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Abstract. The anisotropic Ginzburg-Landau system

∆u+ δ∇(div u) + δ curl∗(curlu) = (|u|2 − 1)u,

for u : R2 → R2 and δ ∈ (−1, 1), models the formation of vortices in liquid crys-

tals. We prove the existence of entire solutions such that |u(x)| → 1 and u has a

prescribed topological degree d ≤ −1 as |x| → ∞, for small values of the anisotropy
parameter |δ| < δ0(d). Unlike the isotropic case δ = 0, this cannot be reduced to a one-

dimensional radial equation. We obtain these solutions by minimizing the anisotropic

Ginzburg-Landau energy in an appropriate class of equivariant maps, with respect to
a finite symmetry subgroup.

1. Introduction

We study entire solutions u : R2 → R2 of the anisotropic Ginzburg-Landau equation

∆u+ δ∇(div u) + δ curl∗(curlu) = (|u|2 − 1)u,(1.1)

where δ ∈ (−1, 1) is a fixed constant and we define curlu = ∂1u2 − ∂2u1 and its adjoint
curl∗ = (∂2,−∂1). This is the Euler-Lagrange equation corresponding to the anisotropic
Ginzburg-Landau energy

F (u; Ω) =

ˆ
Ω

1

2
|∇u|2 +

δ

2

(
(div u)2 − (curlu)2

)
+

1

4
(1− |u|2)2, Ω ⊂ R2.(1.2)

Equation (1.1) and its associated energy (1.2) arise in the description of 2D point defects
in some liquid crystal configurations, such as smectic-C∗ thin films [10] and nematics
close to the Fréedericksz transition [9, 2, 3]. It has also been proposed as a toy model
to understand more complex liquid crystal equations [13]. While simplified isotropic
equations (corresponding here to δ = 0) are often used to model liquid crystals, it should
be stressed that real liquid crystal materials are always anisotropic, and this reduced
symmetry gives rise to nontrivial mathematical challenges.

In the isotropic case δ = 0, equation (1.1) is the classical Ginzburg-Landau equation

(1.3) ∆u = (|u|2 − 1)u,

which has been extensively studied due to its physical applications and its mathematical
richness – see the monographs [6, 19, 22] and the references therein. It is known that
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for any prescribed degree (or winding number) d 6= 0, the isotropic Ginzburg-Landau
equation (1.3) admits a unique solution of the form

(1.4) vd(re
iθ) = ηd(r)e

idθ, ηd(0) = 0, lim
+∞

ηd = 1, ηd ≥ 0,

where the radial profile ηd solves a certain ODE (ordinary differential equation) problem
[14, 8].

In the anisotropic case δ 6= 0 however, the only solutions to (1.1) of the form u =
η(r)ei(dθ+θ0) are of degree d = 1, and phase shift θ0 ≡ 0 mod π/2 [9]. Therefore, in strong
contrast with the isotropic case, the problem of finding entire solutions u : R2 → R2 of
(1.1), such that |u(x)| → 1 and u has a prescribed topological degree d 6= 1 as |x| → ∞,
cannot be reduced to a one-dimensional ODE.

Our main result is the existence of solutions of any negative prescribed degree d at
infinity, provided the anisotropy δ is small enough.

Theorem 1.1. For any d = −1,−2, . . ., there exists δ0(d) > 0 such that for small enough
anisotropy |δ| < δ0(d), there are at least two distinct, smooth entire solutions u : R2 → R2

of the anisotropic Ginzburg-Landau equation (1.1) satisfyingˆ
R2

(1− |u|2)2 < 2πd2 and deg(u; ∂Dr) = d for r � 1.

Remark 1.2. These solutions are, for δ 6= 0, not radially symmetric. This is very different
from the isotropic case, where the existence of non-radial solutions is a famous open
question. As δ → 0, the two solutions obtained in Theorem 1.1 converge to the radial
solutions vd and ivd (1.4) of the classical Ginzburg-Landau equation (1.3). Indeed, they
converge to solutions with finite potential energy

´
R2(1−|u|2)2 <∞, of degree d at infinity,

and with the symmetry constraint (1.5a) for n = 1− d. That symmetry constraint forces
these solutions to have a zero of degree D at the origin, with |D| ≥ |d|, and they must
therefore be radial thanks to a result of Mironescu [18, Théorème 2].

Remark 1.3. The two solutions described in the Theorem are distinct modulo the elemen-
tary symmetries of equation (1.1), which are the following transformations associated to
rotation equivariance, reflection equivariance, and translation invariance:

u(z) −→ τe−iαu(eiαz) α ∈ R, τ ∈ {±1},

u(z) −→ u(z̄),

u(z) −→ u(z + a), a ∈ R2.

These transformations preserve the equation (1.1) and its associated energy. Note that
in the isotropic case δ = 0 we have invariance under any rotation of the variable u(eiαz)
and of the target eiαu(z) separately, but for δ 6= 0 this is only true for α ≡ 0 modulo π.

Remark 1.4. A more sophisticated liquid crystal model (Landau-de Gennes) involves
tensor-valued maps. Also there, anisotropy poses challenging mathematical issues (see
e.g. [16]). The techniques of the present article would likely apply to construct interesting
non-radial solutions of the Landau-de Gennes equations.

The solutions we obtain in Theorem 1.1 are invariant under a well-chosen finite sub-
group of the transformations described in Remark 1.3: this is the key to prescribing the
degree at infinity. Specifically, we impose the symmetry constraints

(1.5a) u(ei
π
n z) = −eiπnu(z) = ei

(1−n)π
n u(z),

for some integer n ≥ 2, and in addition

(1.5b) u(z̄) = ±u(z),
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to distinguish the two different solutions (depending on the sign ±). Thanks to the
symmetric criticality principle [20] (see also [17, Proposition 7.1] for a simplified version
applicable to the present case), minimizing the energy under these symmetry constraints
still provides a solution of (1.1). Moreover, the equivariance (1.5a) imposes a degree
constraint: if u is continuous and does not vanish on a fixed circle ∂Dr, a continuous
choice of phase ψ : R→ R such that u/|u|(reiθ) = eiψ(θ) must satisfy

ψ
(
θ +

π

n

)
= ψ(θ) +

(1− n)π

n
+ 2k0π,

for some k0 ∈ Z and all θ ∈ R, and iterating this translation yields ψ(2π) − ψ(0) =
2π(1− n) + 4k0nπ, hence

deg(u; ∂Dr) ≡ (1− n) mod 2n.

In the equivalence class (1−n) + 2nZ the degree with minimal absolute value is d = 1−n
(d = −1,−2, . . .). This will enable us to conclude that minimizing solutions have degree
d at infinity.

Remark 1.5. The construction of solutions of degree d ≥ 2 is an open problem. Note
however that from the point of view of physics, the most relevant degrees are d = ±1
since vortices of degree |d| ≥ 2 are expected to be unstable. (The solutions we construct
here are stable with respect to perturbations which preserve the symmetry constraints,
but stability with respect to general perturbations is not guaranteed.)

With the above discussion in mind, the proof of Theorem 1.1 will proceed in two
steps. First we obtain in Proposition 3.1 entire d-equivariant solutions with finite potential
energy

´
(1 − |u|2)2 < πd2, by minimizing the energy in large disks DR and letting R →

∞. This first step works for any value of δ ∈ (−1, 1) and provides a solution of degree
d∞ ≡ d modulo 2(1 − d). The second step, in Proposition 4.1, consists in using the
minimizing property to show that d∞ is in fact equal to d. This is where we require
|δ| < δ0(d). The most delicate part of that second step is to obtain a logarithmic energy
bound (Lemma 4.3). We note that the value of δ0(d), given explicitly in Proposition 4.1,
could be somewhat improved (at the price of additional technical details) however whether
the optimal δ0(d) is equal to 1 or is strictly less than 1 is an open problem. Theorem 1.1
follows directly from Propositions 3.1 and 4.1.

The article is organized as follows. In Section 2 we determine the equivariant classes
that are compatible with the anisotropic equation (1.1). In Section 3 we prove the existence
of entire equivariant solutions, while in Section 4 we characterize their degree for small
enough anisotropy. In Section 5 we derive Pohozaev identity which plays a crucial role in
the computations of Section 4.

2. Anisotropic equivariant classes

Let G and Γ be two subgroups of O(2), and let µ : G→ Γ be a group homomorphism.
Let also Ω ⊂ R2 be a set invariant by the action of G. By definition, a map u : Ω → R2

is µ-equivariant if

(2.1) u(gx) = µ(g)u(x), ∀x ∈ Ω, ∀g ∈ G.
We refer to [23] for a discussion of such maps, and to [4, 5] for examples of equivariant
solutions.

An equivariant class is compatible with (1.1) (cf. [20]), if given any µ-equivariant map
u, the integrand of (1.2) is invariant by the action of G. Clearly, (2.1) implies that for
every g ∈ G, and x ∈ Ω, we have

|u(gx)| = |u(x)|, ∇u(gx) = µ(g) ◦ (∇u(x)) ◦ g−1, |∇u(gx)| = |∇u(x)|,
3



and, letting σ(x) = −x denote the antipodal map,

(div u)(gx) = ±(div u)(x) ⇐⇒ µ(g) = g or µ(g) = σ ◦ g,
(curlu)(gx) = ±(curlu)(x) ⇐⇒ µ(g) = g or µ(g) = σ ◦ g.

Thus, the anisotropic equivariant classes of (1.1) are detemined by the homomorphisms
µ : G→ Γ satisfying

(2.2) ∀g ∈ G : µ(g) = g or µ(g) = σ ◦ g.
For instance, the solution x 7→ v1(x/

√
1 + δ) of (1.1) (where v1 is defined in (1.4)),

is equivariant with respect to the trivial homomorphism ι : O(2) → O(2), ι(g) = g,
∀g ∈ O(2). On the other hand, the solution x 7→ iv1(x/

√
1− δ) of (1.1) is equivariant

with respect to the homomorphism ι̃ : O(2) → O(2), such that ι̃(s) = σ ◦ s for every
reflection s ∈ O(2), and ι̃(r) = r for every rotation r ∈ O(2).

Moreover, we point out that the symmetry constraints introduced in (1.5) are equivalent
to equivariance with respect to the homomorphisms µ±d , d = −1,−2, . . . defined below.
For every n = 1− d ≥ 2, we denote by D2n the dihedral group generated by the rotation
r2n of angle π/n, and the reflection s0 with respect to the x1 coordinate axis. Setting

µ+
d (s0) = s0, µ+

d (r2n) = σ ◦ r2n = rd2n,

µ−d (s0) = σ ◦ s0, µ−d (r2n) = σ ◦ r2n = rd2n,

we can see that these choices for µ±d (s0) and µ±d (r2n) yield homomorphisms µ±d : D2n →
D2n, such that µ±d -equivariance is equivalent to (1.5). Actually, the homomorphisms ι̃,

and µ±d (as well as their restrictions to subgroups), are the only nontrivial homomorphisms
satisfying (2.2).

Figure 1. For n = 2 and d = −1, the images by the homomorphisms
µ±−1 : D4 → µ±−1(D4) = D4 of the reflections si := ri4s0 (i = 0, 1, 2, 3).

4



Figure 2. For n = 3 and d = −2, the images by the homomorphism
µ+
−2 : D6 → µ+

−2(D6) = D3 of the reflections si := ri6s0 (i = 0, 1, 2, . . . , 5).

Examples of µ+
d -equivariant maps are u(reiθ) = f(r)eiDθ for any D ∈ d + 2(1 − d)Z

and real-valued f(r). The transformation u 7→ iu provides a bijection from µ+
d -equivariant

maps onto µ−d -equivariant maps. We also notice that given a reflection s ∈ D2n, the image

by a µ±d -equivariant map of the reflection line of s, is contained in the reflection line of

µ±d (s). Figures 1 and 2 show the images by the homomorphisms µ±d , of the reflections
si := ri2ns0 (i = 0, 1, . . . , 2n − 1), and illustrate why deg(u; ∂Dr) ≡ d mod 2n, for a
µ±d -equivariant map u that does not vanish on the circle ∂Dr.

3. Existence of entire equivariant solutions

The anisotropic Ginzburg-Landau equation (1.1) is preserved by the transformation
(δ, u) → (−δ, iu), so without loss of generality we will restrict ourselves to nonnegative
anisotropy δ ∈ [0, 1). Moreover, thanks to the two-dimensional identity ∆u = ∇(div u)−
curl∗(curlu), we may rewrite (1.1) as

(3.1) (1− δ)∆u+ 2δ∇(div u) = ∇W (u), W (u) =
1

4
(1− |u|2)2,

with associated energy functional

(3.2) E(u,Ω) =

ˆ
Ω

[
(1− δ)

2
|∇u|2 + δ(div u)2 +W (u)

]
, δ ∈ [0, 1).

The energy density in (3.2) differs from the previous one in (1.2) by a multiple of the null
Lagrangian 2 det(∇u) = (div u)2 + (curlu)2 − |∇u|2. Note that for all δ ∈ (−1, 1) the
left-hand side of the system (3.1) is an elliptic operator, for which standard Lp and Cα

estimates are available. In this section we prove the existence of entire µ±d -equivariant
solutions (that is, satisfying the symmetry constraints (1.5) for n = 1− d) of (3.1).

Proposition 3.1. Let d = −1,−2, . . . and δ ∈ [0, 1). There exists a smooth µ±d -equivariant
solution u : R2 → R2 of the anisotropic Ginzburg-Landau equation (3.1) such that

2

ˆ
R2

W (u) < πd2,

|u(x)| −→ 1 as |x| → +∞, and u is locally minimizing in the sense that

E(u,DR) ≤ E(u+ ξ,DR) for any µ±d -equivariant ξ ∈ H1
0 (DR;R2),

and any centered open disk DR of finite radius R > 0.
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Proposition 3.1 is proved by minimizing the energy (3.2) among equivariant maps in
the disk DR, with well-chosen boundary condition on ∂DR, and letting R → ∞. The
boundary condition on ∂DR is chosen to minimize the energy among S1-valued maps. For
a map u : S1 → S1 (identified with its homogeneous radial extension satisfying ∂ru = 0),
the energy is given by

E(u;S1) =

ˆ
S1

[
1− δ

2
|∂θu|2 + δ(∂θu · eθ)2

]
dθ, u ∈ H1(S1;S1).

Denoting by H1
equ(S1;S1) the class of H1 maps from S1 into itself that are µ±d -equivariant,

we define

C±δ,d = min
u∈H1

equ(S1;S1)
E(u;S1).

The direct method of the calculus of variation ensures that the infimum is indeed attained:

C±δ,d = E(ζ;S1) for some map ζ ∈ H1
equ(S1;S1),(3.3)

and we will use this map ζ as a boundary condition on the circle ∂DR.

Remark 3.2. The map ζ can be locally lifted as ζ(θ) = eiψ(θ) and the real-valued H1

phase ψ solves the Euler-Lagrange equation

∂θ [(1 + δ cos(2θ − 2ψ))∂θψ] = δ sin(2θ − 2ψ)(∂θψ)2,

which ensures that ψ is smooth (see e.g. [11, Theorem 4.36]). Hence ζ is smooth, and we
have

C+
δ,d < E(eidθ,S1) = πd2, C−δ,d < E(ieidθ,S1) = πd2,

because the map eidθ (resp. ieidθ) is µ+
d (resp. µ−d ) equivariant but does not satisfy the

Euler-Lagrange equation.

Proof of Proposition 3.1. By the direct method of the calculus of variations, for all R > 0
there exists a µ±d -equivariant map uR minimizing E(·, DR) among all µ±d -equivariant maps
u ∈ H1(DR;R2) with boundary condition

u(Reiθ) = ζ(θ) ∀θ ∈ R,

where ζ is defined in (3.3). The map uR is a weak solution of the elliptic system (3.1),
∇W (uR) ∈ L2(DR) and ζ is smooth, hence from standard elliptic regularity theory (see
e.g. [12, Theorem 4.14]) we have that u ∈W 2,2(DR). By Sobolev embedding this implies
u ∈ Cα(DR) for all α ∈ (0, 1), and bootstrapping Schauder estimates (see e.g. [12,
Theorems 5.20, 5.21]) one deduces u ∈ C∞(DR). In particular uR is regular enough, up
to the boundary, to derive Pohozaev’s identity (see Section 5)

2

ˆ
DR

W (u) =

ˆ
S1

[
1− δ

2
|∂θζ|2 + δ(∂θζ · eθ)2

]
−R
ˆ
∂DR

[
1 + δ

2
(∂ru · er)2 +

1− δ
2

(∂ru · eθ)2

]
≤
ˆ
S1

[
1− δ

2
|∂θζ|2 + δ(∂θζ · eθ)2

]
,

and therefore

2

ˆ
DR

W (uR) ≤ C±δ,d,(3.4)

by definition (3.3) of ζ.
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Fix x0 ∈ R2 with |x0| < R − 2 and a cut-off function η ∈ C∞c (D2(x0)) such that
1D1(x0) ≤ η ≤ 1D2(x0) and |∇η| ≤ 2. Multiplying the equation (3.1) satisfied by uR by

η2uR we obtain

(1− δ)
ˆ
D2(x0)

η2|∇uR|2 ≤ (1 + 3δ)

ˆ
D2(x0)

η|∇η| |uR| |∇uR|

+

ˆ
D2(x0)

η2
∣∣|uR|2 − 1

∣∣ |uR|2
≤ 1

2A
(1 + 3δ)

ˆ
D2(x0)

η2|∇uR|2 +
A

2

ˆ
D2(x0)

|∇η|2|uR|2

+

ˆ
D2(x0)

(
4W (uR) + 2W (uR)

1
2

)
,

for any A > 0. Choosing A = (1 + 3δ)/(1− δ) we deduceˆ
D2(x0)

η2|∇uR|2 ≤
1 + 3δ

1− δ

ˆ
D2(x0)

|∇η|2|uR|2

+
1

1− δ

ˆ
D2(x0)

(
4W (uR) + 2W (uR)

1
2

)
≤ 1

1− δ

(
C + C

ˆ
DR

W (uR)

)
,

for some absolute constant C > 0. Thanks to the uniform bound (3.4) we deduce that uR
is bounded in H1(D1(x0)), and as a consequence ∇W (uR) is bounded in L2(D1(x0)), uni-
formly with respect to R > 2 and x0 ∈ DR−2. From elliptic L2 estimates [12, Theorem 4.9]
this implies that uR is bounded in W 2,2(D1(x0)) ⊂ Cα(D1(x0)) for any α ∈ (0, 1), and
by Schauder estimates [12, Theorem 5.20] in C2,α(D1(x0)), again uniformly with respect
to R > 2 and x0 ∈ DR−2.

By Ascoli’s theorem and a diagonal argument we may therefore extract a subsequence
R→ +∞ such that uR converges in C1

loc(R2;R2) to a solution u ∈ C∞(R2;R2) of (3.1). By
construction, u is µ±d -equivariant, and thanks to (3.4) it satisfies 2

´
R2 W (u) ≤ C±δ,d < πd2

(cf Remark 3.2 for the last inequality). The finiteness of the potential energy
´
R2 W (u),

together with the uniform continuity of u (thanks to the above uniform elliptic estimates
in D1(x0) for any x0 ∈ R2), implies that lim|x|→∞ |u(x)| = 1. Finally, for any R′ > R > 0

and µ±d -equivariant ξ ∈ H1(R2;R2) with support inside DR we have

E(u;DR)− E(u+ ξ;DR)

= E(u;DR)− E(uR′ ;DR) + E(uR′ + ξ;DR)− E(u+ ξ;DR)

+ E(uR′ ;DR)− E(uR′ + ξ;DR)

≤ E(u;DR)− E(uR′ ;DR) + E(uR′ + ξ;DR)− E(u+ ξ;DR),

where we used the fact that uR′ is minimizing and ξ = 0 in DR′ \ DR. The right-hand
side converges to 0 as R′ → ∞, since uR′ → u in C1(DR). This proves the minimizing
property of u. �

4. The degree at infinity is equal to d for small anisotropy

So far we have constructed, for any δ ∈ [0, 1), an entire solution u of the anisotropic
Ginzburg-Landau equation (3.1) with finite potential energy

´
R2 W (u) <∞, whose degree

at infinity d∞ = deg(u; ∂Dr) for r � 1, is of the form

d∞ = d+ 2(1− d)N for some N ∈ Z,
7



as explained in the introduction. Because d ≤ 0, among all possible values of d∞ the one
with lowest absolute value is precisely d. In this section, we use this to conclude that,
provided the anisotropy δ is small enough, d∞ must in fact be equal to d.

Proposition 4.1. Let d = −1,−2, . . ., δ ∈ [0, 1) and u be a µ±d -equivariant, locally
minimizing solution of the anisotropic Ginzburg-Landau equation (3.1) as described in
Proposition 3.1. Then

deg(u; ∂Dr) = d for r � 1, if 0 ≤ δ < δ0(d) = min

(
2− 2d

4d2 + 10− 10d
,

2√
3
− 1

)
.

Proof of Proposition 4.1. The proof is a direct combination of Lemma 4.2, Lemma 4.3
and Lemma 4.4 below. Specifically Lemma 4.2 provides a lower bound

lim inf
R→∞

E(u,DR)

π lnR
≥ (1− δ)d2

∞,

while Lemmas 4.3 and 4.4 provide, in two steps, the upper bound

lim inf
R→∞

E(u,DR)

π lnR
≤ (1 + 3δ)(d2 + |d∞ − d|),

whenever 0 ≤ δ < 2/
√

3− 1. Therefore we must have

(1− δ)d2
∞ ≤ (1 + 3δ)(d2 + |d∞ − d|),

that is,

δ ≥ d2
∞ − d2 − |d∞ − d|

3d2 + 3|d∞ − d|+ d2
∞
.

This implies d∞ = d as soon as

δ < δ∗(d) := inf
d∞∈(d+2(1−d)Z)\{d}

d2
∞ − d2 − |d∞ − d|

3d2 + 3|d∞ − d|+ d2
∞
.

To compute δ∗(d) we let d∞ = d+ x and consider the function

f(x) =
(d+ x)2 − d2 − |x|

3d2 + 3|x|+ (d+ x)2
=

x2 + 2dx− |x|
x2 + 2dx+ 3|x|+ 4d2

,

whose derivative satisfies

(x2 + 2dx+ 3|x|+ 4d2)2f ′(x) =

{
4(d+ x)(2d2 − d+ x) if x > 0,

4(d+ x)(2d2 + d− x) if x < 0.

In particular we have f ′(x) ≤ 0 for x ≤ −2(1− d) and f ′(x) ≥ 0 for x ≥ 2(1− d), so

δ∗(d) = inf
x∈2(1−d)Z\{0}

f(x) = min(f(−2(1− d)), f(2(1− d)))

= f(2(1− d)) =
2− 2d

4d2 + 10− 10d
.

We conclude that d∞ = d whenever δ < δ0(d). �

The rest of this section is dedicated to the proof of Lemmas 4.2, 4.3 and 4.4. The first
is a classical lower bound simply using the fact that u has degree d∞ at infinity and the
energy is larger than (1− δ) times the isotropic Ginzburg-Landau energy.

Lemma 4.2. Let δ ∈ [0, 1), u : R2 → R2 be a smooth map and R0 > 1 be such that
|u| ≥ 1/2 on ∂Dr and deg(u; ∂Dr) = d∞ for all r > R0. Then

E(u,DR) ≥ (1− δ)πd2
∞ lnR+O(1) as R→∞.

8



Proof of Lemma 4.2. We follow Jerrard’s argument [15] (see also [21]). For |x| > R0 we
may write u = ρv with ρ = |u| and v = u/|u|, and deduce

1− δ
2
|∇u|2 + δ(div u)2 +W (u) ≥ 1− δ

2r2
|∂θu|2 +W (u)

≥ 1− δ
2r2

ρ2|∂θv|2 +
1− δ
2r2
|∂θρ|2 +

1

4
(1− ρ)2.

Letting h = max(1− ρ, 0), we have ρ2 ≥ 1− 2h and the above implies

1− δ
2
|∇u|2 + δ(div u)2 +W (u) ≥ (1− 2h)

1− δ
2r2
|∂θv|2 +

1− δ
2r2
|∂θh|2 +

1

4
h2.

Integrating on ∂Dr for some r > R0 this implies, since deg(v) = d∞,ˆ
∂Dr

(
1− δ

2
|∇u|2 + δ(div u)2 +W (u)

)
≥ 1

r
(1− δ)πd2

∞(1− 2hmax(r)) +

ˆ
∂Dr

(
1− δ
2r2
|∂θh|2 +

1

4
h2

)
,(4.1)

where hmax(r) = max∂Dr h = h(xmax) for some xmax ∈ ∂Dr. To bound the last term
from below we set

γ =
1

r2

ˆ
∂Dr

|∂θh|2,

so that by Morrey’s inequality we have

h(x) ≥ hmax
2

∀x ∈ ∂Dr with |x− xmax| ≤ c
h2
max

γ
,

for some absolute constant c > 0. We deduceˆ
∂Dr

(
1− δ
2r2
|∂θh|2 +

1

4
h2

)
≥ 1− δ

2
γ + cmin

(
r,
h2
max

γ

)
h2
max,

for a possibly different absolute constant c > 0. Since r ≥ R0 ≥ 1, we deduceˆ
∂Dr

(
1− δ
2r2
|∂θh|2 +

1

4
h2

)
≥ min

(
c h2

max, inf
γ≥0

{
1− δ

2
γ + c

h4
max

γ

})
≥ c
√

1− δh2
max,

again for a possibly different absolute constant c > 0. Coming back to (4.1) we deduceˆ
∂Dr

(
1− δ

2
|∇u|2 + δ(div u)2 +W (u)

)
≥ 1

r
(1− δ)πd2

∞ − 2(1− δ)πd2
∞
hmax(r)

r
+ c
√

1− δhmax(r)2

≥ 1

r
(1− δ)πd2

∞ + inf
h≥0

{
c
√

1− δh2 − 2(1− δ)πd2
∞
h

r

}
≥ 1

r
(1− δ)πd2

∞ − c
d4
∞
r2
,

for a possibly different absolute constant c > 0. Integrating over r ∈ [R0, R] implies

E(u,DR \DR0) ≥ (1− δ)πd2
∞ ln

R

R0
− cd

4
∞
R0

for all R ≥ R0,

and proves the lower bound. �
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Lemmas 4.3 and 4.4 are dedicated to obtaining a similar upper bound on the energy of
u. The first step is to show that the energy cannot increase faster than logarithmically.
In the isotropic case δ = 0, such logarithmic energy bound is valid for any solution
(not necessarily minimizing) with finite potential energy, as follows from the estimates in
[7], which however rely very much on the isotropic structure of the equations and seem
unapplicable here. Here we show logarithmic energy growth provided δ is not too large,
by constructing appropriate comparison maps and using the minimizing property of our
solutions.

Lemma 4.3. Let d = −1,−2, . . ., δ ∈ [0, 1) and u be a µ±d -equivariant solution of the
anisotropic Ginzburg-Landau equation (3.1) described in Proposition 3.1. Then

lim inf
R→∞

E(u,DR)

lnR
<∞, provided 0 ≤ δ < 2√

3
− 1.

Proof of Lemma 4.3. Let

f(R) = RE(u, ∂DR), g(R) = R

ˆ
∂DR

(1− |u|2)2, σ(R) = sup
∂DR

|1− |u|| .

There exists R0 ≥ 2 such that for R ≥ R0 we have σ(R) ≤ 1/2 and may write

u = αρ ei(d∞θ+ϕ) in R2 \DR0

for some real-valued smooth functions ρ = |u|, ϕ in R2 \DR0
, and

α =

{
1 if u is µ+

d -equivariant,

i if u is µ−d -equivariant,

and d∞ = d modulo 2(1− d). The µ±d -equivariance of u translates into

ρ
(
ei

π
1−d z

)
= ρ(z̄) = ρ(z), ϕ

(
ei

π
1−d z

)
= ϕ(z̄) = ϕ(z).

For all R > R0 we have, with the notation ∂τ = eθ · ∇ = r−1∂θ,

R

ˆ
∂DR

(∂τρ)2 +

(
d∞
R

+ ∂τϕ

)2

≤ 1

(1− σ(R))2
R

ˆ
∂DR

|∂τu|2,

hence, for any η ∈ (0, 1), using 2R−1d∞∂τϕ ≤ η−1R−2d2
∞ + η (∂τϕ)2,

R

ˆ
∂DR

(∂τρ)2 + (1− η) (∂τϕ)
2 ≤ 1

(1− σ(R))2
R

ˆ
∂DR

|∂τu|2 + 2π

(
1 +

1

η

)
d2
∞.

From Pohozaev identity (see Section 5)

R

ˆ
∂DR

1 + δ

2
(∂τu · eθ)2 +

1− δ
2

(∂τu · er)2 = R

ˆ
∂DR

1 + δ

2
(∂ru · er)2 +

1− δ
2

(∂ru · eθ)2

+ 2

ˆ
DR

W (u)−R
ˆ
∂DR

W (u),

we deduce

R

ˆ
∂DR

|∂τu|2 ≤
1 + δ

1− δ
R

ˆ
∂DR

|∂ru|2 +
2

1− δ

ˆ
R2

W (u),

10



and therefore

(1− η)(1− σ(R))2R

ˆ
∂DR

(∂τρ)2 + (∂τϕ)2(4.2)

≤ 1 + δ

2
R

ˆ
∂DR

|∂τu|2 +
1− δ

2

(
1 + δ

1− δ
R

ˆ
∂DR

|∂ru|2 +
2

1− δ

ˆ
R2

W (u)

)
+

4π

η
d2
∞

=
1 + δ

2
R

ˆ
∂DR

|∇u|2 +

ˆ
R2

W (u) +
4π

η
d2
∞

≤ 1 + δ

1− δ
f(R) +

ˆ
R2

W (u) +
4π

η
d2
∞.

We define real-valued functions ψ, h in DR solving

∆ψ = 0 in DR, ψ = ϕ on ∂DR,

∆h = 0 in DR, h = 1− ρ on ∂DR.

From Poisson’s formula

ψ(reiθ) =
∑
n∈Z

cn

( r
R

)|n|
einθ, cn =

1

2π

ˆ 2π

0

ϕ(Reiθ)e−inθ dθ,

we deduce ˆ
DR

|∇ψ|2 = 2π
∑
|n| |cn|2

≤ 2π
∑

n2|cn|2 = R

ˆ
∂DR

(∂τϕ)2,

and similarly ˆ
DR

|∇h|2 ≤ R
ˆ
∂DR

(∂τρ)2,

ˆ
DR

h2 ≤ R

2

ˆ
∂DR

(1− ρ)2 ≤ 2g(R).

Moreover thanks to the maximum principle we have |h| ≤ σ(R) in DR. And by uniqueness,
the harmonic extensions h, ψ have the same equivariance as ρ, ϕ. Therefore we obtain a
µ±d -equivariant map ũ in DR agreeing with u on ∂DR by setting

ũ = α min(r, 1− h) ei(d∞θ+ψ) in DR.

Denoting by c a generic absolute positive constant (whose value may change from line to
line) we haveˆ

DR

|∇ũ|2 ≤ c

η
d2
∞ lnR+

ˆ
DR

|∇h|2 + (1 + σ(R))2(1 + η)

ˆ
DR

|∇ψ|2

≤ c

η
d2
∞ lnR+ (1 + σ(R))2(1 + η)R

ˆ
∂DR

(∂τρ)2 + (∂τϕ)2

≤ c

η
d2
∞ lnR+

(1 + σ(R))2

(1− σ(R))2

1 + η

1− η
1 + δ

1− δ
f(R) +

ˆ
R2

W (u),

where we used (4.2) for the last inequality. Moreover we haveˆ
DR

W (ũ) ≤ c+ c

ˆ
DR

h2 ≤ c+ c g(R),

11



so we deduce

E(u;DR) ≤ E(ũ;DR) ≤ 1 + 3δ

2

ˆ
DR

|∇ũ|2 +

ˆ
DR

W (ũ)

≤ 1

2

(1 + σ(R))2

(1− σ(R))2

1 + η

1− η
(1 + δ)(1 + 3δ)

1− δ
f(R) +

c

η
d2
∞ lnR+

ˆ
R2

W (u) + cg(R),

for any R > R0 and η > 0. Setting

F (R) = E(u;DR) + 2c

ˆ
DR

W (u) =

ˆ R

0

f(r) + 2cg(r)

r
dr,

we obtain

F (R) ≤ c∗(R)RF ′(R) +
c

η
d2
∞ lnR+ 3c

ˆ
R2

W (u),(4.3)

c∗(R) =
1

2

(1 + σ(R))2

(1− σ(R))2

1 + η

1− η
(1 + δ)(1 + 3δ)

1− δ
.

Multiplying by u the equation

(1− δ)∆u+ 2δ∇(div u) + (1− |u|2)u = 0,

and using that u,∇u ∈ L∞ and 1− |u|2 ∈ L2 we infer that R 7→ E(u;BR) grows at most
linearly, and therefore

lim sup
R→∞

F (R)

R
<∞.(4.4)

We claim that this linear growth estimate and the differential inequality (4.3) imply that

lim inf
R→∞

F (R)

lnR
<∞, provided

(1 + δ)(1 + 3δ)

1− δ
< 2.(4.5)

Assume by contradiction that lim inf F (R)/ lnR =∞ and that (1+δ)(1+3δ)/(1−δ) < 2.
Thanks to the latter we can choose η,R1 > 0 so that c∗(R) < 1 for all R > R1. And
since lim infR→∞ F (R)/ lnR =∞ we may further increase R1 and deduce from (4.3) the
inequality

F (R) ≤ ĉRF ′(R) for some ĉ ∈ (0, 1) and all R > R1,

But this implies that the function R 7→ F (R)/R1/ĉ is ultimately nondecreasing and
thereby contradicts (4.4) because 1/ĉ > 1. The conclusion follows from (4.5) since
E(u;BR) ≤ F (R). �

Thanks to Lemma 4.3 we now have a logarithmic bound on the energy, and we may
perform a sharper construction to obtain a more precise upper bound.

Lemma 4.4. Let d = −1,−2, . . . and u : R2 → R2 be a µ±d -equivariant map which locally
minimizes the energy E(u,DR) as described in Proposition (3.2) and such that

lim inf
R→∞

E(u,DR)

lnR
<∞.

Then

lim inf
R→∞

E(u,DR)

lnR
≤ (1 + 3δ)π

(
d2 + |d∞ − d|

)
,

where d∞ = deg(u; ∂Dr) for large enough r > 0.
12



Proof of Lemma 4.4. The proof follows an argument by Shafrir [24]. By assumption we
may fix a finite C∗ > lim infR→∞E(u,DR)/ lnR, and there exists a sequence R0 ≤ Rk →
+∞ such that

E(u; ∂DRk) ≤ C∗
Rk

.

On ∂DRk we have 1/2 ≤ |u| ≤ 3/2 and deg(u; ∂DRk) = d∞, so we can write u =
αρk(θ)ei(d∞θ+ϕk) for some real valued H1 functions ρk, ϕk, where we take α = 1 if u is
µ+
d equivariant, and α = i if u is µ−d equivariant. Equivariance of u translates into

ρk
(
ei

π
1−d z

)
= ρk(z̄) = ρk(z), ϕk

(
ei

π
1−d z

)
= ϕk(z̄) = ϕk(z) ∀z ∈ ∂DRk ,

and we have, denoting ∂τ = eθ · ∇ = r−1∂θ,

Rk

ˆ
∂DRk

(
|∂τρk|2 + |∂τϕk|2

)
. C∗ + d2

∞ := C∗∗.

Since ϕk is determined modulo 2π we may moreover assume the pointwise bound |ϕk| .
1 + C∗∗. Define a µ±d -equivariant map ũ = αρ̃ei(d∞θ+ϕ̃) in DRk \DRk/2 by setting

ρ̃ = 1 +
ln(2r/Rk)

ln 2
(ρk(θ)− 1)

ϕ̃ =
ln(2r/Rk)

ln 2
ϕk(θ).

With that definition, we have ũ = u on ∂DRk , ũ = αeid∞θ on ∂DRk/2, and

E(ũ;DRk \DRk/2) . 1 + C∗∗.

For small ε > 0, it is possible to construct a map uε : D1/2 → R2 which is µ±d -equivariant

with uε = αeid∞θ on ∂D1/2 and such that

Eε(uε;D1/2) :=

ˆ
D1/2

1− δ
2
|∇u|2 + δ(div u)2 +

1

ε2
W (u)

≤ (1 + 3δ)π
(
d2 + |d∞ − d|

)
ln

1

ε
+O(1)

as ε → 0. To give a sketch of uε’s construction, let N ≥ 0 be the unique nonnegative
integer such that

d∞ − d = 2(1− d)σN, σ ∈ {±1}.

Then fix N circles with radii λj = j
4N , j = 1, . . . , N , and construct uε by putting one

vortex of degree d at the origin, and 2(1−d) vortices of degree σ equally spaced along each
circle ∂Dλj , in a way that respects the µ±d -equivariance. Such configuration will satisfy
the claimed energy bound on uε. We perform the explicit construction in Lemma 4.5 in
the µ+

d -equivariant case and for σ = +1, the other cases being similar.
Finally, setting ũ(x) = uε(εx) for |x| ≤ Rk/2 and ε = 1/Rk, and combining this with

the construction of ũ in DRk \DRk/2, we obtain a µ±d -equivariant map ũ in DRk such that
ũ = u on ∂DRk and

1

π lnRk
E(ũ;DRk) ≤ (1 + 3δ)

(
d2 + |d∞ − d|

)
+ o(1),

and the minimizing property of u implies the same bound on E(u;DRk). �
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Lemma 4.5. For any integers d ≤ −1, N ≥ 0 and D = d + 2(1 − d)N , there exist
ε0 = ε0(d,N) > 0 and, for 0 < ε < ε0, a µ+

d -equivariant map uε : D1/2 → R2 such that

u((1/2)eiθ) = eiDθ for all θ ∈ R, andˆ
D1/2

(
1

2
|∇uε|2 +

1

ε2
W (uε)

)
≤ π

(
d2 + |D − d|

)
ln

1

ε
+ C,

for some constant C depending only on d,N .

Proof of Lemma 4.5. IfN = 0, i.e. D = d, we may simply take uε(re
iθ) = min(2r/ε, 1)eidθ,

hence we assume N ≥ 1.
For j = 1, . . . , N we define radii λj = j/4N , and will construct uε with a vortex of

degree d at the origin, and 2(1 − d) vortices of degree 1 equally spaced along each circle
∂Dλj . These degree 1 vortices are centered at

xj,k = eik
π

1−dλj , k = 0, . . . , 2(1− d)− 1, j = 1, . . . , N.

We fix a small radius ρ = ρ(d,N) > 0 such that the disks D2ρ(0), D2ρ(xj,k), are mutually
disjoint. In the set

ω := Dρ(0) ∪
⋃
j,k

Dρ(xj,k),

we define uε by setting

uε(re
iθ) = min(r/(ρε), 1) eidθ,

uε(xj,k + reiθ) = (−1)k min(r/(ρε), 1) eiθ,

for all r ∈ [0, ρ). Then uε is µ+
d -equivariant in ω, andˆ

ω

(
1

2
|∇uε|2 +

1

ε2
W (uε)

)
≤ π

(
d2 + |D − d|

)
ln
ρ

ε
+ C(d,N).

Since the trace of u on ∂ω is smooth and S1-valued with

deg(uε, ∂Dρ(0)) +
∑
j,k

deg(uε, ∂Dρ(xj,k)) = d+ 2(1− d)N = D,

there exists a smooth map u∗ : D1/2 \ω → S1 such that u∗ = uε on ∂ω and u∗((1/2)eiθ) =

eiDθ. Moreover, choosing this map u∗ minimizing the Dirichlet energy among S1-valued
maps with these boundary conditions ensures that u∗ is µ+

d -equivariant, because the
boundary conditions are equivariant and the minimizer is unique [6, § I.2]. Hence, set-
ting uε = u∗ in D1/2 \ ω we obtain a µ+

d -equivariant map satisfying the conclusion of
Lemma 4.5. �

5. The stress-energy tensor and Pohozaev identities for anisotropic
gradient systems

Let Ω ⊂ R2 be an open set. We consider the system

(5.1) ∆u+ δ∇(div u) + δ curl∗(curlu) = ∇W (u), u = (u1, u2) ∈ C2(Ω;R2),

with W ∈ C1(R2,R), and δ ∈ R. Equation (5.1) can be written as a divergence-free
condition, that is,

(5.2) div T = (∇u)>
(
∆u+ δ∇(div u) + δ curl∗(curlu)−∇W (u)

)
= 0

for the stress-energy tensor

T (u,∇u) =

(
T11 T12

T21 T22

)
,
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with

T11(u,∇u) =
1

2
|∂1u|2 −

1

2
|∂2u|2 +

δ

2
|∇u1|2 −

δ

2
|∇u2|2 −W (u),

T12(u,∇u) = ∂1u · ∂2u+ δ∇u1 · ∇u2 + δ(div u)(curlu),

T21(u,∇u) = ∂1u · ∂2u+ δ∇u1 · ∇u2 − δ(div u)(curlu)

T22(u,∇u) =
1

2
|∂2u|2 −

1

2
|∂1u|2 +

δ

2
|∇u2|2 −

δ

2
|∇u1|2 −W (u),

where · stands for the Euclidean inner product. Condition (5.2) is an algebraic fact that
follows from a long, but otherwise not difficult computation. In the isotropic case where
δ = 0, the stress-energy tensor reduces to the symmetric matrix (cf. [1, Section 3.1] or
[22, Section 5.1]):

T (u,∇u) =
1

2

(
|∂1u|2 − |∂2u|2 − 2W (u) 2∂1u· ∂2u

2∂1u· ∂2u |∂2u|2 − |∂1u|2 − 2W (u)

)
.

Proceeding as in [1, section 3.6], we are going to derive Pohozaev identities for (5.1), with
the help of the stress-energy tensor.

Proposition 5.1. Let Ω ⊂ R2 be an open set, let DR(x0) be an open disc of radius r
centered at x0, such that Dr(x0) ⊂ Ω, and let u ∈ C2(Ω;R2) be a solution of (5.1), with
W ∈ C1(R2;R). For every x = x0 + reiθ, we denote by (er, eθ) the orthonormal basis
(eiθ, ieiθ), and by ∂r (resp. ∂τ ), the partial derivatives with respect to the vector er (resp.
eθ).

Then, we have

2

ˆ
Dr(x0)

W (u) = r

ˆ
∂Dr

(
W (u) +

1 + δ

2
(∂τu · eθ)2 +

1− δ
2

(∂τu · er)2
)

(5.3)

− r
ˆ
∂Dr

(1 + δ

2
(∂ru · er)2 +

1− δ
2

(∂ru · eθ)2
)
,

and

2δ

ˆ
Dr(x0)

(div u)(curlu) = r

ˆ
∂Dr

(
(δ div u)(curlu)(5.4)

− δ(∇(u · er)) · (∇(u · eθ))− ∂ru · ∂τu
)
.

Proof. Without loss of generality we take x0 = 0. We derive (5.3) (resp. (5.4)), by
applying the divergence theorem to the vector fields X = (x1T11 + x2T21, x1T12 + x2T22)
(resp. Y = (−x2T11 + x1T21,−x2T12 + x1T22) in the disc Dr(x0), where we have set
x = (x1, x2). In view of (5.2), one can check that divX = T11 + T22 = −2W (u), while
div Y = −T12 + T21 = −2δ(div u)(curlu). Moreover a long but otherwise not difficult
computation gives:

X · x = −r2
(
W (u) +

1 + δ

2
(∂τu · eθ)2 +

1− δ
2

(∂τu · er)2

− 1 + δ

2
(∂ru · er)2 − 1− δ

2
(∂ru · eθ)2

)
,

and

Y · x = −r2
(
δ(div u)(curlu)− δ(∇(u · er)) · (∇(u · eθ))− ∂ru · ∂τu

)
.

�
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Ginzburg-Landau model.
[20] Palais, R. S. The principle of symmetric criticality. Comm. Math. Phys. 69, 1 (1979), 19–30.

[21] Sandier, E. Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152,

2 (1998), 379–403.
[22] Sandier, E., and Serfaty, S. Vortices in the magnetic Ginzburg-Landau model, vol. 70 of Progress

in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA,
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[24] Shafrir, I. Remarks on solutions of −∆u = (1− |u|2)u in R2. C. R. Acad. Sci. Paris Sér. I Math.

318, 4 (1994), 327–331.

16
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