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Abstract

Weak solutions m: Q@ C R?* — R? of the eikonal equation
Im| =1 a.e. and divm =0,

arise naturally as sharp interface limits of bounded energy configurations
in various physically motivated models, including the Aviles-Giga energy.
The distributions pe = div®(m), defined for a class of smooth vector
fields ® called entropies, carry information about singularities and energy
cost. If these entropy productions are Radon measures, a long-standing
conjecture predicts that they must be concentrated on the 1-rectifiable
jump set of m — as they do if m has bounded variation (BV) thanks to
the chain rule. We establish this concentration property, for a large class
of entropies, under the Besov regularity assumption

m(: +B) = mlos
[R[177

m e le,’/o’; & sup
hER2\ {0}

< 00,

for any 1 < p < 3, thus going well beyond the BV setting (p = 1) and
leaving only the borderline case p = 3 open.
1 Introduction

For an open set Q C R2, we consider weak solutions m: 2 — R? of the eikonal
equation

Im|=1a.e. inQ, divm=0inD'(Q). (1.1)
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If  is simply connected, this is equivalent to the existence of a Lipschitz function
u: ) — R satisfying m = iVu and

[Vu| =1 a.e. in Q,

which is classically referred to as the eikonal equation.

If m: Q — R? is a C! solution of the eikonal equation then the chain
rule provides a whole family of conservation laws: div®(m) = 0 for all ¢ €
C1(S*;R?) such that 9p®(e'?) - e? = 0 for all 6 € R.

For a general weak solution m: Q — R? of the eikonal equation , the
distributions div ®(m) may not be zero, and they carry information on how
singular m is. They were first introduced in the context of the eikonal equation
in [7], and called entropy productions by analogy with the theory of scalar
conservation laws. We denote by

ENT = {® € C"!(S"; R?): %@(e“’) e =0Vv0 e R}, (1.2)
the set of all C1>! entropies.

Weak solutions m of the eikonal equation whose entropy productions
div ®(m) are finite Radon measures play an important role in the theory of the
Aviles-Giga energy [3]. The structure of these finite-entropy solutions is not
fully understood, but it is known that they share with functions of bounded
variation (BV) several fine properties. Note that, if m € BV (2;R?) is a weak
solution of , then by the BV chain rule its entropy productions are measures
concentrated on the H!-rectifiable jump set .J,,. For a general finite-entropy
solution, denote by v the supremum measure

v= \V | div ®(m)| .

®EENT, |[®]| 51,1 <1

In [6] the authors prove that the jump set

Im = {er:limsupy(BT(x)) >0} , (1.3)
r—0 r
is H!-rectifiable and m admits left and right L! traces H!'-a.e. along .J,,. Ac-
cording to a long-standing conjecture on the Aviles-Giga energy [3], entropy
productions should be concentrated on that jump set.
Among all weak solutions of , the finite-entropy solutions can be char-

/3 yegularity [8]. For s € (0,1)

,O0

acterized, at least locally, in terms of Besov Bgl,

and p > 1, a map m € LP(Q) has the Besov regularity B; . if and only if the
seminorm
1
im|p; . = sup ——|m(-+h)—ml L @n@-n),

her2\{o} |h[*

is finite [14, §2.5.12]. Between the spaces BV (Q;S!) and B;@(Q;Sl) lies the

intermediate scale of spaces B;{O%(Q;Sl), for 1 < p < 3. We prove that the



concentration conjecture is true for solutions of (|1.1) with that intermediate
regularity, and for entropies in the class

d

ENT = {cb €ENT : —&(—¢) = — d

— () Vo € R} : (1.4)

db dé

which corresponds to odd entropies plus constants. This restriction is due to
the same technical reasons as in [I2] (where this class of entropies is denoted
by £z). The fundamental entropies introduced in [10] to establish a sharp lower
bound for the Aviles-Giga energy (see also [I]) are odd, and therefore covered
by our result.

Theorem 1.1. Let Q C R? a bounded open set, m: Q0 — R? a weak solution of
the eikonal equation (L.1), and assume that m € B;ZOZ(Q) for some p € [1,3).

Then the entropy productions of m are 1-rectifiable,
div®(m) =n- (®(m™) — ®(m™)) H' Ty,
for all ® € ENT.

To describe the ideas behind Theorem let us consider first a solution
m € BV(;S!) of (1.1). Then, by the BV chain rule we have

|div®(m)| < Co|lm™ —m™ PdH 'L J,,.
for every entropy ® € ENT. Moreover, for any p € [1,3) we have

+ - 1 P
/ Im™ —m™|PdH < ”m”Bé,/fo .
As a consequence, the contribution of jumps smaller than a threshold § > 0 is
controlled by

| div @(m)|(Q2\ (Jm N {Im™ —m~| = d})

< C¢/ imT —m~ PdH < Ce8* P |m|P,,, . (1.5)
TN {m+ —m=|<8} Bre

Here we assumed that m € BV (Q;S!) to ensure that div ®(m) is concentrated
on J,, but the estimate does not depend on the total variation of m. Moreover,
a structure result proved in [I2] about the continuous part of the entropy pro-
duction allows to interpret it as being generated by infinitesimally small jumps.
It is therefore natural to conjecture that the estimate should be true for
solutions m not necessarily of bounded variation. We prove indeed a similar
estimate in Proposition and the main result then follows by letting 6 — 0.
To technically implement these ideas, we actually have to argue along tra-
jectories of a Lagrangian representation of m, also introduced in [12], and which
can only provide information on entropies in . The control on the contin-
uous part of entropy production at the level of these Lagrangian trajectories is
obtained by using a singular family of entropies, whose entropy productions are
uniformly bounded thanks to the supercritical Besov regularity assumption.



2 Entropy productions and Besov regularity

In this section we prove that the supercritical Besov regularity assumption pro-
vides uniform control on entropy productions over families of entropies which
are unbounded in C*1.

Proposition 2.1. Let Q C R? a bounded open set, m: Q — S* with divm = 0

and assume that m € B;i(jj;g)(ﬁ) for some a € (0,1). Then we have

< \ |divc1>(m))(Q)§O|mlf;7<2+a>(m7

@]l c1,a <1 Hrenee

for some C = C(a) > 0, where the supremum of measure is taken over all
® € ENT such that ||®]|cr.« < 1.

Proposition |2.1| can be interpreted as an interpolation between the estimates

(V lavem))@ £ il o

2]l g1,1<1

< IV div<I>(m)|> Q)< ||m||?9;f;<m '

I8l go,1 <1

The first of these estimates is proved in [8, Proposition 3.10], and the second can
be established using similar calculations which rely on commutator estimates
for the function

we=1- |m5|2 = (|m|2)€ - |m€|2,

where the subscript € denotes convolution at scale e. (In the context of the
eikonal equation, arguments based on commutator estimates were introduced in
[5].) The interpolation argument is however a bit involved. In particular, the
constant C' = C(a) we are able to obtain in Proposition blows up as a — 0
or 1, even though these borderline cases are easier to handle.

The commutator estimates we use in the proof of Proposition [2.1] are as
follows.

Lemma 2.2. Let Q C R? an open set and m: Q — S*. Let p € C1(By), p >0,
[p=1,|Vp| <2, and define mc = m * p. for p.(z) = e *p(x/€) and € > 0.
Then the commutator

we=1- |m€|2 = (|m|2)€ - |m5|2,

satisfies

el () < ][ D () dh,

B€

D) S L 1D mi)Pdn for K <1,
B2e

for all x € Q such that Bac(x) C Q.



Here and in what follows we denote by D" the finite difference operator
D'm=m"—m, mh=m(-+h) forhecR?.

Proof of Lemma[2.3 As in [5], these commutator estimates come from the com-
mutator identity

we(w) = 1 — |m()]? = / m(z — ) — me(@)? pe(y) dy

i E

which follows by integrating

2

/Q (m(y) —m(2))pe(x — 2) dz| pe(x —y)dy,

1= [me(2)* = [m(z — y)[* — [me(2)[?
= |m(z —y) = me(@)|* + 2(me(z), m(z — y) — me()),

with respect to pe(y)dy. The commutator identity directly implies the first
estimate. Applying the finite difference operator, it also implies the identity

D%w,(z) = /Q /Q (m(y) — m(z))/)ik(x 2 dz
+ /Q ( /Q (m(y) — m(z)) (pe + o) (@ — ) d2,

[ nlw) = m@) D% o~ 2)d=) pula ) dy
Q

2
D%pe(x —y) dy

2
DFp(y) dy

:/32

+ /BZ { /Q (m(z = ey) = m(z = e2)) (p+ p*) (") d2',

|| (o= i) = mla ) D*pl) =) pla)

/ (m(z — ey) — m(z — ez))pk(z) dz
B

which then provides the second estimate. O

We will also use the estimate

[Vme|(z) < %][ |Dhm(x)| dh . (2.1)

e

which follows from the identity

V() = - /B (m(z — ey) — m(z))Voly) dy.

€



Proof of Proposition[2.. Let ® € ENT such that |®||c1.. < 1, and ® a radial
extension ®(re’?) = n(r)®(e') for some n € C2(0,00) with n(1) = 1. Then we
have

div®(m,) = ¥(m,) - Vwe, we=1—|m?,

San(PIAE?) e

1 } -
272 —n'(r)®(?), \=0y® - (ie"),

\I!(rew) 5
r

and [|¥|co. < 1.

Let U C Q an open subset and ¢ € C}(U). We fix an intermediate open set
Y and 0 € (0,1) such that

supp(¢) + Bys CQ C Q' + Bos C U,
and a cut-off function x € C}(Q2) such that
Lappc) S X <1 and supp(x) + Bzs C .

Then, for 0 < € < J, we write

(div ®(m.), ¢) +/

wex¥(me) - V(dx = / XU (me) - V(Cwe)dr. (2.2)
R2 RZ

Using the Littlewood-Paley characterization of Besov spaces and Hélder’s in-
equality (see Lemma we find

[ v (6w de] £ I¥m g oy (23)

where we choose p = (2 4+ a)/«, hence ¢ = (2 + «)/2. To estimate the two
Besov norms in the right-hand side, we come back to their finite difference
characterization. We have

ID"x ¥ (mo)lllze = (D" x)¥(m) + xD"[¥ (me)] | e rner—ny)
+ X (M) Lr (supp )\ (2 1))
+ X ¥ (me) || Lo (suppx)\ (@ +h)) -
For 0 < |h| < d, the last two terms are zero and we deduce
1
[h]

1

1
ID*x®(molllze S 127 Ixllor 9] + e

X D" [@ (m)] || L (e —n))
1 1
,S |Q|p ||XHC1 ||\I]||OO + WH\I/HCO*O‘ ||Dhm6||%o¢p(glm(ﬂlih))

1
S 127 Ixller 1¥lloo + VMl Tan @iy 5y) -
To estimate the last factor we use (2.1)) which implies

1
Vel er@4+85) S 2]{3 | D"m|| or (04 5s) dh.

€



Plugging this into the previous estimate for 0 < |h| < ¢ and recalling that
p = (2+ a)/a we obtain

DI W e »
¥ mlzs . < Ix¥(m)] o + sup 12 XTmlllz
proo |k|>0 |h|®

< — 1
S 197 (Ixller +07) @]l + 5]{3 1D |2 2ve (0 4., A1 (2.4)

Now we turn to estimating the second factor in the right-hand side of (2.3)). As
above, we have
ID"(Cwe)l|La = (D" Q)w! + (D" we|l La(rnier—ny)
+ [ICwell Lo supp()\ (2 —n)) + [ICwWell Lasuppo)\(@+1)) -

Since 0 < € < 4, the last two terms are zero if |h| < e. We deduce

ID"(Cwe)llLe dh

w o < |Cw 0= S Ze/NL2 200
HC E”B;1 NHC E||Lq+/R2 ‘h|1_a ‘h|2

||weHL‘1 su ¢ dh
S ol il o + 1€l | HEERO) 20
e IR T

”theHLq su dh
+ ||C||oo/ (supp(¢)) dnv
[h|<e

|hft= |h[?

¢ ]loo 1well Lasupp(c))

S lI¢ller l[well Lo +

11—« el—o
. ||<||oo/ ID*wel| Lasupp(c)) dk
e Jik<a k| |k[?

Recalling that ¢ = (2+«)/2 and using the commutator estimates of Lemma [2.2]
we infer

ICwell g1~ S lICller sup [[D*ml[72sa o
q,1 <e

||

[€lloe 1 B2
+ mﬂ 5 ||D m||L2+a(Q/) dh

0o 1
g
€ o Bo

< emia||¢)lor fm

D" 210 0y dh

€

2
1/(2+a)
B2+a,o:

ISl 1 -
+ mGI—(X ||D m||L2+a(Q/)dh.

B

Using this and (2.4]) to estimate the right-hand side of (2.3)), noting that the
second term in the left-hand side of (2.2)) converges to 0 as € — 0 (since w, — 0
in L), and also that

sup [[D"m3 e S €5 im0 — 0,

el—a |h|<2e 24a,00



we deduce

|<d1v<I>(mE )| = o(1)

ISlloe 1/ hy 12 [ 1Dk
< - D o dh D Fotandk,
~al—a)elp, [ D*m||72+ (U) 5. [ D*m|| 72+ (U)

where o(1) — 0 as e — 0. Using Young’s inequality ab < a? /p+b?/q for a,b > 0,
as well as Jensen’s inequality, this implies

(@m0 £ o=t [ Dt dean + o).
B,

a(l —a)

This is valid for any ® € ENT with ||®|c1.e < 1, any open U C  and any
¢ € CHU). Letting ¢ — 0 and taking the supremum over functions ¢ with
I<lle < 1, we deduce

1
i < - h 2+a
| div®(m)|(U) < al—a) h£n1é1f 67{32(/ |D"*m(x)|*"dx dh .

Applying this to any finite collection ®4,...,®x € ENT with ||®;]cr.a < 1,
any disjoint collection of open subsets Uy,..., Uy CV CC Q, we deduce that

N
1 1
iv® V< — = liminf = Dh 2+«
S BI(U:) S oy gt of, ] 1DPmta)f s

The desired estimate on the supremum measure follows thanks to the inner
regularity of Radon measures. O

Lemma 2.3. For any p,p’ € [1,00] such that 1/p+1/p’ =1 and any « € (0,1)
we have

‘ / fVgdx
R2

for all (f,g) € By (R?) x B, [*(R?).

S 1713 Mgl e

Proof of Lemma[2.3 This inequality essentially amounts to the inclusion of
B;al into the dual of By . The elementary proof is basically contained in 14

§ 2.11], where the dual of By, is shown to be equal to B, for all p,q € (1,00).
Here we have ¢ = co and only one inclusion is true, that is why this statement
is not stated explicitly there. We provide the proof for the readers’ convenience.

It relies on the Littlewood-Paley characterization of Besov spaces, which we
start by recalling. We fix a smooth partition of unity {x;};>0 C C2°(R?) with



the properties that

ZXj(x) =1,
=0

Ixo(&)| < 1jgj<2,
IXG(§)] < 1o-i-1<)ej<gitr for j > 1,

sup 27% sup|Vka| <oo Vk>0.
i20 R

Then, for any v € R and p, ¢ € [1, 0], the Besov space B;,q(RQ) consists of all
tempered distributions ¢ € &'(R?) such that the norm

HQPHB;,Q = H(Qj’YH]:_1Xj-7:(pHLp)j20||[q7

is finite [14, § 2.3.1], where F denotes the Fourier transform on &’(R?). More-
over, for 7 € (0,1), these norms (which depend on the system {x;}) are equiv-
alent to

lela, = el + 1A 1Dl || o gn ) -

see e.g. [14] §2.5.12].
To prove the claimed inequality, we use the decomposition

p=> F'x;Fp,
Jj=0
and the fact that x,;xx =0 for |j — k| > 2, to rewrite the integral as
INgde = (f,Vg) = Y (F X FL.F xui&Fg)
R2 ,
7,k>0
= Y OGFfxwisFyg)

J,k=0

1
> i+ Ffoxsi6Fg)

r=—15>0

1
SN (F NG FEF il Fg)

r=—1;>0

Recalling that x; is supported in 277! < [¢] < 29F! for j > 2, and applying
Holder’s inequality, we infer

1
‘ JIRAZZZIED S0 Sl P s
R2

r=—1;>0

1
<N S Y FE NG F Al F G Fll e

r=—175>0



The last inequality follows from the properties of {x;} and a Fourier multiplier
theorem (see e.g. [14, §1.5]). Writing 27 = 2092177 we deduce

‘ fVgdx
R2

S sup 2% | F o F f e Y 20V | F G Fll
k20 >0

which corresponds to the claimed inequality. O

3 Kinetic formulation and Lagrangian represen-
tation

In this section we recall the notions of kinetic formulation and of Lagrangian
representation introduced in [9, 8] and [12] respectively. We prove moreover
some properties which relate the traces on the jump set J,, to the traces of
Lagrangian trajectories.

1
Theorem 3.1. Let m € B3 () be a solution of (L.1). Then there is o €
M(Q x T) such that

e - Vux = 050, (3.1)

(@, 5) = {1 if €' - m(z) > 0,

0 otherwise.

Among the measures o satisfying (3.1), there is a unique omin Mminimizing ||o||
and it has the following structure:

Omin = Vmin ® (Umin)xa where Vmin = (px)ﬁ|0min|

and for vmin-a.e. © € Q\ J,, it holds

1
(Umin)z = i§ (55(1) + 55(x)+7r) (32)

for some s : Q8 = T uniquely defined VminLJS, -a.e., and for Vmin-a.e. © € Jp, it
holds

(Umin)z =n- eiggﬂ(s - g)‘clv

where n(x) is the normal to Jp, at x, the values 3 € T, 5 € (0,%) are uniquely

2
determined by
mt(z) = ei(§+ﬁ), m~(z) = PACIC))

and gg is a Lipschitz function. If moreover 8 € (0, %), then gg is supported on
(-5 —B,—5+plU[5 — 6,5 + ] and is non-negative.

10



We refer to [] for the kinetic formulation (3.1]) and to [12] for the structure
of the kinetic measure oy, where the explicit expression of gg is computed
(see also [I1I]). We observe also that gg approaches %67‘-/2 + %5,7T/2 as 8 — 0

matching (3.2)).

For future use, we recall that the kinetic measure o, encodes the dissipa-
tion of the entropies for a large class of entropies: to any 1 € C1(T;R) we can
associate the entropy

Dy(2) = /T 1ais.s0W(s)e™ ds. (3.3)

An entropy ® belongs to the class ENT defined in (1.4) if and only if & = Py,
for some 7-periodic ¢ € C*(T;R), see [12]. Integrating (3.1)) in the s-variable
tested with 1 (s), we obtain

div ¢¢(m) = <_ / Qp/(s)d(amin)x(s)) Vmin (34)
T
We now recall the notion of Lagrangian representation. Given T > 0 we let
r= {(y,t;,tj): 0<t; <tr<T,
Y = (as7s) € BV((£7,63);Q x R/27Z), 7, i Lipschitz}.

We will always consider the right-continuous representative of the component
and we will write () instead of lim,_,,- 7(t) and () instead of lim,_,,+ ~(¢).
For every t € (0,T) we consider the section

U(t):={(vt;.t7) eT :te (t;,tF)}

e e

and we denote by

er: I't) — QxR/27Z
(1 t5,17) (),

the evaluation map at time t¢.

Definition 1. Let Q be a C1'1 open set and m solving (1.1)) and (3.1). We say
that a finite non-negative Radon measure w € M(I") is a Lagrangian represen-
tation of m if the following conditions are satisfied:

1. for every t € (0,T) we have
(er)y [w T (V)] = 1g,, £ x L, (3.5)
where E,, C Q x R/27Z is the ‘epigraph’

E, = {(-’17,8) €0 x R/QWZ: m(:p).eis > 0};

11



2. the measure w is concentrated on curves (V,t;,tj/‘) € I' solving the char-
acteristic equation:
Ao (t) = 7@ for a.e. t € (t7,t1); (3.6)

YOy

3. we have the integral bound
/TV (0,7)Ysdw(7) < 00;
r

4. for w-a.e. (v,t;,tF) € T we have

t > 0= 7,(t7) € 09, and  tT <T =, (t5) e (3.7)
Moreover, we say that a Lagrangian representation w of m is minimal if

/ TV (0,1)7sdw(y) = T|omin| (),
T

where oy is defined in Theorem [31]

Given v € BV (I;R™) for some interval I C R we consider the decomposition
of the derivative

Dv = Dv + D',

where Du is the sum of the absolutely continuous and Cantor part of the measure
Dv and D7v is the jump part of Dv, see for example [2].

Theorem 3.2 ([13 12]). Let Q be a C1! open set and m € Bé/;(Q) solving
(1.1) and (3.1). Then there is a minimal Lagrangian representation w of m.
Moreover the following equalities between measures hold:

L]0, T) X o = —/Fa.ydw(fy),

(3.8)
L0, T) X |omin| = /Flaw\dww%
where
oy = (1d,7)sDyys + H'LES — H' E; (3.9)
and
Ef :={(t,z,5) € (0,T) x A x T:
Yo(t) = 2 and v(t—) < s < ys(t4) < vs(t—) + 7}, (3.10)

B ={(t,2,5) € (0,T) x AxT:
Yo(t) =2 and vs(t+) < s < y,(t—) < v(t+) + 7}

12



Accordingly, for any v € CY(T) we can disintegrate the entropy production of
Oy, defined in (3.3) along the Lagrangian curves:

(iviy(m), Q) =~ [ [ COutND@o )t dur), (3.11)

for any ¢ € C1(Q).
In general it is not true that for any ¢ € C'(Q2) and any ¢ € C*(T) it holds

i@y (m)l.0 = 7 [ [ CouO)IDE o r)lde) ). (3.12)

Before discussing the validity of a weaker version of the above formula, we prove
a result stating that the decomposition in jump part and continuous part of vy,
is compatible with the corresponding decomposition of Lagrangian trajectories.

Lemma 3.3. Let w be a minimal Lagrangian representation of m € B3 Q)

3,00
solving (L.1). Then
1 ,
oI = 7. [ D (),
r

1 -
i @\ J) = 7. [ (o)l Do),
r
Proof. Tt is sufficient to prove that for w-a.e. v the following holds:

|Dj75|({%c € \ Jm}) =0, ‘D'YSK{'Y-T € Jm}) = 0.

The first equality follows from [I2] Lemma 3.5] which states that for w-a.e.
«v € T the following holds: for every t € I, such that v,(t+) # vs(t—), we have
Yz (t) € Jm. The second equality follows from the fact that for w-a.e. v € T’
the set {7, € Jn} is at most countable, since J,,, is countably 1-rectifiable and
{7z € X} is finite for any Lipschitz curve X, see the proof of [4, Lemma 3.4]
which adapts directly to our setting. O

We now prove that (3.12)) holds outside the jump set.

Lemma 3.4. Let m € B;@(Q) solving (1.1)) and (3.1) and w be a minimal
Lagrangian representation of m. Then for every mw-periodic 1 € C1(T) and any
A CQ\ J,, it holds

vy (ml(4) = 1 [ (Do) (s € A)d(y),

div@u(m)-(4) = 75 [ [P0 03] (s € A) ().

In particular

jdiv @y (m)|(4) = 7 [ D03l € Adly)  for any 4.\ T

13



Proof. Thanks to Theorem the measure (omin ), has a definite sign on T for
Vmin-a.e. T € JS,. More precisely, we may fix two disjoint Borel sets QF C Q\ J,,
such that

Vinin (2 \ (Jn UQTUQT)) =0,

(Omin)z = % (0s(2) + Os(z)4n) = 0on T for all z € QT

(Omin)z = *% (Js(2) + Os(zysn) <0on T forallz € Q.
Combining this with and the fact that ¢ is m-periodic, we see that

div @y, (m)(Q\ Jn) = (1g- — 15+ ) (¥ 08) Vmin (2 \ )

hence the positive, resp. negative, part of the measure div ®,(m) outside J,, is
concentrated on the set A1, resp. A~, where

A ={(15- —15+)(¥' 05) > 0},
AT = {(1(2* — 1Q+)(1/}/ 08) < 0}
Moreover, thanks to (3.11])) and Lemma for any Borel set A C Q\ J,, we

have

(div @y (m))(A) = —%/Fb(w 0%s)({7e € A}) dw(n).

Further note that, thanks to (3.8)-(3.9) and the expression of (omin ), for z ¢ Jp,,
for w-a.e. v € T we have v,(t) € {s(7x(t)),5(72(t)) + 7} for Dvs-a.e. t € I, so
the above integrand can be rewritten as

D(¢pos)({re € A}) = / (¥ 08)(72(t) 1y, (yeaDs(dt).

I

Moreover, thanks again to (3.8)-(3.9) and Lemma we have
(Dvs)4 ({12 € Q")) = (D7) ({12 € Q7 }) =0 forw-ae yeT.

From the two last equations and the definitions of A* we deduce, for w-a.e.
v €T, that

~ >0 ifAcC A
D €A~ =
(Y ovs){Ve }){SO itAC AT,

and this implies the claimed decomposition. O

The proof of the above lemma relies on the following properties: for v-a.e.
x € Q\ Jy, the measure (opmin). has a definite sign and ¢’ does not change
sign on supp (min ). Hence the analysis extends to the case of small shocks for
particular entropies: given 6 > 0 denote by

IS ={z € Jp mE(z) = |sT(2) — s (2)| > 5} (3.13)
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Lemma 3.5. Let m € B; 1/ () solving (1.1) and (3.1) and w be a minimal
Lagrangian representation of m. Let 1 € C%(T) be m-periodic and let @y €

ENT be as in (13.3). Letd € (0, g) and assume that for every 5§ € T one of the
two conditions hold:

P'(s) >0 forae. s€[3,5+6], or  '(s)>0 forae s€335+4].
Then for any A C J,, \ JO, it holds

div@u(ml(4) = 1 [ (Do) (s € A)d(y),

div@u(m)-(4) = 75 [ [P0 03] (s € A) ().

In particular, we have
. 1
| div @, (m)[(A) = f/ |D(1h 0 v) (72 € A)dw ()  for any A C Jp \ J2,.
r

Proof. With the same notation as in Theorem let

Jr={z e, \J} n-e® >0}, J ={xeJ,\J n e <0}
For each z € J,, \ JJ, the corresponding half-amplitude 8 € (0,%) C (0, %).
Since in this range of 8 we have gg > 0, then

Vmin (Jm \ (Jf; uJtu ) 0,

(Omin)z =1~ eiggﬁ(~ 5L >00onT forallz e J*,

(Omin)e =1 -€e%gg(- —5) L <0on T forall z € J~

By (3.4) it follows that

div (bw(m)L(Jm\ng) = (/E (10* - 1Q+)w/(3)d|(0min>1|(5)) VminL(Jm\an)-

Moreover, by the assumption on t, we have that 1)’ has constant sign on
supp(omin)e C [ — 2,8+ 3JU[5— 2 + 7,5+ & + m]. Therefore the posi-
tive and the negative parts of div ®,(m) restricted to .J,;, \ J2, are concentrated
respectively on the sets

APt = {x € Jm \ J,‘; : Js € supp(Omin)z (lj, (r) —1j4 (x))z/)'(s) > 0} ,
=z € Jp \ JY 35 € supp(Omin)z, (15— () — 14 ()¢ (s) > 0}.
Thanks to (3.11]) and Lemma for any Borel set A C J,, \ J2,, we have

1
1

(v (m)) (4) = / DI 070) ({1 € AY) () (3.14)

=7 75 t+ ) ¢(75(t—))) 1{vw(t)€A} dw(’}/)'
FteJ
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Further note that, thanks to - and the properties of (omin)s. for & €
Im \ ng for w-a.e. v € T we have v4(t+),vs(t—) € [3(7z(t)) — %,§(%(t)) + g]
or 7u(t+),75(t-) € [5(1 (1) — & + 7. 5(a(t) + £ + 7] for Dins-ac. t € L.
Moreover, thanks again to (3.8)-(3.9) and Lemma [3.3] we have

(DIs)+({e € T = (D) -({re € J}) =0 for w-ae. yel.

From the above property, the definitions of A7* and (3.14)we deduce, for w-a.e.
v €T, that

>0  ifAC A,

Dj(@/}oys)({’yx € A}) {< 0 i AC At

and this implies the claimed decomposition. O

4 Rectifiability

The proof of Theorem relies on the following estimate.

Proposition 4.1. Let m € Bé/; (Q;R?) a weak solution of the eikonal equation

(1.1) and w a minimal Lagrangian representation of m.

For every 6 € (0, %) and a € (0,1), we have

/F Dyal({t € I 7alt) € O\ T3, | Dal({2}) < 6)) deo()

so( OV Javeom) )@\,

@, <1

where the supremum of measures is taken over all entropies ® € ENT such that
|P||cra < 1.

Proof of Theorem[1.1] Let m: Q — R? a weak solution of the eikonal equation
such that m € B,l,,/opo(Q) for some p € [1,3). Since B;,/o% NL*® C B;/go
for all ¢ > p, we assume without loss of generality that 2 < p < 3 and may
write p = 2 + « for some a € (0,1). Thanks to Proposition the supremum
measure appearing in Proposition is finite. Letting 6 — 0, we deduce

/F D5l ({t € Iy: 72 (t) € Q\ Jm, |D7s|({t}) = 0}) dw(y) = 0.

In other words, for w-a.e. v € T, the measure |D~v4| only has a jump part.
Thanks to the representation formula and Lemma this implies that
the entropy dissipation is concentrated on the jump set J,, for every entropy
d € ENT. O
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Proof of Proposition[{.1. We fix 6 € (0,7/16) and start by defining a family
of functions 9 bounded in C%® and to which Lemma can be applied. We
define ¥y € C*1(T;R), odd, 7-periodic, even with respect to 7/4, and given on
[0, 7/4] by the nondecreasing piecewise affine function

t/st—  for 0 <t <26,
26 for 26 <t < m/4.

This function v generates the family s = ¢o(-—3), for 5§ € T. The correspond-
ing entropies ®; = @y, defined as in (3.3)), satisfy the bound ||¢s|lc1.e S 1.
For any s € T and any v € I" we have

|Dys|({t € Iy 7(t7) and 4(t7) € [s - 6,5+ 0]})
<8 D(s 0 vs)|({t € I y(t7) and v (t) € [5— 8,5+ d]}) -

We fix a uniform partition 0 = §; < §3 < -+ < Sy < §y41 = 27 of [0, 27] such
that 6/2 < 541 — 5; < 0. Then we have the covering

N
T C Ufj, ij[gj—5,§j+5],
j=1

each interval I ; intersects at most 4 of the other intervals from this covering,
and any interval of length ¢ is contained in one of these intervals. Thus we have

|Dysl({t € Iy [Ds|({t}) < 6})
N
<510 S D(s, 07 ({t € Iy () and 4(+) € T;})
j=1
Invoking Lemma [4:2] below, we see that
{tel, vt )andy(tT) e [} C{te L,: v.(t) € 4;} U Z;,
where |D~;|(Z;) = 0 and

Aj={ze:3el;, viseither

J0
a jump point of m with normal n € {ie® "},
or a Lebesgue point of s with value s(z) € {$,5+ 7r}} .
In the definition above, we refer to the function s defined in Theorem and
we consider Lebesgue points with respect to the measure v (€2\ J;,). The finite
intersection property of the intervals I; implies that each set A; intersects at

most 16 of the other sets Ay, k # j. Moreover, thanks to Lemma [3.4] and
Lemma [3.5] we have

| div @5, (m)|(4;\ J,) = /F D5, 0 75)| ({72 € A5\ Tp.}) dw(v) -
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Gathering the above properties, we deduce
/F Dy l({t € Is 1u(t) € Q\ I, [Dl({8) < 8)) daol)

N
<63 [div s, (m)|(A;\ J2,).

j=1

And the finite intersection property of the A;’s, together with the boundedness
of the family ®5 in C implies that the last sum is controlled by the supremum
measure appearing in Proposition 1.1} O

Lemma 4.2. Let m € B;)

/;(Q;RQ) be a weak solution of the eikonal equation
(1.1) and w be a minimal Lagrangian representation of m. Then for w-a.e.
v € I' we have the following.

For any § >0, any 5§ € T and |Dv,|-a.e. t € I, if
¥(t7) and y(t1) € [ — 6,5+ 4], and  7.(t) € Q\ JS,

then there exists § € [§— 0,5+ 8] such that x = v, (t) is either a jump point of m
with normal n € {ie®®, e’} or a Lebesgue point of s with value s(x) € {3,5+m}.

Proof of Lemma[/.3 Tt follows from Theorem that for w-a.e. v € T the
following holds: for |Dvs|-a.e. t € L,

Ya(t4), Ys(t=) € SUPP (Tmin ), ¢)-

Recall that vmin(A) = 0 implies [, [Dvs|({72 € A})dw(y) = 0. Since for vyin-
ae. T € Jy\ J,‘?L the support of (owmin), is contained in [§ — § — 4,5 — T +
U3+ § — 6,5+ 5 + 0] where 5 € T is such that e'* = n(z) and for vyin-a.c.
x € Q\ Jy, the support of (0wmin). is contained in {s(x) — %, s(x) + 5}, then the
claim follows. O

Acknowledgments

XL is supported by the ANR project ANR-22-CE40-0006. EM is member of the
GNAMPA group of INDAM and acknowledges the hospitality of the Institut de
Mathématiques de Toulouse, where part of the work has been done.

References

[1] AmBRoOSIO, L., DE LELLIS, C., AND MANTEGAZZA, C. Line energies for gradient
vector fields in the plane. Calc. Var. Partial Differential Equations 9, 4 (1999),
327-255.

[2] AMBROSIO, L., Fusco, N., AND PALLARA, D. Functions of bounded variation and
free discontinuity problems. Oxford Mathematical Monographs. The Clarendon
Press, Oxford University Press, New York, 2000.

18



3]

9
[10]
11]
12)
13)

[14]

AVILES, P., AND GIGA, Y. On lower semicontinuity of a defect energy obtained
by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc.
Roy. Soc. Edinburgh Sect. A 129, 1 (1999), 1-17.

CONTRERAS Hrip, A. A., Lamy, X., AND MARCONI, E. Generalized characteris-
tics for finite entropy solutions of Burgers’ equation. Nonlinear Anal. 219 (2022),
Paper No. 112804.

DE LEeLLis, C., AND IGNAT, R. A regularizing property of the 2D-eikonal equa-
tion. Comm. Partial Differential Equations 40, 8 (2015), 1543-1557.

DE LeLLis, C., AND OTTO, F. Structure of entropy solutions to the eikonal
equation. J. Eur. Math. Soc. (JEMS) 5, 2 (2003), 107-145.

DESIMONE, A., MULLER, S., KoHN, R. V., AND OTTO, F. A compactness result
in the gradient theory of phase transitions. Proc. Roy. Soc. Edinburgh Sect. A
131, 4 (2001), 833-844.

GHIRALDIN, F., AND LAMY, X. Optimal Besov differentiability for entropy solu-
tions of the eikonal equation. Commun. Pure Appl. Math. 73, 2 (2020), 317-349.

JABIN, P.-E., AND PERTHAME, B. Compactness in Ginzburg-Landau energy by
kinetic averaging. Comm. Pure Appl. Math. 54,9 (2001), 1096-1109.

JiN, W., AND KOHN, R. V. Singular perturbation and the energy of folds. J.
Nonlinear Sci. 10, 3 (2000), 355-390.

LORENT, A., AND PENG, G. Factorization for entropy production of the eikonal
equation and regularity. Indiana Univ. Math. J. 72, 3 (2023), 1055-1105.

MARcoNI, E. Characterization of minimizers of Aviles-Giga functionals in special
domains. Arch. Ration. Mech. Anal. 242, 2 (2021), 1289-1316.

MARrcoNI, E. Rectifiability of entropy defect measures in a micromagnetics model.
Advances in Calculus of Variations (2021), 000010151520210012.

TRIEBEL, H. Theory of function spaces, vol. 78 of Monogr. Math., Basel.
Birkhauser, Cham, 1983.

19



	Introduction
	Entropy productions and Besov regularity
	Kinetic formulation and Lagrangian representation
	Rectifiability

