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Abstract

A weak solution of the two-dimensional eikonal equation amounts to a vector
field m : Ω ⊂ R2 → R2 such that |m| = 1 a.e. and divm = 0 in D′(Ω). It
is known that, if m has some low regularity, e.g., continuous or W 1/3,3, then
m is automatically more regular: locally Lipschitz outside a locally finite set.
A long-standing conjecture by Aviles and Giga, if true, would imply the same

regularizing effect under the Besov regularity assumption m ∈ B
1/3
p,∞ for p > 3.

In this note we establish that regularizing effect in the borderline case p = 6,
above which the Besov regularity assumption implies continuity. If the domain
is a disk and m satisfies tangent boundary conditions, we also prove this for p
slightly below 6.

1 Introduction

Let Ω ⊂ R2 an open set and m : Ω → R2 a weak solution of the eikonal equation

|m| = 1 a.e. in Ω, divm = 0 in D′(Ω) . (1.1)

In a simply connected domain, this is equivalent to the usual eikonal equation |∇u| = 1
for u : Ω → R such that im = ∇u, where i denotes rotation by π/2.

We are interested in regularizing features of the eikonal equation (1.1), of the form:
if a weak solution m has a given low regularity, then m is locally Lipschitz outside a
locally finite set. The latter property corresponds to being a zero-energy state of the
Aviles-Giga energy, as defined and characterized in [12]. We are aware of two instances
of this regularizing effect:
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• If m is continuous, then m is locally Lipschitz. This follows e.g. from [4] or [2,
Lemma 2.2], see also [11].

• If m is W 1/3,3, then m is a zero-energy state [5]. See also [10, 9] for the W 1/2,2

case.

The results in [15] make it natural to conjecture another instance of this regularizing
effect:

m solves (1.1)

m ∈ B1/3
p,∞(Ω) for some p > 3

}
⇒ m is a zero-energy state , (1.2)

where the Besov regularity m ∈ B
1/3
p,∞ is defined by

m ∈ B1/3
p,∞(Ω) ⇔ sup

|h|>0

1

|h|1/3
∥m(·+ h)−m∥Lp(Ω∩(Ω−h)) < ∞ .

More precisely, the validity of the conjecture (1.2) is a necessary condition for the
validity of the Aviles-Giga conjecture [1, p.9], see the discussion in [15, § 1.2]. The
range p > 3 in (1.2) is sharp, since pure jump solutions m = m+1x1>0 +m−1x1<0 (with

m± ∈ S1 s.t. m+
1 = m−

1 ) belong to the space B
1/3
3,∞, which plays a critical role in the

Aviles-Giga conjecture [8].

For p > 6, B
1/3
p,∞ regularity implies continuity [16, § 2.7.1], so (1.2) is true. For

3 < p ≤ 6, this does not follow directly from the already known regularizing effects,
since B

1/3
p,∞ regularity does not imply continuity, nor W 1/3,3 regularity.1 In this note we

present a short argument solving the borderline case p = 6.

Theorem 1.1. Let Ω ⊂ R2 be an open set, and m : Ω → R2 a weak solution of the
eikonal equation (1.1). If m ∈ B

1/3
6,∞(Ω), then m is locally Lipschitz outside a locally

finite set.

We rely on the characterization of zero-energy solutions of (1.1) established in [12]:
a weak solution m is locally Lipschitz outside a locally finite set if

div Φ(m) = 0 in D′(Ω) , ∀Φ ∈ ENT , (1.3)

ENT =

{
Φ ∈ C2(S1;R2) :

d

dθ
Φ(eiθ) · eiθ = 0 ∀θ ∈ R

}
.

Maps in ENT are called entropies, and for a weak solution m the distributions div Φ(m)
are the corresponding entropy productions. Entropies are characterized by the fact that
all smooth solutions of the eikonal equation have zero entropy production (1.3). They
were introduced in [7] to study compactness properties of sequences with bounded
Aviles-Giga energy.

1An example showing that B
1/3
p,∞ ̸⊂ W 1/3,3 = B

1/3
3,3 in any bounded domain can be constructed

using a wavelet basis, as recalled e.g. in [3, Corollary 2.17(ii)].
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Remark 1.2. In [15, Theorem 1.4] it is shown that, for a unit divergence-free vector

field m as in (1.1) and 3 < p ≤ 4, local B
1/3
p,∞ regularity is equivalent to local L

p
3

integrability of all entropy productions div Φ(m). That equivalence could not be true

for p > 6, since in that case B
1/3
p,∞ maps are continuous, but the discontinuous map

m(x) = ix/|x| has zero entropy productions. There is however no direct obstruction
to it being true for p = 6. In that case, Theorem 1.1 would imply that any solution
of (1.1) with L2 entropy productions is a zero-energy state, thus partly answering [15,
Conjecture 1.5].

We let mε denote the convolution mε = m ∗ ρε where ρε(z) = ε−2ρ(z/ε) and ρ is
a fixed kernel supported in B1 with

´
B1

ρ = 1, 0 ≤ ρ ≤ 1 and |∇ρ| ≤ 1. The main
ingredient in our proof of Theorem 1.1 shows Lipschitz regularity under the assumptions
that mε stays away from zero and that entropy productions are in Lp for some p > 1.

Proposition 1.3. Let m ∈ B
1/3
3,∞(B2;S1) with divm = 0 and p > 1. Assume that

div Φ(m) ∈ Lp(B2) for all Φ ∈ ENT, and

lim sup
ε→0

(
inf
B1

|mε|
)

> 0.

Then m is Lipschitz in B1/2.

The proof of Theorem 1.1 follows from Proposition 1.3 combined with the following
property of B

1/3
6,∞.

Lemma 1.4. For any m ∈ B
1/3
6,∞(Ω;S1), the set of points x ∈ Ω such that

lim sup
ε→0

(
inf
Br(x)

|mε|
)

= 0 ∀ r ∈ (0, dist (x,Ωc)) ,

is Lebesgue-negligible.

Proof of Theorem 1.1 from Proposition 1.3 and Lemma 1.4. Denote byX ⊂ Ω the neg-
ligible set of points in Lemma 1.4. If x ∈ Ω\X, there exists r > 0 such that B2r(x) ⊂ Ω
and

lim sup
ε→0

(
inf
Br(x)

|mε|
)

> 0,

thus we can apply Proposition 1.3 to m appropriately rescaled in B2r(x), and we deduce
that m is Lipschitz in Br/2(x). This implies div Φ(m) = 0 in Br/2(x), for any entropy
Φ. Since this is valid for a.e. x ∈ Ω and div Φ(m) ∈ L2 thanks to [15, Proposition 4.1],
we infer that div Φ(m) = 0 in Ω, and may invoke [12, Theorem 1.3] to conclude.
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1.1 Improved estimate under tangent boundary conditions in
a disk

If Ω is simply connected and m solves (1.1), then there exists u : Ω → R such that
im = ∇u and |∇u| = 1 a.e. in Ω. Motivated by physical considerations, and assuming
Ω has Lipschitz boundary, natural boundary conditions for this function u are

u = 0 and
∂u

∂n
= −1 on ∂Ω,

where ∂u/∂n denotes the exterior normal derivative [14]. In terms ofm this corresponds
to the tangential boundary condition

m = τ∂Ω on ∂Ω , (1.4)

where τ∂Ω = in∂Ω is the counterclockwise unit tangent to Ω.
For a solution m ∈ B

1/3
3,∞(Ω), the kinetic formulation [13, 8] allows to define a one-

sided trace of m on ∂Ω by the arguments in [17] or [6], and therefore make sense of this

tangential boundary condition. If m ∈ B
1/3
p,∞(Ω) for some p > 3, then m automatically

has a trace on ∂Ω (see e.g. [16, § 3.3.3]). Here we will replace these trace considerations
by requiring that m is extended equal to i∇ dist(·, ∂Ω) outside Ω.

Specializing to the case of the disk Ω = B1, we therefore consider m : B4 → S1 such
that divm = 0 and

m(x) = i
x

|x|
∀x ∈ B4 \B1 . (1.5)

Under these boundary conditions, we have

Theorem 1.5. Let m ∈ B
1/3
q,∞(B4;S1) for some (47 +

√
553)/12 < q ≤ 6 such that

divm = 0 and (1.5) holds. Then

m(x) = i
x

|x|
∀x ∈ B1 \ {0} . (1.6)

The vortex configuration given in (1.6) is the only zero-energy state under the
boundary condition (1.5) over a disk, as characterized in [12, Theorem 1.2].

Remark 1.6. The ideas we use to prove Theorem 1.5 can be elaborated on to obtain
that, under general assumptions on a smooth domain Ω, if m solves (1.1) in Ω with

tangential boundary conditions (1.4) and has the regularity m ∈ B
1/3
q,∞ for some q >

(47 +
√
553)/12, then Ω must be a disk and m given by (1.6). This works for instance

if Ω is uniformly convex or analytic. We present only Theorem 1.5 in order to keep the
presentation short and not-too-technical.

Plan of the article. In § 2 we present the proof of Proposition 1.3, relying on a
lemma proved in § 3. In § 4 we give the proof of Lemma 1.4, and in § 5 we prove a
refined version of a regularity estimate from [8]. Finally, the proof of Theorem 1.5 is
given in § 6.
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Notation. The notation A ≲ B stands for the existence of an absolute constant
C > 0 such that A ≤ C B.

Acknowledgments. XL received support from ANR project ANR-22-CE40-0006.
AL was supported in part by NSF grant DMS-2406283. GP was supported in part by
NSF grant DMS-2206291.

2 Proof of Proposition 1.3

The proof of Proposition 1.3 uses the link between entropy productions and a kinetic
formulation discovered in [13], and further explored in [8, 15]. Relevant to us are the
following properties.

Proposition 2.1 ([8],[15, Proposition 4.2]). Let m ∈ B
1/3
3,∞(Ω;R2) a weak solution of

the eikonal equation (1.1). There exists σ ∈ M(Ω× S1) such that

eis · ∇x1m(x)·eis>0 = ∂sσ in D′(Ω× S1).

If div Φ(m) ∈ Lp(Ω) for all Φ ∈ ENT and some p > 1, then σ ∈ Lp(Ω;M(S1)), that is,
the measure

ν = (projΩ)♯|σ| =
ˆ
S1
|σ|(·, ds) ∈ M(Ω) , (2.1)

has an Lp density with respect to the Lebesgue measure.

With these notations, the main ingredient in the proof of Proposition 1.3 is the
following lemma, which shows that any integral curve of the curl-free vector field imε

must be almost straight, provided ν ∈ Lp and |mε| stays away from zero along the
curve.

Lemma 2.2. Let m ∈ B
1/3
3,∞(B2;S1) with divm = 0, hence im = ∇u for some

1-Lipschitz function u : B2 → R. Assume that ν ∈ Lp(B2) for some p > 1, where
ν is defined in (2.1). Let ε ∈ (0, 1). If, for some T > 0 and c0 ∈ (0, 1), there is an
integral curve γ : [0, T ] → B1 such that

γ̇ = ∇uε(γ) in [0, T ] ,

and |mε| ≥ c0 > 0 on γ([0, T ]) ,

then we have

uε(γ(T ))− uε(γ(0)) ≥ |γ(T )− γ(0)| − δ , (2.2)

and γ([0, T ]) ⊂ [γ(0), γ(T )] +Bδ+
√
δT , (2.3)

where δ = C(∥ν∥Lp/c20)
p

9p−6 ε
p−1
9p−6T

9p−7
9p−6 ,

for some absolute constant C > 0.
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Proof of Proposition 1.3 from Lemma 2.2. We let u : B2 → R be such that ∇u = im.
By assumption, there exist c0 > 0 and a sequence ε → 0 such that |mε| ≥ c0 in B1. For
any ε in that sequence, consider the maximal integral curve γε : (Sε, Tε) → B1 solving

γε(0) = 0, γ̇ε = ∇uε(γε).

Since uε is 1-Lipschitz and (d/dt)[uε(γε)] = |∇uε|2(γε) ≥ c20, we have Tε − Sε ≤ 2/c20.
We fix S∗

ε < 0 < T ∗
ε such that γε((S

∗
ε , T

∗
ε )) ⊂ B1/2 and Xε = γε(S

∗
ε ) ∈ ∂B1/2, Yε =

γε(T
∗
ε ) ∈ ∂B1/2. Thanks to Lemma 2.2 applied on the time intervals [S∗

ε , 0] and [0, T ∗
ε ],

these points Xε, Yε ∈ ∂B1/2 satisfy

uε(Yε)− uε(Xε) ≥ 1− cε
p−1
9p−6 ,

for some constant c depending on ∥ν∥Lp and c0. Extracting a subsequence ε → 0,
we deduce the existence of X, Y ∈ ∂B1/2 such that u(Y ) − u(X) ≥ 1. Since u is 1-
Lipschitz and |X − Y | ≤ 1, this implies that |X − Y | = 1 and u is affine with slope
1 along the segment [X, Y ]. Rescaling, we can apply this argument to deduce that,
for any x ∈ B1 such that B2r(x) ⊂ B1, there exists a direction wx ∈ S1 such that u
restricted to x + [−rwx, rwx] is affine with slope 1. This implies that ∇u is constant
(equal to wx) along that segment. Two such segments starting from points in B1/2

cannot cross inside B2/3, and this implies that m is locally Lipschitz, see e.g. the proof
of [12, Lemma 5.1].

Proof of Lemma 2.2. Since uε is 1-Lipschitz and (d/dt)[uε(γ)] = |∇uε|2(γ) ≥ c20, we
know that

|γ(t)− γ(s)| ≥ c20|t− s| for all s, t ∈ [0, T ] . (2.4)

For r ∈ [ε,min(1/4, T )], to be fixed later, we decompose the time interval [0, T ] into
N − 1 subintervals [tj, tj+1], with

0 = t1 < t2 < · · · < tN = T,
r

2
≤ tj+1 − tj ≤ r, N ≤ 2T

r
.

Setting Xj = γ(tj), we have γ([tj, tj+1]) ⊂ Br(Xj) since |γ̇| ≤ 1. Moreover, the inequal-
ity (2.4) implies |Xi−Xj| ≥ c20|i−j|r/2, and ensures therefore the bounded intersection
property

N∑
j=1

1B4r(Xj) ≲
1

c20
1⋃N

j=1 B4r(Xj)
≲

1

c20
1γ([0,T ])+B4r . (2.5)

Applying the estimate (3.1) in Lemma 3.1 in the next section, on each time interval
[tj, tj+1], we find, for any α > 0,

uε(Xj+1)− uε(Xj) ≥ (1−
√
α)|Xj+1 −Xj| −

C

α
(ν(B4r(Xj)) + ε1/2r1/2) ,
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where C > 0 is a generic absolute constant which may change from line to line in
what follows. Summing over j, using that N ≤ 2T/r, that |γ(T ) − γ(0)| ≤ T and the
property (2.5), we deduce

uε(γ(T ))− uε(γ(0))

≥ (1−
√
α)|γ(T )− γ(0)| − C

α

N∑
j=1

ν(B4r(Xj))− C
T

α

√
ε

r

≥ |γ(T )− γ(0)| −
√
αT − C

α

(
ν(γ([0, T ]) +B4r)

c20
+ T

√
ε

r

)
.

Choosing

α =

(
ν(γ([0, T ]) +B4r)

c20T
+

√
ε

r

) 2
3

,

we obtain

uε(γ(T ))− uε(γ(0)) ≥ |γ(T )− γ(0)| − CT

(
ν(γ([0, T ]) +B4r)

c20T
+

√
ε

r

) 1
3

.

Using that ν has an Lp density and the Lebesgue measure of γ([0, T ]) +B4r is at most
16rT , this implies

uε(γ(T ))− uε(γ(0)) ≥ |γ(T )− γ(0)| − CT

(
∥ν∥Lp(B2)

c20

(rT )1−
1
p

T
+

√
ε

r

) 1
3

.

Finally we choose

r =

(
c20

∥ν∥Lp(B2)

) 2p
3p−2

ε
p

3p−2T
2

3p−2 ,

which gives

uε(γ(T ))− uε(γ(0)) ≥ |γ(T )− γ(0)| − C

(
∥ν∥Lp(B2)

c20

) p
9p−6

ε
p−1
9p−6T

9p−7
9p−6 .

This proves (2.2). To show (2.3), for any t ∈ (0, T ) we apply (2.2) on the intervals [0, t]
and [t, T ] and, since uε is 1-Lipschitz, deduce the chain of inequalities

|γ(T )− γ(0)| ≤ |γ(T )− γ(t)|+ |γ(t)− γ(0)|
≤ uε(γ(T ))− uε(γ(t)) + uε(γ(t))− uε(γ(0)) + 2δ

= uε(γ(T ))− uε(γ(0)) + 2δ

≤ |γ(T )− γ(0)|+ 2δ .

7



So we have the approximate reverse triangle inequality

|γ(T )− γ(t)|+ |γ(t)− γ(0)| ≤ |γ(T )− γ(0)|+ 2δ ,

which implies that γ(t) must be close to the segment [γ(0), γ(T )]. More precisely, let
d = dist(γ(t), [γ(0), γ(T )]) = |γ(t) − X| for some X ∈ [γ(0), γ(T )]. Assume first that
X /∈ {γ(0), γ(T )}. Then ℓ1 = |γ(0)−X| and ℓ2 = |γ(T )−X| satisfy

|γ(t)− γ(0)| =
√
ℓ21 + d2 , |γ(T )− γ(t)| =

√
ℓ22 + d2 ,

and ℓ1 + ℓ2 = |γ(T )− γ(0)| .

If d ≤ |γ(T )− γ(0)|, then, using that
√
1 + x ≥ 1 + x/3 for all x ∈ [0, 1], we deduce

|γ(T )− γ(t)|+ |γ(t)− γ(0)| ≥ ℓ1

√
1 + d2/ℓ21 + ℓ2

√
1 + d2/ℓ22

≥ (ℓ1 + ℓ2)

√
1 +

d2

(ℓ1 + ℓ2)2

≥ |γ(T )− γ(0)|+ d2

3|γ(T )− γ(0)|
,

hence d ≤
√
6δT . If d ≥ |γ(T )− γ(0)|, then we have

|γ(T )− γ(t)|+ |γ(t)− γ(0)| ≥ 2d ≥ |γ(T )− γ(0)|+ d,

hence d ≤ 2δ. And if X ∈ {γ(0), γ(T )}, then we also have

|γ(T )− γ(t)|+ |γ(t)− γ(0)| ≥ |γ(T )− γ(0)|+ d ,

and d ≤ 2δ. In all cases we have d ≤ 2δ +
√
6δT , and, after adjusting the absolute

constant C, this gives (2.3).

3 Proof of Lemma 3.1

In this section we prove the following.

Lemma 3.1. Let r ∈ (0, 1) and m ∈ B
1/3
3,∞(B4r;S1) such that divm = 0, hence im = ∇u

for some 1-Lipschitz function u : B4r → R.
For 0 < ε ≤ r, let γ : [t1, t2] → Br solve γ̇ = ∇uε(γ), and denote Xj = γ(tj),

j = 1, 2. Then for all α > 0 we have

uε(X2)− uε(X1) ≥ (1−
√
α)|X2 −X1| −

C

α
(ν(B4r) + ε1/2r1/2)

+

ˆ
γ([t1,t2])∩{|mε|≤1−

√
α}

|mε| dH1 , (3.1)

where C > 0 is an absolute constant.
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The proof of Lemma 3.1 relies on the two next lemmas, where we denote by Dh the
finite difference operator

Dhf(x) = f(x+ h)− f(x) , (3.2)

for h ∈ R2.

Lemma 3.2. For any m : B4r → S1 and 0 < ε ≤ r we have

ˆ r

−r

(
sup

{x1}×(−r,r)

(1− |mε|)2
)

dx1 ≲ sup
|h|≤ε

1

|h|

ˆ
B2r

|Dhm|3 dx.

Lemma 3.3. For any r ∈ (0, 1) and m ∈ B
1/3
3,∞(B4r;S1) such that divm = 0, we have

1

|h|

ˆ
B2r

|Dhm|3 dx ≲ ν(B4r) + r1/2|h|1/2 ∀h ∈ Br,

where ν is defined in (2.1).

As a consequence of Lemmas 3.2 and 3.3, under the assumptions of Lemma 3.1 we
have ˆ r

−r

(
sup

{x1}×(−r,r)

(1− |mε|)2
)

dx1 ≲ ν(B4r) + ε1/2r1/2 , (3.3)

and we can proceed to prove Lemma 3.1.

Proof of Lemma 3.1. We write

uε(X2)− uε(X1) =

ˆ t2

t1

γ̇(t) · ∇uε(γ(t)) dt

=

ˆ
γ([t1,t2])

|mε| dH1

≥ (1−
√
α)H1

(
γ([t1, t2]) ∩ {(1− |mε|)2 ≤ α}

)
+

ˆ
γ([t1,t2])∩{|mε|≤1−

√
α}

|mε| dH1 .

Then we assume without loss of generality that X2 − X1 is along the x1-axis, denote
by π1 the projection onto it, and use (3.3) to estimate

H1
(
γ([t1, t2]) ∩ {(1− |mε|)2 ≤ α}

)
≥ H1

(
π1

[
γ([t1, t2]) ∩ {(1− |mε|)2 ≤ α}

])
≥ |X2 −X1| −

C

α

ˆ r

−r

(
sup

{x1}×(−r,r)

(1− |mε|)2
)

dx1

≥ |X2 −X1| −
C

α

(
ν(B4r) + ε1/2r1/2

)
.

Plugging this into the above estimate concludes the proof.
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Finally we give the proofs of Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. For any fixed x1 ∈ (−r, r) we have

sup
{x1}×(−r,r)

(1− |mε|)2 ≤
1

r

ˆ r

−r

(1− |mε|)2 dx2 +

ˆ r

−r

∣∣∣∣ d

dx2

[
(1− |mε|)2

]∣∣∣∣ dx2

≤ 1

r

ˆ r

−r

(1− |mε|)3/2 dx2 + 2

ˆ r

−r

(1− |mε|)|∇mε| dx2.

Integrating with respect to x1 we deduce

ˆ r

−r

(
sup

{x1}×(−r,r)

(1− |mε|)2
)

dx1

≤ 1

r

ˆ
B2r

(1− |mε|)3/2 dx+ 2

ˆ
B2r

(1− |mε|)|∇mε| dx

≤ 1

r

ˆ
B2r

(1− |mε|)3/2 dx+ 2

(ˆ
B2r

(1− |mε|)3/2 dx
) 2

3
(ˆ

B2r

|∇mε|3 dx
) 1

3

.

The conclusion follows from the estimatesˆ
B2r

(1− |mε|)3/2 dx ≲ ε sup
|h|≤ε

1

|h|

ˆ
B2r

|Dhm|3 dx ,
ˆ
B2r

|∇mε|3 dx ≲
1

ε2
sup
|h|≤ε

1

|h|

ˆ
B2r

|Dhm|3 dx ,

see e.g. [5, Step 6 in Proposition 3], and the fact that ε ≤ r.

Proof of Lemma 3.3. This follows from keeping track more precisely of each step in the
proof of [8, Proposition 3.7], see Lemma 5.1. Choosing a test function ϕ in Lemma 5.1
such that 1B2r ≤ ϕ ≤ 1B3r and |∇ϕ| ≲ 1/r gives Lemma 3.3.

4 Proof of Lemma 1.4

Lemma 1.4 follows from a classical covering argument which provides the following.

Lemma 4.1. Let m ∈ Bs
q,∞(Ω;S1) for some s ∈ (0, 1) and q ≥ 1 and U ⊂⊂ Ω. For

any 0 < ε < dist(U,Ωc)/3, there is a finite set XU
ε ⊂ U such that

|mε| ≥
1

2
in U \

⋃
x∈XU

ε

B5ε(x) , and card(XU
ε ) ≲ ∥m∥qBs

q,∞(Ω)ε
sq−2 .

Proof of Lemma 1.4 from Lemma 4.1. Thanks to Lemma 4.1 applied to m ∈ B
1
3
6,∞ we

can select a sequence εk → 0 and a finite set XU
∗ such that

dist(XU
εk
, XU

∗ ) → 0 as k → ∞.
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For x ∈ U \XU
∗ and r > 0 such that B2r(x) ⊂ U \XU

∗ , we have

Br(x) ⊂ U \
⋃

x∈XU
ε

B5εk(x) ,

for large enough k, and therefore

lim sup
ε→0

(
inf
Br(x)

|mε|
)

≥ 1

2
.

We conclude that the set of points considered in Lemma 1.4 is locally finite.

Proof of Lemma 4.1. Given α > 0, to be fixed later, define

BU
ε :=

{
x ∈ U : −

ˆ
Bε

−
ˆ
Bε

|m(x+ y)−m(x+ z)|q dydz > α

}
. (4.1)

Since |m| = 1 a.e. in Ω and |ρε| ≤ 1/ε2, for any x ∈ U \ BU
ε we have∣∣1− |mε(x)|

∣∣ = ∣∣∣ˆ
Bε

(
|m(x− z)| −

∣∣∣ˆ
Bε

m(x− y) ρε(y)dy
∣∣∣) ρε(z) dz

∣∣∣
≤
ˆ
Bε

ˆ
Bε

|m(x− z)−m(x− y)| ρε(y)ρε(z)dydz

≲

(
−
ˆ
Bε

−
ˆ
Bε

|m(x− z)−m(x− y)|q dydz
) 1

q

≲ α1/q .

The last inequality follows from the fact that x ∈ U \BU
ε and the definition (4.1) of BU

ε .
Hence, we may fix a small enough absolute constant α > 0 so that

|mε| ≥
1

2
in U \ BU

ε . (4.2)

For any x ∈ BU
ε and x̃ ∈ Bε(x) we have

−
ˆ
B2ε

−
ˆ
B2ε

|m (x̃+ y)−m (x̃+ z)|q dydz

≥ 1

16π2ε4

ˆ
Bε

ˆ
Bε

|m (x+ y)−m (x+ z)|q dydz ≥ α

16
,

so thatˆ
Bε(x)

−
ˆ
B2ε

−
ˆ
B2ε

|m (x̃+ y)−m (x̃+ z)|q dydz dx̃ ≥ πε2α

16
, ∀x ∈ BU

ε . (4.3)

By the Vitali covering lemma there exists a finite set XU
ε ⊂ BU

ε such that

BU
ε ⊂

⋃
x∈XU

ε

B5ε (x) (4.4)
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and the disks
{
Bε(x) : x ∈ XU

ε

}
are pairwise disjoint. Recalling (4.3) we infer

ε2 card(XU
ε ) ≲

ˆ
U+Bε

−
ˆ
B2ε

−
ˆ
B2ε

|m(x+ y)−m(x+ z)|q dydz dx ≲ ∥m∥qBs
q,∞

εsq.

The last inequality follows from the definition of Bs
q,∞ regularity. This implies the

bound card(XU
ε ) ≲ ∥m∥qBs

q,∞(Ω)ε
sq−2. Combining this with (4.2) and the inclusion (4.4)

concludes the proof.

5 Refined Besov estimate

The proof of B
1/3
3,∞ regularity in [8, Proposition 3.7] provides an estimate which can be

expressed more precisely than the one stated there.

Lemma 5.1. Let m ∈ B
1/3
3,∞(Ω;R2) a weak solution of the eikonal equation (1.1) and

ν ∈ M(Ω) as in (2.1). For any ϕ ∈ C1
c (Ω) and 0 < η < dist(supp(ϕ),Ωc), we have

sup
|h|≤η

ˆ
Ω

|m(x+ h)−m(x)|3ϕ2(x) dx ≲ η sup
|h|≤η

ˆ
Ω

ϕ2(x+ h) ν(dx)

+ η3/2
ˆ
Ω

|ϕ|1/2(x)|∇ϕ|3/2(x) dx . (5.1)

Proof of Lemma 5.1. Recall the finite difference operator Dh defined in (3.2). The
calculations in [8, Lemma 3.9] provide an identity for h-derivatives of the quantity

∆ε,δ(h, x) =

¨
S1×S1

φδ(s− t)Dhχε(x, t)D
hχε(x, s) e

it ∧ eis dt ds,

where

φδ = φ ∗ γδ, φ(t) = 1cos(t) sin(t)>0 − 1cos(t) sin(t)<0,

χε(x, t) =
(
1eit·m(x)>0

)
∗ ρε(x) .

Here γδ(t) = δ−1γδ(t/δ) for a fixed smooth even kernel γδ ∈ C1
c (−1, 1), and ρε is a

two-dimensional convolution kernel as above. Thanks to Proposition 2.1, the function
χε solves the kinetic equation

eit · ∇xχε = ∂sσε, σε = σ ∗x ρε .

The calculations in [8, Lemma 3.9] imply, for 0 < ε < dist(supp(ϕ),Ωc)− η, and scalar
h ∈ (−η, η),

d

dh

ˆ
Ω

∆ε,δ(he1, x)ϕ
2(x) dx

=

ˆ
Ω

Iε,δ(h, x)ϕ2(x) dx− 2

ˆ
Ω

ϕ(x)∇ϕ(x) · Aε,δ(h, x) dx , (5.2)
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where Iε,δ and Aε,δ are given by

Iε,δ = −2

ˆ
S1

(ˆ
S1
φ′
δ(s− t)χε(x, s) sin s ds

)
σε(x+ he1, dt)

+ 2

ˆ
S1

(ˆ
S1
φ′
δ(s− t)χε(x+ he1, s) sin s ds

)
σε(x, dt) ,

Aε,δ
1 = 2

¨
S1×S1

φδ(s− t) sin s cos t χε(x+ he1, s)D
he1χε(x, t) dsdt ,

Aε,δ
2 = 2

¨
S1×S1

φδ(s− t) sin s sin t χε(x, s)D
he1χε(x, t) dsdt .

In [8], the second component of the vector field Aε,δ has a slightly different expression
but can be put in this form using the fact that φδ is an odd function. Using that φ′

δ is
bounded in L1(S1), that |χε| ≤ 1, and the definition of ν =

´
S1 |σ|(·, ds), we see that

ˆ
Ω

Iε,δ(h, x)ϕ2(x) dx ≲ sup
|z|<η

ˆ
Ω

ϕ2(x+ z) ν(dx) . (5.3)

Further, the vector field Aε,δ can be rewritten as

Aε,δ(h, x) =

ˆ
Bε

(
F ε,δ,x,h(m(x+ z + he1))− F ε,δ,x,h(m(x+ z))

)
ρε(z) dz,

for a Lipschitz vector field F ε,δ,x,h (details can be found in [15, Lemma 4.10]), and this
implies

|Aε,δ(h, x)| ≲
ˆ
Bε

|Dhe1m(x+ z)| ρε(z) dz .

Using this and (5.3), integrating (5.2) with respect to h and passing to the limit as
ε → 0 and δ → 0, we infer

1

η

ˆ
Ω

∆(he1, x)ϕ
2(x) dx ≲ sup

|z|≤η

ˆ
Ω

ϕ2(x+ z) ν(dx)

+ sup
|z|≤η

ˆ
Ω

ϕ(x)|Dzm(x)| |∇ϕ|(x) dx,

for all h ∈ (−η, η), where ∆ ≳ |Dhe1m|3 thanks to [8, Lemma 3.8]. This estimate does
not depend on the specific choice of the direction e1, so we deduce

1

η
sup
|h|≤η

ˆ
Ω

|Dhm(x)|3ϕ2(x) dx ≲ sup
|h|≤η

ˆ
Ω

ϕ2(x+ h) ν(dx)

+ sup
|h|≤η

ˆ
Ω

ϕ(x)|Dhm(x)| |∇ϕ|(x) dx.
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Thanks to Young’s inequality 3ab ≤ a3 + 2b3/2, for any λ > 0 we have

ϕ|Dhm||∇ϕ| ≤ 1

3

λ

η
ϕ2|Dhm|3 + 2

3

η1/2

λ1/2
ϕ1/2|∇ϕ|3/2 .

Choosing λ small enough allows to absorb the term containing ϕ2|Dhm|3 into the left-
hand side, and infer (5.1).

6 Proof of Theorem 1.5

In this section, we give the proof of Theorem 1.5. Recall that m satisfies the boundary
condition (1.5), which we copy here:

m(x) = i
x

|x|
∀x ∈ B4 \B1 , (6.1)

Then there is a 1-Lipschitz function u : B4 → R which satisfies im = ∇u and

u(x) = 1− |x| ∀x ∈ B4 \B1 . (6.2)

In the following lemma, we combine Lemma 2.2 with the fact that, in B3 \ B1, the
vector field ∇u obtained from (6.2) points towards the origin, to show that, if ν ∈ Lp

for some p > 1, and |mε| ≥ 1/2 in a not-too-thin horizontal strip which lies above the
origin, then we can find many integral curves of imε = ∇uε crossing the strip from top
to bottom.

Lemma 6.1. Let m ∈ B
1/3
3,∞(B4;S1) such that divm = 0 and (6.1) holds, hence im =

∇u for some 1-Lipschitz function u : B4 → R satisfying (6.2). Assume that ν ∈ Lp(B2)
for some p > 1, where ν is defined in (2.1). Then there exists a constant K ≥ 1
depending on ∥ν∥Lp and p such that the following holds true. Let ε ∈ (0, 1) and assume
that

|mε| ≥
1

2
in the strip Sa,b = {a < x2 < b} ∩B3 ,

for some 0 < a < b ≤ 1 such that b− a ≥ 2Kεα ,

where α = αp =
p− 1

18p− 12
.

Then, for every ξ ∈ (−
√
1− b2,

√
1− b2), there exists

x ∈ BKεα((ξ, b)) ,

and an integral curve γ : [0, T ] → B1 such that

γ̇ = ∇uε(γ) , γ(0) = x , γ(T ) = (ξ′, a) ,

for some ξ′ ∈ (−
√
1− a2,

√
1− a2).
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Proof of Lemma 6.1. We assume

b− a ≥ 2Kεα ,

for some constant K ≥ 1 that will be adjusted during the proof. We let

y =
a+ b

2
,

and consider, for any ζ ∈ (−1, 1), the maximal integral curve γζ : (T
ζ
1 , T

ζ
2 ) → Sa,b

solving

γ̇ζ = ∇uε(γζ) in (T ζ
1 , T

ζ
2 ) , γζ(0) = (ζ, y) .

Since |mε| ≥ 1/2 in Sa,b, we have (d/dt)uε(γζ) ≥ 1/4 and therefore

T ζ
2 − T ζ

1 ≤ 4|γζ(T ζ
2 )− γζ(T

ζ
1 )| ≤ 16 ,

because uε is 1-Lipschitz. This implies in particular that γζ can be extended continu-

ously to [T ζ
1 , T

ζ
2 ] and γζ(T

ζ
i ) ∈ ∂Sa,b for i = 1, 2. Since (ζ, y) lies at distance at least

(b− a)/2 from ∂Sa,b and γζ is 1-Lipschitz, we deduce also

min(T ζ
2 ,−T ζ

1 ) ≥
b− a

2
≥ Kεα .

Thanks to Lemma 2.2, we know that uε increases with almost unit speed along the
curve γζ , which must therefore be almost straight:

uε(γζ(t))− uε(γζ(s)) ≥ |γζ(t)− γζ(s)| − κε2α , (6.3)

dist(γζ([s, t]), [γζ(s), γζ(t)]) ≤
κ

2
εα for all s < t ∈ [T ζ

1 , T
ζ
2 ] , (6.4)

for some constant κ > 0 depending on ∥ν∥Lp and p. This implies in particular that the
image of γζ is contained in a thin band around the line

Lζ = (ζ, y) + Rwζ , wζ =
γζ(T

ζ
2 )− γζ(T

ζ
1 )

|γζ(T ζ
2 )− γζ(T

ζ
1 )|

,

namely,

γζ([T
ζ
1 , T

ζ
2 ]) ⊂ Lζ +Bκεα . (6.5)

Next we gather some information about these integral curves. First, due to the explicit
expression (6.2) of u outside B1, there the vector field ∇uε always points towards the
inside of B1, and so any integral curve which intersects B1 must stay in B1 at later
times. This implies that

γζ(T
ζ
2 ) ∈ B1 ∩ ∂Sa,b = B1 ∩ {x2 = a or b} , for |ζ| ≤

√
1− y2 .
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Second, if K > 2κ, then for any ζ ∈ [−
√
1− y2,

√
1− y2], the entering point γζ(T

ζ
1 )

and the exit point γζ(T
ζ
2 ) cannot lie both on the top horizontal line R×{b} or both on

the bottom horizontal line R× {a}. Indeed, in that case we would have Lζ = R× {b}
or R × {a}, hence the thin band Lζ + Bκεα would not intersect the horizontal line
R×{y} which contains γζ(0), contradicting the fact that by (6.5) the image of γζ must
be contained in that thin band.

The explicit expression (6.2) of u in B3 \B1, also implies that for (ζ, y) outside B1,
the entering point γζ(T

ζ
1 ) of γζ lies on the top horizontal line R×{b}. By the previous

remark, for these curves the exit point γζ(T
ζ
2 ) must lie on the bottom horizontal line

R × {a}. Since integral curves cannot intersect, for each ζ ∈ (−1, 1) we deduce the
alternative

γζ(T
ζ
1 ) ∈ R× {b} and γζ(T

ζ
2 ) ∈ R× {a} ,

or γζ(T
ζ
2 ) ∈ R× {b} and γζ(T

ζ
1 ) ∈ R× {a} . (6.6)

R× {a}

R× {y}

T

B

O

A

P γζ(T
ζ
j )

L−
ζ

Figure 1: Estimating the horizontal width of the thin band Lζ +Bκεα .

Next we show that, in the alternative (6.6), the second case actually never happens.
To this end, given ζ ∈ (−1, 1), we first estimate the horizontal width hζ of the thin

band Lζ +Bκεα , in terms of the lengths of the segments [γζ(0), γζ(T
ζ
j )], for j = 1, 2.

Assume without loss of generality that the slope of Lζ is negative. Let A and B
denote the intersection points of the left-most line L−

ζ of the band Lζ + Bκεα with the
horizontal lines R×{y} and R×{a}, respectively (see Figure 1). Further, let O = γζ(0),
let T be the orthogonal projection of O onto the line L−

ζ , and let P be the orthogonal
projection of T onto the horizontal line R × {a}. Since the triangles OAT and TBP
are similar, we have

|O − A|
|O − T |

=
|T −B|
|T − P |

.
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Denoting by hζ = 2|O−A|, and using |O−T | = κεα and |T−P | ≥ b−a
2
−κεα ≥ (K−κ)εα,

we obtain

hζ ≤
κ

K − κ
2|T −B| ≤ |T −B|

2
,

provided K > 5κ. Now assuming γζ(T
ζ
j ) ∈ R×{a}, we have |γζ(0)− γζ(T

ζ
j )| ≥ |T −B|

and deduce from the above that

hζ ≤
|γζ(0)− γζ(T

ζ
j )|

2
. (6.7)

Repeating the above argument between the horizontal lines R × {b} and R × {y}, we
obtain the estimate (6.7) for j = 1, 2.

For |ζ| ≥
√

1− y2 we have seen already that we are in the first case in (6.6). Assume
by contradiction that the second case does happen. Then we can find ζ < ζ ′ ∈ (−1, 1)
such that |ζ ′ − ζ| ≤ κεα and

γζ(T
ζ
1 ), γζ′(T

ζ′

2 ) ∈ R× {b} and γζ(T
ζ
2 ), γζ′(T

ζ′

1 ) ∈ R× {a} .

According to (6.5) the thin bands

Lζ +Bκεα and Lζ′ +Bκεα ,

cannot fully cross inside the horizontal strip R×[a, b]. The size of the horizontal segment
formed by the two intersection points of the left-most line of the left thin band and
the right-most line of the right thin band with the horizontal line R× {z} is an affine
function h(z) of z. So its minimum on [a, b] is attained at a or b, and this implies

min
(
h(a), h(b)

)
≤ h(y) ≤ hζ + hζ′ ,

where the last inequality follows from the assumption |ζ ′ − ζ| ≤ κεα. Assume for
instance that the minimum in the above left-hand side is attained by h(a), then using
the property (6.7) we obtain

|γζ(T ζ
2 )− γζ′(T

ζ′

1 )| ≤ h(a) ≤ |γζ(0)− γζ(T
ζ
2 )|

2
+

|γζ′(0)− γζ′(T
ζ′

1 )|
2

.

Using the increasing property (6.3) of uε along these integral curves, we find

uε(γζ(T
ζ
2 ))− uε(γζ′(T

ζ′

1 ))

≥ uε(γζ(T
ζ
2 ))− uε(γζ(0)) + uε(γζ′(0))− uε(γζ′(T

ζ′

1 ))− |γζ(0)− γζ′(0)|
≥ |γζ(0)− γζ(T

ζ
2 )|+ |γζ′(0)− γζ′(T

ζ′

1 )| − 3κεα .

But since uε is 1-Lipschitz and |γζ(0) − γζ(T
ζ
2 )| ≥ Kεα, |γζ′(0) − γζ′(T

ζ′

1 )| ≥ Kεα, the
above two estimates lead to the contradiction

Kεα ≤ |γζ(0)− γζ(T
ζ
2 )|

2
+

|γζ′(0)− γζ′(T
ζ′

1 )|
2

≤ 3κεα .
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This demonstrates our claim that all curves γζ are in the first case of the above alter-
native (6.6), namely,

γζ(T
ζ
1 ) ∈ R× {b} and γζ(T

ζ
2 ) ∈ R× {a} , ∀ζ ∈ (−1, 1) .

We obtain therefore two functions ξ1, ξ2 : (−1, 1) → R, characterized by

γζ(T
ζ
1 ) = (ξ1(ζ), b), γζ(T

ζ
2 ) = (ξ2(ζ), a) .

As integral curves cannot cross, both functions ξ1, ξ2 are monotone increasing, and
thanks to the explicit expression (6.2) of u outside B1 we have

ξ1(−
√
1− y2) < −

√
1− b2, ξ1(

√
1− y2) >

√
1− b2 ,

ξ2(−
√

1− y2) > −
√
1− a2 , ξ2(

√
1− y2) <

√
1− a2 .

Since ξ2 is increasing, this implies |ξ2(ζ)| <
√
1− a2 if |ζ| <

√
1− y2. And since

ξ1 is increasing, this implies that for any ξ ∈ (−
√
1− b2,

√
1− b2), we can find ζ∗ ∈

(−
√

1− y2,
√

1 + y2) such that

lim
ζ→ζ∗
ζ<ζ∗

ξ1(ζ) = ξ1(ζ
−
∗ ) ≤ ξ ≤ ξ1(ζ

+
∗ ) = lim

ζ→ζ∗
ζ>ζ∗

ξ1(ζ) .

By continuity of the flow generated by ∇uε, we can fix δ > 0 and T ∗
1 ∈ (T ζ∗

1 , 0) such
that, for all ζ ∈ (ζ∗ − δ, ζ∗ + δ), we have

T ζ
1 < T ∗

1 and γζ(T
∗
1 ) ∈ Bκεα(ξ1(ζ∗)) .

We fix ζ ′ ∈ (ζ∗ − δ, ζ∗) and ζ ′′ ∈ (ζ∗, ζ∗ + δ), so that ξ1(ζ
′) < ξ < ξ1(ζ

′′), and γζ′(T
∗
1 )

and γζ′′(T
∗
1 ) belong to the thin horizontal band R× [b−κεα, b]. Thanks to the property

(6.4) we deduce that the set

Γ = γζ′([T
ζ′

1 , T ∗
1 ]) ∪ γζ′′([T

ζ′′

1 , T ∗
1 ]) ,

is contained in the thin horizontal band R × [b − 2κεα, b]. Moreover, the orthogonal
projection of Γ onto the line R × {b} contains [ξ1(ζ

′), ξ1(ζ
′′)] minus an interval of size

at most 2κεα, so that projection must intersect the interval [ξ − κεα, ξ + κεα] × {b}.
Thus we can find ζ̃ ∈ {ζ ′, ζ ′′} and T̃ ∈ [T ζ̃

1 , T
∗
1 ] such that

x = γζ̃(T̃ ) ∈ B3κεα((ξ, b)) ⊂ BKεα((ξ, b)) ,

provided K ≥ 3κ. The curve γ(t) = γζ̃(T̃ + t) satisfies the conclusion of Lemma 6.1,

with T = T ζ̃
2 − T̃ and ξ′ = ξ2(ζ̃).

18



Proof of Theorem 1.5. If m ∈ B
1/3
q,∞ for some q >

(47+
√
553)

12
, then, applying Lemma 4.1,

there exists a finite set Xε ⊂ B1 such that

|mε| ≥
1

2
in B2 \

⋃
x∈Xε

B5ε(x), card(Xε) ≲ ∥m∥q
B

1/3
q,∞(B2)

ε
q
3
−2 .

Further, we have ν ∈ Lp for p = q/3 by [15, Proposition 4.2]. One can check directly
that, for 5.876 ≈ (47 +

√
553)/12 < q ≤ 6, we have

2− q

3
< α = αp =

p− 1

18p− 12
.

Then, for small enough ε > 0, we can find

0 < ε < aN < bN < aN−1 < bN−1 < · · · < a1 < b1 ≤ 1,

such that

|mε| ≥
1

2
in

(
R×

N⋃
j=1

(aj, bj)

)
∩B2 ,

N ≤ card(Xε), bj − aj > 2Kεα , L1

(
[0, 1] \

N⋃
j=1

(aj, bj)

)
≤ εδ , (6.8)

where δ = (α− 2 + q/3)/2 > 0.
Then, inductively applying Lemma 6.1 on each strip {aj < x2 < bj} starting from

the point (ξ1, b1) with ξ1 = 0, we build integral curves γj : [0, Tj] → B1 such that

γ̇j = ∇uε(γj) , γj(0) = Xj , γj(Tj) = (ξ′j, aj) = Yj ,

Xj ∈ BKεα((ξj, bj)) , |ξ′j| <
√

1− a2j , ξj+1 = ξ′j ,

for j = 1, . . . , N . Finally, we set ζ = ξ′N and write

uε(ζ, 0)− uε(0, 1) = uε(ζ, 0)− uε(YN) +
N∑
j=1

(uε(Yj)− uε(Xj))

+
N∑
j=2

(uε(Xj)− uε(Yj−1)) + (uε(X1)− uε(0, 1)). (6.9)

Using the increasing property (6.3) of the integral curves γj and (6.8), we have

N∑
j=1

(uε(Yj)− uε(Xj)) ≥
N∑
j=1

(bj − aj)−N(K + κ)εα ≥
N∑
j=1

(bj − aj)− εδ ,
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for small enough ε > 0. Next, since uε is 1-Lipschitz and using the properties (6.8) and
Xj ∈ BKεα((ξj, bj)), we deduce that

|uε(ζ, 0)− uε(YN)|+
N∑
j=2

|uε(Xj)− uε(Yj−1)|+ |uε(X1)− uε(0, 1)|

≤ L1

(
[0, 1] \

N⋃
j=1

(aj, bj)

)
+N Kεα ≤ εδ .

Putting the above two estimates into (6.9) and using |uε(0, 1)| ≤ ε, we obtain

uε(ζ, 0) ≥ 1− cεδ.

Letting ε → 0 we deduce that the supremum of u on B1 is at least 1, which forces
u(x) = 1− |x| in B1. This translates to (1.6) through ∇u = im as desired.
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