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Abstract

We consider entropy solutions to the eikonal equation |∇u| = 1 in two space
dimensions. These solutions are motivated by a class of variational problems
and fail in general to have bounded variation. Nevertheless they share with BV
functions, several of their fine properties: we show in particular that the set of
non-Lebesgue points has co-dimension at least one.

1 Introduction

We consider an open set Ω ⊂ R2 and m : Ω→ R2 a solution of the eikonal equation

|m| = 1 a.e., and ∇ ·m = 0 in Ω. (1)

We are interested in particular in solutions that arise as limits as ε→ 0 of vector fields
mε with equi-bounded energy supε>0 Fε(mε,Ω) <∞, where

Fε(m; Ω) =
ε

2

ˆ
Ω

|∇m|2 +
1

2ε

ˆ
Ω

(1− |m|2)2, (2)

m : Ω→ R2, ∇ ·m = 0,

are the functionals introduced by Aviles and Giga in [5]. We refer to the introduction
of [11] for a description of several physical applications.

The notion of entropy, borrowed from the field of conservation laws, plays a fun-
damental role in the study of the singular limit as ε → 0 of these functionals. We
say that a compactly supported function Φ ∈ C∞(R2,R2) is an entropy for (1) if for
every open set U and every smooth m : U → R2 solving ∇ · m = 0 and |m| = 1 it
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holds ∇ · Φ(m) = 0. It is shown in [3, 8] that functions with equi-bounded energy as
ε → 0 are pre-compact in L2(Ω) and any limit is an entropy solution of (1): namely
for every entropy Φ ∈ C∞(R2,R2) the distribution ∇ ·Φ(m) is a finite Radon measure.
Remarkably, the same class of entropy solutions to (1) contains the asymptotic domain
of other families of functionals: see [2, 17] for two micromagnetics models.

It is shown in [9] that m is an entropy solution if and only if the following kinetic
equation (introduced in [10]) is satisfied:

eis · ∇x1m(x)·eis>0 = ∂sσ, σ ∈Mloc(Ω× R/2πZ). (3)

We denote by ν ∈Mloc(Ω) the entropy dissipation measure given by

ν(A) = |σ|(A× R/2πZ), A ⊂ Ω. (4)

It is known [7] that H1-a.e. point x ∈ Ω at which ν(Br(x))/r → 0 as r → 0+ is a
vanishing mean oscillation (VMO) point of m, that is,

 
Br(x)

∣∣∣∣m−  
Br(x)

m

∣∣∣∣ −→ 0 as r → 0+.

It is conjectured in [7, Conjecture 1 (b’)] that H1-a.e. such point is in fact a Lebesgue
point. Our main result states that this conjecture is true under the additional assump-
tion that ν(Br(x))/r decays algebraically to 0.

Theorem 1. Let m : Ω → R2 be an entropy solution (3) of the eikonal equation (1).
Then H1-a.e. x ∈ Ω such that limr→0+ ν(Br(x))/r1+a = 0 for some a > 0 is a Lebesgue
point of m. In particular, the set of non Lebesgue points of m has Hausdorff dimension
at most 1.

Remark 2. After this work was submitted, we became aware that the bound on the
Hausdorff dimension can also be obtained as a consequence of classical capacity esti-
mates [1, Theorem 6.21] and of the regularity m ∈ B1/3

3,∞ [9] (which implies m ∈ W s,3 for
any s < 1/3). Note however that the information provided by Theorem 1 is stronger, in
that it directly relates oscillations at a point x to the local energy dissipation ν(Br(x)).
Also note that, as will be clear from the proof, the assumption of algebraic energy decay
ν(Br)/r = O(ra) can be relaxed to ν(Br)/r = O(| ln r|−14). Via a covering argument
this implies that non Lebesgue points are finite for the Hausdorff measure defined by
the function r 7→ r| ln r|−14 (see e.g. [1, § 5.1]), a fact which does not follow directly
from capacity estimates.

Analogs of Theorem 1 have been obtained previously in [13] for Burgers’ equation,
and in [16] for general scalar conservations laws. To prove Theorem 1 we follow the
scheme laid out in [16], where it is shown that oscillations of averages

ffl
Br(x)

u of the

solution u are controlled by the entropy dissipation. This, together with the VMO
property, implies the Lebesgue point property. However, a key feature for the argument
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of [16] is that the solution u takes values in the ordered set R. Here our solution m
takes values in S1, and adapting the argument of [16] is not enough to conclude (see
Proposition 4). Our proof of Theorem 1 relies instead on the following dichotomy:
either the oscillations of

ffl
Br(x)

m are controlled by the entropy dissipation ν, or m takes

very different values in large subsets of BR(x) – this second alternative is ruled out by
the VMO property. That dichotomy is made quantitative in the next statement.

Proposition 3. Assume B1 ⊂ Ω. Let r ∈ (0, 1/2) and

h = h(r) = max
x1,x2∈B2r

∣∣∣∣ 
Br(x1)

m−
 
Br(x2)

m

∣∣∣∣ . (5)

There exist absolute constants c, δ > 0 such that, if

R =
32r

δh2
≤ 1,

then either

ν(BR) ≥ c h11r, (6)

or there exist s0 ∈ R such that∣∣∣∣BR ∩
{
m · eis ≥ −1

2

}∣∣∣∣ ≥ cR2 for dist(s, {s0, s0 + π}) ≤ π/4. (7)

Here and in the rest of the article, we denote by |A| the Lebesgue measure of a
measurable set A ⊂ Rd. Theorem 1 is a rather direct consequence of Proposition 3, as
we explain now.

Proof of Theorem 1. Let x ∈ Ω be a VMO point of m such that ν(Br(x))/r1+a → 0 for
some a > 0. Translating and rescaling we assume without loss of generality that x = 0
and B1 ⊂ Ω. We claim that h(r) = O(rb) for b = a/(13 + 2a) > 0. This, together
with the fact that 0 is a VMO point of m, implies that 0 is a Lebesgue point (see [16,
Lemma 4.6]). (Note, in connection with Remark 2, that h(r) = O(| ln r|−1−ε) for some
ε > 0 would imply the same conclusion.) To prove that h(r) = O(rb) we argue by
contradiction and assume that h(r)/rb → ∞ along a sequence r → 0+. Then, along
the same sequence,

R =
32r

δh2
=

32

δ
r1−2b

(
rb

h

)2

→ 0 because b <
1

2
,

and
R1+a

h11r
=

321+a

δ1+a

(
rb

h

)13+2a

→ 0.
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Therefore, applying Proposition 3 along the sequence R→ 0, the condition (6) cannot
be satisfied because ν(BR)/R1+a → 0, so we have (7). This contradicts the VMO
property: for all small enough R, the projection zR ∈ S1 of

ffl
BR
m onto S1 satisfies

|BR ∩ {|m− zR| ≥ π/12}| ≤ c

2
R2. (8)

But one can choose s ∈ R such that dist(s, {s0, s0 + π}) ≤ π/4 and

z · eis ≥ −1

2
=⇒ |z − zR| ≥ π/12,

for any z ∈ S1 (if zR = eisR , any s ∈ [sR+3π/4, sR+5π/4] has that property). According
to (7) this implies |BR ∩ {|m − zR| ≥ π/12}| ≥ cR2, in contradiction with (8). Hence
we have proved that x is a Lebesgue point. The estimate on the Hausdorff dimension of
non Lebesgue points follows via a covering argument (see e.g. [4, Theorem 2.56]).

The proof of Proposition 3 has two main ingredients. The first ingredient consists
in adapting the arguments of [16] to prove a dichotomy similar to Proposition 3, but
where the second option (7) is replaced by a statement which is not strong enough to
conclude.

Proposition 4. Let r ∈ (0, 1/2) and h be as in Proposition 3. There exist absolute
constants c, δ > 0 such that, if R = 32r/(δh2) ≤ 1, then we have either ν(BR) ≥ ch11r,
or ∣∣∣∣BR/2 ∩

{
m ·m0 ≥

1

2

}∣∣∣∣ ≥ chr2 and

∣∣∣∣BR/2 ∩
{
m ·m0 ≤ −

1

2

}∣∣∣∣ ≥ chr2, (9)

for some m0 ∈ S1.

The main idea behind the argument in [16] is that a large value of h implies the
existence of a configuration which would be impossible in the absence of entropy dissi-
pation. In the presence of dissipation, such configuration provides a lower bound on the
dissipation, and there is no dichotomy. Here instead, not all configurations created by
large values of h can be ruled out in the absence of dissipation: in particular the vortex
solution m(x) = x⊥/|x| has zero dissipation but the values of h(r) around the origin
are not vanishing. This is reflected in the second alternative (9) of the dichotomy.

The second ingredient in our proof of Proposition 3 consists in using the methods
developed in [15, 14, 6, 12] in order to pass from (9) to (7).

Proposition 5. Let m0 = eis0 ∈ S1, and R > 0 such that BR ⊂ Ω. Then we have
either

ν(BR) ≥ c

R
min(|X+|, |X−|), X± = BR/2 ∩ {±m ·m0 ≥ 1/2}, (10)

or ν(BR) ≥ cR, or (7), for some absolute constant c > 0.
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Proposition 3 follows readily from Proposition 4 and Proposition 5. Thanks to
Proposition 4, we know indeed that either ν(BR) ≥ ch11r, in which case we are done,
or estimate (9) is valid. But according to Proposition 5, if (9) is satisfied, then we
have either ν(BR) ≥ chr2/R ≥ ch11r, or ν(BR) ≥ cR ≥ ch11r, or (7). In all cases,
Proposition 3 is verified.

The proofs of Proposition 4 and Proposition 5 are presented in Section 2 and Sec-
tion 3.

Notations.

We denote by |A| the Lebesgue measure of a set A ⊂ Rd. We use the symbol & to
signify inequality up to an absolute multiplicative constant.

Acknowledgements.
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2 Proof of Proposition 4

Let x1, x2 attain the maximum in the definition (5) of h, and define, for j = 1, 2, ρj(s)
as the proportion of points x ∈ Br(xj) at which m(x) lies in the semi-circle of direction
eis, that is, for every s ∈ R/2πZ, we set

ρj(s) =
1

|Br|
∣∣Br(xj) ∩

{
m · eis > 0

}∣∣ =
1

|Br|

ˆ
Br(xj)

1Em(x, s)dx,

where

Em =
{

(x, s) ∈ Ω× R/2πZ : m(x) · eis > 0
}
. (11)

Note that |ρj| ≤ 1 and, since for every x ∈ Ω it holds |Ds1Em(x, ·)|(R/2πZ) = 2,
then ρj ∈ BV (R/2πZ) with |Dρj|(R/2πZ) ≤ 2. Moreover, by Fubini theorem, these
functions satisfy the identitiesˆ

R/2πZ
eisρj(s) ds =

ˆ
R/2πZ

 
Br(xj)

1Em(x, s)eisdxds = 2

 
Br(xj)

m(x) dx.

For s ∈ R and ρ > 0 we denote by Iρ(s) the segment

Iρ(s) = [s− ρ, s+ ρ].
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For a small enough absolute constant δ ∈ (0, 1), the subset S ⊂ R/2πZ given by

S =

{
s ∈ R/2πZ : (|Dρ1|+ |Dρ2|)(Iδh2(s)) ≥

h

4π

}
,

satisfies |S| ≤ h/2 (as follows e.g. from a Besicovitch covering argument). Thus we
have

h =
1

2

∣∣∣∣ˆ
R/2πZ

eisρ1(s) ds−
ˆ
R/2πZ

eisρ2(s) ds

∣∣∣∣ ≤ 1

2

ˆ
R/2πZ

|ρ1(s)− ρ2(s)| ds

≤ 1

2

ˆ
(R/2πZ)\S

|ρ1(s)− ρ2(s)| ds+
h

2
.

We may therefore find s ∈ R/2πZ such that s /∈ S and |ρ1(s) − ρ2(s)| ≥ h/2π. We
assume without loss of generality that ρ1(s)− ρ2(s) ≥ h/2π, and by definition of S we
deduce

inf
Iδh2 (s)

ρ1 − sup
Iδh2 (s)

ρ2 ≥
h

4π
.

In particular, setting s0 = s− π/2− 3δh2/4, we have

inf
Iδh2/4(s0+π/2)

ρ1 − sup
Iδh2/4(s0+π/2+δh2)

ρ2 ≥
h

4π
,

inf
Iδh2/4(s0+π/2+δh2)

ρ1 − sup
Iδh2/4(s0+π/2)

ρ2 ≥
h

4π
.

As ρj(s+ π) = 1− ρj(s) for a.e. s ∈ R/2πZ, this implies

ess inf
Iδh2/4(s0+π/2)

ρ1 + ess inf
Iδh2/4(s0−π/2+δh2)

ρ2 ≥ 1 +
h

4π
, (12)

ess inf
Iδh2/4(s0+π/2+δh2)

ρ1 + ess inf
Iδh2/4(s0−π/2)

ρ2 ≥ 1 +
h

4π
. (13)

The relevance of (12)-(13) comes from the following geometric observation. Given
two directions s1 ∈ Iδh2/4(s0 + π/2) and s2 ∈ Iδh2/4(s0 − π/2 + δh2) and two points
y1 ∈ Br(x1) ∩ {m · eis1 > 0}, y2 ∈ Br(x2) ∩ {m · eis2 > 0}, we have |s1 − s2| ≥ δh2, and
the two lines yj + Reisj intersect at a point z ∈ B8r/(δh2). In the absence of dissipation,
one would have m(z) · eisj > 0 for j = 1, 2, and therefore m(z) · eis0 ≥ cos(2δh2) ≥ 1/2.
The last lower bound is valid provided δ ≤ π/24, since |h| ≤ 2. The same argument with
s1 ∈ Iδh2/4(s0 + π/2 + δh2) and s2 ∈ Iδh2/4(s0− π/2) implies instead m(z) · eis0 ≤ −1/2.

Thanks to the techniques in [16], in the presence of dissipation this can be made
quantitative. The main idea is that (3) provides an estimate on the difference between
the ‘epigraph’ Em defined in (11) and its free transport FT(Em, t), where the free
transport operator FT(·, t) is defined for t ∈ R by

FT(E, t) =
{

(x, s) ∈ Ω× R/2πZ : (x− teis, s) ∈ E
}
.
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Lemma 6. Let t ∈ R and ρ > 0 such that Bρ+|t| ⊂ Ω. For all φ ∈ C1
c (Bρ×R/2πZ) we

have ˆ
Ω×R/2πZ

φ(x, s)
(
1FT(Em,t) − 1Em

)
dxds ≤

(
|t| ‖∂sφ‖∞ + t2‖∇xφ‖∞

)
ν(Bρ+|t|).

Proof of Lemma 6. Define χ, χFT : [−|t|, |t|]× Ω× R/2πZ→ R by

χ(τ, x, s) = 1(x,s)∈Em , χFT(τ, x, s) = 1(x,s)∈FT(Em,τ) = χ(x− τeis, s).

so we have, in the sense of distributions,

∂τχ+ eis · ∇xχ = ∂sσ(x, s), ∂τχ
FT + eis · ∇xχ

FT = 0.

Setting χ̂ = χFT−χ, and ψ(τ, x, s) = φ(x+eis(t−τ), s) which satisfies ∂τψ+eis·∇xψ = 0,
we deduce

∂τ [ψχ̂] + eis · ∇x [ψχ̂] = −ψ∂sσ.

Integrating with respect to (x, s) (this is formal but makes sense distributionnally) we
deduce

d

dτ

ˆ
Ω×R/2πZ

ψχ̂ dxds =

ˆ
Ω×R/2πZ

∂sψ dσ(x, s).

Integrating this from 0 to t and recalling ν(A) = |σ|(A×R/2πZ) for A ⊂ Ω, we obtain

ˆ
Ω×R/2πZ

φ(x, s)
(
1FT(Em,t) − 1Em

)
dxds =

ˆ t

0

ˆ
Ω×R/2πZ

∂sψdσ dτ

≤ |t| ‖∂sψ‖∞|ν|(Bρ+|t| × R/2πZ).

Noting that ‖∂sψ‖∞ ≤ ‖∂sφ‖∞ + |t| ‖∇xφ‖∞ completes the proof.

Equipped with Lemma 6 we continue the proof of Proposition 4. First we make
use of (12). We define ẑ ∈ R2 as the intersection of the lines x1 + Rei(s0+π/2) and
x2 + Rei(s0−π/2+δh2), that is,

x1 + t1e
i(s0+π/2) = x2 + t2e

i(s0−π/2+δh2) = ẑ,

for some t1, t2 ∈ R. Since |x1 − x2| ≤ 4r, we have

|t1|, |t2| ≤
4r

sin(δh2)
≤ 8r

δh2
, (14)

and therefore Br(ẑ) ⊂ BR/2. We will use Lemma 6 to compare Em with FT(Em, t1)
and FT(Em, t2) on Br(ẑ). We define

C1 = Br(ẑ)× Ic(s0 + π/2), C2 = Br(ẑ)× Ic(s0 − π/2 + δh2),

A1 = Em ∩ C1, A2 = Em ∩ C2
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with c = δh3/128π ≤ δh2/4. and their free transport counterparts

AFT
1 = FT(Em, t1) ∩ C1, AFT

2 = FT(Em, t2) ∩ C2.

We estimate

|AFT
1 | = |Em ∩ FT(·, t1)−1(C1)|
≥ |Em ∩ (Br(x1)× Ic(s0 + π/2))| − |FT(·, t1)−1(C1) \ (Br(x1)× Ic(s0 + π/2))|

=

ˆ s0+π
2

+c

s0+π
2
−c

ρ1(s)ds− |FT(·, t1)−1(C1) \ (Br(x1)× Ic(s0 + π/2))|.

Moreover

|FT(·, t1)−1(C1) \ (Br(x1)× Ic(s0 + π/2))| =
ˆ s0+π

2
+c

s0+π
2
−c
|Br(ẑ − t1eis) \Br(x1)|ds

≤ 2r

ˆ s0+π
2

+c

s0+π
2
−c
|ẑ − t1eis − x1|ds

≤ 2r

ˆ s0+π
2

+c

s0+π
2
−c
|t1||ei(s0+π/2) − eis|ds

≤ 32
c2r2

δh2
,

where in the last inequality we used (14). Therefore we have

|AFT
1 | ≥

ˆ s0+π
2

+c

s0+π
2
−c

ρ1(s)ds− 32
c2r2

δh2
, (15)

and similarly

|AFT
2 | ≥

ˆ s0−π2 +δh2+c

s0−π2 +δh2−c
ρ2(s)ds− 32

c2r2

δh2
. (16)

From (12) we know that

ρ1

(
s0 +

π

2
+ s
)

+ ρ2

(
s0 −

π

2
+ δh2 + s

)
≥ 1 +

h

4π
for all |s| ≤ δ

4
h2.

Integrating this inequality in s ∈ [−c, c], it follows from (15),(16) that

|AFT
1 |+ |AFT

2 | ≥ 2c|Br|
(

1 +
h

4π

)
− 64

c2r2

δh2
≥ 2c|Br|

(
1 +

h

8π

)
, (17)

by the choice c = δh3/128π. Next we consider two cases, depending on whether A1 and
A2 satisfy a similar inequality.
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Case 1. Assume first that

|A1|+ |A2| ≥ 2c|Br|
(

1 +
h

16π

)
,

then

|πx(A1)|+ |πx(A2)| ≥ |Br|
(

1 +
h

16π

)
.

Moreover, since πx(A1)∪ πx(A2) ⊂ Br(ẑ), it follows that A := πx(A1)∩ πx(A2) satisfies
|A| ≥ h|Br|/16. By construction, we have

A =
{
x ∈ Br(ẑ) : ∃s1 ∈ Ic(s0 + π/2), s2 ∈ Ic(s0 −

π

2
+ δh2),

m(x) · eis1 > 0 and m(x) · eis2 > 0
}

⊂ Br(ẑ) ∩ {m · eis0 ≥ cos(2δh2)},
so this implies∣∣∣∣BR/2 ∩

{
m ·m0 ≥

1

2

}∣∣∣∣ & hr2. (18)

Case 2. Assume now that

|A1|+ |A2| < 2c|Br|
(

1 +
h

16π

)
.

Then using (17) we obtain

|AFT
1 | − |A1|+ |AFT

2 | − |A2| > 2c|Br|
h

16π
,

so either |AFT
1 |−|A1| or |AFT

2 |−|A2| is larger than half the right-hand side. We consider
without loss of generality only the first case:

|AFT
1 | − |A1| > |Br|

ch

16π
.

This implies a lower bound on the entropy dissipation ν(BR) thanks to Lemma 6.
Specifically, we apply Lemma 6 to t = t1 and φ ∈ C∞c (B2r(ẑ) × I2c(s0 + π/2)) such that

1x∈Br(ẑ)1s∈Ic(s0+π/2) ≤ φ(x, s) ≤ 1x∈B(1+ε)r(ẑ)1s∈I(1+ε)c(s0+π/2),

and |∂sφ| ≤ 2/(εc), |∇xφ| ≤ 2/(εr). We choose ε = h/192π to ensure∣∣(B(1+ε)r(ẑ)× I(1+ε)c

)
\ (Br(ẑ)× Ic)

∣∣ ≤ ch

32π
|Br|.

Since |t1| ≤ 8r/(δh2) and B2r+|t1|(ẑ) ⊂ BR, we deduce ν(BR) & δ3h11r & h11r.

Similarly, using (13) we have two cases: either∣∣∣∣BR/2 ∩
{
m ·m0 ≤ −

1

2

}∣∣∣∣ & hr2, (19)

or ν(BR) & h11r. So gathering all cases, we see that either both (18) and (19) are
satisfied, or ν(BR) & h11r, which is exactly the dichotomy of Proposition 4.
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3 Proof of Proposition 5

In order to prove Proposition 5, we briefly recall from [14] the notion of Lagrangian
representation of an entropy solution m of the eikonal equation. In [14, 15] the second
author shows the existence of a finite non-negative Radon measure ω on the set of
curves

Γ =
{

(γ, t−γ , t
+
γ ) : 0 ≤ t−γ ≤ t+γ ≤ 1,

γ = (γx, γs) ∈ BV((t−γ , t
+
γ ); Ω× R/2πZ),

γx is Lipschitz
}
,

with the following three properties:

• for every t ∈ (0, 1), the pushforward of ω, restricted to the section Γ(t) =
{(γ, t−γ , t+γ ) ∈ Γ: t−γ < t < t+γ }, by the evaluation map et : γ 7→ γ(t) (a right-
continuous representative of γs is always considered), is uniform on the ‘epigraph’
Em = {m(x) · eis > 0}, that is,

(et)] [ωbΓ(t)] = 1m(x)·eis>0 dx ds; (20)

• the measure ω is concentrated on curves (γ, t−γ , t
+
γ ) ∈ Γ solving the characteristic

equation,

γ̇x(t) = eiγs(t) for a.e. t ∈ (t−γ , t
+
γ ); (21)

• the entropy dissipation measure (4) disintegrates along the Lagrangian curves as

ν(A) =

ˆ
Γ

µγ(γ
−1
x (A)) dω(γ) for all measurable A ⊂ Ω, (22)

where µγ = |Dtγs|, with the convention that a jump of γs from s− to s+ at time
t0 ∈ (t−γ , t

+
γ ) contributes distR/2πZ(s−, s+)δt=t0 to the jump part of µγ (see [14,

Proposition 2.5]).

Moreover, the Lagrangian property (20) implies that ω is concentrated on curves γ such
that γx(t) is a Lebesgue point of m with m(γx(t)) · eiγs(t

+) > 0, for a.e. t ∈ (0, 1) [14,
Lemma 2.7]. We denote by Γg ⊂ Γ the full-measure subset of Lagrangian curves which
satisfy that property together with the characteristic equation (21).

The proof of Proposition 5 is based on two main tools. The first, Lemma 7, is a
dichotomy stating that either Lagrangian curves passing through a given set create a lot
of dissipation, or one can find an almost-straight Lagrangian curve passing through that
set. The second ([12, Lemma 5.2], a slightly more precise version of [14, Lemma 3.1],
itself adapted from [15, Lemma 22]) is another dichotomy: given an almost-straight
Lagrangian curve, either the density of points at which m lies in the semi-circle indicated
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by the s-component of that curve is high, or a lot of dissipation must be created. The
succession of these two dichotomies is reflected in the three alternatives in the conclusion
of Proposition 5. We first state and prove the first tool, and then proceed to the proof
of Proposition 5.

Lemma 7. For any R > 0 such that BR ⊂ Ω, any measurable set A ⊂ BR × R/2πZ,
and any η ∈ (0, 1), we have either

ν(BR) &
η

R

∣∣{(x, s) ∈ A : m(x) · eis > 0}
∣∣ , (23)

or there exists a curve γ ∈ Γg and a connected component J of γ−1
x (BR) such that

J ∩ γ−1(A) 6= ∅ and µγ(J) ≤ η.

Proof of Lemma 7. Assume that the second alternative of Lemma 7 is not verified: for
every curve γ ∈ Γg and every connected component J of γ−1

x (BR) intersecting γ−1(A),
we have µγ(J) > η. Then we claim that

µγ(γ
−1
x (BR)) &

η

R
T (γ), T (γ) =

∣∣{t ∈ (t−γ , t
+
γ ) : γ(t) ∈ A}

∣∣ , (24)

for all γ ∈ Γg. To prove (24), denote by Jk = (t−k , t
+
k ) the connected components of

γ−1
x (BR) which intersect γ−1(A). We show next that µγ(Jk) & η|Jk|/R for all k. On the

one hand, if |Jk| ≤ 4R then µγ(Jk) & η|Jk|/R because µγ(Jk) > η by assumption. On
the other hand, from the characteristic equation (21) and the definition of µγ = |Dtγs|,
we have the inequality

|γx(t2)− γx(t1)− eiγs(t1)(t2 − t1)| ≤ µγ([t1, t2])|t2 − t1|,

and we deduce that in any any interval J ⊂ (0, 1) such that γx(J) ⊂ BR and |J | ≥ 4R,
we must have µγ(J) ≥ 1/2. Therefore, if |Jk| ≥ 4R, cutting Jk in disjoint subintervals
of length between 4R and 8R, we obtain that µγ(Jk) & |Jk|/R ≥ η|Jk|/R. So we have

µγ(γ
−1
x (BR)) ≥

∑
k

µγ(Jk) &
η

R

∑
k

|Jk|,

which implies (24) since γ−1(A) ⊂
⋃
k Jk. From (24) and the fact that ω(Γ \ Γg) = 0

we infer

ν(BR) =

ˆ
Γ

µγ(γ
−1
x (BR)) dω(γ) &

η

R

ˆ
Γ

T (γ) dω(γ),

where the first equality comes from the disintegration (22). Making use of the La-
grangian property (20) to rewrite the last expression, we see that it is precisely equal
to the right-hand side of (23), which concludes the proof of Lemma 7.
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Proof of Proposition 5. We recall that m0 = eis0 and the sets X± are defined by

X± = BR/2 ∩ {±m · eis0 ≥ 1/2}.

For any ŝ ∈ [s0 − π/4, s0 + π/4], we apply Lemma 7 to A(ŝ) = BR/2 × Iη(ŝ), where
Iη(ŝ) = [ŝ−η, ŝ+η]. If η ∈ (0, π/12) then we havem(x)·eis > 0 for all (x, s) ∈ X+×Iη(ŝ),
and therefore∣∣{(x, s) ∈ A(ŝ) : m(x) · eis > 0}

∣∣ ≥ η|X+|.

So we have either ν(BR) & η2|X+|/R, or there exists a curve γ ∈ Γg and a connected
component J of γ−1

x (BR) intersecting A(ŝ) such that µγ(J) < η. In that second case,
applying [12, Lemma 5.2] we deduce that either ν(BR) & η3R or |BR ∩ {m · eiŝ ≥
−2η}| & ηR2. We fix η = 1/4 and summarize the preceding discussion: for all ŝ ∈
[s0 − π/4, s0 + π/4], we have

ν(BR) &
|X+|
R

, or ν(BR) & R, or
∣∣BR ∩ {m · eiŝ ≥ −1/2}

∣∣ & R2.

Similarly, for all ŝ ∈ [s0 + 3π/4, s0 + 5π/4], we have

ν(BR) &
|X−|
R

, or ν(BR) & R, or
∣∣BR ∩ {m · eiŝ ≥ −1/2}

∣∣ & R2.

We conclude that we have either (10), or ν(BR) & R, or∣∣BR ∩ {m · eis ≥ −1/2}
∣∣ & R2,

for all s ∈ [s0− π/4, s0 + π/4]∪ [s0 + 3π/4, s0 + 5π/4]. This corresponds exactly to the
three alternatives in the statement of Proposition 5.
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