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Abstract. Smoothness of a function f : Rn → R can be measured in terms
of the rate of convergence of f ∗ρε to f , where ρ is an appropriate mollifier. In

the framework of fractional Sobolev spaces, we characterize the “appropriate”

mollifiers. We also obtain sufficient conditions, close to being necessary, which
ensure that ρ is adapted to a given scale of spaces. Finally, we examine in

detail the case where ρ is a characteristic function.

1. Introduction. The smoothness of a function f : Rn → R can be measured
by different decay properties, for example via the decay properties of its harmonic
extension, or the ones of its Littlewood-Paley decomposition, or the ones of its
coefficients in an appropriate wavelets frame. See [7, Chapter 2] for a thorough
discussion on this subject. Another characterization is related to the rate of con-
vergence of f ∗ ρε to f , where ρ is an appropriate mollifier. For example, for non
integer s > 0 and 1 ≤ p <∞ we have

‖f‖pW s,p ∼ ‖f‖pLp +

� 1

0

1

εsp+1
‖f − f ∗ ρε‖pLp dε, where ρε(x) =

1

εn
ρ
(x
ε

)
, (1)

provided

ρ ∈ S and

�
ρ = 1. (2)

Here S denotes the Schwartz class of smooth, rapidly decreasing functions.
We address here the question of the validity of 1 under assumptions as weak as

possible on ρ. This is a “continuous” (vs “discrete”) counterpart of the analysis
of Bourdaud [1] concerning the minimal assumptions required on the (father and
mother) wavelets appropriate for the characterization of Besov spaces.

Usually, the assumption ρ ∈ S is weakened as follows. First, validity of 1 is
established for some ρ̃ ∈ S. Next, one expresses an arbitrary ρ in the form

ρ =
∑
j≥0

ηj ∗ ρ̃2−j [4, Lemma 2, p. 93]. (3)

Then, using 3 and the validity of 2 for ρ̃, it follows that property 1 holds for ρ
provided the ηj ’s decay sufficiently fast. Finally, decay of ηj is obtained by requiring
a sufficient decay of the Fourier transform ρ̂ of ρ. With more work, spatial conditions
on ρ (of Fourier multiplier’s theorem type) ensure the decay of ρ̂ and thus lead to

2010 Mathematics Subject Classification. Primary: 46E35.
Key words and phrases. Besov spaces, approximation, mollifiers, Littlewood-Paley decomposi-

tion.

6015

http://dx.doi.org/10.3934/dcds.2015.35.6015


6016 XAVIER LAMY AND PETRU MIRONESCU

(usually suboptimal) sufficient conditions for the validity of 1.1 Alternatively, in
standard function spaces one can rely on the decomposition of functions in simple
building blocks (e.g. atoms) and obtain almost sharp spatial sufficient conditions.
For such an approach in the framework of the Hardy spaces, see [5], [3].

In what follows, we will obtain, using very little technology, necessary and suffi-
cient conditions on ρ in order to have 1, and simple sufficient spatial conditions on
ρ, close to being optimal.

Of special interest to us will be the validity of 1 when f ∗ρε is particularly simple
to compute. A typical example consists in taking ρ the characteristic function of
a unit cube, e.g. Q = (0, 1)n or Q = (−1/2, 1/2)n. We will determine the spaces
W s,p which can be described via such a ρ.

It turns out that our techniques are adapted not only to the Sobolev spaces with
non integer s, but more generally to the Besov spaces Bsp,q with s > 0, 1 ≤ p ≤ ∞
and 1 ≤ q ≤ ∞. Recall that this scale of spaces includes the one of fractional Sobolev
spaces, since W s,p = Bsp,p for non integer s [7, Chapter 2]. For simplicity, we will
write all our formulas and statements only when q <∞. However, our results hold
also when q = ∞, and the corresponding results are obtained by straightforward
adaptations of the formulas and arguments.

Our first result is a one sided estimate, which surprisingly requires no smoothness
of ρ.

Theorem 1.1. Let ρ ∈ L1 be such that
�
ρ = 1. Then for every s > 0, 1 ≤ p ≤ ∞

and 1 ≤ q <∞ we have

‖f‖qBs
p,q
. ‖f‖qLp +

� 1

0

1

εsq+1
‖f − f ∗ ρε‖qLp dε. (4)

Remark 1. It is tempting to extend Theorem 1.1 to finite measures, but the
example ρ = δ (the Dirac mass at the origin) shows that Theorem 1.1 need not hold
for a measure. We do not know how to characterize the finite measures of total
measure 1 satisfying 4.

We next discuss what is needed in order to obtain the reverse of 4. For this
purpose, we fix some η ∈ S. Assuming that the reverse of 4 holds, we have� 1

0

1

εsq+1
‖η − η ∗ ρε‖qLp dε <∞. (5)

It turns out that 5 with p = q = 1 is also sufficient.

Theorem 1.2. Let ρ ∈ L1 satisfy
�
ρ = 1. Let s > 0. Then the following are

equivalent.

1. There exists some η ∈ S such that
�
η 6= 0 and� 1

0

1

εs+1
‖η − η ∗ ρε‖L1 dε <∞. (6)

2. For every 1 ≤ p ≤ ∞ and every 1 ≤ q <∞ we have

‖f‖qBs
p,q
∼ ‖f‖qLp +

� 1

0

1

εsq+1
‖f − f ∗ ρε‖qLp dε. (7)

1A typical result for which this approach is followed is the fact that the norm on the Besov
spaces Bs

p,q does not depend on the choice of the rapidly decreasing mollifier; see [6, Section 2.3,

p. 168] and the use of the Fourier multipliers theory [6, Section 2.2.4, p. 161].
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An additional equivalent characterization of ρ satisfying the above properties will
be provided in Section 4.

We now turn to the case where ρ is the characteristic function of a set A. In
that case, the range of values of s for which the equivalent characterizations of
Theorem 1.2 are satisfied depends only on whether or not the set A is centered:

Proposition 1. Let ρ =
1

|A|
1A, where A ⊂ Rn is a bounded measurable set of

positive Lebesgue measure. Then ρ characterizes all the spaces Bsp,q for fixed s (that
is, 7 is valid) if and only if:

1. Either
�
A
y dy = 0 and s < 2.

2. Or
�
A
y dy 6= 0 and s < 1.

Finally, we provide sufficient spatial conditions for the validity of 7 when 0 <
s < 1.

Proposition 2. Let ρ ∈ L1 satisfy
�
ρ = 1, and 0 < s < 1. If ρ satisfies the

moment condition �
|y|s|ρ(y)| dy <∞, (8)

then ρ characterizes all spaces Bsp,q. That is, 7 is valid.

For s ≥ 1, the exemple of ρ = 1A with uncentered A shows that there is no such
simple sufficient finite moment condition. In order to obtain the validity of 7 for
higher s, one would need to ask for the vanishing of moments, as in the case of
ρ = 1A. For more details see Proposition 4 below.

The sufficient spatial condition 8 turns out to be optimal, in the sense that for
non negative ρ it is also necessary:

Proposition 3. Let s > 0. Let ρ ∈ L1 satisfy
�
ρ = 1 and ρ ≥ 0. If 7 is valid,

then ρ necessarily satisfies the moment condition 8.

The plan of the paper is as follows. In Section 2 we introduce some preliminary
notation, definitions and tools required in the sequel. In Sections 3 and 4 we prove
our two main results, Theorems 1.1 and 1.2. Eventually, Section 5 is devoted to
proving Propositions 1, 2 and 3.

2. Preliminaries.

2.1. Littlewood-Paley decomposition and Bsp,q. We will make use of the (in-
homogeneous) Littlewood-Paley decomposition of a temperate distribution. Let
ζ, ϕ ∈ S(Rn) be as follows:

• supp ζ̂ ⊂ B(0, 2) and ζ̂ ≡ 1 in a neighborhood of B(0, 1),

• ϕ := ζ1/2 − ζ, so that ϕ̂ = ζ̂(·/2)− ζ̂ and supp ϕ̂ ⊂ B(0, 4) \B(0, 1).

The (inhomogeneous) Littlewood-Paley decomposition of a temperate distribution
f ∈ S ′(Rn) is then given by

f =
∑
j≥0

fj , where f0 = f ∗ ζ and fj = f ∗ ϕ21−j for j ≥ 1. (9)

See for instance [4, Section VI.4.1].
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The Littlewood-Paley decomposition can be used to characterize the space Bsp,q
[7, Section 2.3.2, Proposition 1, p. 46], and this is the definition we adopt here:

Bsp,q =

f ∈ Lp; |f |qBs
p,q

:=
∑
j≥0

2sjq‖fj‖qLp <∞

 . (10)

The norm on Bsp,q is defined by

‖f‖qBs
p,q

= ‖f‖qLp + |f |qBs
p,q
. (11)

Different choices of ζ yield equivalent norms [8, Section 2.3]. See also [8, Chapter 3]
for other equivalent characterizations of Bsp,q.

2.2. Schur’s criterion. We will also make use of the following Schur-type estimate
for kernel operators; see e.g. [2, Appendix I].

Lemma 2.1. Let (X,µ) and (Y, ν) be two (σ-finite) measure spaces, let 1 ≤ p ≤ ∞,
and κ : X × Y → C a measurable kernel. If the quantities

M1 := esssupx

�
|κ(x, y)| dν(y) and M2 := esssupy

�
|κ(x, y)| dµ(x),

are finite, then the formula

Tu(x) =

�
κ(x, y)u(y) dν(y)

defines a bounded linear operator from Lp(Y ) to Lp(X), with norm

‖T‖ ≤M1/p′

1 M
1/p
2 .

Here p′ = p/(p− 1) is the conjugate exponent of p.

3. Proof of Theorem 1.1. The proof of Theorem 1.1 relies on the following in-
gredient.

Lemma 3.1. Let ρ ∈ L1, and let ψ ∈ L1 satisfy
�
ψ = 0. Then

lim
ε→0
‖ρ ∗ ψε‖L1 = 0.

More generally, for ρ and ψ as above we have the following uniform estimate:

lim
ε→0

sup
1/2≤δ≤1

‖ρδ ∗ ψε‖L1 = 0. (12)

Proof of Theorem 1.1. We are going to prove a discrete version of 4. We start from
the inequalities∑
j≥0

2sjq
� 1

1/2

‖f − f ∗ ρ2−jε‖qLp dε ≤
� 1

0

‖f − f ∗ ρε‖qLp

dε

εsq+1

≤ 2sq+1
∑
j≥0

2sjq
� 1

1/2

‖f − f ∗ ρ2−jε‖qLp dε.

(13)

In view of 13, it suffices to establish the estimate

‖f‖qBs
p,q
≤ C(s, p, q)

‖f‖qLp +
∑
j≥0

2sjq‖f − f ∗ ρ2−jε‖qLp

 , (14)
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uniformly with respect to ε ∈ (1/2, 1). Integrating 14 and using 13, we obtain
indeed the desired inequality 4.

To simplify the notation, we will establish 14 for ε = 1, which amounts to
considering ρ̃ = ρε instead of ρ. It will be clear at the end of the proof that all
estimates are indeed uniform with respect to ε ∈ (1/2, 1).

We introduce a function ψ ∈ S satisfying the following:

ψ̂ ≡ 1 on supp ϕ̂, and ψ̂(0) = 0. (15)

Recall that ϕ is the function used in the definition of the Littlewood-Paley decom-
position 9. Since the support of ϕ̂ is contained in the annulus {1 ≤ |ξ| ≤ 4}, it is
indeed possible to choose ψ satisfying 15.

We need to estimate the Bsp,q semi-norm of f , hence the sum∑
j≥0

2sjq‖fj‖qLp ,

where f =
∑
j fj is the Littlewood-Paley decomposition 9. We introduce an integer

k > 0, to be fixed later, and split the sum into two parts:

|f |qBs
p,q
≤
∑
j≤k

2sjq‖fj‖qLp +
∑
j>k

2sjq‖fj‖qLp . (16)

Using the fact that

‖fj‖Lp = ‖f ∗ ϕ21−j‖Lp ≤ ‖f‖Lp‖ϕ‖L1 , ∀ j ≥ 1,

and ‖f0‖Lp = ‖f ∗ ζ‖Lp ≤ ‖f‖Lp‖ζ‖L1 ,

we simply estimate the first sum in the right-hand side of 16 by∑
j≤k

2sjq‖fj‖qLp . ‖f‖qLp . (17)

We next turn to estimating the second sum. In the remaining part of the proof,
we will use the notation

ρj := ρ2−j , ϕj := ϕ2−j , ψj := ψ2−j .

Taking advantage of the fact that ψ ∗ ϕ = ϕ (and thus ψj ∗ ϕj = ϕj) we write,
for j > k,

fj+1 = (f − f ∗ ρj−k + f ∗ ρj−k) ∗ ϕj

= (f − f ∗ ρj−k) ∗ ϕj + f ∗ ρj−k ∗ ψj ∗ ϕj

= (f − f ∗ ρj−k) ∗ ϕj + fj+1 ∗ (ρ ∗ ψk)j−k.

We deduce the estimate

‖fj+1‖Lp ≤ ‖ϕ‖L1‖f − f ∗ ρj−k‖Lp + ‖ρ ∗ ψk‖L1‖fj+1‖Lp . (18)

Since ψ̂(0) = 0, we can apply Lemma 3.1 above: it holds

‖ρ ∗ ψk‖L1 = ‖ρ ∗ ψ2−k‖L1 → 0, as k →∞. (19)

Thus for sufficiently large k we may absorb the last term of the right-hand side of
18 into the left-hand side. For such k, we have

‖fj+1‖Lp . ‖f − f ∗ ρj−k‖Lp for j ≥ k. (20)
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Plugging 20 into 16 and recalling 17, we obtain

‖f‖qBs
p,q
. ‖f‖qLp +

∑
j≥0

2sjq‖f − f ∗ ρ2−j‖qLp . (21)

The latter estimate is exactly the desired estimate 14 with ε = 1. The corresponding
estimate for 1/2 ≤ ε ≤ 1 is found by replacing ρ with ρ̃ = ρε in the proof of 21.
The resulting estimate is uniform with respect to ε ∈ (1/2, 1) (by formula 12 in
Lemma 3.1). This concludes the proof of Theorem 1.1.

Proof of Lemma 3.1. We introduce a parameter R > 0. Taking advantage of the
fact that

�
ψ = 0, we may write

ρ ∗ ψε(x) =
1

εn

� (
ρ(y)−

 
BRε(x)

ρ
)
ψ

(
x− y
ε

)
dy

=
1

Rnε2nωn

�
|z−x|<Rε

(ρ(y)− ρ(z))ψ

(
x− y
ε

)
dydz,

(22)

where BRε(x) is the open ball of center x and radius Rε, and ωn is the Lebesgue
measure of the unit ball. We then have�

|ρ ∗ ψε(x)| dx ≤
�
MR(x) dx+

�
NR(x) dx, (23)

where

MR(x) =
1

Rnε2nωn

�
|z−x|<Rε
|y−x|<Rε

|ρ(y)− ρ(z)|
∣∣∣∣ψ(x− yε

)∣∣∣∣ dydz, (24)

NR(x) =
1

Rnε2nωn

�
|z−x|<Rε
|y−x|≥Rε

(|ρ(y)|+ |ρ(z)|)
∣∣∣∣ψ(x− yε

)∣∣∣∣ dydz. (25)

To estimate
�
MR(x) dx, we perform the change of variable x  w = (x − y)/ε

and find�
MR(x) dx ≤ 1

Rnεnωn

�
|w|<R

|ψ(w)| dw
�
|z−y|<2Rε

|ρ(y)− ρ(z)| dydz

≤ ‖ψ‖L1

Rnεnωn

�
|h|<2Rε

‖ρ(·+ h)− ρ‖L1 dh,

and thus �
MR(x) dx ≤ 2n‖ψ‖L1 sup

|h|<2Rε

‖ρ(·+ h)− ρ‖L1 . (26)

Note that, for any fixed R, the right-hand side of 26 converges to 0 as ε→ 0.
We next estimate

�
NR(x) dx. To this end we compute

1

Rnε2nωn

�
|z−x|<Rε
|y−x|≥Rε

|ρ(y)|
∣∣∣∣ψ(x− yε

)∣∣∣∣ dxdydz
=

1

εn

�
|y−x|≥Rε

|ρ(y)|
∣∣∣∣ψ(x− yε

)∣∣∣∣ dxdy = ‖ρ‖L1

�
|w|≥R

|ψ(w)| dw,
(27)
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and

1

Rnε2nωn

�
|z−x|<Rε
|y−x|≥Rε

|ρ(z)|
∣∣∣∣ψ(x− yε

)∣∣∣∣ dxdydz
=

1

Rnεnωn

�
|w|≥R

|ψ(w)| dw
�
|z−x|<Rε

|ρ(z)|dxdz = ‖ρ‖L1

�
|w|≥R

|ψ(w)| dw.
(28)

Plugging 27 and 28 into formula 25, we obtain�
NR(x) dx ≤ 2‖ρ‖L1

�
|w|≥R

|ψ(w)| dw. (29)

Combining 23, 26 and 29 we obtain

lim sup
ε→0

‖ρ ∗ ψε‖L1 ≤ C‖ρ‖L1

�
|w|≥R

|ψ(w)| dw,

and complete the proof of the first assertion in Lemma 3.1 by letting R→∞.
Estimate 12 follows from the following calculations:

lim
ε→0

sup
1/2≤δ≤1

‖ρδ ∗ ψε‖L1

= lim
ε→0

sup
1/2≤δ≤1

‖(ρ ∗ ψε/δ)δ‖L1 = lim
ε→0

sup
1/2≤δ≤1

‖ρ ∗ ψε/δ‖L1

= lim
ε→0
‖ρ ∗ ψε‖L1 .

4. Proof of Theorem 1.2.

Proof of Theorem 1.2. We clearly have “2 =⇒ 1”, and it remains to prove that
“1 =⇒ 2”. For the convenience of the reader, we start by establishing a conse-
quence of property 1, and then we proceed to the proof of the desired implication.

Step 1. A discrete-uniform version of 1.
Assume that property 1 holds. Then we claim that for every ϕ ∈ S we have

sup
1/2≤ε≤1

∑
j≥0

2sj‖ϕ− ϕ ∗ ρ2−jε‖L1 ≤ C <∞. (30)

In order to prove 30, we start from the following fact. We fix a function λ ∈ S such
that

�
λ 6= 0. Then every function ψ ∈ S (Rn) may be written as

ψ =
∑
k≥0

λkψ ∗ λ2−k . (31)

Here (λkψ)k ⊂ S is a sequence that decays rapidly as k →∞, in the following sense:
if ψ belongs to a bounded subset B ⊂ S, then for every M > 0 there exists a
constant C such that

‖λkψ‖L1 ≤ C

2Mk
, ∀ k ≥ 0, ∀ψ ∈ B; (32)

see [4, Lemma 2, p. 93]. In particular, if we fix ϕ ∈ S then we may write

ϕt =
∑
k≥0

λk,t ∗ λ2−k , ∀ t ∈ [1, 2], (33)

with

‖λk,t‖L1 ≤ C

2Mk
, ∀ k ≥ 0, ∀ t ∈ [1, 2]. (34)
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We now choose an appropriate λ ∈ S. In view of 13, if property 1 holds then we
may find some ε ∈ [1/2, 1] such that λ := η1/ε satisfies∑

k≥0

2sk‖λ− λ ∗ ρ2−k‖L1 =
∑
k≥0

2sk‖η − η ∗ ρ2−kε‖L1 <∞. (35)

By combining 33-35 we find that, with ε ∈ [1/2, 1] and t := 1/ε ∈ [1, 2], we have∑
j≥0

2sj‖ϕ− ϕ ∗ ρ2−jε‖L1 =
∑
j≥0

2sj‖ϕt − ϕt ∗ ρ2−j‖L1

≤
∑
j≥0

2sj
∑
k≥0

‖λk,t ∗ λ2−k − λk,t ∗ λ2−k ∗ ρ2−j‖L1

≤
∑
j≥0

∑
k≥0

2sj‖λk,t‖L1‖λ2−k − λ2−k ∗ ρ2−j‖L1

≤C
∑
j≥0

∑
k>j

2sj‖λk,t‖L1

+
∑
j≥0

∑
k≤j

2sj‖λk,t‖L1‖λ− λ ∗ ρ2k−j‖L1

≤C
∑
j≥0

∑
k>j

2sj2−(s+1)k

+
∑
`≥0

∑
j≥`

2sj‖λj−`,t‖L1‖λ− λ ∗ ρ2−`‖L1

≤C + C
∑
`≥0

∑
j≥`

2sj2−(s+1)(j−`)‖λ− λ ∗ ρ2−`‖L1

≤C + C
∑
`≥0

2s`‖λ− λ ∗ ρ2−`‖L1 ≤ C,

with constants independent of t, i.e., 30 holds.

Step 2. Proof of “1 =⇒ 2”.
As we proved in the previous step, we may assume that there exists some η ∈ S

such that

η̂ ≡ 1 in B(0, 4), (36)

and such that η satisfies the following uniform and discrete version of 6:

Sε :=
∑
j≥0

2sj‖η − η ∗ ρ2−jε‖L1 ≤ C, ∀ ε ∈ [1/2, 1], (37)

with C independent of ε ∈ [1/2, 1].
Let f ∈ Lp. We will establish the estimate∑

j≥0

2sjq‖f − f ∗ ρ2−jε‖qLp ≤ C (1 + Sε)
q |f |qBs

p,q
,∀ ε ∈ [1/2, 1], (38)

with C independent of ε ∈ [1/2, 1]. We obtain 7 by integrating 38 in ε and using
37.

In turn, estimate 38 is obtained as follows. Set

αj,ε := 2sj‖η − η ∗ ρ2−jε‖L1 , which satisfies
∑
j≥0

αj,ε ≤ C,∀ ε ∈ [1/2, 1]. (39)
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Let f =
∑
`≥0 f` be the (inhomogeneous) Littlewood-Paley decomposition of

f ∈ Lp, defined in Section 2.1. By 36, for every ` we have f` = f` ∗ η2−` , and thus

f − f ∗ ρ2−jε =
∑
`≥0

(f` − f` ∗ ρ2−jε)

=
∑
`≥j

(f` − f` ∗ ρ2−jε) +
∑
`<j

(f` − f` ∗ ρ2−jε)

=
∑
`≥j

(f` − f` ∗ ρ2−jε) +
∑
`<j

f` ∗ (η2−` − η2−` ∗ ρ2−jε)

=
∑
`≥j

(f` − f` ∗ ρ2−jε) +
∑
`<j

f` ∗ (η − η ∗ ρ2`−jε)2−` .

(40)

Using 40, we find that

‖f − f ∗ ρ2−jε‖Lp .
∑
`≥j

‖f`‖Lp +
∑
`<j

2−s(j−`)αj−`,ε‖f`‖Lp , (41)

i.e.,

2sj‖f − f ∗ ρ2−jε‖Lp .
∑
`

[
2s(j−`)1{`≥j}(`) + αj−`,ε1{`<j}(`)

]
2s`‖f`‖Lp . (42)

We obtain 38 by combining 39 with 42 and with Schur’s criterion (Lemma 2.1)
applied to:

X = Y = Z+, µ = ν = the counting measure on Z+,

and k(j, `) = 2s(j−`)1{`≥j}(`) + αj−`,ε1{`<j}(`), ∀ j, ` ∈ Z+.

We continue with another characterization of the kernels ρ satisfying the equiva-
lent properties 1 and 2 in Theorem 1.2. For simplicity, the main results of our article
were stated for inhomogeneous Besov spaces. It turns out that the homogeneous
version of our next result is easier to understand than the inhomogeneous one, so
that we start by presenting (without proof) the homogeneous cousin of Theorem
4.1 below.

In order to avoid subtle issues concerning the realization of homogeneous Besov
spaces as spaces of distributions, we consider only temperate distributions f such
that

f̂ is compactly supported in Rn \ {0}. (43)

Any such f is smooth, and we have f =
∑
j∈Z fj in S ′, where (in the spirit of 9)

fj = f ∗ ϕ21−j , ∀ j ∈ Z. For f satisfying 43, we set

|f |q
Ḃs

p,q

=
∑
j∈Z

2sjq‖fj‖qLp ,

with the obvious modification when q = ∞. Let us note that, the series
∑
j∈Z fj

containing only a finite number of non zero terms, we actually have

Ḃsp,q = {f ∈ Lp(Rn); f satisfies 43},

but that the norm we consider is not equivalent to the Lp norm.
As in the inhomogeneous case considered in this article, we may try to charac-

terize the L1 kernels ρ such that

|f |q
Ḃs

p,q

∼
� ∞
0

1

εsq+1
‖f − f ∗ ρε‖qLp dε, for every f satisfying 43. (44)
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The homogeneous counterpart of Theorem 1.2 consists of the following equivalence:
for a fixed s (not necessarily positive) 44 holds if and only if for a function ϕ as in
the Littlewood-Paley decomposition we have� ∞

0

1

εs+1
‖ϕ− ϕ ∗ ρε‖L1 dε <∞. (45)

Necessity of 45 comes from the fact that 44 holds with p = q = 1.
Let us now examine what is required in order to have 44 when p = q =∞. If 44

holds and if |f |Ḃs
∞,∞

<∞, then the distribution

f − f ∗ ρε = (δ − ρ)ε ∗ f

is well-defined (as the convolution of a finite measure with a smooth bounded func-
tion).2 Moreover, ‖f − f ∗ ρε‖L∞ is controlled by the norm |f |Ḃs

∞,∞
(since 44

holds). A moment thought shows that in particular δ − ρ is an element of the dual

of Ḃs∞,∞. Remarkably, this necessary condition is also sufficient, and is equivalent
to the property 45.

Theorem 4.1 is the inhomogeneous counterpart of the above fact. In order to
state this result, it is convenient to define ad hoc norm and function space. Fix
ζ, ϕ as in the Littlewood-Paley decomposition 9. In order to simplify the proof of
Theorem 4.1, we make the (unessential) assumption that

ϕ is even. (46)

Our appropriate function space is defined starting from the identity

f = (f − f ∗ ζ) +
∑
j≤−1

f ∗ ϕ2−j :=
∑
j≤0

f ]j , ∀ f ∈ S
′ satisfying 43. (47)

We define the appropriate norm

[f ]qXs
p,q

=
∑
j≤0

2sjq‖f ]j ‖
q
Lp , (48)

with the corresponding modification when q = ∞. Let Xs
p,q be the space of tem-

perate distributions satisfying 43 and such that [f ]Xs
p,q

<∞.3

Theorem 4.1. Let s > 0. Then property 6 is equivalent to

δ − ρ ∈
(
Xs
∞,∞

)∗
. (49)

Proof. “6 =⇒ 49”. Let ϕ be as in the Littlewood-Paley decomposition and let ψ
be as in 15. We may assume that ψ is even. If f ∈ S ′ and ε > 0 are such that
f ∗ ϕε ∈ L∞, then we have

(δ − ρ)(f ∗ ϕε) = (δ − ρ)(f ∗ ϕε ∗ ψε) = [(δ − ρ) ∗ ψε](f ∗ ϕε)

=

�
[(δ − ρ) ∗ ψε(x)] [f ∗ ϕε(x)] dx.

In particular, if j < 0 and f ∈ Xs
∞,∞, then∣∣∣(δ − ρ)(f ]j )

∣∣∣ =

∣∣∣∣� (δ − ρ) ∗ ψ2−j (x) f ]j (x) dx

∣∣∣∣ ≤ ‖(δ − ρ) ∗ ψ2−j‖L1‖f ]j ‖L∞ . (50)

2Here, δ stands for the Dirac mass at the origin.
3This space is {f ∈ Lp(Rn); f satisfies 43}, but not with the Lp norm.
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On the other hand, for j = 0 we have f ]0 ∈ C∞ ∩ L∞ (in view of 43 and of the
definition of Xs

∞,∞) and thus∣∣∣(δ − ρ)(f ]0)
∣∣∣ ≤ (1 + ‖ρ‖L1)‖f ]0‖L∞ . (51)

We next note that 30 (applied to ψ instead of ϕ), which is a consequence of 6,
implies that∑

j<0

2−sj‖(δ − ρ) ∗ ψ2−j‖L1 =
∑
j<0

2−sj‖ψ2−j − ρ ∗ ψ2−j‖L1

=
∑
j<0

2−sj‖ψ − ψ ∗ ρ2j‖L1

=
∑
k>0

2sk‖ψ − ψ ∗ ρ2−k‖L1 <∞.

(52)

By combining 50–52, we obtain

|(δ − ρ)(f)| .
∑
j≤0

∣∣∣(δ − ρ)(f ]j )
∣∣∣ . ‖f ]0‖L∞ +

∑
j<0

‖(δ − ρ) ∗ ψ2−j‖L1‖f ]j ‖L∞

≤‖f ]0‖L∞ + sup
j<0

2sj‖f ]j ‖L∞
∑
j<0

2−sj‖(δ − ρ) ∗ ψ2−j‖L1 . ‖f‖Xs
∞,∞

,

and thus 49 holds.

“49 =⇒ 6”. We start by noting that an equivalent formulation of 49 isf =
∑
j∈J

f ]j , with f ]j as in 47 and J ⊂ Z− finite


=⇒

∣∣∣∣∣∣(δ − ρ)

∑
j∈J

f ]j

∣∣∣∣∣∣ . sup
j∈J

2sj‖f ]j ‖L∞ .

(53)

Step 1 in the proof of Theorem 1.2 implies that, if we find some λ ∈ S such that�
λ 6= 0 and ∑

j≥0

2sj‖λ− λ ∗ ρ2−j‖L1 <∞, (54)

then 6 holds.
Let ζ, ϕ be as in the Littlewood-Paley decomposition. We will prove that 54

holds with λ = ζ.
Set

αj := ‖ϕ2j − ϕ2j ∗ ρ‖L1 = ‖(ϕ− ϕ ∗ ρ2−j )2j‖L1 = ‖(ϕ− ϕ ∗ ρ2−j )‖L1 , ∀ j > 0.

We divide the proof of 54 into two steps.

Step 1. It suffices to prove the key estimate∑
j>0

2sjαj <∞. (55)

Granted 55, we prove 54 for λ = ζ. Indeed, using the fact that

lim
M→∞

‖ζM − ζM ∗ ρ‖L1 = lim
M→∞

‖ζ − ζ ∗ ρ1/M‖L1 = 0,
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we find that, in L1, we have

lim
`→∞

∑̀
j=k+1

(ϕ2j − ϕ2j ∗ ρ) = lim
`→∞

[(ζ2k − ζ2k ∗ ρ)− (ζ2` − ζ2` ∗ ρ)]

= ζ2k − ζ2k ∗ ρ.

(56)

By 56, we have

‖ζ2k − ζ2k ∗ ρ‖L1 ≤
∑
j≥k+1

αj . (57)

By combining 55 with 57, we obtain∑
k≥0

2sk‖ζ−ζ∗ρ2−k‖L1 =
∑
k≥0

2sk‖ζ2k−ζ2k∗ρ‖L1 ≤
∑
k≥0

∑
j≥k+1

2skαj .
∑
j>0

2sjαj <∞,

and thus 54 holds.

Step 2. Proof of 55 completed.
For ` < 0, let ψ` ∈ C∞c (Rn) be such that |ψ`| ≤ 1 and�

[(δ − ρ) ∗ ϕ2−` ]ψ` ≥ 1

2
‖(δ − ρ) ∗ ϕ2−`‖L1 =

1

2
α−`. (58)

Let J ⊂ Z∗− be a fixed arbitrary finite set, and set

f :=
∑
`∈J

2−s`ψ` ∗ ϕ2−` .

By 58, we have (using 46)∑
`∈J

2−s`α−` .
∑
`∈J

2−s`
�

[(δ − ρ) ∗ ϕ2−` ] ψ` = (δ− ρ)

(∑
`∈J

2−s`ψ` ∗ ϕ2−`

)
. (59)

By 53 and 59, we have ∑
`∈J

2−s`α−` . sup
j∈M

2sj‖f ]j ‖L∞ , (60)

where M ⊂ Z− is finite and such that f ]j = 0 when j 6∈M .4

We next note that, when j, ` < 0, we have

ϕ2−` ∗ ϕ2−j = 0 when |j − `| > 1. (61)

By 61, when j < 0 we have

f ]j =
∑
`∈J

2−s`
(
ψ` ∗ ϕ2−`

)]
j

=
∑
`∈J

2−s`ψ` ∗ ϕ2−` ∗ ϕ2−j

=
∑
`∈J
|`−j|≤1

2−s`ψ` ∗ ϕ2−` ∗ ϕ2−j ,
(62)

and thus
‖f ]j ‖L∞ .

∑
`∈J
|`−j|≤1

2−s`‖ψ`‖L∞ . 2−sj . (63)

By 60 and 63, we have ∑
`∈J

2−s`α−` ≤ C <∞, (64)

4Existence of such M follows from the identity 62.
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with C independent of J .
We obtain 55 by taking, in 64, the supremum over J .

5. Further results. This section is devoted to the proofs of Propositions 1, 2 and
3.

5.1. Proof of Proposition 1. Proposition 1 is a direct consequence of the follow-
ing more general result.

Proposition 4. Let ρ ∈ L1 satisfy
�
ρ = 1 and let η ∈ S be such that

�
η 6= 0.

Assume that ρ has finite moments of any order:�
|y|k|ρ(y)| dy <∞ for all k ∈ N.

Then � 1

0

1

εs+1
‖η − η ∗ ρε‖L1 dε <∞ if and only if s < k0, (65)

where k0 ∈ N∗ ∪ {∞} is the smallest non-zero moment of ρ:

k0 = min

{
k ≥ 1:

�
y⊗kρ(y) dy 6= 0

}
.

Here y⊗k denotes the k-th order tensor (yj1 · · · yjk)1≤j1,...,jk≤n.

Note that Proposition 4 implies indeed Proposition 1 since for a bounded set A
of positive measure the second moment

�
A
y⊗2 dy is always non zero.

We now turn to the

Proof of Proposition 4. We first treat the case of a finite k0. Since it holds

η(x)− η ∗ ρε(x) =

�
(η(x)− η(x− εy))ρ(y) dy,

we find, applying Taylor’s formula,

η(x)− η ∗ ρε(x) =
(−1)k0+1

k0!
εk0

∑
1≤j1,...,jk0

≤n

αj1,...,jk0
∂j1 · · · ∂jk0

η(x) + εk0+1Rε(x),

where

αj1,...,jk :=

�
yj1 · · · yjkρ(y) dy, (66)

and

‖Rε‖L1 ≤ ‖D
k0+1η‖L1

(k0 + 1)!

�
|y|k0+1|ρ(y)| dy.

Therefore it holds

‖η − η ∗ ρε‖L1 =
1

k0!
εk0
∥∥∥ ∑

1≤j1,...,jk0
≤n

αj1,...,jk0
∂j1 · · · ∂jk0

η
∥∥∥
L1

+O(εk0+1), (67)

as ε→ 0.
We next claim that

c :=
∥∥∥ ∑

1≤j1,...,jk0
≤n

αj1,...,jk0
∂j1 · · · ∂jk0

η
∥∥∥
L1
6= 0.

Indeed, assume that c = 0. Then we have∑
1≤j1,...,jk0

≤n

αj1,...,jk0
ξj1 · · · ξjk0

η̂(ξ) = 0 ∀ ξ ∈ Rn.
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Since η̂(0) 6= 0 we deduce that∑
1≤j1,...,jk0

≤n

αj1,...,jk0
ξj1 · · · ξjk0

= 0

for all sufficiently small ξ, and thus by homogeneity for every ξ. This is absurd
since, by assumption, at least one of the coefficients αj1,...,jk0

is non zero.
Therefore c 6= 0 and the Taylor expansion 67 provides the equivalent

‖η − η ∗ ρε‖L1 ∼ c

k0!
εk0

as ε→ 0, which readily implies 65. This concludes the proof of Proposition 4 when
k0 is finite.

When k0 =∞, the Taylor expansion shows that

‖η − η ∗ ρε‖L1 = O(εk) for all k ∈ N,

so that it holds indeed

� 1

0

1

εs+1
‖η − η ∗ ρε‖L1 dε <∞

for every s > 0.

5.2. Proof of Proposition 2. We fix ρ ∈ L1 with
�
ρ = 1 and 0 < s < 1, and

assume that ρ satisfies the moment condition 8:

�
|y|s|ρ(y)| dy <∞.

We consider an arbitrary test function η ∈ S and are going to show that condition
6 is satisfied (so that, by Theorem 1.2, the norm equivalence 7 is valid). To this
end we compute

� ∞
0

‖η − η ∗ ρε‖L1

dε

εs+1
≤
� ∞
0

�
‖η − η(· − εy)‖L1 |ρ(y)| dy dε

εs+1

=

�
|y|sρ(y)

� ∞
0

‖η − η(· − εy)‖L1

|εy|s
dε

ε
dy

=

�
|y|sρ(y)

� ∞
0

‖η − η(· − δ y
|y|

)‖L1

dδ

δs+1
dy.

On the other hand, for every ω ∈ Sn−1 we have the estimate

� ∞
0

‖η − η(· − δω)‖L1

dδ

δs+1
≤ ‖Dη‖L1

� 1

0

dδ

δs
+ 2‖η‖L1

� ∞
1

dδ

δs+1
=: C(η) <∞,

and therefore we conclude that
� ∞
0

‖η − η ∗ ρε‖L1

dε

εs+1
≤ C(η)

�
|y|s|ρ(y)| dy <∞,

which finishes the proof of Proposition 2. �
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5.3. Proof of Proposition 3. Let s > 0 and let ρ ∈ L1 satisfy
�
ρ = 1 and ρ ≥ 0.

We assume that the norm equivalence 7 is valid. Then by Theorem 1.2 (and Step
1 in its proof), it holds

� 1

0

‖η − η ∗ ρε‖L1

dε

εs+1
<∞

for every η ∈ S. We fix such a function η ≥ 0, η 6≡ 0, with support in the unit ball:

η(x) = 0 for |x| ≥ 1.

We are going to show that

� 1

0

‖η − η ∗ ρε‖L1

dε

εs+1
≥ c‖η‖L1

�
|y|sρ(y) dy − C(‖η‖L1 + ‖η‖L∞‖ρ‖L1), (68)

for some constants c = c(s), C = C(s) > 0. Obviously 68 implies the conclusion of
Proposition 3: the function ρ satisfies the finite moment condition�

|y|sρ(y) dy <∞.

We now turn to the proof of 68. Note that
� ∞
1

1

εs+1
‖η − η ∗ ρε‖L1 dε ≤

� ∞
1

dε

εs+1
(‖η‖L1 + ‖η‖L∞‖ρ‖L1).

Hence it suffices to show that� ∞
0

1

εs+1
‖η − η ∗ ρε‖L1 dε ≥ c‖η‖L1

�
|y|sρ(y) dy.

Since η(x) = 0 for |x| ≥ 1, and since η and ρ are non negative, it holds

‖η − η ∗ ρε‖L1 ≥
�
|x|≥1

η(x− εy)ρ(y) dy =

�
|z+εy|≥1

η(z)ρ(y) dydz.

Thus we obtain� ∞
0

1

εs+1
‖η − η ∗ ρε‖L1 dε ≥

�
|z+εy|≥1

η(z)
ρ(y)

εs+1
dydzdε

=

�
|z+δy/|y||≥1

η(z)
ρ(y)|y|s

δs+1
dydzdδ.

(69)

Note that it holds

[|δ| ≥ 2 and |z| < 1] =⇒ |z + δy/|y|| ≥ 1.

Therefore, the domain of integration in the last integral in 69 contains the set

{(y, z, δ); y 6= 0, |z| < 1, δ ≥ 2}.

We find that� ∞
0

1

εs+1
‖η − η ∗ ρε‖L1 dε ≥ ‖η‖L1

� ∞
2

dδ

δs+1

�
ρ(y)|y|s dy,

which completes the proof of 68. �
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