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Abstract Using Landau-de Gennes theory to describe nematic order, we study a
frustrated cell consisting of nematic liquid crystal confined between two parallel plates.
We prove the uniqueness of equilibrium states for a small cell width. Letting the cell
width grow, we study the behavior of this unique solution. Restricting ourselves to
a certain interval of temperature, we prove that this solution becomes unstable at a
critical value of the cell width. Moreover, we show that this loss of stability comes with
the appearance of two new solutions: there is a symmetric pitchfork bifurcation. This
picture agrees with numerical simulations performed by Palffy-Muhoray, Gartland
and Kelly, and also by Bisi, Gartland, Rosso, and Virga. Some of the methods that we
use in the present paper apply to other situations, and we present the proofs in a general
setting. More precisely, the paper contains the proof of a general uniqueness result
for a class of perturbed quasilinear elliptic systems, and general considerations about
symmetric solutions and their stability, in the spirit of Palais’ Principle of Symmetric
Criticality.

Keywords Bifurcation · Liquid crystals · Hybrid cell

Mathematics Subject Classification 35J62 · 34C23

1 Introduction

In a nematic liquid crystal, rigid rod-like molecules tend to align in a common preferred
direction. To describe this orientational order, de Gennes (De Gennes and Prost 1993)
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Fig. 1 Schematic representation of EE and BD configurations: variations of the eigenframe of Q through
the cell. Eigenvectors corresponding to the largest eigenvalues are emphasized. In an EE configuration, as
we move through the cell from the left to the right, the eigenvalue associated to ez (the prescribed director
on the left plate) decreases until, in the middle of the cell, it becomes equal to the eigenvalue associated to
ey (the prescribed director on the right plate), which in turn increases to match the boundary condition. In a
BD configuration, as we move through the cell from the left to the right, the eigenframe rotates, so that the
eigenvector corresponding to the largest eigenvalue rotates from ez to ey. Note that a similar eigenframe
rotation could occur in the opposite way as the one pictured here: there are two possible types of BD
configurations

introduced the so-called Q-tensor: a 3 × 3 traceless symmetric matrix. The eigen-
frame of the Q-tensor describes the principal mean directions of alignment, while the
corresponding eigenvalues describe the degrees of alignment along those directions.
A null Q-tensor corresponds to the isotropic liquid state. A Q-tensor with two equal
eigenvalues corresponds to the uniaxial state, which is axially symmetric around one
eigenvector, called the director. The generic case of a Q-tensor with three distinct
eigenvalues corresponds to the biaxial state. There exist other continuum theories for
the description of nematic order. The Oseen–Frank theory and the Ericksen theory
make use of simpler order parameters but do not account for biaxiality. The Q-tensor
description allows for a much finer understanding of some phenomena, as defects (see
e.g., Sonnet et al. 1995) and material frustration (Palffy-Muhoray 1994).

In the present paper we focus on a hybrid cell consisting of nematic material con-
fined between two parallel bounding plates, and subject to competing strong anchoring
conditions on each plate. Hybrid-aligned nematic cells are interesting for technologi-
cal applications (Huang et al. 2011; Matsumoto et al. 1976), as is, in general, the effect
of confining geometries on liquid crystals (Chiccoli et al. 2003). Nematic systems sim-
ilar to the one considered here have been studied numerically in Bisi et al. (2003) and
Palffy-Muhoray (1994) as a model for material frustration. On each bounding plate,
the prescribed boundary condition is uniaxial and parallel to the plate, with direc-
tor orthogonal to the one prescribed on the opposite plate. The numerics presented
in Bisi et al. (2003) and Palffy-Muhoray (1994) bring to light two different families
of solutions: eigenvalue exchange (EE) and bent director (BD) configurations. In an
eigenvalue exchange solution, the Q-tensor eigenframe remains constant through the
whole cell, and only the eigenvalues vary to match the boundary conditions. Therefore,
inside the cell the material is strongly biaxial. In the BD configuration, however, the
eigenframe rotates to connect the two orthogonal uniaxial states on the plates. Hence
the tensor remains approximately uniaxial, with director bending from one plate to
the other. Those two kinds of configurations are depicted in Fig. 1.
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Fig. 2 Shape of the pitchfork
bifurcation described in Bisi et
al. (2003) and Palffy-Muhoray
(1994)

When working with dimensionless variables, two parameters influence the behav-
ior of the system: a reduced temperature θ , and a typical length λ proportional to the
thickness of the cell. In Bisi et al. (2003) and Palffy-Muhoray (1994), a bifurcation
analysis is performed numerically as the cell thickness varies, at fixed temperatures. In
both studies, a symmetric pitchfork bifurcation diagram is obtained (Bisi et al. 2003,
Fig. 8), which can be described as follows (see Fig. 2). When the parameter λ (and
thus the cell thickness) is small, the only equilibrium is an eigenvalue exchange con-
figuration, which is stable. Letting the cell thickness grow, a critical value is attained,
at which this eigenvalue exchange solution loses stability. At this point, bifurcation
occurs and two new stable branches of solutions appear, corresponding to BD config-
urations, with their eigenframe rotating in one way or the other. The results pictured in
Bisi et al. (2003, Fig. 8) were obtained for a special value of the reduced temperature,
θ = −8, at which computations are simplified.

In the present paper, we aim at providing rigorous mathematical arguments justify-
ing the shape of the bifurcation diagram pictured in Fig. 2. Thus, we fix the temperature
and let the cell thickness vary.

In a first step, we study the limits of small and large cell thickness. For a very large
cell thickness, we check that energy minimizers converge toward two possible limiting
uniaxial configurations, corresponding to a rotation of the director in one way or the
other. On the other hand, when the cell is sufficiently narrow, we prove indeed that
the energy admits a unique critical point. Symmetry considerations imply that this
unique solution is an eigenvalue exchange configuration—thus showing that Fig. 2 is
valid for small λ. The method used to prove uniqueness applies to a quite wide class of
problems, and we prove a general uniqueness result for a class of perturbed quasilinear
elliptic systems in Appendix 2.

In a second step, we perform a bifurcation analysis and show that there is indeed
a symmetric pitchfork bifurcation, at least when the reduced temperature θ is close
to θ = −8 (the special value at which Bisi et al. (2003, Fig. 8) was obtained). More
specifically, we prove the following result.

Theorem Let θ ≈ −8. Consider, for small λ, the unique solution χλ. The branch of
eigenvalue exchange solutions λ �→ χλ may be extended smoothly to larger λ, and
loses stability at a critical value λc. At this point, a symmetric pitchfork bifurcation
occurs.

More precisely, we prove first the above Theorem in the case θ = −8. Then, we
identify the properties that make this special case work, which leads to an abstract result
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of the form: if θ satisfies some properties, then bifurcation occurs. And eventually we
check that those properties are stable: if a θ0 satisfies them, they extend to nearby
θ ≈ θ0. In particular we obtain the above Theorem.

Similar nematic systems have also been studied using Oseen–Frank theory (Bar-
bero and Barberi 1983) and Ericksen theory (Ambrosio and Virga 1991). Oseen–Frank
theory describes nematic order with help of a sole director field, while in Ericksen
theory the degree of alignment along the director is also accounted for. In both cases,
only uniaxial states can be described, so that there is no equivalent to the eigenvalue
exchange solution considered in the present paper. However, the aforementioned works
(Ambrosio and Virga 1991; Barbero and Barberi 1983) do bring into light the exis-
tence of a critical cell width—as in our case—below which the BD solution is no
longer valid. Within Oseen–Frank theory (Barbero and Barberi 1983), the boundary
anchoring is relaxed and a uniform configuration is preferred below the critical width.
Within Ericksen theory (Ambrosio and Virga 1991), the strong boundary anchoring
is preserved, forcing the director field to have a discontinuity in the cell center. In our
case such a discontinuity is avoided by the eigenvalue exchange mechanism.

The plan of the paper is the following. In Sect. 2, we present the precise model
used to describe the cell. In Sect. 3, we discuss the existence and some properties of
eigenvalue exchange configurations. In Sect. 4, we study the limits of large and small
cell thickness. Then, we concentrate on the unique branch of eigenvalue exchange
solutions starting from smallλ, and show that a symmetric pitchfork bifurcation occurs.
We treat the case θ = −8 in Sect. 5, and the perturbed case θ ≈ −8 in Sect. 6.

The author thanks P. Mironescu for his support and advice, P. Bousquet for showing
him the proof of Lemma 8.4, and A. Zarnescu for bringing this problem and the article
(Bisi et al. 2003) to his attention. He also wishes to thank the anonymous referees for
their careful reviewing and many suggested improvements.

2 Model

The cell consists of nematic material confined between two parallel bounding plates
(of infinite size), with competing strong anchoring conditions on each plate. In an
orthonormal basis (

−→ex ,
−→ey ,

−→ez ), the bounding plates are perpendicular to −→ex and par-
allel to the (y, z) plane. The width of the cell is 2d: one plate at x = −d, the other at
x = d. On the left plate (x = −d), the boundary condition is uniaxial with director−→ez , and on the right plate (x = d) the boundary condition is uniaxial with director−→ey

(see Fig. 1).
Nematic order is described by means of de Gennes’ Q-tensor—a traceless sym-

metric 3× 3 matrix—, and Landau-de Gennes free energy density

e(Q) = L

2
|∇Q|2 + fb(Q),

where the bulk energy density fb is given by

fb(Q) = a(T )

2
|Q|2 − b

3
tr(Q3)+ c

4
|Q|4.
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Here and in the sequel, the notation | · | refers to the usual euclidean norm |Q|2 =
tr(Qt Q) = ∑

Qi j Qi j .
In Bisi et al. (2003) and Palffy-Muhoray (1994), the numerical simulations are

performed under two symmetry restrictions : the Q-tensor depends only on x , and−→ex

is always an eigenvector. These restrictions are natural, since the system is invariant
in the x and y directions, and since−→ex is an eigenvector of the boundary conditions. It
is not our goal here to justify rigorously the validity of these symmetry assumptions :
we will, from the beginning, consider Q-tensors depending only on x , with −→ex as an
eigenvector. The assumption on the eigenvector implies that the Q-tensors considered
here will always have four zero entries, as in (1) below.

More precisely, we will study maps

Q(x) =
⎛

⎝
−2q1(x) 0 0

0 q1(x)− q2(x) q3(x)

0 q3(x) q1(x)+ q2(x)

⎞

⎠, x ∈ [−d, d] (1)

minimizing the energy functional

E(Q) =
∫ d

−d

(
L

2
|Q′|2 + fb(Q)

)

dx,

when subject to boundary conditions

Q(−d) =
⎛

⎝
−2q+ 0 0

0 −2q+ 0
0 0 4q+

⎞

⎠, Q(−d) =
⎛

⎝
−2q+ 0 0

0 4q+ 0
0 0 −2q+

⎞

⎠.

Here, q+ is such that the boundary conditions minimize fb.
After an appropriate rescaling (Bisi et al. 2003), we may actually consider a dimen-

sionless version of the problem, where we are left with only two parameters: a reduced
temperature θ ∈ (−∞, 1), and a reduced elastic constant 1/λ2. The parameter λ > 0
is proportional to d/

√
L : it accounts for the effects of the elastic constant L , and of

the distance between the plates d. From now on we will work with the reduced free
energy

Eλ(Q) =
∫ 1

−1

(
1

2λ2 |Q′|2 + f (Q)

)

dx, (2)

where

f (Q) = θ

6
|Q|2 − 2

3
tr(Q3)+ 1

8
|Q|4 + c(θ)

= θ

3
(3q2

1 + q2
2 + q2

3 )+ 4q1(q
2
1 − q2

2 − q2
3 )+ 1

2
(3q2

1 + q2
2 + q2

3 )2 + c(θ).

(3)
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Here, the constant c(θ) is chosen in such a way that min f = 0. Note that this minimum
is attained exactly (Majumdar and Zarnescu 2010) at uniaxial Q-tensors of the form

Q = 6q+
(

n ⊗ n − 1

3
I

)

, n ∈ S
2, 6q+ = 1+√1− θ.

Although we do not emphasize it in the notation, the free energy obviously depends
on θ .

The direct method of the calculus of variations applies to the energy functional (2)
in the natural space H1(−1, 1)3. Hence minimizers always exist. They are critical
points of the energy, and as such they satisfy the Euler–Lagrange equation

1

λ2 Q′′ = θ

3
Q − 2

(

Q2 − |Q|
2

3
I

)

+ 1

2
|Q|2 Q. (4)

Solutions of (4) are analytic, and they satisfy the maximum principle (Majumdar and
Zarnescu 2010)

|Q| ≤ 2
√

6q+. (5)

In terms of q1, q2, and q3 defined by (1), the Euler–Lagrange equation (4) becomes
the system

⎧
⎪⎨

⎪⎩

1
λ2 q ′′1 = θ

3 q1 − 2
3

(
q2

2 + q2
3 − 3q2

1

)+ (
3q2

1 + q2
2 + q2

3

)
q1

1
λ2 q ′′2 = θ

3 q2 − 4q1q2 +
(
3q2

1 + q2
2 + q2

3

)
q2

1
λ2 q ′′3 = θ

3 q3 − 4q1q3 +
(
3q2

1 + q2
2 + q2

3

)
q3

(6)

and the boundary conditions read

q1(−1) = q+, q1(1) = q+,

q2(−1) = 3q+, q2(1) = −3q+, (7)

q3(−1) = 0, q3(1) = 0.

In the sequel we will denote by H the space of all admissible configurations, i.e.,
the space of H1 configurations satisfying the boundary conditions. Thus, H is an
affine subspace of H1(−1, 1)3, consisting of all Q-tensors of the form (1), which
satisfy the boundary conditions (7).

3 Eigenvalue Exchange Configurations

Consider the group G defined as the subgroup of O(3) generated by the matrices Sy

and Sz of the orthogonal reflections with respect to the axes R
−→ey and R

−→ez . Explicitly,

Sy =
⎛

⎝
−1 0 0
0 1 0
0 0 −1

⎞

⎠ and Sz =
⎛

⎝
−1 0 0
0 −1 0
0 0 1

⎞

⎠.
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As a subgroup of O(3), G acts naturally on symmetric traceless matrices, and thus on
H1(−1, 1)3, via the following formula:

(R · Q)(x) = RQ(x)t R, R ∈ G.

One easily sees that the affine subspace H ⊂ H1(−1, 1)3 of admissible configu-
rations is stable under this action: if Q satisfies the boundary conditions (7) then R ·Q
satisfies them also, for R ∈ G. Thus, G acts on H .

Moreover, the free energy functional Eλ is invariant under this action:

Eλ(R · Q) = Eλ(Q) ∀R ∈ G, Q ∈H .

Therefore the principle of symmetric criticality (Palais 1979) ensures that critical
points among G-invariant configurations are critical points of Eλ, that is solutions of
the Euler–Lagrange system (6).

More precisely, we denote by H ee the affine subspace of H consisting of all
invariant configurations, and by Eee

λ = Eλ|H ee the free energy functional restricted
to invariant configurations. It is straightforward to check that

H ee = {Q ∈H ; q3 ≡ 0} ,

and the principle of symmetric criticality simply asserts that critical points of Eee
λ

correspond to solutions of (6) with q3 ≡ 0. Of course this fact could also be checked
by a direct computation.

The elements of H ee are the eigenvalue exchange configurations, since χ ∈H ee

corresponds to (q1, q2) via

χ(x) =
⎛

⎝
−2q1(x) 0 0

0 q1(x)− q2(x) 0
0 0 q1(x)+ q2(x)

⎞

⎠, x ∈ [−1, 1].

The free energy of such a χ ∈H ee is given by

Eee
λ (χ) =

∫ 1

−1

(
1

2λ2 |χ ′|2 + f (χ)

)

dx

=
∫ 1

−1

(
3(q ′1)2 + (q2

′)2

λ2 + θ

3

(
3q2

1 + q2
2

)
(8)

+ 4q1

(
q2

1 − q2
2

)
+ 1

2

(
3q2

1 + q2
2

)2 + c(θ)

)

dx,
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and critical points of Eee
λ solve the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

1
λ2 q ′′1 = θ

3 q1 − 2
3

(
q2

2 − 3q2
1

)+ (
3q2

1 + q2
2

)
q1,

1
λ2 q ′′2 = θ

3 q2 − 4q1q2 +
(
3q2

1 + q2
2

)
q2,

q1(±1) = q+,

q2(±1) = ∓3q+.

(9)

Since the direct method of the calculus of variations applies to Eee
λ , there always

exists an eigenvalue exchange minimizer, which is an equilibrium configuration in
H . This eigenvalue exchange equilibrium is stable in H ee, but need not be stable as
an equilibrium among all admissible configurations: in principle, symmetry-breaking
perturbations may induce a negative second variation of the total free energy Eλ. To
study this phenomenon we need to understand the structure of that second variation.

Consider a family χλ = (q1,λ, q2,λ) of eigenvalue exchange configurations. That
is, χλ is a critical point of Eee

λ , and hence also of Eλ. The principle of symmetric
criticality (see Appendix 1) ensures that the orthogonal decomposition

H1
0 (−1, 1)3 = Hsp ⊕ Hsb = {(h1, h2, 0)} ⊕ {(0, 0, h3)},

corresponding to the decomposition into “symmetry-preserving” perturbations and
“symmetry-breaking” perturbations is also orthogonal for the bilinear form D2 Eλ(χλ).
Namely, for H ∈ H1

0 (−1, 1)3,

D2 Eλ(χλ)[H ] = D2 Eλ(χλ) [(h1, h2, 0)]+ D2 Eλ(χλ) [(0, 0, h3)]

= �λ[h1, h2] +�λ[h3].

Here � = �λ and � = �λ are quadratic forms defined on H1
0 (−1, 1)2, respectively,

H1
0 (−1, 1), by the above equality. Note that �λ is nothing else than D2 Eee

λ (χλ), the
second variation of restricted free energy. From the computations in Appendix 3, we
obtain

�[h1, h2] =
∫ 1

−1

{
6(h1

′)2 + 2(h2
′)2

λ2 + 6

(
θ

3
+ 2q1 + 9q2

1 + q2
2

)

h2
1

+ 2

(
θ

3
− 4q1 + 3q2

1 + 3q2
2

)

h2
2 + 8q2(3q1 − 2)h1h2

}

dx (10)

and

�[h3] =
∫ 1

−1

{
2(h3

′)2

λ2 + 2

(
θ

3
− 4q1 + 3q2

1 + q2
2

)

h2
3

}

dx . (11)

To the quadratic forms �λ and �λ, we may associate bounded linear operators Mλ :
H1

0 (−1, 1)2 → H−1(−1, 1)2 and Lλ : H1
0 (−1, 1) → H−1(−1, 1) such that

〈Mλ(h1, h2), (h1, h2)〉 = �λ[h1, h2] and 〈Lλh3, h3〉 = �λ[h3]. (12)
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Of particular interest to us will be the first eigenvalues of these operators, since they
measure the local stability of the eigenvalue exchange equilibrium. We will denote the
first eigenvalue of Mλ (respectively Lλ) by ν(λ) (respectively μ(λ)). They are given
by the following formulas:

ν(λ) = inf
�λ[h1, h2]
∫
(h2

1 + h2
2)

, μ(λ) = inf
�λ[h]∫

h2
. (13)

4 The Limits of Very Large and Very Small Cell Thickness

So far, we know that there always exists an eigenvalue exchange solution. However,
as the cell thickness grows larger, the numerics in Palffy-Muhoray (1994) and Bisi et
al. (2003) predict the existence of a BD solution, that is, a solution of (6) with q3 �= 0.
In addition, this solution should be approximately uniaxial. In Proposition 4.1, we
study the limiting behavior of minimizers as λ grows to infinity, and obtain in fact a
convergence toward a uniaxial tensor. In particular, the minimizer cannot stay in H ee,
thus for large λ there do exist solutions other than the EE minimizer.

Before stating the result, we should remark that, due to the symmetry of the energy
functional, any solution with q3 �= 0 automatically gives rise to another, distinct
solution. Recall indeed from Sect. 3 that Eλ is G-invariant, where G is the subgroup
of O(3) generated by the orthogonal reflections Sy and Sz (with respect to the y-axis
and to the z-axis). For a Q-tensor associated to (q1, q2, q3) via (1), it holds

Sy · Q =
⎛

⎝
−2q1 0 0

0 q1 − q2 −q3
0 −q3 q1 + q2

⎞

⎠.

Therefore, if Q is a solution of (6), then the Q-tensor with opposite q3 is also solution
of (6). Moreover, those two solutions Q and Sy ·Q have same energy. That is why, when
studying the limit of minimizers of Eλ in Proposition 4.1, we will restrict ourselves
to Q-tensors satisfying, say, q3(0) ≥ 0, to ensure the uniqueness of the limit.

The limit of a small elastic constant—which corresponds to a large λ—has already
been studied in Majumdar and Zarnescu (2010) in the three-dimensional case, and
in Bauman et al. (2012), Canevari (2014), and Golovaty and Montero (2013) in the
two-dimensional case. The one-dimensional case considered in the present article is
particularly simple and we obtain the following result.

Proposition 4.1 Let Qλ be a minimizer of Eλ, with q3(0) ≥ 0. It holds

Qλ → Q∗ in H1(−1, 1)3

as λ tends to +∞, where

Q∗(x) = 6q+
(

n∗(x)⊗ n∗(x)− 1

3
I

)

, n∗(x) =
⎛

⎝
0

cos
(

π
4 − π

4 x
)

sin
(

π
4 − π

4 x
)

⎞

⎠
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Proof One proves, exactly as in Majumdar and Zarnescu (2010, Lemma 3), that there
exists a subsequence

Qλk −→ Q∗ = 6q+
(

n ⊗ n − 1

3
I

)

in H1,

where Q∗ minimizes
∫ |Q′|2 among maps in H which are everywhere of the form

Q = 6q+(n⊗ n− I/3)—that is, maps Q in H which satisfy f (Q) = 0 everywhere.
Since Q∗ is continuous on (−1, 1) it follows from Ball and Zarnescu (2011,

Lemma 3) that there exists a unique continuous map n∗ : (−1, 1) → S
2 such that

Q∗(x) = 6q+
(

n∗(x)⊗ n∗(x)− 1

3
I

)

, n∗(−1) = −→ez .

Moreover, by Ball and Zarnescu (2011, Lemma 1), the map n∗ lies in H1(−1, 1;S2).
Since Q∗ minimizes

∫ |Q′|2, we deduce that n∗ minimizes
∫ |n′|2 among maps n ∈

H1(−1, 1;S2) satisfying the same boundary conditions as n∗. It holds n∗(−1) = −→ez ,
and the boundary conditions on Q∗ imply that n∗(1) = α

−→ey for some α = ±1. Using
the fact that the geodesics on the sphere S

2 are arcs of large circles, we obtain

n∗(x) =
(

0, α cos
(π

4
− π

4
x
)
, sin

(π

4
− π

4
x
))

.

On the other hand, since the maps Qλ satisfy q3,λ(0) ≥ 0, the limiting map Q∗ must
satisfy also q3,∗(0) ≥ 0. Since the above formula for n∗ implies that

q3,∗(0) = 6αq+ cos(π/4) sin(π/4) = 3αq+,

we conclude that α ≥ 0, and thus α = 1. In particular, we obtain the formula for n∗
in the statement of the theorem. Moreover, we have shown that the limit

Q∗ = lim Qλk

is uniquely determined, independently of the converging subsequence. Therefore, we
do actually have

Qλ −→ Q∗ in H1,

as λ tends to +∞. ��
Now we turn to studying the case of a very narrow cell. That is, we investigate the

limit λ→ 0. The numerics in Palffy-Muhoray (1994) and Bisi et al. (2003) predict that
for small λ, there is only one solution, which is an EE configuration. This is indeed the
content of the next result, which is in the same spirit as the similar uniqueness result
(Bethuel et al. 1994, Theorem VIII.7) in a Ginzburg–Landau setting.

Proposition 4.2 There exists λ0 > 0, such that for any λ ∈ (0, λ0), Eλ admits a
unique critical point χλ ∈H ee.
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Proof The uniqueness is a consequence of a more general result, stated as Theorem 8.1
in Appendix 2. The fact that the unique solution belongs to H ee is immediate from
the considerations in Sect. 3, since there always exists a solution χ ∈H ee. ��

Proposition 4.2 provides us with a family of solutions

(0, λ0) � λ �→ χλ ∈H ee.

The next result gives further properties of this branch of solutions. Recall from (13)
the definitions of ν(λ) and μ(λ): ν is the first eigenvalue of D2 Eee

λ (χλ), and μ is the
first eigenvalue of D2 Eλ(χλ) restricted to symmetry-breaking perturbations.

Proposition 4.3 The map λ �→ χλ is smooth on (0, λ0) and can be extended uniquely
to a smooth map of eigenvalue exchange solutions

(0, λ∗) →H ee, λ �→ χλ,

where λ∗ ∈ [λ0,+∞] is determined by the following property:

(
ν(λ) > 0 ∀λ ∈ (0, λ∗)

)
and

(
λ∗ = +∞ or ν(λ∗) = 0

)
(14)

Moreover, the map λ �→ μ(λ) is smooth on (0, λ∗).

Remark 4.4 It is not clear wether both alternatives in (14) can actually occur. In
Theorem 5.1, we show that λ∗ = +∞ provided θ = −8. In general we do not know
if λ∗ could be finite.

Proof of Proposition 4.3 In the proof of Theorem 8.1, λ0 is chosen in such a way that
Eλ is strictly convex around χλ, and in particular D2 Eλ(χλ) is positive for λ ∈ (0, λ0).
In fact it is straightforward to check (using Poincaré’s inequality) that the choice of λ0
in the proof of Theorem 8.1 ensures that D2 Eλ(χλ) is positive definite for λ ∈ (0, λ0).
In particular, D2 Eee

λ (χλ) is positive definite, or equivalently, ν(λ) > 0 for λ ∈ (0, λ0).
Therefore χλ is a non-degenerate critical point, and we may apply the implicit

function theorem to the smooth map

F : (0,+∞)×H ee → H−1(−1, 1)2, (λ, χ) �→ D2 Eee
λ (χ),

around a solution (λ, χλ) of F = 0, for λ ∈ (0, λ0). Since this solution is unique, we
deduce that λ �→ χλ is given by the implicit function theorem and as such, is smooth.

As long as D2 Eλ(χλ) stays positive definite, i.e., ν(λ) > 0, we may apply the
implicit function theorem to smoothly extend the map λ �→ χλ, until we reach a
λ∗ satisfying (14). Note that the extension is unique since for each λ, χλ is a non-
degenerate—an thus isolated—critical point of Eee

λ .
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It remains to prove that λ �→ μ(λ) is a smooth map. Recall that μ(λ) is the first
eigenvalue of the bounded linear operator

Lλ : H1
0 (−1, 1) → H−1(−1, 1)

h �→ − 2

λ2 h′′ + 2

(
θ

3
− 4q1,λ + 3q2

1,λ + q2
2,λ

)

h, (15)

where (q1,λ, q2,λ) = χλ. From the smoothness of λ �→ χλ we deduce easily that Lλ

depends smoothly on λ.
Let us fix λ0 ∈ (0, λ∗). From the theory of Sturm–Liouville operators, we know

that μ(λ) is a simple eigenvalue of Lλ. In fact, in the terminology of Crandall and
Rabinowitz (1973, Definition 1.2), μ0 is an i-simple eigenvalue of Lλ0 , where i :
H1

0 → H−1 is the injection operator. Indeed, since Lλ0 is Fredholm of index 0 and
symmetric, if we fix an eigenfunction h0 ∈ H1

0 ,
∫

h2
0 = 1 associated to μ0, then it

holds
Ran(Lλ0 − μ0i) =

{
f ∈ H−1; < f, h0 >= 0

}
,

so that ih0 /∈ Ran(Lλ0 − μ0i) and the i-simplicity of μ0 follows easily.
Therefore we may invoke Crandall and Rabinowitz (1973, Lemma 1.3) to obtain

the existence of smooth maps λ �→ μ̃(λ), λ �→ hλ defined for λ ≈ λ0, such that
μ̃(λ) is the unique eigenvalue of Lλ0 close enough to μ0, and hλ a corresponding
eigenfunction.

On the other hand, it can be easily checked that λ �→ μ(λ) is continuous: upper
semi-continuity is obvious since μ is an infimum of continuous functions, and lower
semi-continuity follows from the inequalities

μ(λ0) ≤ μ(λ)+ ‖Lλ0 −Lλ‖‖hλ‖H1 ≤ μ(λ)+ C‖Lλ0 −Lλ‖,

where hλ ∈ H1
0 is a L2-normalized eigenfunction associated to μ(λ), and λ is close

to λ0. (Note that ‖hλ‖H1 is bounded since 〈Lλhλ, hλ〉 is bounded.)
Therefore, for λ close enough to λ0, μ(λ) is close enough to μ0. Hence by the

uniqueness in Crandall and Rabinowitz (1973, Lemma 1.3), μ(λ) must coincide with
μ̃(λ). In particular, μ is smooth. ��

Although we did not emphasize this dependence in the notations, everything we
have done so far depends on the fixed parameter θ ∈ (−∞, 1). In the next section,
we choose a special value for this parameter, θ = −8, at which computations are
simplified.

5 The Special Temperature θ = −8

Throughout the present section, we assume that θ = −8. As already noticed in Bisi
et al. (2003), in that case the equation (9) admits a particularly simple solution, and
we are able to say a lot more about the branch of solutions λ �→ χλ obtained in
Proposition 4.3.
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First of all, we obtain more information about the maximal value λ∗ of definition of
χλ, and about the eigenvalue μ(λ) measuring the stability with respect to symmetry-
breaking perturbations. In fact we are going to prove the following theorem, which is
the first of two main results in the present section.

Theorem 5.1 Assume that θ = −8. Then λ∗ = +∞. That is, the unique eigenvalue
exchange solution χλ for small λ can be extended to a smooth branch of eigenvalue
exchange solutions

(0,+∞) →H ee, λ �→ χλ.

with ν(λ) > 0 for all λ > 0. Moreover, there exists λc > 0 such that

μ(λ) > 0 ∀λ ∈ (0, λc), μ(λc) = 0, and μ′(λc) < 0. (16)

In fact it holds μ′(λ) < 0 for all λ, and lim+∞ μ < 0.

In particular, Theorem 5.1 provides a rigorous justification for part of the bifurcation
diagram pictured in Fig. 2. Namely, there is a smooth branch of eigenvalue exchange
solutions defined for all λ and loosing stability at some critical value of λ.

The next natural step is to investigate what happens at the critical value λc, where
the branch of eigenvalue exchange solutions looses stability. This is the content of the
second main result of the present section. Let hc ∈ kerLλc (a perturbation respon-
sible for the loss of stability at λc), and denote by h⊥c ⊂ H1

0 (−1, 1)3 the space of
perturbations orthogonal to (0, 0, hc) ∈ H1

0 (−1, 1)3.

Theorem 5.2 Assume θ = −8. There exist δ, ε > 0 and a neighborhood A of χλc in
H , such that the solutions of

DEλ(Q) = 0, (λ, Q) ∈ (λc − δ, λc + δ)× A, (17)

are exactly

Q = χλ or

{
λ = λ(t)

Q = χλc + t (0, 0, hc)+ t2 Ht ,
for some t ∈ (−ε, ε) (18)

where λ(t) ∈ (λc − δ, λc + δ) and Ht ∈ h⊥c are smooth functions of t ∈ (−ε, ε).
Moreover, the following symmetry properties are satisfied:

λ(−t) = λ(t), and h1,−t = h1,t , h2,−t = h2,t , h3,−t = −h3,t , (19)

where Ht is identified with (h1,t , h2,t , h3,t ) via (1).

The rest of the section will be devoted to the proofs of Theorems 5.1 and 5.2, which
we decompose into several intermediate results.
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5.1 The Proof of Theorem 5.1

We start by proving that the eigenvalue exchange solution branch χλ obtained in
Proposition 4.3 has constant q1, and can be extended to all λ > 0. In particular we
obtain the first part of Theorem 5.1.

Proposition 5.3 Assume θ = −8. Then λ∗ = +∞, and for every λ ∈ (0,+∞),
χλ = (2/3, q2,λ), where q2 = q2,λ solves

{ 1
λ2 q ′′2 =

(
q2

2 − 4
)

q2,

q2(−1) = 2, q2(1) = −2.
(20)

Proof When the value of the reduced temperature θ is set to θ = −8, then q+ = 2/3.
Let us define q̃1 = q1 − 2/3. For q̃1, the boundary conditions become q̃1(±1) = 0.
The boundary conditions for q2 are q2(±1) = ∓2.

In terms of q̃1, the bulk energy density—for the eigenvalue exchange solution (that
is, with q3 = 0)—reads

f (q1, q2) = 16q̃2
1

(
3

2
+ q̃1

)

+ 1

2

(
q2

2 − 4+ 3q̃2
1

)2
, (21)

and the Euler–Lagrange equations become

1

λ2 q̃ ′′1 =
(

4+ 8q̃1 + 3q̃2
1 + q2

2

)
q̃1,

1

λ2 q ′′2 =
(

q2
2 − 4+ 3q̃2

1

)
q2. (22)

Therefore, there exists a solution with q̃1 ≡ 0, i.e., q1 ≡ 2/3. Indeed, a constant
q̃1 solves the first equation (for any q2), and the corresponding q2 is obtained by
minimizing the energy Eee

λ in which q1 is taken to be constant. That is, q2 minimizes

Iλ(q2) =
∫ 1

−1

(
1

λ2 (q2
′)2 + 1

2
(q2

2 − 4)2
)

dx . (23)

Hence q2 solves (20). From Lemma 5.4, we know that (20) actually admits a unique
solution. Hence we may define for all λ > 0, without ambiguity, the EE solution

χ̃λ := (2/3, q2,λ),

where q2,λ solves (20).
The uniqueness proven in Proposition 4.2 ensures that χλ = χ̃λ for λ ∈ (0, λ0).

On the other hand, Lemma 5.5 ensures that χ̃λ is a smooth extension of χλ satisfying
ν(λ) > 0 for all λ > 0. Therefore we conclude, by the uniqueness in Proposition 4.3,
that λ∗ = +∞ and χλ = (2/3, q2,λ). ��
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In the proof of Proposition 5.3, we made use of two lemmas, Lemma 5.4 and
Lemma 5.5, that we are going to prove next. The first one gives properties of the
boundary value problem (20) satisfied by q2,λ.

Lemma 5.4 The boundary value problem (20) has a unique solution, which is odd
and decreasing.

Proof Very similar results are classical in the study of reaction–diffusion equations
[see for instance Fife (1979, Sect. 4.3)]. Since the present case is particularly simple,
we nevertheless give a complete proof here. Recall that the existence of a solution
follows directly from minimizing the energy Iλ defined in (23).

We start by proving the bounds

− 2 ≤ q2 ≤ 2. (24)

Assume that q2
2 attains its maximum in (−1, 1). Then, at a point where the maximum

is attained, it holds

0 ≥ 1

2λ2 (q2
2 )′′ ≥ 1

λ2 q ′′2 q2 = (q2
2 − 4)q2

2 ,

so that q2
2 ≤ 4. Since this bound is satisfied (with equality) on the boundary, (24) is

proved.
Multiplying (20) by q2

′, we obtain the first integral

[
1

2λ2 (q2
′)2

]
′ =

[
1

4
(q2

2 − 4)2
]
′. (25)

Integrating (25), we obtain

1

2λ2 (q2
′)2 = 1

4
(q2

2 − 4)2 + 1

2λ2 q2
′(−1)2. (26)

Since q2
′(−1) �= 0 (otherwise q2 would satisfy the same Cauchy problem at−1 as the

constant solution), it follows in particular that q2
′ does not vanish. On the other hand,

the bounds (24) ensure that q2
′(−1) is negative. Therefore q2

′ must stay negative:

q2
′ < 0, (27)

hence every solution of (20) is decreasing.
Now we prove that (20) has a unique solution. Assume q

2
and q2 are distinct

solution. Then, they must have distinct derivatives at−1 (otherwise they would satisfy
the same Cauchy problem). Say

q
2
′(−1) < q2

′(−1) < 0. (28)
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Since q
2

and q2 take the same value at 1, we may consider

x0 = min
{

x > −1; q
2
(x) = q2(x)

}
∈ (−1, 1].

At this point x0, q
2

and q2 must have distinct derivatives, and since q
2

< q2 in
(−1, x0), it holds

q2
′(x0) < q

2
′(x0) < 0 (29)

From (28) and (29) we deduce that

q2
′(−1)2 − q2

′(x0)
2 < q

2
′(−1)2 − q

2
′(x0)

2,

which is obviously incompatible with the facts that q
2

and q2 satisfy (25) and coincide
at −1 and x0. Therefore (20) has a unique solution.

Next we prove that q2 satisfying (20) must be odd. This is a direct consequence
of uniqueness: the functions q2(x) and −q2(−x) are both solutions of the boundary
problem (20), therefore they must coincide. ��

Now we turn to the proof of the second lemma used in the proof of Proposition 5.3,
in which we show that the EE solution with constant q1 is non-degenerately stable in
H ee.

Lemma 5.5 Assume θ = −8. Let q2,λ be the unique solution of (20), and χλ :=
(2/3, q2,λ) ∈H ee. Then ν(λ), defined as in (13), satisfies

ν(λ) > 0 ∀λ > 0. (30)

As a consequence, λ �→ q2,λ is smooth.

Proof First note that the smoothness of λ �→ q2,λ follows from (30). Indeed, (30)
implies that D2 Iλ(q2,λ) is invertible, so that near q2,λ, a solution q2 of DIλ(q2) = 0
depending smoothly on λ may be obtained by the implicit function theorem. On the
other hand, the uniqueness proven in Lemma 5.4 implies that q2,λ coincide with this
smooth solution.

Now we turn to the proof of (30). Recall that ν(λ) is the first eigenvalue of the
quadratic form �λ = D2 Eee

λ (χλ). Since θ = −8 and q1 ≡ 2/3, it holds

�λ[h1, h2] =
∫ 1

−1

{
6

λ2 (h1
′)2 + 6

(
8

3
+ q2

2,λ

)

h2
1

}

dx

+
∫ 1

−1

{
2

λ2 (h2
′)2 + 2

(
3q2

2,λ − 4
)

h2
2

}

dx .

That is, �λ decomposes into a quadratic form in h1, which is obviously positive
definite, and a quadratic form in h2, which is nothing else than D2 Iλ(q2,λ). Therefore,
to prove (30) we only need to show that D2 Iλ(q2,λ) is positive definite.
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Let us define

η(λ) := inf
h∈H1

0 (−1,1),
∫

h2=1
D2 Iλ(q2,λ)[h]

= inf
h∈H1

0 (−1,1)
∫

h2=1

∫ {
2

λ2 (h′)2 + 2
(

3q2
2,λ − 4

)
h2

}

dx . (31)

We need to prove that η(λ) > 0 for every λ > 0. Since q2,λ minimizes Iλ, it clearly
holds η(λ) ≥ 0. To prove that η(λ) cannot vanish, we are going to establish that
λ �→ η(λ) is decreasing.

To this end, we remark that after a rescaling it holds

η(λ) = inf
h∈H1

0 (−λ,λ),
∫

h2=1

∫ λ

−λ

{
2(h′)2 + 2

(
3q̄2

2,λ − 4
)

h2
}

dy,

where q̄2,λ is the rescaled map defined by

q̄2,λ(y) = q2,λ(y/λ), (32)

and extended to the whole real line by putting q̄2,λ = 2 in (−∞,−λ) and q̄2,λ = −2
in (λ,+∞). In Lemma 5.6, we show that q̄2,λ(y) is a monotone function of λ.

Using Lemma 5.6, we prove that η(λ) is decreasing: let λ′ > λ and consider a map
hλ ∈ H1

0 (−λ, λ) at which the infimum defining η(λ) is attained. Then, hλ is admissible
in the infimum defining η(λ′), and we obtain η(λ′) < η(λ), since q̄2

2,λ′ ≤ q̄2
2,λ, with

strict inequality on (−λ, 0) ∪ (0, λ). The latter fact follows from Lemma 5.6 and the
fact that q2,λ is odd.

We may now complete the proof of Lemma 5.5: sinceη(λ)decreases, and in addition
η(λ) ≥ 0 for all λ, we must have η(λ) > 0 for any λ. ��

In the following lemma, we prove the monotonicity of λ �→ q̄2,λ.

Lemma 5.6 For any y > 0, (0, y) � λ �→ q2,λ(y/λ) = q̄2,λ(y) is increasing.

Proof The rescaled map q̄2,λ minimizes the energy functional

Ĩλ (q̄2) =
∫ λ

0

[
(
q̄2
′)2 + 1

2

(
q̄2

2 − 4
)2

]

dy,

subject to the boundary conditions q̄2(0) = 0, q̄2(λ) = −2. Note that we were able to
restrict the integral to the positive half-line since q2 is odd.

Let λ′ > λ > 0. Consider the respective minimizers q̄2,λ′ and q̄2,λ, and assume that
it does not hold

q̄2,λ′(y) > q̄2,λ(y) ∀y ∈ (0, λ′).

Then q̄2,λ′(y0) = q̄2,λ(y0) for some y0 ∈ (0, λ), since in (λ, λ′) it does hold q̄2,λ′ >

q̄2,λ.
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Thus, the maps

q̃2,λ = q̄2,λ′1y≤y0 + q̄2,λ1y≥y0 , q̃2,λ′ = q̄2,λ1y≤y0 + q̄2,λ′1y≥y0

belong to H1(0, λ), respectively, H1(0, λ′). We claim that q̃2,λ minimizes Ĩλ. Assume
indeed that q̃2,λ has strictly higher energy than q̄2,λ: then q̃2,λ′ would have strictly lower
energy than q̄2,λ′ , which is absurd. In particular, q̃2,λ is analytical (as a minimizer of
Ĩλ), which is possible only if q2,λ′ and q2,λ coincide. But then the analytical function
q2,λ′ would be constant on (λ, λ′), and we obtain a contradiction. ��

So far we have proven the first part of Theorem 5.1, about the extension of χλ until
λ = +∞. Now we turn to proving the second part, about the behavior of μ(λ). We
split this second part into Propositions 5.7 and 5.8. We start by showing that μ(λ)

decreases, with non-vanishing derivative.

Proposition 5.7 Assume θ = −8. Then it holds

μ′(λ) < 0,

for all λ > 0.

Proof The fact that μ(λ) decreases can be obtained quite easily as a consequence of
Lemma 5.6. The fact that its derivative does not vanish, however, is not immediate.
Our proof is very similar to the proof of Alama et al. (2012, Proposition 5.18).

First we show that
∂

∂λ

[
q̄2,λ(x)

]
> 0 for x ∈ (0, λ].

Consider the smooth map

φ : [0,+∞)× R → R, (x, α) �→ φ(x, α),

defined as the solution of the Cauchy problem

{
φxx = (φ2 − 4)φ,

φ(0, α) = 0, φx (0, α) = α.

Clearly, for any λ > 0, and for x ∈ (0, λ],

q̄2,λ(x) = φ(x, αλ) with αλ = q̄2,λ
′(0).

Notice that αλ solves
φ(λ, αλ) = −2.

We claim that, for any x ∈ (0, λ], ∂αφ(x, αλ) > 0. In fact, let h(x) = ∂αφ(x, αλ).
The function h solves {

h′′ = (3q̄2
2,λ − 4)h,

h(0) = 0, h′(0) = 1.
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Assume that h(x0) = 0 for some x0 ∈ (0, λ]. Then, h1(0,x0) would be an admissible
test function in the variational problem defining η(λ), and we would obtain η(λ) = 0,
which is not true. Recall that η(λ) was defined in (31), as the first eigenvalue of the
second variation of Iλ, and that we have shown in Lemma 5.5 that η(λ) > 0 for every λ.

In particular, ∂αφ(λ, αλ) > 0 and we can apply the implicit function theorem to
obtain a smooth map λ �→ α(λ) such that

φ(λ, α(λ)) = −2.

Then, x �→ φ(x, α(λ)) solves the same boundary problem as q̄2,λ. By the uniqueness
proven in Lemma 5.4, those two functions must be equal, and in particular we have
αλ = α(λ). Moreover, differentiating the equation satisfied by α(λ), we obtain

α′(λ) = − ∂xφ(λ, αλ)

∂αφ(λ, αλ)
= − q̄2,λ

′(λ)

∂αφ(λ, αλ)
> 0.

In fact, the bounds (24) ensure that q̄2,λ
′(λ) ≤ 0, and equality cannot occur, else q̄2,λ

would satisfy the same Cauchy problem as the constant map q ≡ −2.
Thus, we have

∂

∂λ

[
q̄2,λ(x)

] = α′(λ)∂αφ(x, αλ) > 0 for x ∈ (0, λ].

Let λ1 > λ0 > 0. Using the facts that (x, λ) �→ q̄2,λ(x) is smooth, that q̄2,λ < 0 on
(0,+∞), and that q̄2,λ

′(0) < 0 (else q̄2,λ would coincide with the constant solution
q ≡ 0), we obtain

q̄2,λ(x) ≤ −cx ∀x ∈ [0, λ], λ ∈ [λ0, λ1],

for some constant c > 0. Similarly, we have

∂λ

[
q̄2,λ(x)

] ≥ c′x ∀x ∈ [0, λ], λ ∈ [λ0, λ1].

Therefore, we deduce from the mean value theorem the existence of a constant C > 0
such that

q̄2
2,λ(x)− q̄2

2,λ0
(x) ≤ −C(λ− λ0)x2 ∀x ∈ (0, λ0), λ ∈ [λ0, λ1]. (33)

Note that, since q̄2,λ is odd, estimate (33) holds also for all x ∈ (−λ0, λ0).
We remark that, since θ = −8 and q1 ≡ 2/3, formula (13) for μ(λ) simplifies to

μ(λ) = 2 inf
h∈H1

0 (−1,1),
∫

h2=1

∫ 1

−1

(
1

λ2

(
h′

)2 +
(

q2
2,λ − 4

)
h2

)

dx

= 2 inf
h∈H1

0 (−λ,λ)
∫

h2=1

∫ λ

−λ

((
h′

)2 +
(

q̄2
2,λ − 4

)
h2

)
dy.

123



1216 J Nonlinear Sci (2014) 24:1197–1230

Let h0 ∈ H1
0 (−λ, λ),

∫
h2

0 = 1, be a function at which the infimum defining μ(λ0)

is attained. Using the estimate (33), we compute, for λ ∈ [λ0, λ1]:

μ(λ) = 2 inf
h∈H1

0 (−λ,λ),
∫

h2=1

∫ λ

−λ

[(
h′

)2 +
(

q̄2
2,λ − 4

)
h2

]
dx

≤ 2
∫ λ0

−λ0

[(
h0
′)2 +

(
q̄2

2,λ − 4
)

h2
0

]
dx

≤ μ(λ0)− 2C(λ− λ0)

∫

h2
0x2dx,

so that μ′(λ0) < 0. ��
To complete the proof of Theorem 5.1, it remains to show that, for large λ, the eigen-

value exchange solution is unstable with respect to symmetry breaking perturbations.
This is the content of the next result.

Proposition 5.8 Assume θ = −8. Then it holds

lim
λ→+∞μ(λ) < 0.

Proof We start by studying the limit of the rescaled map q̄2,λ(y) = q2,λ(y/λ)

(extended to (−∞,+∞) by q̄2,λ ≡ ∓2 near ±∞). This rescaled map q̄2,λ mini-
mizes the integral

Jλ(q̄2) =
∫ λ

−λ

(
(
q̄2
′)2 + 1

2

(
q̄2

2 − 4
)2

)

dy

subject to the boundary conditions q̄2(±λ) = ∓2. For λ′ > λ, q̄2,λ is admissible in
Jλ′ . Therefore we deduce that

λ �→ Jλ(q̄2,λ) is non-increasing.

In particular, it holds

∫ +∞

−∞

(
(
q̄2,λ

′)2 + 1

2

(
q̄2

2,λ − 4
)2

)

dx ≤ C,

and (q̄2,λ)λ>0 is bounded in H1
loc(R), so that we may extract a weakly converging

subsequence. On the other hand, we know from Lemma 5.6 that q̄2,λ(y) is a monotonic
function of λ, so that the whole sequence converges pointwise. Therefore the weak H1

loc
limit is unique and we do not need to take a subsequence: there exists q̄2,∗ ∈ H1

loc(R)

such that q̄2,λ converges to q̄2,∗ as λ → +∞, on every compact interval, H1-weakly
and uniformly. Using the differential equation satisfied by q̄2,λ, we see that the second
derivatives converge uniformly on every compact interval, so that we actually obtain
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convergence in C2
loc(R). In particular, the rescaled limiting map q̄2,∗ ∈ C2(R) solves

the equation

q̄ ′′2,∗ =
(

q̄2
2,∗ − 4

)
q̄2,∗. (34)

Moreover, using Fatou’s lemma, we find that the map q̄2,∗ has finite energy:

∫ +∞

−∞

(
(
q̄2,∗′

)2 + 1

2

(
q̄2

2,∗ − 4
)2

)

dy < +∞. (35)

Since q̄2,∗ is obviously odd and non-increasing, the finite energy property implies that
it satisfies the boundary conditions

q̄2,∗(−∞) = 2, q̄2,∗(+∞) = −2.

Recall that, since θ = −8 and q1 ≡ 2/3,

μ(λ) = 2 inf
h∈H1

0 (−λ,λ),
∫

h2=1

∫ λ

−λ

((
h′

)2 +
(

q̄2
2,λ − 4

)
h2

)
dx .

We claim that the convergence of q̄2,λ toward q̄2,∗ implies that

lim
λ→+∞μ(λ) = 2 inf

h∈H1(R),
∫

h2=1

∫ +∞

−∞

((
h′

)2 +
(

q̄2
2,∗ − 4

)
h2

)
dx . (36)

Indeed, for any ε > 0, we may find h0 ∈ C∞c (R) such that

∫ +∞

−∞

((
h0
′)2 +

(
q̄2

2,∗ − 4
)

h2
0

)
dx ≤ m + ε,

where m denotes the infimum in the right-hand side of (36). Choose � > 0 such that
supp h0 ⊂ [−�,�]. Then, for any λ ≥ �, it holds

μ(λ) ≤ 2
∫ +∞

−∞

((
h0
′)2 +

(
q̄2

2,λ − 4
)

h2
0

)
dx .

Since q̄2,λ converges uniformly to q̄2,∗ on supp h0, we may pass to the limit in the last
inequality, and deduce that

lim
λ→+∞μ(λ) ≤ 2m + 2ε,

which proves (36) since ε is arbitrary.
In view of (36), to conclude the proof we need to find a function h ∈ H1(R), h �= 0,

such that ∫ +∞

−∞

((
h′

)2 +
(

q̄2
2,∗ − 4

)
h2

)
dx < 0.
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We claim that h = q̄2,∗′ is a suitable choice. The fact that h �= 0 is clear in view of
the boundary conditions satisfied by q̄2,∗. The fact that h ∈ H1

0 (R) follows from the
finite energy property (35). Indeed, (35) clearly implies that h ∈ L2(R), and also that
(q̄2

2,∗ − 4) ∈ L2, so that

h′ =
(

q̄2
2,∗ − 4

)
q̄2,∗ ∈ L2(R)

since q̄2,∗ ∈ L∞.
Moreover, differentiating the equation satisfied by q̄2,∗, we obtain

h′′ =
(

3q̄2
2,∗ − 4

)
h,

so that ∫ +∞

−∞

((
h′

)2 +
(

q̄2
2,∗ − 4

)
h2

)
dx = −2

∫ +∞

−∞
q̄2

2,∗h2 dx < 0,

and the proof is complete. ��
Now Theorem 5.1 is obtained directly by putting together the Propositions 5.3, 5.7,

and 5.8 above.

5.2 The Proof of Theorem 5.2

We define the map

G : (0,+∞)× H1
0 (−1, 1)3 −→ H−1(−1, 1)3,

defined by

G(λ, Q) = DEλ(χλ + Q), where χλ =
(

2

3
, q2,λ, 0

)

.

By definition of the eigenvalue exchange solution, it holds

G (λ, 0) = 0.

From Sect. 3, we know that

DQG (λ, 0) [h1, h2, h3] = (Mλ (h1, h2) ,Lλh3),

and Mλ is invertible since ν(λ) > 0. Recall indeed from Proposition 4.3 that the
branch χλ is defined only when ν(λ) > 0.

As for Lλc , its first eigenvalue is μ(λc) = 0 and it is simple. Therefore, we obtain

dim Ker DQG (λc, 0) = 1 = codim Ran DQG (λc, 0),
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since DQG (λc, 0) is obviously Fredholm of index 0.
Next we show that, for all H ∈ Ker DQG (λc, 0), H �= 0, it holds

∂λ DQG (λc, 0) · H /∈ Ran DQG (λc, 0).

To this end, we use an argument similar to one in the proof of Alama et al. (2012,
Theorem 5.24). Recall that

Ker DQG (λc, 0) = Span
(
0, 0, hλc

)
,

where hλ is an eigenfunction associated with the first eigenvalue of Lλ and can be
chosen to depend smoothly on λ (see the proof of Proposition 4.3).

Hence, it suffices to show that

∂λLλ|λ=λc hλc /∈ Ran Lλc .

We obtain this latter fact as a consequence of μ′(λc) < 0. Indeed, assume that there
exists h ∈ H1

0 such that
∂λLλ|λ=λc hλc = Lλc h.

Then we compute, using the facts that Lλc hλc = 0 and that Lλc is symmetric,

0 > μ′(λc) = d

dλ
[< Lλhλ, hλ >]λ=λc

=< ∂λLλ|λ=λc hλc , hλc >

=< Lλc h, hλc >= 0,

and we obtain a contradiction.
Thus, all the assumptions needed to apply Crandall–Rabinowitz’ bifurcation the-

orem (Crandall and Rabinowitz 1971, Theorem 1.7) are satisfied: there exists a
smooth function λ(t) defined for small t , with λ(0) = λc, and a regular family
Ht = (h1,t , h2,t , h3,t ) taking values in (0, 0, hλc )

⊥ ⊂ H1
0 (−1, 1)3 with H0 = 0,

such that, for any Q close enough to χλc ,

DEλ(Q) = 0 ⇔
{

Q = χλ

or λ = λ(t) and Q = χλ(t) + t (0, 0, hλc )+ t2 Ht .

One can say a little bit more about the new branch of solutions thus obtained.
Indeed, changing q3 to −q3 leaves the equations (6) invariant. More precisely, given
Q = (q1, q2, q3) a solution of (6), the map Q̃ = (q1, q2,−q3) is automatically a
solution of (6). In particular, to a solution

Q = χλ(t) + t (0, 0, hλc )+ t2 Ht ,
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corresponds a solution

Q̃ = χλ(t) − t (0, 0, hλc )+ t2 H̃t .

Since both Q and Q̃ are close to χλc , we deduce that

λ(t) = λ(−t) and h1,−t = h1,t , h2,−t = h2,t , h3,−t = −h3,t .

This ends the proof of Theorem 5.2.

6 The Perturbed Case θ ≈ −8

Now we turn back to the case of a general temperature θ ∈ (−∞, 1]. A closer look
at the proof in subsection 5.2 will convince us that a result similar to Theorem 5.2
holds for any θ satisfying some non-degeneracy assumptions. After having checked
that these non-degeneracy assumptions are stable under small perturbations of θ , we
will obtain as a corollary a result similar to Theorem 5.2 in the perturbed case θ ≈ −8.

Theorem 6.1 Assume that θ is such that the branch of eigenvalue exchange solutions
λ �→ χλ given by Proposition 4.3 has the following two properties:

(i) there exists λ ∈ (0, λ∗) such that μ(λ) < 0.
(ii) denoting by λc > 0 the infimum of all such λ:

λc = inf {λ ∈ (0, λ∗) : μ(λ) < 0},

it holds
μ′(λc) < 0.

Then, there exist δ, ε > 0 and a neighborhood A of χλc in H , such that the solutions
of

DEλ(Q) = 0, (λ, Q) ∈ (λc − δ, λc + δ)× A,

are exactly

Q = χλ or

{
λ = λ(t)

Q = χλc + t (0, 0, hc)+ t2 Ht ,
for some t ∈ (−ε, ε),

where λ(t) ∈ (λc − δ, λc + δ) and Ht ∈ h⊥c are smooth functions of t ∈ (−ε, ε).
Moreover, the following symmetry properties are satisfied:

λ(−t) = λ(t), and h1,−t = h1,t , h2,−t = h2,t , h3,−t = −h3,t , (37)

where Ht is identified with (h1,t , h2,t , h3,t ) via (1).

Proof Looking at the proof of Theorem 5.2 in subsection 5.2, we see that we have
really only used the facts that for θ = −8, (i) and (ii) are satisfied. Hence, the proof
of Theorem 5.2 may be reproduced word for word to prove Theorem 6.1. ��
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Theorem 6.1 is an abstract theorem: if θ satisfies some conditions, then we have a
concrete result. But it does not tell us anything about the validity of such conditions
in general.

Let us say a few words about these conditions. In view of Proposition 4.3, λ∗ can
be interpreted as the point where the eigenvalue exchange solution looses its stability
with respect to symmetry-preserving perturbations. Condition (i) asks for μ(λ) to
become negative before this point is reached. That is, condition (i) could be rephrased
as: as λ grows, starting from the unique solution for small λ, a symmetry-breaking
loss of stability occurs before a possible symmetry-preserving loss of stability. And
condition (ii) asks for the symmetry-breaking loss of stability to be non-degenerate.
Hence, condition (ii) is typically a generic condition.

Remark that in the special case θ = −8, we have shown (Theorem 5.1) that
symmetry-preserving loss of stability does not occur at all, and that symmetry-breaking
loss of stability does occur, in a non-degenerate way. Now we are going to show that
these conditions propagate to nearby θ . This is the content of the next result.

Proposition 6.2 If θ0 < 1 satisfies conditions (i) and (ii) of Theorem 6.1, then there
exists ε > 0 such that every θ < 1 with |θ − θ0| < ε also satisfies (i) and (ii).

Proof During this proof we will emphasize the dependence on θ of the objects we
have been working with. For instance we will write Hθ , Eee

θ,λ, λ∗(θ), and so on.
Let us start by remarking that a value λ0 (provided by Proposition 4.2), under

which there is uniqueness of the solution, may be chosen independently of θ in a
neighborhood of θ0. Indeed, the proof of Lemma 8.1 shows that this value of λ0
depends on the W 2,∞ norm of the bulk energy density f restricted to values of Q
satisfying the maximum principle (5). It is clear from the expression of f and (5) that
this W 2,∞ norm depends at least continuously on θ . We may thus choose a λ0 that
works for all θ in a fixed neighborhood of θ0.

The idea of the proof is to use the implicit function theorem to define eigenvalue
exchange solutions χλ,θ depending smoothly on λ and θ . For θ close enough to θ0,
this branch will look very much like the branch χλ,θ0 , and thus will satisfy (i) and (ii).

To apply the implicit function theorem we need a fixed space, but H ee
θ depends

on θ . Thus, we fix χθ ∈ H ee
θ depending smoothly on θ (for instance take χθ to be

affine), and we will work instead in the space H1
0 (−1, 1)2 after having translated by

χθ .
Since we will apply the implicit function theorem near each λ, but need to obtain for

each θ a whole branch λ �→ χλ,θ , we will have to restrict λ to a compact interval. That
is why we choose λ1 ∈ (λc, λ∗), where λc = λc(θ0) (defined by (ii)) and λ∗ = λ∗(θ0).

We consider the smooth function F defined by

F (θ, λ, χ) = DEee
λ,θ (χθ + χ) ∈ H−1(−1, 1)2,

for θ < 1, λ > 0 and χ ∈ H1
0 (−1, 1)2. For all λ ∈ (0, λ∗), it holds

F (θ0, λ, χλ,θ0 − χθ0) = 0,
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and, since ν(λ) > 0, the partial differential

DχF
(
θ0, λ, χλ,θ0 − χθ0

)
is invertible.

Hence the implicit function theorems provide us with ελ > 0 and Aλ a neighborhood
of χλ,θ0 − χθ0 such that the equation

F (θ, λ′, χ) = 0, |θ − θ0| < ελ, |λ′ − λ| < ελ, χ ∈ Aλ,

has a unique solution χλ′,θ − χθ depending smoothly on (λ′, θ).
Using the compactness of [λ0/2, λ1], we deduce the existence of ε > 0 and A a

neighborhood of 0 in H1
0 (−1, 1)2, such that the equation

F (θ, λ, χ) = 0, |θ − θ0| < ε,
λ0

2
≤ λ ≤ λ1, χ ∈ χλ,θ0 − χθ0 + A,

has a unique solution χθ,λ − χθ which depends smoothly on (θ, λ). Hence, for every
θ ∈ (θ0−ε, θ0+ε), the unique smooth branch of eigenvalue exchange solutions given
by Proposition 4.3 is λ �→ χθ,λ, defined at least up to λ1, and it depends smoothly on
θ .

More precisely, we have just proven that χθ,λ depends smoothly on (θ, λ) ∈ (θ0 −
ε, θ0 + ε)× (λ0/2, λ1). On the other hand, since λ0 is chosen in such a way that the
unique solution χθ,λ is non-degenerate for λ < λ0 (see the proof of Theorem 8.1), we
may apply the implicit function theorem to obtain that (θ, λ) �→ χθ,λ is smooth also
for small λ. Hence χθ,λ depends smoothly on (θ, λ) ∈ (θ0 − ε, θ0 + ε)× (0, λ1).

Recall that, for fixed θ , given a branch of EE solutions χλ, we have defined μ(λ)

in (13), as the first eigenvalue of the free energy second variation around χλ with
respect to symmetry-breaking perturbations. Here, we emphasize the dependence on
θ by writing μ(θ, λ). That is, μ(θ, λ) is the first eigenvalue of Lθ,λ, which is the
linear operator associated to the quadratic form D2 Eθ,λ restricted to the space Hsb of
symmetry-breaking perturbations (see Sect. 3).

Since (θ, λ) �→ χθ,λ is smooth, we prove, exactly as in Proposition 4.3 for λ �→
μ(λ), that

(θ0 − ε, θ0 + ε)× (0, λ1) � (θ, λ) �→ μ(θ, λ)

is smooth.
In particular, since—by (i)—there exists λ2 ∈ (λc(θ0), λ1) such that μ(θ0, λ2) < 0,

it follows that we may chose ε small enough, so that

μ(θ, λ2) < 0 ∀θ ∈ (θ0 − ε, θ0 + ε),

i.e., (i) is satisfied for θ close enough to θ0.
By definition of λc = λc(θ0), and since θ0 satisfies (i i), it holds

μ(θ0, λc) = 0,
∂μ

∂λ
(θ0, λc) > 0.
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Therefore the implicit function theorem ensures the existence of a smooth map λ(θ)

defined—up to choosing ε small enough—for θ ∈ (θ0 − ε, θ0 + ε), such that

μ(θ0, λ(θ)) = 0,
∂μ

∂λ
(θ, λ(θ)) > 0.

In order to complete the proof of Proposition 6.2, we need to show that this λ(θ) is
really the critical value λc(θ) that appears in (i i).

That is, we need to prove that (for ε small enough),

μ(θ, λ) > 0 for θ ∈ (θ0 − ε, θ0 + ε), λ ∈ (0, λ(θ)). (38)

We start by noting that the choice of λ0 in the proof of the uniqueness result
Theorem 8.1 can be such that

μ(θ, λ) ≥ c0 ∀(θ, λ) ∈ (θ0 − ε, θ0 + ε)× (0, λ0), (39)

for some c0 > 0. On the other hand, ε may be chosen in such a way that it holds

∂μ

∂λ
(θ, λ) > 0 for (θ, λ) ∈ (θ0 − ε, θ0 + ε)× (λc − δ, λc + δ). (40)

Using the compactness of [λ0, λc−δ] and the fact that μ(θ0, λ) > 0 for all λ ∈ (0, λc),
we may also choose ε such that we have

μ(θ, λ) > 0 ∀(θ, λ) ∈ (θ0 − ε, θ0 + ε)× [λ0, λc − δ]. (41)

Putting together (39), (6) and (41), we obtain (38). Therefore,λ(θ) is really the infimum
of those λ for which μ(θ, λ) < 0, and θ ∈ (θ0 − ε, θ0 + ε) satisfies (i i). ��

As we pointed out at the beginning of the present section, a corollary of Theorem 5.1
and Proposition 6.2 is that the bifurcation result Theorem 6.1 applies to all θ close
enough to the special value θ = −8.

Corollary 6.3 There exists ε > 0 such that, for any θ < 1 with |θ + 8| < ε, a sym-
metric pitchfork bifurcation occurs from the branch of eigenvalue exchange solutions
starting at small λ, in the sense that Theorem 6.1 applies.

Appendix 1: Principle of Symmetric Criticality

Proposition 7.1 Let H be a Hilbert space, G a group acting linearly and isometrically
on H and � = H G the subspace of symmetric elements (that is, x ∈ � iff gx = x
∀g ∈ G). Let f : H → R be a G-invariant C1 function. It holds:

(i) If x ∈ � is a critical point of f|� , then x is a critical point of f .
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(ii) If in addition f is C2, it further holds

D2 f (x) · h · k = 0 for h ∈ �, k ∈ �⊥,

i.e., the orthogonal decomposition H = �⊕�⊥ is also orthogonal for the bilinear
form D2 f (x).

Item (i) of the above proposition is only a particularly simple case of Palais’ Prin-
ciple of symmetric criticality (Palais 1979). Item (ii), however, does not seem to be
explicitly stated in the literature—as far as we know. Using the same tools as in Sect. 2
of Palais (1979), it is not hard to see that an equivalent of (ii) is actually valid if H is
replaced by a Riemannian manifold M on which the group G acts isometrically. In
this case, � is a submanifold of M and, at a symmetric critical point x , the orthogonal
decomposition

TxM = Tx� ⊕ (Tx�)⊥

is also orthogonal for the bilinear form D2 f (x).

Proof of Proposition 7.1 As already pointed out, item (i) is a particular case of Palais
(1979, Sect. 2). We nevertheless present a complete Proof of Proposition 7.1 here,
since in the simple framework we consider, the proof of (i) is really straightforward.

The fact that f is G-invariant means that it holds

f (gx) = f (x) ∀g ∈ G, x ∈ H. (42)

Since the action of G on H is linear, differentiating (42) we obtain

D f (gx) · gh = D f (x) · h ∀h ∈ H. (43)

Applying (43) for a symmetric x , i.e., x ∈ �, we have

< ∇ f (x), gh >=< ∇ f (x), h > ∀h ∈ H.

Note that here we distinguish between the differential D f (x) ∈ H∗ and the gradient
∇ f (x) ∈ H . Similarly, below we will distinguish between the second-order differ-
ential D2 f (x) ∈ L (H, H∗) and the Hessian ∇2 f (x) ∈ L (H). Since g is a linear
isometry, we conclude that

g−1∇ f (x) = ∇ f (x) ∀g ∈ G, i.e., ∇ f (x) ∈ �. (44)

Therefore, if we know in addition that x is a critical point of f|� , which means that
∇ f (x) ∈ �⊥, it must hold ∇ f (x) = 0. This proves (i).

Now assume that f is C2 and differentiate (43) to obtain

D2 f (gx) · gh · gk = D2 f (x) · h · k ∀h, k ∈ H. (45)
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In particular, if x and h are symmetric (i.e., belong to �), and if we denote by∇2 f (x)

the Hessian of f at x , (45) becomes

<g−1(∇2 f (x)h), k >=< ∇2 f (x)h, k > ∀x ∈ �, h ∈ �, k ∈ H,

so that ∇2 f (x)h is symmetric. Hence it is orthogonal to any k ∈ �⊥, which proves
(ii). ��

Appendix 2: Uniqueness of Critical Points for Small λ

Let � ⊂ R
N be a smooth bounded domain, and f : R

d → R a W 2,∞
loc map. We are

interested in critical points of functionals of the form

Eλ(u) =
∫

�

1

2λ2 |∇u|2 +
∫

�

f (u), (46)

i.e., solutions u ∈ H1(�)d of the equation

�u = λ2∇ f (u) in D ′(�). (47)

Note that (47) implies in particular that ∇ f (u) ∈ L1
loc.

We prove the following:

Theorem 8.1 Assume that there exists C > 0 such that∇ f (x) · x ≥ 0 for any x ∈ R
d

with |x | ≥ C.
Let g ∈ L∞ ∩ H1/2(∂�)d . There exists λ0 = λ0(�, f, g) such that, for any

λ ∈ (0, λ0), Eλ admits at most one critical point with tr u = g on ∂�.

Theorem 8.1 is a direct consequence of Lemmas 8.2 and 8.3 below. Indeed,
Lemma 8.2 ensures that, for sufficiently small λ, Eλ admits at most one critical point
satisfying a given L∞ bound (independent of λ). And in Lemma 8.3 we prove that the
assumption on f implies such a bound for critical points of Eλ.

Lemma 8.2 Let C > 0. There exists λ0 = λ0(C, f,�) such that, for any λ ∈ (0, λ0)

and any g ∈ H1/2(∂�)d , Eλ admits at most one critical point u satisfying |u| ≤ C
a.e. and tr u = g.

Proof Let

X :=
{

u ∈ H1(�) : |u| ≤ C a.e.
}
.

We show that, for λ small enough, Eλ is strictly convex on X .
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Let u, v ∈ X . Then u − v ∈ H1
0 (�)d . Using Poincaré’s inequality, we obtain

Eλ

(
u + v

2

)

= 1

8λ2

∫

|∇u +∇v|2 +
∫

f

(
u + v

2

)

= 1

4λ2

∫

|∇u|2+ 1

4λ2

∫

|∇v|2− 1

8λ2

∫

|∇(u−v)|2+
∫

f

(
u + v

2

)

= 1

2
Eλ(u)+ 1

2
Eλ(v)− 1

8λ2

∫

|∇(u − v)|2

+
∫ [

f

(
u + v

2

)

− 1

2
f (u)− 1

2
f (v)

]

≤ 1

2
Eλ(u)+ 1

2
Eλ(v)− c1(�)

λ2 ‖u − v‖2
L2

+
∫ [

f

(
u + v

2

)

− 1

2
f (u)− 1

2
f (v)

]

. (48)

On the other hand, for any x, y ∈ R
d satisfying |x |, |y| ≤ C , it holds

f

(
x + y

2

)

− 1

2
f (x)− 1

2
f (y) ≤ ‖ f ‖W 2,∞(BC )|x − y|2. (49)

Plugging (49) into (48) we obtain, for some c2 = c2(�, f, C) > 0,

Eλ

(
u + v

2

)

≤ 1

2
Eλ(u)+ 1

2
Eλ(v)− c1

λ2 ‖u − v‖2
L2 + c2‖u − v‖2

L2

= 1

2
Eλ(u)+ 1

2
Eλ(v)− c1

2λ2 ‖u − v‖2
L2 − c2

(
c1

2c2λ2 − 1

)

‖u − v‖2
L2 .

Hence, for λ ≤ λ0 := √c1/(2c2), it holds

Eλ

(
u + v

2

)

<
1

2
Eλ(u)+ 1

2
Eλ(v) ∀u, v ∈ X, u �= v.

Thus, Eλ is strictly convex on X .
To conclude the proof, assume that for a λ ∈ (0, λ0), there exist two solutions u1 and

u2 of (47), belonging to X . Then one easily shows that [0, 1] � t �→ Eλ(tu1+(1−t)u2)

is C1 and that its derivative vanishes at 0 and 1, which is incompatible with the strict
convexity of Eλ. ��
Lemma 8.3 Assume that there exists C > 0 such that

|x | ≥ C ⇒ ∇ f (x) · x ≥ 0.

Let g ∈ L∞ ∩ H1/2(∂�)d . If u ∈ H1
g (�)d is a critical point of Eλ, then it holds

|u| ≤ max(C, ‖g‖∞) a.e.
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Proof We may assume C = max(C, ‖g‖∞) > 0.
Let ϕ ∈ C∞(R) be such that:

⎧
⎪⎪⎨

⎪⎪⎩

ϕ ≥ 0,

ϕ′ ≥ 0,

ϕ(t) = 0 for t ≤ C2,

ϕ(t) = 1 for t ≥ T, for some T > C2.

(50)

Let w = ϕ(|u|2). The assumptions on ϕ ensure that w ≥ 0, and w = 0 in {|u| ≤ C}.
Therefore, taking the scalar product of (47) with wu and using the assumption that

∇ f (u) · u ≥ 0 outside of {|u| ≤ C}, we obtain

1

λ2 wu ·�u = w∇ f (u) · u ≥ 0 a.e. (51)

Since wu ∈ H1
0 (�)d , we may apply Lemma 8.4 below, to deduce

∫

�

∇u · ∇(wu) ≤ 0. (52)

On the other hand, it holds

∫

�

∇u · ∇(wu) =
∫

�

w|∇u|2 +
∫

�

2
∑

k

(u · ∂ku)2ϕ′(|u|2),

so that we have in fact ∫

�

w|∇u|2 ≤ 0. (53)

Finally we may choose an increasing sequence ϕk of smooth maps satisfying (50) and
converging to 1t>C2 . Then, wk = ϕk(|u|2) is increasing and converges a.e. to 1|u|>C ,
and we conclude that ∫

|u|>C
|∇u|2 = 0,

so that |u| ≤ C a.e. ��
The following result, which we used in the proof of Lemma 8.3, is due to Pierre

Bousquet.

Lemma 8.4 Let u ∈ H1(�)d and assume that �u = g ∈ L1
loc(�)d . Then, for any

ζ ∈ H1
0 (�)d ,

ζ · g ≥ 0 a.e.  ⇒
∫

∇ζ · ∇u ≤ 0. (54)

Proof We proceed in three steps: first we show that (54) is valid for ζ ∈ H1∩L∞(�)d

with compact support in �, then for ζ ∈ H1
0 ∩ L∞(�)d , and eventually for ζ ∈

H1
0 (�)d .
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Step 1: ζ ∈ H1
c ∩ L∞.

Since ζ is bounded and compactly supported, there exists a sequence ζk of C∞c
functions, a constant C > 0, and a compact K ⊂ �, such that

supp ζk ⊂ K , ‖ζk‖∞ ≤ C, and ζk −→ ζ in H1 and a.e.

Since ζk ∈ C∞c (�)d , it holds, by definition of the weak laplacian,

∫

ζk · g = −
∫

∇ζk · ∇u,

and we may pass to the limit (using dominated convergence on the compact K for the
left-hand side) to obtain ∫

�

ζ · g = −
∫

∇ζ · ∇u,

which implies (54).
Step 2: ζ ∈ H1

0 ∩ L∞.
Let θk ∈ C∞c (�) be such that

0 ≤ θk ≤ 1, θk(x) = 1 if d(x, ∂�) >
1

k
, and |∇θk(x)| ≤ c

d(x, ∂�)
,

and define ζk = θkζ ∈ H1
c ∩ L∞(�)d .

Assuming that ζ · g ≥ 0 a.e., we deduce that ζk · g ≥ 0 a.e., and thus we may apply
Step 1 to ζk : it holds

0 ≥
∫

∇ζk · ∇u =
∫

θk∇ζ · ∇u +
∫

∇θk · ∇u · ζ. (55)

The first term in the right-hand side of (55) converges to
∫ ∇ζ · ∇u, by dominated

convergence. Therefore we only need to prove that the second term in the right-hand
side of (55) converges to zero. To this end we use the following Hardy-type inequality:

∫ |ζ |2
d(x, ∂�)2 ≤ C

∫

|∇ζ |2, ∀ζ ∈ H1
0 (�). (56)

Using (56) and the Hölder inequality, we obtain

∣
∣
∣
∣

∫

∇θk · ∇u · ζ
∣
∣
∣
∣

2

≤ C‖∇ζ‖2
L2

∫

d(x,∂�)>1/k
|∇u|2 −→ 0,

which concludes the proof of Step 2.
Step 3: ζ ∈ H1

0 .
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We define ζk = Pk(ζ ), where Pk : Rd → R
d is given by

Pk(x) =
{

x if |x | ≤ k,
k
|x | x if |x | > k.

Then ζk ∈ H1
0 ∩ L∞(�) and ζk → ζ in H1.

If ζ · g ≥ 0, then it obviously holds ζk · g ≥ 0, so that we may apply Step 2 to ζk

and obtain ∫

∇ζk · ∇u ≤ 0.

Letting k go to∞ in this last inequality provides the desired conclusion. ��

Appendix 3: Second Variation of the Energy

At a map Q ∈ H1(−1, 1)3, the second variation of the energy reads

D2 E(Q)[H ] =
∫ (

1

λ2 (H ′)2 + D2 f (Q)[H ]
)

dx,

where

D2 f (Q)[H ] = θ

3
|H |2 − 4Q · H2 + (Q · H)2 + 1

2
|Q|2|H |2.

If we take Q = χ = (q1, q2, 0), and consider separately perturbations Hsp =
(h1, h2, 0) and Hsb = (0, 0, h3), we have

|Hsp|2 = 6h2
1 + 2h2

2 |Hsb|2 = 2h2
3

χ · H2
sp = 2q1(h

2
2 − 3h2

1)+ 4q2h1h2 χ · H2
sb = 2q1h2

3

χ · Hsp = 6q1h1 + 2q2h2 χ · Hsb = 0,

so that we can compute

D2 f (χ)[Hsp] = 6

(
θ

3
+ 2q1 + 9q2

1 + q2
2

)

h2
1

+ 2

(
θ

3
− 4q1 + 3q2

1 + 3q2
2

)

h2
2

+ 8q2(3q1 − 2)h1h2

D2 f (χ)[Hsb] = 2

(
θ

3
− 4q1 + 3q2

1 + q2
2

)

h2
3.
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