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Abstract

Weak solutions m : Ω ⊂ R2 → R2 of the eikonal equation

|m| = 1 a.e. and divm = 0 ,

arise naturally as sharp interface limits of bounded energy configurations
in various physically motivated models, including the Aviles-Giga energy.
The distributions µΦ = divΦ(m), defined for a class of smooth vector
fields Φ called entropies, carry information about singularities and energy
cost. If these entropy productions are Radon measures, a long-standing
conjecture predicts that they must be concentrated on the 1-rectifiable
jump set of m – as they do if m has bounded variation (BV) thanks to
the chain rule. We establish this concentration property, for a large class
of entropies, under the Besov regularity assumption

m ∈ B1/p
p,∞ ⇔ sup

h∈R2\{0}

∥m(·+ h)−m∥Lp

|h|1/p
< ∞ ,

for any 1 ≤ p < 3, thus going well beyond the BV setting (p = 1) and
leaving only the borderline case p = 3 open.

1 Introduction

For an open set Ω ⊂ R2, we consider weak solutions m : Ω → R2 of the eikonal
equation

|m| = 1 a.e. in Ω, divm = 0 in D′(Ω). (1.1)
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If Ω is simply connected, this is equivalent to the existence of a Lipschitz function
u : Ω → R satisfying m = i∇u and

|∇u| = 1 a.e. in Ω ,

which is classically referred to as the eikonal equation.
If m : Ω → R2 is a C1 solution of the eikonal equation (1.1) then the chain

rule provides a whole family of conservation laws: div Φ(m) = 0 for all Φ ∈
C1(S1;R2) such that ∂θΦ(e

iθ) · eiθ = 0 for all θ ∈ R.
For a general weak solution m : Ω → R2 of the eikonal equation (1.1), the

distributions div Φ(m) may not be zero, and they carry information on how
singular m is. They were first introduced in the context of the eikonal equation
in [7], and called entropy productions by analogy with the theory of scalar
conservation laws. We denote by

ENT =
{
Φ ∈ C1,1(S1;R2) :

d

dθ
Φ(eiθ) · eiθ = 0 ∀θ ∈ R

}
, (1.2)

the set of all C1,1 entropies.
Weak solutions m of the eikonal equation (1.1) whose entropy productions

div Φ(m) are finite Radon measures play an important role in the theory of the
Aviles-Giga energy [3]. The structure of these finite-entropy solutions is not
fully understood, but it is known that they share with functions of bounded
variation (BV) several fine properties. Note that, if m ∈ BV (Ω;R2) is a weak
solution of (1.1), then by the BV chain rule its entropy productions are measures
concentrated on the H1-rectifiable jump set Jm. For a general finite-entropy
solution, denote by ν the supremum measure

ν =
∨

Φ∈ENT, ∥Φ∥C1,1≤1

|div Φ(m)| .

In [6] the authors prove that the jump set

Jm
.
=

{
x ∈ Ω : lim sup

r→0

ν(Br(x))

r
> 0

}
, (1.3)

is H1-rectifiable and m admits left and right L1 traces H1-a.e. along Jm. Ac-
cording to a long-standing conjecture on the Aviles-Giga energy [3], entropy
productions should be concentrated on that jump set.

Among all weak solutions of (1.1), the finite-entropy solutions can be char-

acterized, at least locally, in terms of Besov B
1/3
3,∞ regularity [8]. For s ∈ (0, 1)

and p ≥ 1, a map m ∈ Lp(Ω) has the Besov regularity Bsp,∞ if and only if the
seminorm

|m|Bs
p,∞

= sup
h∈R2\{0}

1

|h|s
∥m(·+ h)−m∥Lp(Ω∩(Ω−h)) ,

is finite [14, §2.5.12]. Between the spaces BV (Ω;S1) and B
1/3
3,∞(Ω; S1) lies the

intermediate scale of spaces B
1/p
p,∞(Ω;S1), for 1 < p < 3. We prove that the
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concentration conjecture is true for solutions of (1.1) with that intermediate
regularity, and for entropies in the class

ẼNT
.
=

{
Φ ∈ ENT :

d

dθ
Φ(−eiθ) = − d

dθ
Φ(eiθ) ∀θ ∈ R

}
, (1.4)

which corresponds to odd entropies plus constants. This restriction is due to
the same technical reasons as in [12] (where this class of entropies is denoted
by Eπ). The fundamental entropies introduced in [10] to establish a sharp lower
bound for the Aviles-Giga energy (see also [1]) are odd, and therefore covered
by our result.

Theorem 1.1. Let Ω ⊂ R2 a bounded open set, m : Ω → R2 a weak solution of

the eikonal equation (1.1), and assume that m ∈ B
1/p
p,∞(Ω) for some p ∈ [1, 3).

Then the entropy productions of m are 1-rectifiable,

div Φ(m) = n ·
(
Φ(m+)− Φ(m−)

)
H1⌞Jm ,

for all Φ ∈ ẼNT.

To describe the ideas behind Theorem 1.1, let us consider first a solution
m ∈ BV(Ω;S1) of (1.1). Then, by the BV chain rule we have

|div Φ(m)| ≤ CΦ|m+ −m−|3dH1⌞Jm.

for every entropy Φ ∈ ENT. Moreover, for any p ∈ [1, 3) we have∫
Jm

|m+ −m−|pdH1 ≤ ∥m∥p
B

1/p
p,∞

.

As a consequence, the contribution of jumps smaller than a threshold δ > 0 is
controlled by

|div Φ(m)|(Ω \ (Jm ∩ {|m+ −m−| ≥ δ})

≤ CΦ

∫
Jm∩{|m+−m−|≤δ}

|m+ −m−|3dH1 ≤ CΦδ
3−p∥m∥p

B
1/p
p,∞

. (1.5)

Here we assumed that m ∈ BV (Ω;S1) to ensure that div Φ(m) is concentrated
on Jm, but the estimate does not depend on the total variation of m. Moreover,
a structure result proved in [12] about the continuous part of the entropy pro-
duction allows to interpret it as being generated by infinitesimally small jumps.
It is therefore natural to conjecture that the estimate (1.5) should be true for
solutions m not necessarily of bounded variation. We prove indeed a similar
estimate in Proposition 4.1, and the main result then follows by letting δ → 0.

To technically implement these ideas, we actually have to argue along tra-
jectories of a Lagrangian representation of m, also introduced in [12], and which
can only provide information on entropies in (1.4). The control on the contin-
uous part of entropy production at the level of these Lagrangian trajectories is
obtained by using a singular family of entropies, whose entropy productions are
uniformly bounded thanks to the supercritical Besov regularity assumption.
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2 Entropy productions and Besov regularity

In this section we prove that the supercritical Besov regularity assumption pro-
vides uniform control on entropy productions over families of entropies which
are unbounded in C1,1.

Proposition 2.1. Let Ω ⊂ R2 a bounded open set, m : Ω → S1 with divm = 0

and assume that m ∈ B
1/(2+α)
2+α,∞ (Ω) for some α ∈ (0, 1). Then we have( ∨

∥Φ∥C1,α≤1

|div Φ(m)|
)
(Ω) ≤ C∥m∥2+α

B
1/(2+α)
2+α,∞ (Ω)

,

for some C = C(α) > 0, where the supremum of measure is taken over all
Φ ∈ ENT such that ∥Φ∥C1,α ≤ 1.

Proposition 2.1 can be interpreted as an interpolation between the estimates( ∨
∥Φ∥C1,1≤1

|div Φ(m)|
)
(Ω) ≲ ∥m∥3

B
1/3
3,∞(Ω)

,

( ∨
∥Φ∥C0,1≤1

|div Φ(m)|
)
(Ω) ≲ ∥m∥2

B
1/2
2,∞(Ω)

.

The first of these estimates is proved in [8, Proposition 3.10], and the second can
be established using similar calculations which rely on commutator estimates
for the function

wϵ = 1− |mϵ|2 = (|m|2)ϵ − |mϵ|2 ,

where the subscript ϵ denotes convolution at scale ϵ. (In the context of the
eikonal equation, arguments based on commutator estimates were introduced in
[5].) The interpolation argument is however a bit involved. In particular, the
constant C = C(α) we are able to obtain in Proposition 2.1 blows up as α→ 0
or 1, even though these borderline cases are easier to handle.

The commutator estimates we use in the proof of Proposition 2.1 are as
follows.

Lemma 2.2. Let Ω ⊂ R2 an open set and m : Ω → S1. Let ρ ∈ C1
c (B1), ρ ≥ 0,∫

ρ = 1, |∇ρ| ≤ 2, and define mϵ = m ∗ ρϵ for ρϵ(x) = ϵ−2ρ(x/ϵ) and ϵ > 0.
Then the commutator

wϵ = 1− |mϵ|2 = (|m|2)ϵ − |mϵ|2 ,

satisfies

|wϵ|(x) ≲ −
∫
Bϵ

|Dhm(x)|2 dh ,

|Dϵkwϵ|(x) ≲ |k|−
∫
B2ϵ

|Dhm(x)|2 dh for |k| ≤ 1 ,

for all x ∈ Ω such that B2ϵ(x) ⊂ Ω.
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Here and in what follows we denote by Dh the finite difference operator

Dhm = mh −m, mh = m(·+ h) for h ∈ R2 .

Proof of Lemma 2.2. As in [5], these commutator estimates come from the com-
mutator identity

wϵ(x) = 1− |mϵ(x)|2 =

∫
Bϵ

|m(x− y)−mϵ(x)|2 ρϵ(y) dy

=

∫
Ω

∣∣∣∣ ∫
Ω

(
m(y)−m(z)

)
ρϵ(x− z) dz

∣∣∣∣2ρϵ(x− y) dy ,

which follows by integrating

1− |mϵ(x)|2 = |m(x− y)|2 − |mϵ(x)|2

= |m(x− y)−mϵ(x)|2 + 2⟨mϵ(x),m(x− y)−mϵ(x)⟩ ,

with respect to ρϵ(y) dy. The commutator identity directly implies the first
estimate. Applying the finite difference operator, it also implies the identity

Dϵkwϵ(x) =

∫
Ω

∣∣∣∣ ∫
Ω

(
m(y)−m(z)

)
ρϵkϵ (x− z) dz

∣∣∣∣2Dϵkρϵ(x− y) dy

+

∫
Ω

〈∫
Ω

(
m(y)−m(z′)

)
(ρϵ + ρϵkϵ )(x− z′) dz′,∫

Ω

(
m(y)−m(z)

)
Dϵkρϵ(x− z) dz

〉
ρϵ(x− y) dy

=

∫
B2

∣∣∣∣ ∫
B2

(
m(x− ϵy)−m(x− ϵz)

)
ρk(z) dz

∣∣∣∣2Dkρ(y) dy

+

∫
B2

〈∫
Ω

(
m(x− ϵy)−m(x− ϵz′)

)
(ρ+ ρk)(z′) dz′,∫

B2

(
m(x− ϵy)−m(x− ϵz)

)
Dkρ(z) dz

〉
ρ(y) dy ,

which then provides the second estimate.

We will also use the estimate

|∇mϵ|(x) ≲
1

ϵ
−
∫
Bϵ

|Dhm(x)| dh . (2.1)

which follows from the identity

∇mϵ(x) =
1

ϵ

∫
B1

(m(x− ϵy)−m(x))∇ρ(y) dy .
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Proof of Proposition 2.1. Let Φ ∈ ENT such that ∥Φ∥C1,α ≤ 1, and Φ̂ a radial

extension Φ̂(reiθ) = η(r)Φ(eiθ) for some η ∈ C2
c (0,∞) with η(1) = 1. Then we

have

div Φ̂(mϵ) = Ψ(mϵ) · ∇wϵ , wϵ = 1− |mϵ|2 ,

Ψ(reiθ) =
1

2r2
η(r)λ(eiθ) eiθ − 1

2r
η′(r)Φ(eiθ) , λ = ∂θΦ · (ieiθ) ,

and ∥Ψ∥C0,α ≲ 1.

Let U ⊂ Ω an open subset and ζ ∈ C1
c (U). We fix an intermediate open set

Ω′ and δ ∈ (0, 1) such that

supp(ζ) +B4δ ⊂ Ω′ ⊂ Ω′ +B2δ ⊂ U ,

and a cut-off function χ ∈ C1
c (Ω) such that

1supp(ζ) ≤ χ ≤ 1 and supp(χ) +B2δ ⊂ Ω′ .

Then, for 0 < ϵ < δ, we write

⟨div Φ̂(mϵ), ζ⟩+
∫
R2

wϵχΨ(mϵ) · ∇ζ dx =

∫
R2

χΨ(mϵ) · ∇(ζwϵ) dx . (2.2)

Using the Littlewood-Paley characterization of Besov spaces and Hölder’s in-
equality (see Lemma 2.3) we find∣∣∣∣ ∫

R2

χΨ(mϵ) · ∇(ζwϵ) dx

∣∣∣∣ ≲ ∥χΨ(mϵ)∥Bα
p,∞

∥ζwϵ∥B1−α
q,1

, (2.3)

where we choose p = (2 + α)/α, hence q = (2 + α)/2. To estimate the two
Besov norms in the right-hand side, we come back to their finite difference
characterization. We have

∥Dh[χΨ(mϵ)]∥Lp = ∥(Dhχ)Ψ(mh
ϵ ) + χDh[Ψ(mϵ)]∥Lp(Ω′∩(Ω′−h))

+ ∥χΨ(mϵ)∥Lp(supp(χ)\(Ω′−h))

+ ∥χΨ(mϵ)∥Lp(supp(χ)\(Ω′+h)) .

For 0 < |h| < δ, the last two terms are zero and we deduce

1

|h|α
∥Dh[χΨ(mϵ)]∥Lp ≲ |Ω|

1
p ∥χ∥C1∥Ψ∥∞ +

1

|h|α
∥χDh[Ψ(mϵ)]∥Lp(Ω′∩(Ω′−h))

≲ |Ω|
1
p ∥χ∥C1∥Ψ∥∞ +

1

|h|α
∥Ψ∥C0,α∥Dhmϵ∥αLαp(Ω′∩(Ω′−h))

≲ |Ω|
1
p ∥χ∥C1∥Ψ∥∞ + ∥∇mϵ∥αLαp(Ω′+Bδ)

.

To estimate the last factor we use (2.1) which implies

∥∇mϵ∥Lαp(Ω′+Bδ) ≲
1

ϵ
−
∫
Bϵ

∥Dhm∥Lαp(Ω′+Bδ) dh .
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Plugging this into the previous estimate for 0 < |h| < δ and recalling that
p = (2 + α)/α we obtain

∥χΨ(mϵ)∥Bα
p,∞

≲ ∥χΨ(mϵ)∥Lp + sup
|h|>0

∥Dh[χΨ(mϵ)]∥Lp

|h|α

≲ |Ω|
α

2+α
(
∥χ∥C1 + δ−α

)
∥Ψ∥∞ +

1

ϵα
−
∫
Bϵ

∥Dhm∥αL2+α(Ω′+Bδ)
dh . (2.4)

Now we turn to estimating the second factor in the right-hand side of (2.3). As
above, we have

∥Dh(ζwϵ)∥Lq = ∥(Dhζ)whϵ + ζDhwϵ∥Lq(Ω′∩(Ω′−h))

+ ∥ζwϵ∥Lq(supp(ζ)\(Ω′−h)) + ∥ζwϵ∥Lq(supp(ζ)\(Ω′+h)) .

Since 0 < ϵ < δ, the last two terms are zero if |h| ≤ ϵ. We deduce

∥ζwϵ∥B1−α
q,1

≲ ∥ζwϵ∥Lq +

∫
R2

∥Dh(ζwϵ)∥Lq

|h|1−α
dh

|h|2

≲ ∥ζ∥C1∥wϵ∥Lq(Ω′) + ∥ζ∥∞
∫
|h|≥ϵ

∥wϵ∥Lq(supp(ζ))

|h|1−α
dh

|h|2

+ ∥ζ∥∞
∫
|h|≤ϵ

∥Dhwϵ∥Lq(supp(ζ))

|h|1−α
dh

|h|2

≲ ∥ζ∥C1∥wϵ∥Lq(Ω′) +
∥ζ∥∞
1− α

∥wϵ∥Lq(supp(ζ))

ϵ1−α

+
∥ζ∥∞
ϵ1−α

∫
|k|≤1

∥Dϵkwϵ∥Lq(supp(ζ))

|k|1−α
dk

|k|2
.

Recalling that q = (2+α)/2 and using the commutator estimates of Lemma 2.2
we infer

∥ζwϵ∥B1−α
q,1

≲ ∥ζ∥C1 sup
|h|≤ϵ

∥Dhm∥2L2+α(Ω′)

+
∥ζ∥∞
1− α

1

ϵ1−α
−
∫
Bϵ

∥Dhm∥2L2+α(Ω′) dh

+
∥ζ∥∞
ϵ1−α

1

α
−
∫
B2ϵ

∥Dhm∥2L2+α(Ω′)dh

≲ ϵ
2

2+α ∥ζ∥C1 |m|2
B

1/(2+α)
2+α,∞

+
∥ζ∥∞

α(1− α)

1

ϵ1−α
−
∫
B2ϵ

∥Dhm∥2L2+α(Ω′)dh .

Using this and (2.4) to estimate the right-hand side of (2.3), noting that the
second term in the left-hand side of (2.2) converges to 0 as ϵ→ 0 (since wϵ → 0
in L1), and also that

1

ϵ1−α
sup

|h|<2ϵ

∥Dhm∥2L2+α ≲ ϵ
2

2+α+α−1|m|2
B

1/(2+α)
2+α,∞

→ 0 ,
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we deduce∣∣⟨div Φ̂(mϵ), ζ⟩
∣∣− o(1)

≲
∥ζ∥∞

α(1− α)

1

ϵ
−
∫
B2ϵ

∥Dhm∥2L2+α(U)dh−
∫
Bϵ

∥Dkm∥αL2+α(U)dk ,

where o(1) → 0 as ϵ→ 0. Using Young’s inequality ab ≤ ap/p+bq/q for a, b ≥ 0,
as well as Jensen’s inequality, this implies

∣∣⟨div Φ̂(mϵ), ζ⟩
∣∣ ≲ ∥ζ∥∞

α(1− α)

1

ϵ
−
∫
B2ϵ

∫
U

|Dhm(x)|2+αdx dh+ o(1) .

This is valid for any Φ ∈ ENT with ∥Φ∥C1,α ≤ 1, any open U ⊂ Ω and any
ζ ∈ C1

c (U). Letting ϵ → 0 and taking the supremum over functions ζ with
∥ζ∥∞ ≤ 1, we deduce

|div Φ(m)|(U) ≲
1

α(1− α)
lim inf
ϵ→0

1

ϵ
−
∫
B2ϵ

∫
U

|Dhm(x)|2+αdx dh .

Applying this to any finite collection Φ1, . . . ,ΦN ∈ ENT with ∥Φj∥C1,α ≤ 1,
any disjoint collection of open subsets U1, . . . , UN ⊂ V ⊂⊂ Ω, we deduce that

N∑
j=1

|div Φ(m)|(Uj) ≲
1

α(1− α)
lim inf
ϵ→0

1

ϵ
−
∫
B2ϵ

∫
V

|Dhm(x)|2+αdx dh

≲
1

α(1− α)
∥m∥2+α

B
1/(2+α)
2+α,∞ (Ω)

.

The desired estimate on the supremum measure follows thanks to the inner
regularity of Radon measures.

Lemma 2.3. For any p, p′ ∈ [1,∞] such that 1/p+1/p′ = 1 and any α ∈ (0, 1)
we have∣∣∣∣ ∫

R2

f∇g dx
∣∣∣∣ ≲ ∥f∥Bα

p,∞
∥g∥B1−α

p′,1
,

for all (f, g) ∈ Bαp,∞(R2)×B1−α
p′,1 (R2).

Proof of Lemma 2.3. This inequality essentially amounts to the inclusion of
B−α
p′,1 into the dual of Bαp,∞. The elementary proof is basically contained in [14,

§ 2.11], where the dual of Bαp,q is shown to be equal to B−α
p′,q′ for all p, q ∈ (1,∞).

Here we have q = ∞ and only one inclusion is true, that is why this statement
is not stated explicitly there. We provide the proof for the readers’ convenience.

It relies on the Littlewood-Paley characterization of Besov spaces, which we
start by recalling. We fix a smooth partition of unity {χj}j≥0 ⊂ C∞

c (R2) with
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the properties that

∞∑
j=0

χj(x) = 1,

|χ0(ξ)| ≤ 1|ξ|≤2 ,

|χj(ξ)| ≤ 12−j−1≤|ξ|≤2j+1 for j ≥ 1 ,

sup
j≥0

2jk sup
R2

|∇kχj | <∞ ∀k ≥ 0 .

Then, for any γ ∈ R and p, q ∈ [1,∞], the Besov space Bγp,q(R2) consists of all
tempered distributions φ ∈ S ′(R2) such that the norm

∥φ∥Bγ
p,q

=
∥∥(2jγ∥F−1χjFφ∥Lp

)
j≥0

∥∥
ℓq
,

is finite [14, § 2.3.1], where F denotes the Fourier transform on S ′(R2). More-
over, for γ ∈ (0, 1), these norms (which depend on the system {χj}) are equiv-
alent to

∥φ∥Bγ
p,q

= ∥φ∥Lp +
∥∥|h|−γ∥Dhφ∥Lp

∥∥
Lq(dh/h2)

,

see e.g. [14, §2.5.12].
To prove the claimed inequality, we use the decomposition

φ =
∑
j≥0

F−1χjFφ ,

and the fact that χjχk ≡ 0 for |j − k| ≥ 2, to rewrite the integral as∫
R2

f∇g dx = ⟨f,∇g⟩ =
∑
j,k≥0

⟨F−1χjFf,F−1χkiξFg⟩

=
∑
j,k≥0

⟨χjFf, χkiξFg⟩

=
1∑

r=−1

∑
j≥0

⟨χj+rFf, χjiξFg⟩

=

1∑
r=−1

∑
j≥0

⟨F−1χj+rFf,F−1χjiξFg⟩ .

Recalling that χj is supported in 2j−1 ≤ |ξ| ≤ 2j+1 for j ≥ 2, and applying
Hölder’s inequality, we infer∣∣∣∣ ∫

R2

f∇g dx
∣∣∣∣ ≤ 1∑

r=−1

∑
j≥0

∥F−1χj+rFf∥Lp∥F−1χjiξFg∥Lp′

≲
1∑

r=−1

∑
j≥0

2j∥F−1χj+rFf∥Lp∥F−1χjFg∥Lp′ .
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The last inequality follows from the properties of {χj} and a Fourier multiplier
theorem (see e.g. [14, §1.5]). Writing 2j = 2αj2(1−α)j , we deduce∣∣∣∣ ∫

R2

f∇g dx
∣∣∣∣ ≲ sup

k≥0
2αk∥F−1χkFf∥Lp

∑
j≥0

2(1−α)j∥F−1χjFg∥Lp′ ,

which corresponds to the claimed inequality.

3 Kinetic formulation and Lagrangian represen-
tation

In this section we recall the notions of kinetic formulation and of Lagrangian
representation introduced in [9, 8] and [12] respectively. We prove moreover
some properties which relate the traces on the jump set Jm to the traces of
Lagrangian trajectories.

Theorem 3.1. Let m ∈ B
1
3
3,∞(Ω) be a solution of (1.1). Then there is σ ∈

M(Ω× T) such that

eis · ∇xχ = ∂sσ, (3.1)

where

χ(x, s) =

{
1 if eis ·m(x) > 0,

0 otherwise.

Among the measures σ satisfying (3.1), there is a unique σmin minimizing ∥σ∥
and it has the following structure:

σmin = νmin ⊗ (σmin)x, where νmin = (px)♯|σmin|

and for νmin-a.e. x ∈ Ω \ Jm it holds

(σmin)x = ±1

2

(
δs(x) + δs(x)+π

)
(3.2)

for some s : Ω → T uniquely defined νmin⌞Jcm-a.e., and for νmin-a.e. x ∈ Jm it
holds

(σmin)x = n · eis̄ḡβ(s− s̄)L1,

where n(x) is the normal to Jm at x, the values s̄ ∈ T, β ∈ (0, π2 ) are uniquely
determined by

m+(x) = ei(s̄+β), m−(x) = ei(s̄−β)

and ḡβ is a Lipschitz function. If moreover β ∈ (0, π4 ), then ḡβ is supported on
[−π

2 − β,−π
2 + β] ∪ [π2 − β, π2 + β] and is non-negative.
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We refer to [8] for the kinetic formulation (3.1) and to [12] for the structure
of the kinetic measure σmin, where the explicit expression of ḡβ is computed
(see also [11]). We observe also that ḡβ approaches 1

2δπ/2 +
1
2δ−π/2 as β → 0

matching (3.2).
For future use, we recall that the kinetic measure σmin encodes the dissipa-

tion of the entropies for a large class of entropies: to any ψ ∈ C1(T;R) we can
associate the entropy

Φψ(z) =

∫
T
1eis·z>0ψ(s)e

is ds . (3.3)

An entropy Φ belongs to the class ẼNT defined in (1.4) if and only if Φ = Φψ
for some π-periodic ψ ∈ C1(T;R), see [12]. Integrating (3.1) in the s-variable
tested with ψ(s), we obtain

div Φψ(m) =

(
−
∫
T
ψ′(s)d(σmin)x(s)

)
νmin (3.4)

We now recall the notion of Lagrangian representation. Given T > 0 we let

Γ =
{
(γ, t−γ , t

+
γ ) : 0 ≤ t−γ ≤ t+γ ≤ T,

γ = (γx, γs) ∈ BV((t−γ , t
+
γ ); Ω× R/2πZ), γx is Lipschitz

}
.

We will always consider the right-continuous representative of the component γs
and we will write γ(t−γ ) instead of limt→t−γ

γ(t) and γ(t+γ ) instead of limt→t+γ
γ(t).

For every t ∈ (0, T ) we consider the section

Γ(t) :=
{(
γ, t−γ , t

+
γ

)
∈ Γ : t ∈

(
t−γ , t

+
γ

)}
and we denote by

et : Γ(t) −→ Ω× R/2πZ
(γ, t−γ , t

+
γ ) 7−→ γ(t),

the evaluation map at time t.

Definition 1. Let Ω be a C1,1 open set and m solving (1.1) and (3.1). We say
that a finite non-negative Radon measure ω ∈ M(Γ) is a Lagrangian represen-
tation of m if the following conditions are satisfied:

1. for every t ∈ (0, T ) we have

(et)♯ [ω⌞Γ(t)] = 1Em L2 × L1, (3.5)

where Em ⊂ Ω× R/2πZ is the ‘epigraph’

Em =
{
(x, s) ∈ Ω× R/2πZ : m(x) · eis > 0

}
;

11



2. the measure ω is concentrated on curves (γ, t−γ , t
+
γ ) ∈ Γ solving the char-

acteristic equation:

γ̇x(t) = eiγs(t) for a.e. t ∈ (t−γ , t
+
γ ); (3.6)

3. we have the integral bound∫
Γ

TV (0,T )γsdω(γ) <∞;

4. for ω-a.e. (γ, t−γ , t
+
γ ) ∈ Γ we have

t−γ > 0 ⇒ γx(t
−
γ ) ∈ ∂Ω, and t+γ < T ⇒ γx(t

+
γ ) ∈ ∂Ω. (3.7)

Moreover, we say that a Lagrangian representation ω of m is minimal if∫
Γ

TV (0,T )γsdω(γ) = T |σmin|(Ω),

where σmin is defined in Theorem 3.1.

Given v ∈ BV (I;Rn) for some interval I ⊂ R we consider the decomposition
of the derivative

Dv = D̃v +Djv,

where D̃v is the sum of the absolutely continuous and Cantor part of the measure
Dv and Djv is the jump part of Dv, see for example [2].

Theorem 3.2 ([13, 12]). Let Ω be a C1,1 open set and m ∈ B
1/3
3,∞(Ω) solving

(1.1) and (3.1). Then there is a minimal Lagrangian representation ω of m.
Moreover the following equalities between measures hold:

L1⌞[0, T ]× σmin = −
∫
Γ

σγdω(γ),

L1⌞[0, T ]× |σmin| =
∫
Γ

|σγ |dω(γ),
(3.8)

where

σγ = (Id, γ)♯D̃tγs +H1⌞E+
γ −H1⌞E−

γ (3.9)

and

E+
γ := {(t, x, s) ∈ (0, T )× Ω× T :

γx(t) = x and γs(t−) ≤ s ≤ γs(t+) ≤ γs(t−) + π},
E−
γ := {(t, x, s) ∈ (0, T )× Ω× T :

γx(t) = x and γs(t+) ≤ s ≤ γs(t−) < γs(t+) + π}.

(3.10)
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Accordingly, for any ψ ∈ C1(T) we can disintegrate the entropy production of
Φψ defined in (3.3) along the Lagrangian curves:

⟨div Φψ(m), ζ⟩ = − 1

T

∫
Γ

∫
Iγ

ζ(γx(t))D(ψ ◦ γs)(dt) dω(γ) , (3.11)

for any ζ ∈ C1(Ω).

In general it is not true that for any ζ ∈ C1(Ω) and any ψ ∈ C1(T) it holds

⟨|div Φψ(m)|, ζ⟩ = 1

T

∫
Γ

∫
Iγ

ζ(γx(t))|D(ψ ◦ γs)|(dt) dω(γ). (3.12)

Before discussing the validity of a weaker version of the above formula, we prove
a result stating that the decomposition in jump part and continuous part of νmin

is compatible with the corresponding decomposition of Lagrangian trajectories.

Lemma 3.3. Let ω be a minimal Lagrangian representation of m ∈ B
1/3
3,∞(Ω)

solving (1.1). Then

νmin⌞Jm =
1

T

∫
Γ

(γx)♯|Djγs|dω(γ),

νmin⌞(Ω \ Jm) =
1

T

∫
Γ

(γx)♯|D̃γs|dω(γ).

Proof. It is sufficient to prove that for ω-a.e. γ the following holds:

|Djγs|({γx ∈ Ω \ Jm}) = 0, |D̃γs|({γx ∈ Jm}) = 0.

The first equality follows from [12, Lemma 3.5] which states that for ω-a.e.
γ ∈ Γ the following holds: for every t ∈ Iγ such that γs(t+) ̸= γs(t−), we have
γx(t) ∈ Jm. The second equality follows from the fact that for ω-a.e. γ ∈ Γ
the set {γx ∈ Jm} is at most countable, since Jm is countably 1-rectifiable and
{γx ∈ Σ} is finite for any Lipschitz curve Σ, see the proof of [4, Lemma 3.4]
which adapts directly to our setting.

We now prove that (3.12) holds outside the jump set.

Lemma 3.4. Let m ∈ B
1/3
3,∞(Ω) solving (1.1) and (3.1) and ω be a minimal

Lagrangian representation of m. Then for every π-periodic ψ ∈ C1(T) and any
A ⊂ Ω \ Jm it holds

[div Φψ(m)]+(A) =
1

T

∫
Γ

[D(ψ ◦ γs)]−(γx ∈ A) dω(γ),

[div Φψ(m)]−(A) =
1

T

∫
Γ

[D(ψ ◦ γs)]+(γx ∈ A) dω(γ).

In particular

|div Φψ(m)|(A) = 1

T

∫
Γ

|D(ψ ◦ γs)|(γx ∈ A)dω(γ) for any A ⊂ Ω \ Jm.
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Proof. Thanks to Theorem 3.1, the measure (σmin)x has a definite sign on T for
νmin-a.e. x ∈ Jcm. More precisely, we may fix two disjoint Borel sets Ω̃± ⊂ Ω\Jm
such that

νmin

(
Ω \ (Jm ∪ Ω̃+ ∪ Ω̃−)

)
= 0 ,

(σmin)x =
1

2

(
δs(x) + δs(x)+π

)
≥ 0 on T for all x ∈ Ω̃+ ,

(σmin)x = −1

2

(
δs(x) + δs(x)+π

)
≤ 0 on T for all x ∈ Ω̃− .

Combining this with (3.4) and the fact that ψ is π-periodic, we see that

div Φψ(m)⌞(Ω \ Jm) =
(
1Ω̃− − 1Ω̃+

)(
ψ′ ◦ s

)
νmin⌞(Ω \ Jm) ,

hence the positive, resp. negative, part of the measure div Φψ(m) outside Jm is

concentrated on the set Ã+, resp. Ã−, where

Ã+ =
{
(1Ω̃− − 1Ω̃+

)
(ψ′ ◦ s) > 0

}
,

Ã− =
{
(1Ω̃− − 1Ω̃+

)
(ψ′ ◦ s) < 0

}
.

Moreover, thanks to (3.11) and Lemma 3.3, for any Borel set A ⊂ Ω \ Jm, we
have (

div Φψ(m)
)
(A) = − 1

T

∫
Γ

D̃(ψ ◦ γs)({γx ∈ A}) dω(γ) .

Further note that, thanks to (3.8)-(3.9) and the expression of (σmin)x for x /∈ Jm,
for ω-a.e. γ ∈ Γ we have γs(t) ∈ {s(γx(t)), s(γx(t)) + π} for D̃γs-a.e. t ∈ Iγ , so
the above integrand can be rewritten as

D̃(ψ ◦ γs)({γx ∈ A}) =
∫
Iγ

(ψ′ ◦ s)(γx(t))1γx(t)∈AD̃γs(dt) .

Moreover, thanks again to (3.8)-(3.9) and Lemma 3.3 we have

(D̃γs)+({γx ∈ Ω̃+}) = (D̃γs)−({γx ∈ Ω̃−}) = 0 for ω-a.e. γ ∈ Γ .

From the two last equations and the definitions of Ã± we deduce, for ω-a.e.
γ ∈ Γ, that

D̃(ψ ◦ γs)({γx ∈ A})

{
≥ 0 if A ⊂ Ã− ,

≤ 0 if A ⊂ Ã+ ,

and this implies the claimed decomposition.

The proof of the above lemma relies on the following properties: for ν-a.e.
x ∈ Ω \ Jm the measure (σmin)x has a definite sign and ψ′ does not change
sign on supp (σmin)x. Hence the analysis extends to the case of small shocks for
particular entropies: given δ > 0 denote by

Jδm = {x ∈ Jm : m±(x) = eis
±(x), |s+(x)− s−(x)| > δ}. (3.13)
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Lemma 3.5. Let m ∈ B
1/3
3,∞(Ω) solving (1.1) and (3.1) and ω be a minimal

Lagrangian representation of m. Let ψ ∈ C0,1(T) be π-periodic and let Φψ ∈
ẼNT be as in (3.3). Let δ ∈

(
0, π2

)
and assume that for every s̃ ∈ T one of the

two conditions hold:

ψ′(s) ≥ 0 for a.e. s ∈ [s̃, s̃+δ], or ψ′(s) ≥ 0 for a.e. s ∈ [s̃, s̃+δ].

Then for any A ⊂ Jm \ Jδm it holds

[div Φψ(m)]+(A) =
1

T

∫
Γ

[D(ψ ◦ γs)]−(γx ∈ A) dω(γ),

[div Φψ(m)]−(A) =
1

T

∫
Γ

[D(ψ ◦ γs)]+(γx ∈ A) dω(γ).

In particular, we have

|div Φψ(m)|(A) = 1

T

∫
Γ

|D(ψ ◦ γs)|(γx ∈ A)dω(γ) for any A ⊂ Jm \ Jδm.

Proof. With the same notation as in Theorem 3.1, let

J̃+ = {x ∈ Jm \ Jδm : n · eis̄ > 0}, J̃− = {x ∈ Jm \ Jδm : n · eis̄ < 0}.

For each x ∈ Jm \ Jδm the corresponding half-amplitude β ∈ (0, δ2 ) ⊂ (0, π4 ).
Since in this range of β we have gβ ≥ 0, then

νmin

(
Jm \ (Jδm ∪ J̃+ ∪ J̃−)

)
= 0 ,

(σmin)x = n · eis̄gβ(· − s̄)L1 ≥ 0 on T for all x ∈ J̃+ ,

(σmin)x = n · eis̄gβ(· − s̄)L1 ≤ 0 on T for all x ∈ J̃− .

By (3.4) it follows that

div Φψ(m)⌞(Jm\Jδm) =

(∫
T

(
1Ω̃− − 1Ω̃+

)
ψ′(s)d|(σmin)x|(s)

)
νmin⌞(Jm\Jδm).

Moreover, by the assumption on ψ, we have that ψ′ has constant sign on
supp(σmin)x ⊂ [s̄ − δ

2 , s̄ + δ
2 ] ∪ [s̄ − δ

2 + π, s̄ + δ
2 + π]. Therefore the posi-

tive and the negative parts of div Φψ(m) restricted to Jm \Jδm are concentrated
respectively on the sets

Aj,+ =
{
x ∈ Jm \ Jδm : ∃s ∈ supp(σmin)x ,

(
1J̃−(x)− 1J̃+(x)

)
ψ′(s) > 0

}
,

Aj,− =
{
x ∈ Jm \ Jδm : ∃s ∈ supp(σmin)x ,

(
1J̃−(x)− 1J̃+(x)

)
ψ′(s) > 0

}
.

Thanks to (3.11) and Lemma 3.3, for any Borel set A ⊂ Jm \ Jδm, we have(
div Φψ(m)

)
(A) = − 1

T

∫
Γ

Dj(ψ ◦ γs)({γx ∈ A}) dω(γ) (3.14)

= − 1

T

∫
Γ

∑
t∈Jγ

(ψ(γs(t+))− ψ(γs(t−)))1{γx(t)∈A} dω(γ).
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Further note that, thanks to (3.8)-(3.9) and the properties of (σmin)x for x ∈
Jm \ Jδm, for ω-a.e. γ ∈ Γ we have γs(t+), γs(t−) ∈ [s̄(γx(t)) − δ

2 , s̄(γx(t)) +
δ
2 ]

or γs(t+), γs(t−) ∈ [s̄(γx(t)) − δ
2 + π, s̄(γx(t)) +

δ
2 + π] for Djγs-a.e. t ∈ Iγ .

Moreover, thanks again to (3.8)-(3.9) and Lemma 3.3 we have

(Djγs)+({γx ∈ J̃+}) = (Djγs)−({γx ∈ J̃−}) = 0 for ω-a.e. γ ∈ Γ .

From the above property, the definitions of Aj,± and (3.14)we deduce, for ω-a.e.
γ ∈ Γ, that

Dj(ψ ◦ γs)({γx ∈ A})

{
≥ 0 if A ⊂ Aj,− ,

≤ 0 if A ⊂ Aj,+ ,

and this implies the claimed decomposition.

4 Rectifiability

The proof of Theorem 1.1 relies on the following estimate.

Proposition 4.1. Let m ∈ B
1/3
3,∞(Ω;R2) a weak solution of the eikonal equation

(1.1) and ω a minimal Lagrangian representation of m.
For every δ ∈ (0, π8 ) and α ∈ (0, 1), we have∫

Γ

|Dγs|
(
{t ∈ Iγ : γx(t) ∈ Ω \ Jδm, |Dγs|({t}) ≤ δ}

)
dω(γ)

≲ δ1−α
( ∨

∥Φ∥C1,α≤1

|div Φ(m)|
)
(Ω \ Jδm) ,

where the supremum of measures is taken over all entropies Φ ∈ ẼNT such that
∥Φ∥C1,α ≤ 1.

Proof of Theorem 1.1. Let m : Ω → R2 a weak solution of the eikonal equation

(1.1) such that m ∈ B
1/p
p,∞(Ω) for some p ∈ [1, 3). Since B

1/p
p,∞ ∩ L∞ ⊂ B

1/q
q,∞

for all q ≥ p, we assume without loss of generality that 2 < p < 3 and may
write p = 2 + α for some α ∈ (0, 1). Thanks to Proposition 2.1, the supremum
measure appearing in Proposition 4.1 is finite. Letting δ → 0, we deduce∫

Γ

|Dγs|
(
{t ∈ Iγ : γx(t) ∈ Ω \ Jm, |Dγs|({t}) = 0}

)
dω(γ) = 0 .

In other words, for ω-a.e. γ ∈ Γ, the measure |Dγs| only has a jump part.
Thanks to the representation formula (3.11) and Lemma 3.3, this implies that
the entropy dissipation is concentrated on the jump set Jm for every entropy
Φ ∈ ENT.
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Proof of Proposition 4.1. We fix δ ∈ (0, π/16) and start by defining a family
of functions ψ bounded in C0,α and to which Lemma 3.5 can be applied. We
define ψ0 ∈ C0,1(T;R), odd, π-periodic, even with respect to π/4, and given on
[0, π/4] by the nondecreasing piecewise affine function

ψ0(t) =

{
t/δ1−α for 0 ≤ t ≤ 2δ,

2δα for 2δ < t ≤ π/4 .

This function ψ0 generates the family ψs̄ = ψ0(·− s̄), for s̄ ∈ T. The correspond-
ing entropies Φs̄ = Φψs̄

, defined as in (3.3), satisfy the bound ∥ψs̄∥C1,α ≲ 1.
For any s̄ ∈ T and any γ ∈ Γ we have

|Dγs|
(
{t ∈ Iγ : γ(t

−) and γ(t+) ∈ [s̄− δ, s̄+ δ]}
)

≤ δ1−α|D(ψs̄ ◦ γs)|
(
{t ∈ Iγ : γ(t

−) and γ(t+) ∈ [s̄− δ, s̄+ δ]}
)
.

We fix a uniform partition 0 = s̄1 < s̄2 < · · · < s̄N < s̄N+1 = 2π of [0, 2π] such
that δ/2 < s̄j+1 − s̄j ≤ δ. Then we have the covering

T ⊂
N⋃
j=1

Īj , Īj = [s̄j − δ, s̄j + δ] ,

each interval Īj intersects at most 4 of the other intervals from this covering,
and any interval of length δ is contained in one of these intervals. Thus we have

|Dγs|
(
{t ∈ Iγ : |Dγs|({t}) ≤ δ}

)
≤ δ1−α

N∑
j=1

|D(ψs̄j ◦ γs)|
(
{t ∈ Iγ : γ(t

−) and γ(t+) ∈ Īj}
)
.

Invoking Lemma 4.2 below, we see that

{t ∈ Iγ : γ(t
−) and γ(t+) ∈ Īj} ⊂ {t ∈ Iγ : γx(t) ∈ Aj} ∪ Zj ,

where |Dγs|(Zj) = 0 and

Aj =
{
x ∈ Ω: ∃s̃ ∈ Īj , x is either

a jump point of m with normal n ∈ {ieis̃, eis̃} ,

or a Lebesgue point of s with value s(x) ∈ {s̃, s̃+ π}
}
.

In the definition above, we refer to the function s defined in Theorem 3.1 and
we consider Lebesgue points with respect to the measure ν⌞(Ω\Jm). The finite
intersection property of the intervals Īj implies that each set Aj intersects at
most 16 of the other sets Ak, k ̸= j. Moreover, thanks to Lemma 3.4 and
Lemma 3.5, we have

|div Φs̄j (m)|(Aj \ Jδm) =

∫
Γ

|D(ψs̄j ◦ γs)|({γx ∈ Aj \ Jδm}) dω(γ) .
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Gathering the above properties, we deduce∫
Γ

|Dγs|
(
{t ∈ Iγ : γx(t) ∈ Ω \ Jδm, |Dγs|({t}) ≤ δ}

)
dω(γ)

≲ δ1−α
N∑
j=1

|div Φs̄j (m)|(Aj \ Jδm) .

And the finite intersection property of the Aj ’s, together with the boundedness
of the family Φs̄ in C

1,α implies that the last sum is controlled by the supremum
measure appearing in Proposition 4.1.

Lemma 4.2. Let m ∈ B
1/3
3,∞(Ω;R2) be a weak solution of the eikonal equation

(1.1) and ω be a minimal Lagrangian representation of m. Then for ω-a.e.
γ ∈ Γ we have the following.

For any δ > 0, any s̄ ∈ T and |Dγs|-a.e. t ∈ Iγ , if

γ(t−) and γ(t+) ∈ [s̄− δ, s̄+ δ] , and γx(t) ∈ Ω \ Jδm,

then there exists s̃ ∈ [s̄−δ, s̄+δ] such that x = γx(t) is either a jump point of m
with normal n ∈ {ieis̃, eis̃} or a Lebesgue point of s with value s(x) ∈ {s̃, s̃+π}.

Proof of Lemma 4.2. It follows from Theorem 3.2 that for ω-a.e. γ ∈ Γ the
following holds: for |Dγs|-a.e. t ∈ Iγ

γs(t+), γs(t−) ∈ supp (σmin)γx(t).

Recall that νmin(A) = 0 implies
∫
Γ
|Dγs|({γx ∈ A})dω(γ) = 0. Since for νmin-

a.e. x ∈ Jm \ Jδm the support of (σmin)x is contained in [s̃ − π
2 − δ, s̃ − π

2 +
δ] ∪ [s̃+ π

2 − δ, s̃+ π
2 + δ] where s̃ ∈ T is such that eis̃ = n(x) and for νmin-a.e.

x ∈ Ω \Jm the support of (σmin)x is contained in {s(x)− π
2 , s(x)+

π
2 }, then the

claim follows.
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