrix. It is clear from [11, Proposition 6.3]
that the coefficients of this matrix are smooth functions of ∇2H(aj ). In turn, ∇2H(aj ) depends smoothly on g, by
Corollary 5.4.

Hence DNint,0 − DNext,0 depends continuously on g, as claimed.
This allows us to choose ε0 independent of g satisfying (6.5) in [11, Proposition 6.5] and in [11, Theorem 6.1], and

to obtain a uniform estimate for the inverse of L̃ε .

Chapter 7 in [11]
Finally, in [11, Chapter 7] the results and estimates in [11, Chapters 3–6] are combined in order to prove The-

orem 6.1. Our above analysis shows that these estimates are uniform, and therefore lead to the uniform version
Theorem 6.2 of Theorem 6.1.

Conclusion
As a conclusion of our analysis, Theorem 6.2 holds. �
For further use, we record two additional properties of the maps uε,g ; these properties are immediate consequences

of the construction in [11]. Let δ be as in Theorem 6.2. We consider the set

A := {g ∈ C1,β
(
∂Ω;S1); ‖g − g0‖C1,β < δ

}
. (6.23)

6.4. Lemma. Let K � Ω \ {aj }. Then we have |uε,g| → 1 as ε → 0, uniformly in K and in g ∈ A.

Proof. This follows by an inspection of the construction in [11]. Formulas (5.36) and (5.37) in [11] ensure that, for
small ε, the approximate solution ũε satisfies |̃uε| = |ξ | in K . The convergence then follows from the estimates on ξ ,
and from formula (7.1) in [11] connecting the approximate solution to the exact solution. �

For the next result, it may be necessary to replace δ by a smaller value.

6.5. Lemma. Let g ∈ A and ω ∈ S
1. If ωg ∈ A, then uε,ωg = ωuε,g .

Proof. We have W(·, g) = W(·,ωg). Therefore, if a is a nondegenerate critical point of W(·, g), then a is also
a nondegenerate critical point of W(·,ωg). By Corollary 5.4, we find that a(ωg) = a(g). Using this equality, an
inspection of the construction in [11] shows that

ũε,ωg = ωũε,g. (6.24)

Thanks to (6.24), we obtain that ωuε,g has all the properties satisfied by the solution uε,ωg constructed from ũε,ωg

via the inverse function theorem. Since the solution provided by the inverse function theorem is unique, we find that
uε,ωg = ωuε,g , as claimed. �
7. Convergence of the normal differentiation operators

In this section, we fix integers d1, . . . , dk ∈ {−1,1} as in Section 6. We assume that a0 is a nondegenerate critical
point of W(·, g0). Let g ∈ A, where A is given by (6.23), and let 0 < ε < ε0. For such g and ε, we define uε = uε,g

as in Section 6. We also define u∗,g := u∗,a(g),g , where a(g) is the unique critical point of W(·, g) close to a0 (see
Corollary 5.4). We consider the operators

Tε,T∗ : A→ Cβ(∂Ω;R), Tε(g) := uε,g ∧ ∂uε,g

∂ν
and T∗(g) := u∗,g ∧ ∂u∗,g

∂ν
.

The main result of this section is the following:

7.1. Proposition. Let 0 < γ < 1. Then (possibly after replacing δ by a smaller number) we have

lim
ε→0

sup
∥∥Tε(g) − T∗(g)

∥∥
Cγ (∂Ω)

= 0. (7.1)

g∈A
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In particular, given μ > 0 there exists some ε0 > 0 such that, for 0 < ε < ε0, Tε − T∗ : A → Cβ(∂Ω;R) is compact
and satisfies ∥∥Tε(g) − T∗(g)

∥∥
Cβ(∂Ω)

� μ, ∀ε < ε0, ∀g ∈A.

Proof. The last part of the proposition follows from the fact that the embedding Cγ (∂Ω;R) ↪→ Cβ(∂Ω;R) is
compact when γ > β .

Whenever needed in the proof, we will replace δ by a smaller number. Let a = a(g), g ∈ A, be such that
∇aW(a,g) = 0 and a is close to a0 = (a0

1, . . . , a0
k ). Let t > 0 be a small number and set

ω := {x ∈ Ω; ∣∣x − a0
j

∣∣> t,∀j ∈ �1, k�
}
.

We may assume that |a(g) − a0| < t/2, ∀g ∈ A. In view of Theorem 6.2, we have uε,g → u∗,g in C2,γ (K) as ε → 0,
for every g ∈ A and for every K compact set such that K ⊂ ω \ ∂Ω . In addition, by Lemma 6.4 we have |uε,g| → 1
as ε → 0 uniformly in ω and in g ∈ A.

Let θ = θg be the multi-valued argument of

z �→
k∏

j=1

(z − aj (g))dj

|z − aj (g)|dj
.

We note that ∇θg is single-valued and that we have

‖∇θg‖C1,β (ω) � C, ∀g ∈ A. (7.2)

For small ε (independent of g), we have deg(uε,g) = deg(u∗,g) = dj on C(a0
j , t), and thus we may write, locally in ω,

uε,g = ρeıϕ = ρε,ge
ıϕε,g = ρeı(θ+ψ) = ρε,ge

ı(θg+ψε,g),

and similarly

u∗,g = eı(θ+ψ∗) = eı(θg+ψ∗,g).

We may choose ψ∗,g in order to have

‖ψ∗,g‖C1,β (ω) � C, ∀g ∈ A, (7.3)

and we normalize ψε,g by the condition

ψε,g = ψ∗,g on ∂Ω. (7.4)

In terms of ρ, ϕ and ψ , the Ginzburg–Landau equation reads{
div
(
ρ2∇ϕ

)= div
(
ρ2(θ + ψ)

)= 0,

−�ρ = 1
ε2 ρ
(
1 − ρ2)− ρ|∇ϕ|2.

Step 1. We have

‖∇ϕε,g‖Lp(ω) � Cp, ∀ε < ε0 ∀g ∈A, ∀1 < p < ∞.

Indeed, we start by noting that we have ‖∇θg‖Lp(ω) � Cp; therefore, it suffices to prove that ‖∇ψε,g‖Lp(ω) � Cp .
Using the equation div(ρ2∇ϕ) = 0, we see that ψε,g satisfies

�ψε,g = div
((

1 − ρ2
ε,g

)∇θg + (1 − ρ2
ε,g

)∇ψε,g

)
in ω. (7.5)

We obtain

‖∇ψε,g‖Lp(ω) � C
(∥∥ψε,g

∥∥
W 1−1/p,p(∂ω)

+ ∥∥(1 − ρ2
ε,g

)∇θg

∥∥
Lp(ω)

+ ∥∥(1 − ρ2
ε,g

)∇ψε,g

∥∥
Lp(ω)

)
� Cp + C

∥∥1 − ρ2
ε,g

∥∥ ∞ ‖∇ψε,g‖Lp(ω).
L (ω)
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Since ρε,g → 1 as ε → 0 uniformly in ω and in g ∈ A, the second term in the right-hand side of the above inequality
can be absorbed in the left-hand side and we obtain the announced result.

Step 2. For 1 < p < ∞ we have ∇ρε,g → 0 in Lp(ω) as ε → 0, uniformly in g ∈A.
This is obtained as follows. Let η := ηε,g := 1 − ρε,g ∈ [0,1], which satisfies{−�η + 1

ε2 ρ(1 + ρ)η = ρ|∇ϕ|2 in ω,

η = 0 on ∂Ω.
(7.6)

Moreover, we have

1

4ε2
η � 1

ε2
ρ(1 + ρ)η = ρ|∇ϕ|2 + �η � C on ∂ω \ ∂Ω, (7.7)

since uε,g → u∗,g in C2,γ (K) for any compact K ⊂ ω \ ∂Ω , uniformly in g ∈A.
We may assume that p � 2. Multiplying (7.6) by ηp−1 and using Step 1, Hölder’s inequality and (7.7) we find that,

for small ε, we have

1

4ε2

∫
ω

ηp � 1

ε2

∫
ω

ρ(1 + ρ)ηp

=
∫
ω

ρ|∇ϕ|2ηp−1 +
∫

∂ω\∂Ω

ηp−1 ∂η

∂ν
− (p − 1)

∫
ω

ηp−2|∇η|2

�
∫
ω

ρ|∇ϕ|2ηp−1 +
∫

∂ω\∂Ω

ηp−1 ∂η

∂ν
� C

(∫
ω

ηp

)(p−1)/p

+ Cε2(p−1),

and thus

‖ηε,g‖Lp(ω) � Cpε2, ∀ε < ε0, ∀g ∈A, ∀p < ∞. (7.8)

Inserting (7.8) into (7.6), we find that �η is bounded in Lp(ω), ∀p < ∞. By standard elliptic estimates, we find that
η (and thus ρ) is bounded in W 2,p(ω), ∀p < ∞. We conclude via the compact embedding W 2,p ↪→ W 1,p and the fact
that, by Lemma 6.4, we have ρ → 1 uniformly in ω.

Step 3. For every γ < 1, we have ψε,g → ψ∗,g in C1,γ (ω) as ε → 0, uniformly in g ∈ A.
Indeed, ψε,g − ψ∗,g satisfies⎧⎪⎨⎪⎩

�(ψε,g − ψ∗,g) = − 2
ρε,g

∇ρε,g · ∇(θg + ψε,g) in ω,

ψε,g − ψ∗,g = 0 on ∂Ω,

ψε,g − ψ∗,g → 0 in C2 on ∂ω \ ∂Ω,

(7.9)

the latter convergence being uniform in g. By Steps 1 and 2, we have∥∥�(ψε,g − ψ∗,g)
∥∥

Lp(ω)
→ 0 as ε → 0, uniformly in g.

Using (7.9), we find that ψε,g − ψ∗,g → 0 in W 2,p(ω). We conclude via the embedding W 2,p(ω) ↪→ C1,γ (ω), valid
when p > 2 and γ = 1 − 2/p.

Step 4. Conclusion.
We have

Tε(g) = uε,g ∧ ∂uε,g

∂ν
= ∂ϕε,g

∂ν
= ∂θg

∂ν
+ ∂ψε,g

∂ν
,

and similarly T∗(g) = ∂θg

∂ν
+ ∂ψ∗,g

∂ν
. Using Step 3, we find that

Tε(g) − T∗(g) = ∂(ψε,g − ψ∗,g)

∂ν
→ 0 in Cγ (∂Ω) as ε → 0, uniformly in g ∈ A. �
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8. Existence of critical points in nondegenerate domains

Before stating the main result of this section, let us recall the definition (5.15) of the operator U∗ in Section 5. Given
a0 a nondegenerate critical point of W(·, g), we first define, in a C1,β neighborhood of g, the operator T∗ = T∗,a0,g .
Then U∗ is defined in a neighborhood B of the origin in C1,β(∂Ω;R) by

U∗(ψ) = U∗,a0,g(ψ) = T∗
(
geıψ
)= T∗,a0,g

(
geıψ
)
.

We still denote by U∗ the induced map U∗ : B/R→ Ċβ(∂Ω;R), and recall that U∗ is smooth.

8.1. Theorem. Let d1, . . . , dk ∈ {−1,1} and set d := d1 + · · · + dk .
Let Ω be a bounded simply connected C1,β domain satisfying the two following nondegeneracy conditions:

(ND1) There exists a0 ∈ Ωk∗ such that a0 is a nondegenerate critical point of W(·, g0) = WΩ(·, d1, . . . , dk, g
0), with

g0 = ga0
the canonical boundary data associated with a0 and d1, . . . , dk .

(ND2) The corresponding operator U∗,a0,g0 : B/R → Ċβ(∂Ω;R) is a local diffeomorphism at the origin, i.e., the
differential

DU∗(0) : C1,β(∂Ω;R)/R −→ Ċβ(∂Ω;R)

is invertible.

Then there exists ε0 > 0 such that, for ε ∈ (0, ε0), there exists uε ∈ Ed a critical point of Eε with prescribed degree d .

8.2. Remark. It will be clear from the proof of Theorem 8.1 that the nondegeneracy condition (ND2) can actually be
replaced by the following weaker condition:

(ND2′) U∗ is a local homeomorphism near the origin.

However in what follows it will be more convenient for us to consider the condition (ND2). The main reason for
this is that (ND2) is stable under small perturbation of the domain, while it is not clear that (ND2′) is stable.

8.3. Remark. We connect here the hypothesis (ND2) in Theorem 8.1 to the hypothesis (ND2) presented in the
introduction. As we will see in Section 11,3 DU∗(0) is a Fredholm operator of index zero. Thus the above hypothesis
(ND2) is equivalent to the fact that DU∗(0) is onto. It is not difficult to see (but will not be needed in what follows)
that the surjectivity of DU∗(0) is equivalent to the hypothesis (ND2) in the introduction, and that the index of the
operator L that appears in the introduction is indL = indDU∗(0) + 1 = 1.

Proof of Theorem 8.1. Since Ω satisfies (ND1), the results of Sections 6 and 7 apply. We consider, as in Section 7,
the operators

Tε,T∗ :A → Ċβ(∂Ω;R)

and

U∗ :B/R → Ċβ(∂Ω;R),

where A = {g ∈ C1,β(Ω,S1); ‖g − g0‖ < δ} and B = {ψ ∈ C1,β(∂Ω;R); ‖ψ‖ < δ}. Here, δ and ε are sufficiently
small. We note that Tε takes its values in Ċβ(∂Ω;R). Indeed, u = uε,g satisfies∫

∂Ω

u ∧ ∂u

∂ν
=
∫
Ω

div(u ∧ ∇u) =
∫
Ω

u ∧ �u =
∫
Ω

|u|2 − 1

ε2
u ∧ u = 0.

3 In the special case where d = 1 and k = 1, but the arguments there adapt to the general case.
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By Lemma 6.5, we may also consider the induced operators

Uε : B/R→ Ċβ(∂Ω;R), Uε(ψ) = Tε

(
g0eıψ

)
.

By definition of the canonical boundary datum, it holds

U∗(0) = u∗,a0,g0 ∧ ∂u∗,a0,g0

∂ν
= ∂Φa0,g0

∂τ
= ∂Φ̂a0

∂τ
= 0. (8.1)

Thanks to (ND2), by considering a smaller δ if necessary, we may assume that U∗ is a homeomorphism onto its image.
By (8.1), there exists some η > 0 such that

U∗(B/R) ⊃ {ψ ∈ Ċβ(∂Ω;R); ‖ψ‖Cβ(∂Ω) < η
} := Bη. (8.2)

Recall the result of Proposition 7.1: for sufficiently small ε, Uε − U∗ is compact and we have

lim
ε→0

sup
{∥∥Uε(ψ) − U∗(ψ)

∥∥
Cβ(∂Ω)

;ψ ∈B
}= 0. (8.3)

Using (8.2), (8.3) and standard properties of the Leray–Schauder degree, we find that

Uε(B/R) ⊃
{
ψ ∈ Ċβ(∂Ω;R); ‖ψ‖Cβ(∂Ω) <

η

2

}
= Bη/2, (8.4)

for sufficiently small ε. Indeed, the argument goes as follows. We start from

Uε(B/R) = (Id + (Uε − U∗) ◦ U−1∗
)(

U∗(B/R)
)⊃ (Id + (Uε − U∗) ◦ U−1∗

)
(Bη). (8.5)

Here, Id denotes the identity map in Ċβ(∂Ω;R).
Let Lε := (Uε − U∗) ◦ U−1∗ . Then Lε : Bη → Ċβ(∂Ω;R) is compact and, by (8.3), there exists ε0 > 0 such that

sup
{∥∥Lε(ψ)

∥∥
Cβ(∂Ω)

;ψ ∈ Bη

}
< η/2, ∀ε ∈ (0, ε0). (8.6)

We complete the proof of (8.4) by showing that Bη/2 ⊂ (Id + Lε)(Bη) for ε ∈ (0, ε0). For this purpose, we let ψ0 ∈
Bη/2 and consider the compact operator T : Bη → Ċβ(∂Ω;R), T (ψ) := Lε(ψ) − ψ0. We claim that

(Id + sT )(ψ) 	= 0, ∀s ∈ [0,1], ∀ψ ∈ ∂Bη. (8.7)

Indeed, (8.7) is obtained by contradiction. Otherwise, using (8.6), we obtain, for some ψ such that ‖ψ‖Cβ(∂Ω) = η:

η/2 < η − s
∥∥Lε(ψ)

∥∥
Cβ(∂Ω)

�
∥∥ψ + sLε(ψ)

∥∥
Cβ(∂Ω)

= ‖sψ0‖Cβ(∂Ω) < η/2.

By (8.7), the Leray–Schauder degree deg(Id + sT ,Bη,0) is well defined. By homotopy invariance, we find that

deg(Id + sT ,Bη,0) = deg(Id,Bη,0) = 1.

As a consequence, the equation (Id+T )(ψ) = 0 admits at least a solution ψ ∈ Bη. This ψ satisfies (Id+Lε)(ψ) = ψ0.
The proof of (8.4) is complete.

Let ε ∈ (0, ε0). Then, by (8.4), there exists some ψ ∈B such that Uε(ψ) = 0. Let g = g0eıψ . Then uε = uε,g ∈ Ed

is a solution of the Ginzburg–Landau equation, and it satisfies the semi-stiff boundary condition

uε ∧ ∂uε

∂ν
= Tε(g) = Uε(ψ) = 0 on ∂Ω.

Therefore, uε is a critical point of Eε with prescribed degree d . �
9. Nondegeneracy of domains is stable

In this section we show that, if a domain Ω0 satisfies the nondegeneracy conditions (ND1)–(ND2) required in
Theorem 8.1, then a slightly perturbed domain Ω ≈ Ω0 still satisfies these nondegeneracy conditions.

9.1. Theorem. Assume that Ω0 satisfies (ND1)–(ND2). Fix a conformal representation f0 : D → Ω0. There exists
δ > 0 such that, for every holomorphic map f ∈ C1,β(D) satisfying ‖f −f0‖C1,β < δ, the domain Ω := f (D) satisfies
(ND1)–(ND2).
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Proof. Let Vβ be as in (5.4). We let g̃ 0 ∈ C1,β(S1;S1)/S1 denote the canonical boundary datum associated with
α0 := f −1

0 (a0), so that g̃ 0 = g0 ◦ f0.
Since Ω0 satisfies (ND1), we know from Proposition 5.3 that there exist: a neighborhood V1 of f0 in Vβ ,

a neighborhood V2 of the origin in C1,β(S1;R), and a smooth map α : V1 × V2 → D
k∗, such that the following holds.

For f ∈ V1 and ψ ∈ V2, let Ω = f (D) and g = (g̃ 0eıψ) ◦ f −1. Then a(f,ψ) := f (α(f,ψ)) is a nondegenerate
critical point of WΩ(·, g).

By the above, we may define, as in (5.13), the smooth operator U∗,f = U∗,a(f,0),̃g 0◦f −1 ,

U∗,f (ψ) = NΩ
(
a(f,ψ ◦ f ),

(
g̃ 0 ◦ f −1)eıψ

)
for small ψ ∈ C1,β(∂Ω;R)/R. (9.1)

The spaces between which U∗,f is defined vary with f . In order to deal with fixed spaces, we consider the linear
isomorphisms

Θf : Ċβ(∂Ω;R) → Ċβ
(
S

1;R), ψ �→ |f ′|ψ ◦ f, (9.2)

Ξf : C1,β(∂Ω;R)/R → C1,β
(
S

1;R)/R, ψ �→ ψ ◦ f, (9.3)

and we let

U(f,ψ) = Θf ◦ U∗,f ◦ Ξ−1
f (ψ) for (f,ψ) ∈ V1 × (V2/R), (9.4)

so that U∗,f is a local diffeomorphism if and only if U(f, ·) is a local diffeomorphism.
Moreover, if we express NΩ using (3.7), then we obtain

U(f,ψ) = ND
(
α(f,ψ), g̃0e

ıψ
)
. (9.5)

By combining (9.5) with the explicit formula (4.5) for ND, we find that U : V1 × (V2/R) → Ċβ(S1;R) is smooth.
On the other hand, using the definition (2.16) of the canonical boundary datum, we have

u∗,a,ga ∧ ∂u∗,a,ga

∂ν
= ∂Φa,ga

∂τ
= ∂Φ̂a

∂τ
= 0,

so that U(f0,0) = 0.
Moreover, since Ω0 satisfies (ND2), U(f0, ·) is a local diffeomorphism near the origin, i.e., DψU(f0,0) is

invertible. By the implicit function theorem, possibly after shrinking V1, for every f ∈ V1 there exists ψ(f ) ∈ V2
such that

U
(
f,ψ(f )

)= 0. (9.6)

In addition, the map f �→ ψ(f ) is smooth and we can assume that DψU(f,ψ(f )) is invertible.
Let f ∈ V1 and set Ω := f (D). We claim that Ω satisfies (ND1)–(ND2). Assuming the claim proved for the

moment, we complete the proof of Theorem 9.1 by taking any δ > 0 such that{
f ∈ Xβ; ‖f − f0‖C1,β < δ

}⊂ V1.

We next turn to the proof of the claim. Let gΩ := (g̃0e
ıψ(f )) ◦ f −1 ∈ C1,β(∂Ω;S1), and aΩ := a(f,ψ(f )) ∈ Ωk∗ .

By the definition (9.6) of ψ(f ) and the definition (9.4) of U , we obtain

U∗,f

(
ψ(f ) ◦ f −1)= 0. (9.7)

By combining (9.7) with the definition (9.1) of U∗,f , we find that

NΩ(aΩ,gΩ) = u∗,aΩ,gΩ ∧ ∂u∗,aΩ ,gΩ

∂ν
= ∂ΦaΩ,gΩ

∂τ
= 0. (9.8)

The normalization condition in (2.5) combined with (9.8) implies that ΦaΩ,gΩ = 0 on ∂Ω , and thus

ΦaΩ,gΩ = Φ̂aΩ . (9.9)

In turn, (9.9) implies that gΩ = gaΩ is the canonical boundary data associated with aΩ . Since, by definition of the map
(f,ψ) �→ a(f,ψ), the configuration aΩ is a nondegenerate critical point of W(·, gΩ), we find that the nondegeneracy
condition (ND1) is satisfied by Ω .



X. Lamy, P. Mironescu / J. Math. Pures Appl. 102 (2014) 385–418 409
On the other hand, since DψU(f,ψ(f )) is invertible, U∗,f is a local diffeomorphism near ψ(f ) ◦ f −1, which
means that U∗,aΩ ,gΩ is a local diffeomorphism near the origin. We find that Ω satisfies (ND2).

The proof of Theorem 9.1 is complete. �
10. The radial configuration is nondegenerate

In this section we let d = 1, k = 1, d1 = 1, and prove that the unit disk D satisfies (ND1)–(ND2). As a consequence,
domains close to the unit disk satisfy the nondegeneracy conditions when d = 1, k = 1, d1 = 1.

10.1. Proposition. Assume Ω = D, k = 1, d = 1. Then a = 0 is a nondegenerate critical point of W(·, g0), and
DU∗,0,g0(0) is invertible.

Proof. Step 1. 0 is a nondegenerate critical point of W(·, g0).
Indeed, by combining (2.25) and (4.1), we easily obtain that the canonical boundary datum g0 : S1 → S

1 corre-
sponding to a = 0 is given by g0(z) = z. From (4.10) we know that

W
(
a,g0)= Ŵ (a) + 1

2

∫
D

∣∣∇ψ∗
a,g0

∣∣2. (10.1)

On the other hand, (4.16) leads to

∇ψ∗
a,g0(x) = −2

a(ax − 1)

|1 − ax|2 , ∀x ∈D, (10.2)

and therefore

1

2

∫
D

∣∣∇ψ∗
a,g0

∣∣2 = 2|a|2
∫
D

dx

|1 − ax|2 . (10.3)

Thanks to the |a|2 factor, if we differentiate (10.3) with respect to a, and next let a = 0, we obtain

∇a

[
1

2

∫
D

∣∣∇ψ∗
a,g0

∣∣2]|a=0 = 0. (10.4)

If we differentiate twice (10.3) with respect to a, and next let a = 0, then we are left with only one nonzero term
(thanks to the |a|2 factor again). More specifically, we obtain

∇2
a

[
1

2

∫
D

∣∣∇ψ∗
a,g0

∣∣2]∣∣∣∣
a=0

= 4
∫
D

dx

|1 − ax|2
∣∣∣∣
a=0

I2 = 4
∫
D

dxI2 = 4πI2. (10.5)

By combining (10.1) with (10.4) and (10.5), we find that

∇aW
(
0, g0)= ∇Ŵ (0), ∇2

aW
(
0, g0)= ∇2Ŵ (0) + 4πI2. (10.6)

We next compute ∇Ŵ (0) and ∇2Ŵ (0). When k = 1 and d = 1, formula (4.2) reads

Ŵ (a) = π log
(
1 − |a|2), ∀a ∈ D. (10.7)

Identifying the complex number a with a vector in R
2, the two first derivatives of Ŵ are respectively given by:

∇Ŵ (a) = 2π

|a|2 − 1
a ∈R

2 (10.8)

∇2Ŵ (a) = 2π

|a|2 − 1
I2 − 4π

(|a|2 − 1)2
a ⊗ a ∈ M2(R). (10.9)

In particular, we obtain ∇Ŵ (0) = 0 and ∇2Ŵ (0) = −2πI2. Plugging this into (10.6) yields
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∇aW
(
0, g0)= 0, ∇2

aW
(
0, g0)= 2πI2, (10.10)

so that a = 0 is indeed a nondegenerate critical point of W(·, g0).

Step 2. DU∗(0) is invertible.
In our case, formula (4.5) becomes

N
(
a,g0eıψ

)= ∂ψ∗

∂τ
− 2

a ∧ z

|z − a|2 . (10.11)

Therefore

U∗(ψ) = ∂ψ∗

∂τ
− 2

a(ψ) ∧ z

|z − a(ψ)|2 , (10.12)

where ψ �→ a(ψ) is smooth, a(0) = 0 and a(ψ) is a nondegenerate critical point of W(·, g0eıψ).
Using (10.12) together with the fact that a(0) = 0, we obtain that

DU∗(0)ψ = ∂ψ∗

∂τ
− 2
(
Da(0)ψ

)∧ z. (10.13)

In (10.13), ψ is either a function in C1,β(S1;R), or a class in C1,β(S1;R)/R. Thus the linear operator DU∗(0) :
C1,β(S1;R)/R→ Ċβ(S1;R) can be written DU∗(0) = L − K , where

L(ψ) := ∂ψ∗

∂τ
and K(ψ) := 2

(
Da(0)ψ

)∧ z, ∀ψ ∈ C1,β
(
S

1;R)/R.

The operator L is an isomorphism, and K is compact since it has finite range. As a consequence, DU∗(0) is Fredholm
of index zero and, in order to complete Step 2, it suffices to prove that DU∗(0) is injective. For this purpose, we
compute Da(0) using the implicit equation

F
(
a(ψ),ψ

) := ∇aW
(
a(ψ), g0eiψ

)= 0 (10.14)

satisfied by a. By differentiating (10.14) with respect to ψ we obtain (via (10.10))

DψF(0,0)ψ = −∇2
aW
(
0, g0)Da(0)ψ = −2πDa(0)ψ. (10.15)

Let us compute DψF(0,0). Recalling (4.3), we find that

F(a,ψ) = ∇Ŵ (a) + ∇a

[
1

2

∫
D

∣∣∇ψ∗
a,g0 + ∇ψ∗∣∣2]

= ∇Ŵ (a) + ∇a

[
1

2

∫
D

∣∣∇ψ∗
a,g0

∣∣2]+ ∇a

[∫
D

∇ψ∗
a,g0 · ∇ψ∗

]
. (10.16)

The two first terms do not depend on ψ , and the last term depends linearly on ψ . Hence we obtain

DψF(a,0)ψ = ∇a

[∫
D

∇ψ∗
a,g0 · ∇ψ∗

]
. (10.17)

Integrating by parts, using the explicit formula (4.16) for ψ∗
a,g0 , and the fact that∫

S1

∂ψ∗

∂ν
=
∫
S1

∂ψ

∂τ
= 0,

we find that ∫
D

∇ψ∗
a,g0 · ∇ψ∗ = −2

∫
S1

log |1 − az|∂ψ∗

∂ν
. (10.18)

If we first plug (10.18) into (10.17) and next let a = 0, then we obtain
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DψF(0,0)ψ = 2
∫
S1

z
∂ψ∗

∂ν
, (10.19)

and finally, using (10.15),

Da(0)ψ = − 1

π

∫
S1

z
∂ψ∗

∂ν
. (10.20)

We are now in position to prove that DU∗(0) is injective. Let ψ ∈ kerDU∗(0). Then, recalling (10.13), we have

∂ψ∗

∂τ
= 2
(
Da(0)ψ

)∧ z = α ∧ z, (10.21)

where

α = − 2

π

∫
S1

z
∂ψ∗

∂ν
∈ C. (10.22)

Since ψ∗ is harmonic and has zero average on S
1, we may write

ψ∗(reıθ
)=∑

n	=0

anr
neınθ . (10.23)

Hence (10.21) yields

α

2ı
eıθ − α

2ı
e−ıθ = ∂ψ∗

∂τ

(
eıθ
)=∑

n	=0

ınane
ınθ . (10.24)

Identifying the Fourier coefficients, we obtain

an = 0 for |n| > 1, a1 = −α

2
, a−1 = −α

2
, (10.25)

so that (10.23) becomes

ψ∗(reıθ
)= −α

2
reıθ − α

2
re−ıθ . (10.26)

By (10.26), we have ∫
S1

z
∂ψ∗

∂ν
= −1

2

2π∫
0

eiθ
(
αeıθ + αe−ıθ

)
dθ = −πα. (10.27)

Plugging (10.27) into (10.22) we obtain α = 2α, so that α = 0 and consequently ψ∗ = 0. Therefore, we have ψ = 0
modulo R, and thus DU∗(0) is invertible. �
10.2. Corollary. If a domain Ω is sufficiently close to the unit disk, in the sense that there exists a conformal repre-
sentation f : D → Ω such that ‖f − Id‖C1,β < δ for sufficiently small δ, then, for small ε, Eε admits critical points
with prescribed degree one.

11. In degree one, “most” of the domains are nondegenerate

In this section, we assume that k = 1 and d = 1, and we prove that every domain can be approximated with domains
satisfying the nondegeneracy conditions (ND1)–(ND2). More specifically, we establish the following result.

11.1. Theorem. Assume that k = 1 and d = 1. Let Ω0 ⊂ R
2 be a simply connected bounded domain with C1,β

boundary, and fix a conformal representation f0 : D→ Ω0.
Then, for every η > 0, there exists a conformal representation f : D → Ω := f (D) such that ‖f0 − f ‖C1,β < η

and such that the corresponding domain Ω satisfies (ND1)–(ND2).
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The main idea of the proof of Theorem 11.1 is to use transversality. Among other ingredients, we will rely on the
following abstract transversality result [14, Theorem 3].

11.2. Theorem. Let X, Λ, Y be smooth separable Banach manifolds. Let Φ : X × Λ → Y be a smooth map.
Assume that:
1. for every λ ∈ Λ, Φλ := Φ(·, λ) : X → Y is Fredholm.4

2. Φ is transverse to {0}, i.e., for every (x,λ) such that Φ(x,λ) = 0, the differential DΦ(x,λ) is onto.
Then the set {λ; Φλ is transverse to {0}} is dense in Λ.

Note that, if X and Y are finite dimensional, then condition 1. is automatically satisfied.
Another ingredient of the proof is the following fact, which relates nondegenerate critical points of Ŵ to

nondegenerate critical points of W(·, ga).

11.3. Proposition. Assume that k = 1 and d = 1. Let a0 ∈ Ω be a nondegenerate critical point of ŴΩ . Then a0 is a
nondegenerate critical point of W(·, ga0).

Proof. Let us first remark that a0 is automatically a critical point of WΩ0(·, ga0).5 Indeed, using (2.24), in which each
term is smooth thanks to the formulas in Sections 3 and 4, and the fact that (by definition) we have ψa,ga = 0, we find
that

∇aW(a,g)|g=ga = ∇Ŵ (a). (11.1)

It remains to prove that a0 is nondegenerate as a critical point of WΩ(·, ga0).
Let f : D→ Ω be a conformal representation and set α0 := f −1(a0). Then f̃ (0) = a0, where

f̃ (z) = f

(
z + α0

1 + α0z

)
.

Therefore, by replacing f with f̃ , we may actually assume that f (0) = a0. In view of (3.5) and of the fact that, in the
unit disk, we have g0 = Id, we obtain

ga0 ◦ f = g0 = Id. (11.2)

Recall that, by Lemmas 3.1 and 4.1 and by (4.2) we have

ŴΩ
(
f (α)
)= ŴD(α) + P(α,f ), (11.3)

WΩ
(
f (α), ga0

)= WD
(
α,g0)+ P(α,f ), (11.4)

where

ŴD(α) = π log
(
1 − |α|2), P (α,f ) := π log

∣∣f ′(α)
∣∣ (11.5)

and

WD
(
α,g0) is given by (4.3) with ψ = 0. (11.6)

By (11.3)–(11.6) and the discussion at the beginning of the proof of Proposition 5.1, the assumption that a0 is a
nondegenerate critical point of ŴΩ is equivalent to the fact that 0 is a nondegenerate critical point of ŴD + P(·, f ).
Similarly, the desired conclusion (that a0 is a nondegenerate critical point of WΩ(·, ga0)) is equivalent to the fact that
0 is nondegenerate as a critical point of WD(·, g0) + P(·, f ).

Since

∇[ŴD + P(·, f )
]
(α) = −2πα

1 − |α|2 + π
f ′′(α)

f ′(α)
∈C�R

2, (11.7)

4 That is, the linearized operator DxΦ(x,λ) is Fredholm for every x and every λ.
5 This is not specific to the case where k = 1 and d = 1, but holds for arbitrary k and degrees dj , j ∈ �1, k�.
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and since 0 is a critical point of ŴD + P(·, f ), we have f ′′(0) = 0.
In order to calculate the Hessian of P(·, f ) at the origin, we find the second order Taylor expansion of P(·, f ):

P(α,f ) = π log
∣∣f ′(0) + f (3)(0)α2 + o

(|α|2)∣∣
= π log

∣∣f ′(0)
∣∣+ π

2
log

(∣∣∣∣1 + f (3)(0)

f ′(0)
α2 + o

(|α|2)∣∣∣∣2)
= P(0, f ) + π

2
log

(
1 + 2 Re

(
f (3)(0)

f ′(0)
α2
)

+ o
(|α|2))

= P(0, f ) + π

2

(
2 Re

(
f (3)(0)

f ′(0)
α2
)

+ o
(|α|2))

= P(0, f ) + π

(
f (3)(0)

f ′(0)
α

)
· α + o

(|α|2). (11.8)

In the last equality, z · w stands for the real scalar product of the complex numbers z and w (identified with vectors
in R

2). As a consequence, we have

∇2
αP (0, f ) = πMf (3)(0)/f ′(0), (11.9)

where, for a complex number z ∈C, Mz denotes the matrix corresponding to the R-linear map

T : C→C, ξ
T�→ zξ,

i.e.,

Mz =
(

Re z − Im z

− Im z −Re z

)
.

Recall that, from (10.9) and (10.10), it holds

∇2ŴD(0) = −2πI2 and ∇2
αW
(
0, g0)= 2πI2. (11.10)

By combining (11.9) with (11.10), we obtain

∇2[ŴD + P(·, f )
]
(0) = πMf (3)(0)/f ′(0) − 2πI2, (11.11)

∇2[WD
(·, g0)+ P(·, f )

]
(0) = πMf (3)(0)/f ′(0) + 2πI2. (11.12)

We claim that the two Hessian matrices (11.11) and (11.12) have the same determinant. In fact, for every z ∈ C, we
have

det(Mz − 2I2) =
∣∣∣∣Re z − 2 − Im z

− Im z −Re z − 2

∣∣∣∣= (2 − Re z)(Re z + 2) − (Im z)2

=
∣∣∣∣2 + Re z − Im z

− Im z 2 − Re z

∣∣∣∣= det(2I2 + Mz).

The Hessian matrix in (11.11) being nondegenerate by assumption, so is the Hessian in (11.12). Therefore 0 is
a nondegenerate critical point of WD(·, g0) + P(·, f ), which means that a0 is a nondegenerate critical point of
WΩ(·, ga0). �

Before proceeding to the proof of Theorem 11.1, we introduce some notation. For α ∈D and f ∈ Vβ , let

F̂ (α,f ) = ∇α

[
ŴD(α) + π log

∣∣f ′(α)
∣∣], (11.13)

so that F̂ : D × Vβ → R
2 is smooth (thanks to the computations in Lemma 5.2), and, by Lemma 3.1, a point

a = f (α) ∈ Ω = f (D) is a nondegenerate critical point of ŴΩ if and only if α is a nondegenerate zero of F̂ (·, f ).
Similarly, g0 ∈ C1,β(S1;S1) being fixed, we define, for α ∈D, f ∈ Vβ and ψ ∈ C1,β(S1;R),

F(α,ψ,f ) = ∇α

[
WD
(
α,g0e

ıψ
)+ π log

∣∣f ′(α)
∣∣], (11.14)
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so that F :D× C1,β(S1;R) × Vβ → R
2 is smooth. By Lemma 3.1 and the discussion at the beginning of the proof of

Proposition 5.1, a point a = f (α) ∈ Ω = f (D) is a nondegenerate critical point of WΩ(·, (g0e
ıψ) ◦ f −1) if and only

if α is a nondegenerate zero of F(·,ψ,f ).
Using (4.3), we may split

F̂ (α,f ) = F1(α) + F2(α,f ) (11.15)

and

F(α,ψ,f ) = F1(α) + F2(α,f ) + F3(α,ψ), (11.16)

where the smooth maps F1, F2 and F3 are respectively given by

F1(α) = ∇ŴD(α), (11.17)

F2(α,f ) = ∇α

[
π log
∣∣f ′(α)

∣∣]= π
f ′′(α)

f ′(α)
∈C�R

2, (11.18)

F3(α,ψ) = ∇α

[
1

2

∫
D

∣∣∇(ψ∗
α,g0

+ ψ∗)∣∣2]. (11.19)

Proof of Theorem 11.1. The proof is divided into two steps. In each step we apply the abstract transversality result
(Theorem 11.2) in order to prove that a certain nondegeneracy is generic.

Step 1. We may assume that ŴΩ0 has a nondegenerate critical point a0 ∈ Ω0.
Indeed, we claim that F̂ is transverse to {0}. This will follow if we prove that Df F̂ (α,f ) is surjective for every

(α,f ). In turn, surjectivity is established as follows. For every h ∈ Xβ we have

Df F̂ (α,f ) · h = Df F2(α,f ) · h = π
f ′(α)h′′(α) − f ′′(α)h′(α)

f ′(α)2
∈C�R

2. (11.20)

If f ′′(α) 	= 0, then the choice h(z) = −λz (with λ ∈C arbitrary constant) leads to

π
f ′′(α)

f ′(α)2
λ ∈ range Df F̂ (α,f ),

so Df F̂ (α,f ) is surjective. If f ′′(α) = 0, then we take h(z) = λz2 and obtain

2π

f ′(α)
λ ∈ range Df F̂ (α,f ),

and thus the claim is proved.
Therefore we can apply the transversality theorem: we can choose f arbitrarily close to f0, such that F̂ (·, f ) is

transverse to {0}. Thus, by slightly perturbing f0, we may actually assume that F̂ (·, f0) is transverse to {0}.
Since

ŴΩ0
(
f0(α)

)= ŴD(α) + π log
∣∣f ′

0(α)
∣∣

= π log
(
1 − |α|2)+ π log

∣∣f ′
0(α)
∣∣−→ −∞ as |α| → 1, (11.21)

there exists some a0 ∈ Ω , such that ŴΩ(a0) = maxΩ0 ŴΩ . Hence a0 is a critical point of ŴΩ0 , which is equivalent
to the fact that α0 := f −1

0 (a0) is a zero of F̂ (·, f0). Since the map F̂ (·, f0) is transverse to {0}, its differential is
surjective at α0. Therefore, α0 is a nondegenerate zero of F̂ (·, f0), which means that a0 is a nondegenerate critical
point of ŴΩ0 . The proof of Step 1 is complete.

Step 2. There exists f arbitrarily close to f0, such that Ω = f (D) satisfies (ND1)–(ND2).
Thanks to Step 1 and Proposition 11.3, possibly after slightly perturbing f0, we may assume that there exists some

a0 = f0(α0) ∈ Ω0, which is a nondegenerate critical point of both ŴΩ0 and WΩ0(·, g0) (with g0 = ga0 ).
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Since F̂ (α0, f0) = 0, and since DαF̂ (α0, f0) is invertible, we can apply the implicit function theorem to F̂ . There
exists an open neighborhood V1 of f0 in Vβ , and a smooth function α : V1 → D, such that, for every f ∈ V1 and for
every α sufficiently close to α0, we have

F̂ (α,f ) = 0 ⇐⇒ α = α(f ). (11.22)

By Proposition 5.3 and by the invertibility of DαF̂ (α0, f0), we may choose the open neighborhood V1 such that,
for every f ∈ V1, the point a = a(f ) = f (α(f )) ∈ Ω = f (D) is doubly nondegenerate, that is: nondegenerate as a
critical point of ŴΩ and nondegenerate as a critical point of WΩ(·, ga). In particular, every domain Ω = f (D), with
f ∈ V1, satisfies (ND1).

Again by the second nondegeneracy property of every f ∈ V1, we may consider the map U∗,a,ga , defined as in
(5.15), and corresponding to a = a(f ). In order to complete Step 2, we have to find some f arbitrarily close to f0,
such that the map U∗,a,ga is a local diffeomorphism at the origin. To this end we will again rely on the transversality
theorem. More specifically, we define, exactly as in formula (9.4) in the proof of Theorem 9.1, the smooth map

U : V1 × V2/R−→ Ċβ
(
S

1;R). (11.23)

Recall that V1 is an open neighborhood of f0 in Vβ , that V2 is an open neighborhood of the origin in C1,β(S1;R), and
that

U(f,ψ) = ND
(̃
α(ψ,f ), g0e

ıψ
) ∀(f,ψ) ∈ V1 × V2/R. (11.24)

Here, α̃ is the smooth implicit solution of

F
(̃
α(ψ,f ),ψ,f

)= 0 (11.25)

obtained in Proposition 5.1. We recall the following fact established in the proof of Theorem 9.1: the map U∗,a(f ),ga(f )

is a local diffeomorphism at the origin if and only if U(f, ·) is a local diffeomorphism at −ψα(f ),g0 .
Recalling the formula (4.5) for ND, we obtain the following explicit formula for U :

U(f,ψ) = ∂ψ∗

∂τ
+ 2

α0 ∧ z

|z − α0|2 − 2
α(ψ,f ) ∧ z

|z − α(ψ,f )|2 . (11.26)

Hence, for every (f,ψ) ∈ V1 × V2/R, we have

DψU(f,ψ) · ζ = ∂ζ ∗

∂τ
− 2

(Dψα̃(ψ,f ) · ζ ) ∧ z

|z − α̃(ψ,f )|2
− 4

(z − α̃(ψ,f )) · (Dψα̃(ψ,f ) · ζ )

|z − α̃(ψ,f )|4 α̃(ψ,f ) ∧ z.

In particular DψU(f,ψ) is a Fredholm operator of index zero, since it can be written as L − K , where

L : C1,β
(
S

1;R)/R→ Ċβ
(
S

1;R), ζ
L�→ ∂ζ ∗

∂τ

is invertible and K has finite range. Hence U(f, ·) is a smooth Fredholm map for every f ∈ V1.
We want to apply the transversality theorem to U . We already know that assumption 1. of the transversality theorem

is satisfied. It remains to check that U is transverse to 0. To this end we compute the differential of U at some point
(f,ψ), using (11.26):

DU(f,ψ) · (h, ζ ) = ∂ζ ∗

∂τ
− 2

(Dα̃(ψ,f ) · (h, ζ )) ∧ z

|z − α̃(ψ,f )|2
− 4

(z − α̃(ψ,f )) · (Dα̃(ψ,f ) · (h, ζ ))

|z − α̃(ψ,f )|4 α̃(ψ,f ) ∧ z. (11.27)

Let us show that DU(f,ψ) is onto. Let Ψ ∈ Ċβ(S1;R). Then there exists some ζ ∈ C1,β(S1;R)/R such that

∂ζ ∗
= Ψ. (11.28)
∂τ
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We claim that there exists h = hζ ∈ Xβ such that

Dα̃(ψ,f ) · (hζ , ζ ) = 0. (11.29)

Then, plugging (11.29) and (11.28) into (11.27), we obtain

DU(f,ψ) · (hζ , ζ ) = Ψ,

and thus DU(f,ψ) is onto.
In order to complete Step 2, it remains to prove the existence of hζ . From the implicit equation (11.25) satisfied by

α̃, we obtain

Dα̃(ψ,f ) · (h, ζ )

= −DαF
(̃
α(ψ,f ),ψ,f

)−1[
Df F

(̃
α(ψ,f ),ψ,f

) · h + DψF
(̃
α(ψ,f ),ψ,f

) · ζ ]. (11.30)

Since Df F(α,ψ,f ) = Df F̃ (α,f ) is surjective (by Step 1), we may clearly choose hζ such that (11.30) holds.
Therefore we can apply the transversality theorem to U : the set of f such that U(f, ·) is transverse to {0} is dense.
Let η > 0. We can choose f ∈ V1, such that ‖f − f0‖C1,β < η, and U(f, ·) is transverse to {0}. In particular, the

differential of U(f, ·) at −ψα(f ),g0 is onto, which implies that the differential is invertible (since it is a zero index
Fredholm operator). Hence U(·, f ) is a local diffeomorphism at −ψα(f ),g0 , which is equivalent to U∗,a(f ),ga(f ) being
a local diffeomorphism at the origin, i.e. Ω = f (D) satisfies (ND2).

Step 2 and the proof of Theorem 11.1 are complete. �
11.4. Remark. In Theorem 11.1 we have established that nondegeneracy of the domain is generic in the case of
prescribed degree d = 1. Some, but not all, of the ingredients of our proof can be generalized to arbitrary d .
For example, it is possible to adapt our arguments and obtain the transversality of F̂ to 0 when d is arbitrary.
However, this does not lead to the conclusion that (ND1) is generically true. The reason is that when d 	= ±1, we can-
not rely on (11.21) anymore, and we actually do not know whether ŴΩ does have critical points. A similar difficulty
occurs in Step 2. Indeed, the first ingredient in Step 2 is Proposition 11.3, yielding the existence of a nondegenerate
critical point a0 of W(·, ga0). Clearly, our proof of Proposition 11.3 is specific to the case d = 1.

However, it is plausible the transversality arguments extend to an arbitrary degree d , and thus the main difficulty
arises in the existence of critical points of ŴΩ . It would be interesting to investigate, e.g. by topological methods in
the spirit of [15], whether such points do exist.

Appendix A

The following is a C1,β variant of [16, Lemmas A1, A2].

11.5. Lemma. Let G ⊂R
n be a bounded open set of class C1,β . Assume that{

�w = f in G

w = ϕ on ∂G.
(11.31)

Then

sup
G

|∇w|� C
(‖f ‖1/2

L∞
(‖w‖1/2

L∞ + ‖ϕ‖1/2
L∞(∂G)

)+ ‖ϕ‖C1,β (∂G)

)
, (11.32)

|∇w|0,β,G � C
(‖f ‖1/2+β/2

L∞
(‖w‖1/2−β/2

L∞ + ‖ϕ‖1/2−β/2
L∞(∂G)

)+ ‖ϕ‖C1,β (∂G)

)
, (11.33)

for a constant C depending only on G. In addition, when G = Ωσ , where σ1 � σ � σ2 and σ1, σ2 are fixed small
numbers, we may take C independent of σ .

Proof. We write w = u + v, where {
�u = 0 in G,

(11.34)

u = ϕ on ∂G,
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and {
�v = f in G,

v = 0 on ∂G.
(11.35)

By standard elliptic estimates [17, Theorem 8.33] we have

‖u‖C1,β � c‖ϕ‖C1,β . (11.36)

Therefore we only need to prove that v satisfies the estimates

sup
G

|∇v|� C‖f ‖1/2
L∞‖v‖1/2

L∞, (11.37)

|∇v|0,β,G � C‖f ‖1/2+β/2
L∞ ‖v‖1/2−β/2

L∞ . (11.38)

Estimate (11.37) is proved in [16, Lemma A.2] by combining an interior estimate with a boundary estimate. Estimate
(11.38) can be obtained following exactly the same lines. In order to see this, we detail for example the proof of the
interior estimate corresponding to (11.38). Proceeding as in [16, Lemma A.1], we first show that

|∇v|0,β,Gd
� C

(
‖f ‖1/2+β/2

L∞ ‖v‖1/2−β/2
L∞ + 1

d1+β
‖v‖L∞

)
, (11.39)

where, for d > 0, we let Gd := {x ∈ G;dist(x, ∂G) > d}. In order to prove (11.39), we let x0 ∈ Gd and λ ∈ (0, d],
and define

vλ(y) := v(x0 + λy), y ∈ B1(0). (11.40)

Then the function vλ satisfies the equation

�vλ = fλ in B1(0), with fλ(y) := λ2f (x0 + λy). (11.41)

Standard elliptic estimates [17, Theorem 8.33] yield

λ1+β |∇v|0,β,Bλ/2(x0) = |∇vλ|0,β,B1/2(0) � C
(‖vλ‖L∞ + ‖fλ‖L∞

)
� C
(‖v‖L∞ + λ2‖f ‖L∞

)
. (11.42)

We next discuss the two following cases:
Case 1. ‖v‖L∞

‖f ‖L∞ � d2.

In this case, we apply (11.42) with λ = (‖v‖L∞/‖f ‖L∞)1/2. We find that

|∇v|0,β,Bλ/2(x0) � 2C‖v‖1/2−β/2
L∞ ‖f ‖1/2+β/2

L∞ , (11.43)

so that (11.39) is satisfied.
Case 2. ‖v‖L∞

‖f ‖L∞ > d2.
In this case, we apply (11.42) with λ = d . We obtain

|∇v|0,β,Bλ/2(x0) � C
(
d−1−β‖v‖L∞ + d1−β‖f ‖L∞

)
� C
(
d−1−β‖v‖L∞ + ‖v‖1/2−β/2

L∞ ‖f ‖1/2+β/2
L∞

)
, (11.44)

so that in both cases (11.39) is satisfied.
Once (11.39) is established, we easily obtain the interior estimate corresponding to (11.38). Indeed, standard elliptic

estimates [17, Theorem 3.7] imply ‖v‖L∞ � C‖f ‖L∞ , so that from (11.39) we obtain

|∇v|0,β,K � C‖f ‖1/2+β/2
L∞ ‖v‖1/2−β/2

L∞ , (11.45)

for every compact set K ⊂ G.
The proof of the boundary version of (11.45) is also a straightforward adaptation of the corresponding estimate

established in [16, proof of Lemma A.2], and we omit it here. �
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