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Abstract. We consider the Ginzburg-Landau heat flow on the two-
dimensional flat torus, starting from an initial data with a finite number
of nondegenerate zeros – but very high initial energy. We show that the
initial zeros are conserved, away from these zeros the modulus quickly
grows close to one, and the flow rapidly enters a logarithmic energy
regime, from which the evolution of vortices can be described by the
works of Bethuel, Orlandi and Smets.

1. Introduction

In the flat two-dimensional torus T2 = R2/Z2 we consider u(t, x), a solu-
tion of the Ginzburg-Landau heat flow

(1)
∂tu− ε2∆u = (1− |u|2)u t ≥ 0, x ∈ T2,

u(0, x) = u0(x),

with u0 ∈ C1(T2). The initial condition u0 may have a finite number of
zeros. More precisely, we assume that there exists α0 > 0 such that

(2) |u0(x)|+ |det∇u0(x)| ≥ α0.

This implies in particular that the zeros of u0 are nondegenerate and the
topological degree of the vector field u0 at each zero is 1 or −1.

We will denote the energy associated with (1) by

Eε(u) =

ˆ
T2

|∇u|2 +
1

4ε2
(1− |u|2)2.

Note that (1) is the L2 gradient flow of Eε up to a factor ε2, hence Eε
is decreasing along the flow. The Ginzburg-Landau heat flow has been
extensively studied [BCPS95, JS98, Lin96, SS04, Ser07b, Ser07a, BOS05,
BOS07a, BOS07b], in the case of initial data u0 = u0ε satisfying a loga-
rithmic energy bound Eε(u0ε) ≤M ln(1/ε). This bound enables to identify
vortices, the zeros of u0ε, and to describe their evolution. More precisely,
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in [JS98, Lin96, SS04], well-prepared initial data are considered, with a fi-
nite number of vortices of degree ±1 and correspondingly quantized energy.
These works establish via different methods that, in the accelerated time-
scale s = (ε2/ ln(1/ε))t, vortices move according to the gradient flow of a
renormalized energy analyzed in [BBH94], for as long as no collisions happen.
This limitation is removed in the works [Ser07a, BOS07a, BOS07b], where
splittings and collisions of vortices are described rigorously. Specifically,
[Ser07a] describes the global-in-time motion of vortices, taking collisions into
account, in bounded domains with Dirichlet or Neumann boundary condi-
tions. Initial well-preparedness is also relaxed: initial vortices are of degree
±1, but the energy quantization assumption is less stringent; moreover, split-
ting of higher degree vortices into vortices of degree ±1 is described under
specific assumptions. In [BOS07a, BOS07b], the domain is the whole plane
and a global motion law allowing for splittings and collisions is obtained, for
initial data satisfying the logarithmic bound Eε(u0ε) ≤ M ln(1/ε). In case
of Nε � 1 initial vortices, evolution of the vortex density is described by a
mean-field equation first obtained rigorously in [KS14, Ser17].

Here we are interested in initial data that may have much higher energy,
and wish to describe the emergence of vortices. This is mentioned as an
open problem in [BOS08, Problem 5]. Our methods are strongly inspired
by similar results on the emergence of sharp transitions in the Allen-Cahn
heat flow [Che04].

Our first main result concerns the evolution of the zeros of u.

Theorem 1.1. There exists C0 > 0, depending on u0, such that, for all
ε > 0 sufficiently small (depending on u0), if Z(t) denotes the set of zeros
of u(t), we have

#Z(t) = #Z(0), for 0 ≤ t ≤ Tε := ln
1

ε
− 1

2
ln ln

1

ε
− C0.

In other words, no new zeros of the vector field u(t) are generated up to
t = Tε. Additionally, if zj(t) is the evolution of the j-th zero z0

j of u0,

then |zj(t) − z0
j | . ε

√
ln(1/ε), and the topological degree of u(t) at zj(t) is

preserved. Finally, at t = Tε we have

|u(Tε, x)| ≥ 1

2
for dist(x,Z(0)) & ε

√
ln

1

ε
.(3)

Above and throughout the paper the symbol A . B for two nonnegative
quantities A,B means that there exists a constant C > 0, depending only
on u0, such that A ≤ CB.

Remark 1.2. In Theorem 1.1 and all our statements, the dependence on
u0 is through the constant α0 > 0 in (2), and constants K0, r0 > 0 such
that ‖∇u0‖L∞ ≤ K0, the cardinal of u−1

0 ({0}) is bounded by K0, and u0 is

invertible with |Du−1
0 | ≤ K0 in B(z0

j , r0), for each zero z0
j . The initial datum

u0 may depend on ε as long as these constants can be chosen ε-independent.
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An immediate corollary of Theorem 1.1 is that, if u0 does not vanish, then
u(t) does not vanish for 0 ≤ t ≤ Tε.

Corollary 1.3. If Z(0) = ∅ then Z(t) = ∅ for t ∈ [0, Tε].

This means that up to time Tε the Ginzburg-Landau heat flow does
not spontaneously create dipoles, as happens in the Berezinsky-Kosterlitz-
Thouless phase transition in stastistical mechanics. If one allows the initial
condition u0 to depend on ε, one may however observe creation of zeros,
as in [RS95, Proposition 4.1]. More precisely, the construction in [RS95,
Proposition 4.1], adapted to our context (there ε = 1), involves an initial
condition u0 = u0ε bounded in C2 and such that the two components of
u0 vanish along two smooth curves passing, with parallel tangents, through
two points distant at most ε, so that |u0|+ | det(∇u0)| . ε at these points,
and α0 in (2) cannot be taken ε-independent, see Remark 1.2.

Our second main result is a logarithmic energy bound at the time t = Tε
given by Theorem 1.1.

Theorem 1.4. For all sufficiently small ε > 0 (depending on u0), we have

Eε (u(t)) . ln
1

ε
, ∀t ≥ Tε.

Theorem 1.4 shows that the evolution enters an energy regime where the
analysis of [BOS05, BOS07a, BOS07b] can be applied. The present context
is actually slightly different, because we work on the torus T2 instead of
R2, but the results of [BOS05, BOS07a, BOS07b] should apply to T2, with
appropriate modifications. Conversely, the results of the present paper could
be adapted to R2, with appropriate conditions at infinity, at the price of
minor technical complications.

In particular, the work [BOS07b] describes the evolution of the vortices
of u as functions of the accelerated time-variable

s =
ε2

ln 1
ε

t.

The vortices ak(s) evolve according to the gradient flow of a renormalized
energy W (a), combined with a finite number of collision or branching times.
Note that in the torus T2, the renormalized energy W (a) would be slightly
different than the one considered in [BOS07b], see [Bar96, CS14, IJ21]. The
initial conditions for the vortices ak(s) as s→ 0+ are identified via the jaco-
bian Ju = det(∇u) at the initial time [BOS08, Proposition 2]. We therefore
complement Theorem 1.4 with our third main result, which characterizes
the jacobian at time t = Tε. Note that, in contrast with the previous theo-
rems, where ε > 0 was small but fixed and therefore we omitted to stress the
ε-dependence of u(t) = uε(t) evolving according to (1), this only concerns
the limit, as ε→ 0, of the map u(Tε) = uε(Tε).
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Theorem 1.5. We have, as ε→ 0,

Ju(Tε) = det(∇u(Tε)) −→
N∑
j=1

d̂jδz0j
,

in the sense of distributions, where z0
1 , . . . , z

0
N are the zeros of u0, and

d̂j ∈ {±1} its topological degree at z0
j .

Now we can be more specific about the initial conditions for the later evo-
lution of the vortices ak(s), as described in [BOS08, Proposition 2]. Letting
dk denote the topological degree of u(s) at ak(s) for small s > 0, the initial
conditions a0

k = lims→0+ ak(s) must satisfy

L∑
k=1

dkδa0k
=

N∑
j=1

d̂jδz0j
.

This implies in particular that {a0
k} = {z0

j }. But the points a0
k may not be

disjoint: this description does not prevent a priori a single initial zero z0
j to

spontaneously split into several vortices {ak}, because at s = 0 the energy
is not yet quantized (in the sense of [BOS07b, Theorem 1.5]). In fact initial
splitting into two vortices can easily be ruled out, but it is not clear whether
splitting into three or more vortices can occur.

However, note that in the setting of Corollary 1.3, if there are no initial
zeros, we can directly conclude that no later vortices appear. A complete
proof of this fact would require adapting [BOS08] to our torus-based setting.

The main idea of this paper is that on the time scale considered, the effect
of diffusion in the Ginzburg-Landau equation is dominated by the nonlinear
effect. This means that the modulus of any initial data instantaneously (on
the fast time scale s = ε2t/(ln 1/ε)) approaches 1 except possibly on small
regions where the initial data is close to 0. The methods are elementary
and provide explicit pointwise estimates on u(t, x), which directly imply
the stated results. To control diffusive effects, the key tool is Lemma 2.2,
which is a type of Gronwall inequality (new to our best knowledge). The
organization of the paper follows that of the presentation of the results which
are proven in the same order in the consecutive sections.

2. Zeros of u: proof of Theorem 1.1

Denote by Φ: R×R2 → R2 the flow of the ODE y′ = (1− |y|2)y, that is,

∂tΦ = (1− |Φ|2)Φ, Φ(0, X) = X,

given explicitly by

Φ(t,X) =
etX√

1 + |X|2(e2t − 1)
.(4)
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We want to estimate how far u is from

v(t, x) = Φ(t, g(t, x))

for some well-chosen map g with g(0, x) = u0(x). To this end we define
w = e−t(u− v), so that

u = v + etw.

Using the equations satisfied by u and Φ we obtain

∂tw − ε2∆w = −2(v · w)v − |v|2w − e−tN (v, etw)− e−tR,(5)

N (v,X) = |X|2v + 2(v ·X)X + |X|2X,
R = ∂tv − ε2∆v − (1− |v|2)v

= DΦ(t, g)(∂tg − ε2∆g)− ε2D2Φ(t, g)∇g · ∇g.

In view of (5), it is natural to choose, as in [Che04], g(t) = eε
2t∆u0, that is,

g solves

∂tg − ε2∆g = 0, g(0, x) = u0(x),(6)

and therefore

R = −ε2D2Φ(t, g)∇g · ∇g.(7)

The rest of the article is devoted to obtaining good pointwise estimates on
etw = u− v.

Lemma 2.1. If w solves

∂tw − ε2∆w = −2(v · w)v − |v|2w + F, t > 0, x ∈ Ω,

with w(0, x) = 0, then

‖w(t)‖L∞ ≤
ˆ t

0
‖F (s)‖L∞ ds.

Proof of Lemma 2.1. Multiplying the equation by w/|w| we obtain

∂t|w| = ε2 w

|w|
·∆w − |v|2|w| − 2

(v · w)2

|w|
+ F · w

|w|

≤ ε2 w

|w|
·∆w + |F |

≤ ε2∆|w|+ |F |,

so by comparison principle we have |w| ≤ ρ where ρ solves ∂tρ− ε2∆ρ = |F |
and ρ(0, x) = 0, that is, ρ(t) =

´ t
0 e

ε2(t−s)∆|F (s)| ds, where et∆ denotes the

heat semigroup on the torus T2. Since the L∞-norm is nonincreasing under
the action of that semigroup, we deduce the announced bound. �
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We apply Lemma 2.1 to our map w and F = −e−tN (v, etw)− e−tR. We
have |g| ≤ |u0| . 1, so |v| . 1 and |N (v,X)| . |X|2 for |X| . 1 (we will
apply this to X = etw = u− v). Thus we obtain

‖etw(t)‖L∞ .
ˆ t

0
e(t−s)‖esw(s)‖2L∞ ds+

ˆ t

0
et−s‖R(s)‖L∞ ds.(8)

Recall

R = −ε2D2Φ(t, g)∇g · ∇g,

and |∇g| ≤ |∇u0| . 1, hence

‖R(t)‖∞ . ε2 sup
|X|.1

|D2Φ(t,X)|.

Direct calculation gives

|D2Φ(t,X)| . et|X|(e2t − 1)

(1 + |X|2(e2t − 1))3/2

= et(e2t − 1)1/2 (|X|2(e2t − 1))1/2

(1 + |X|2(e2t − 1))3/2

. et(e2t − 1)1/2,

so ˆ t

0
et−s‖R(s)‖L∞ ds . ε2et

ˆ t

0
(e2s − 1)1/2 ds

. ε2et(e2t − 1)1/2,

where we have used
ˆ t

0
(e2s − 1)1/2 ds =

ˆ (e2t−1)1/2

0

x2

1 + x2
dx

= (e2t − 1)1/2 − arctan((e2t − 1)1/2)

≤ (e2t − 1)1/2.

Plugging this into (8) we deduce

‖etw(t)‖L∞ .
ˆ t

0
e(t−s)‖esw(s)‖2L∞ ds+ ε2et(e2t − 1)1/2.(9)

Lemma 2.2. Assume f, h are continuous positive functions on (0,∞) sat-
isfying

lim sup
t↘0

f(t)

h(t)
≤ 1,

and f(t) ≤ c
ˆ t

0
et−sf(s)2 ds+ h(t) ∀t > 0,
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for some constant c > 0. If T > 0 is such that

sup
0<t<T

ˆ t

0
et−s

h(s)

h(t)
h(s) ds ≤ 1

8c
,

then

f(t) ≤ 2h(t) ∀t ∈ (0, T ).

If in addition h is nondecreasing it suffices to check thatˆ T

0
eT−sh(s) ds ≤ 1

8c
.

Proof of Lemma 2.2. For all t > t̃ > 0 we have

f(t̃)

h(t̃)
≤ c
ˆ t̃

0
et̃−s

(
f(s)

h(s)

)2 h(s)

h(t̃)
h(s) ds+ 1

≤ c
ˆ t̃

0
et̃−s

h(s)

h(t̃)
h(s) dsΘ(t)2 + 1

≤ 1

8
Θ(t)2 + 1,

where

Θ(t) = sup
0<s<t

f(s)

h(s)
.

Taking the supremum over 0 < t̃ < t we deduce

Θ(t) ≤ 1

8
Θ(t)2 + 1 ∀t ∈ (0, T ),

so Θ takes values into{
x ∈ R :

x2

8
− x+ 1 ≥ 0

}
= (−∞, 4− 2

√
2] ∪ [4 + 2

√
2,+∞).

Since Θ is continuous on (0, T ) and Θ(0+) ≤ 1 < 4 − 2
√

2 we deduce that
Θ(t) ≤ 4− 2

√
2 ≤ 2 for all t ∈ (0, T ). �

We apply Lemma 2.2 to

f(t) = ‖etw(t)‖L∞ , h(t) = Aε2et(e2t − 1)1/2,

where A ≥ 1 is the constant hidden in the sign . in (9). By Lemma
2.1, applied to w and F = −e−tN (v, etw) − e−tR which satisfies |F | . 1
for 0 < t < 1, the map w satisfies ‖etw(t)‖L∞ . t for 0 < t < 1 so
lim sup0+(f/h) = 0, and thanks to (9) we deduce that

‖etw(t)‖L∞ . ε2et(e2t − 1)1/2(10)

for 0 ≤ t ≤ T = ln
1

ε
− ln(16A2),
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since h is nondecreasing and for this value of T we have

8A

ˆ T

0
eT−sh(s) ds ≤ 8A2ε2e2T ≤ 1

2
.

Estimate (10) tells us that u is close to v. Note in particular that (10) is
valid up to t = ln 1

ε −
1
2 ln ln 1

ε if ε is small enough. From (10) we also deduce
a bound on ∇w, using again the equation (5).

Lemma 2.3. If w solves ∂tw − ε2∆w = G with w(0) = 0 in the torus T2,
then we have

‖∇w(t)‖L∞ .
1

ε

ˆ t

0

‖G(s)‖L∞√
t− s

ds.

Proof of Lemma 2.3. We can consider w and G as periodic maps defined on
R2, then w is given by the Duhamel formula

w(t) =

ˆ t

0
Hε
√
t−s ∗G(s) ds,

where the convolution is on R2 andHδ(x) = δ−2H(x/δ), H(x) = (4π)−1e−|x|
2/4.

Therefore we have

‖∇w(t)‖L∞ .
ˆ t

0
‖∇Hε

√
t−s‖L1‖G(s)‖L∞ ds,

and the estimate follows from

‖∇Hε
√
t−s‖L1 .

1

ε
√
t− s

‖∇H‖L1 .

�

Applying Lemma 2.3 to the equation (5) satisfied by w and noting that
the choice of T in (10) ensures that the right-hand side G of (5) satisfies

|G| . ‖w‖L∞ + ε2(e2t − 1)1/2 . ε2(e2t − 1)1/2,

we obtain

‖∇w‖L∞ .
1

ε

ˆ t

0

ε2(e2s − 1)1/2

√
t− s

ds . ε
√
t(e2t − 1)1/2,(11)

for all t ≤ T = ln 1
ε − ln(16A2).

All assertions of Theorem 1 will follow from the bounds (10)-(11) on
etw = u − v and the explicit expression of v = Φ(t, g). First we need to

gather some information on g(t) := g(t, ·) = eε
2t∆u0. To that end we use

the nondegeneracy assumption (2). It implies that u0 has a finite number
of zeroes, all of degree ±1. We denote

{u0 = 0} = {z0
1 , . . . , z

0
N}.
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Since g(t, x) = g̃(ε2t, x) where g̃(t̃) = et̃∆u0 is C1 in [0,∞)× T2, we deduce
that there exists t0, β0, r0 > 0 such that, for all t ≤ t0/ε2,

|g(t)|+ |det(∇g(t))| ≥ α0

2
,

|g(t, x)| ≥ β0 for dist(x, {z0
j }) ≥ r0,

g(t) is invertible and |∇g(t)−1| . 1 on B(z0
j , r0).

In each disk B(z0
j , r0), the map g(t) has exactly one zero ẑj(t), so

{g(t) = 0} = {ẑ1(t), . . . , ẑN (t)} ,
and we have

dist(·, {ẑj(t)}) . |g(t, ·)| . dist(·, {ẑj(t)}).(12)

Thanks to the implicit function theorem, the maps t 7→ ẑj(t) are C1, and

d

dt
ẑj(t) = −∇g(t, ẑj)

−1∂tg(t, ẑj),

hence

| d
dt
ẑj | . ‖∂tg‖∞ . ε2‖∆g‖L∞ .

Viewing g and u0 as periodic maps defined on R2, g is given by the formula

g(t) = Hε
√
t ∗ u0,

where the convolution is on R2 andHδ(x) = δ−2H(x/δ), H(x) = (4π)−1e−|x|
2/4,

so

‖∆g‖L∞ ≤ ‖∇Hε
√
t‖L1‖∇u0‖L∞ .

1

ε
√
t
,

and we infer

| d
dt
ẑj | .

ε√
t
, |zj(t)− z0

j | . ε
√
t.(13)

Next we combine these properties of g(t) with the explicit expression v = Φ(t, g)
and the bounds (10)-(11) on etw = u − v to obtain the desired properties
on u. We denote by C > 0 a generic constant depending on u0 and which
may change from line to line. We start by bounding the modulus |u| from
below: using (4) and (10) we obtain, for 0 ≤ t ≤ ln(1/ε)− C,

|u| ≥ |v| − et|w| ≥ et|g|√
1 + |g|2(e2t − 1)

− Cε2e2t

≥ 1

2
min(et|g|, 1)− Cε2e2t.

The last quantity is positive whenever et|g| ≥ 1 and e2t < 1/(2Cε2), or
et|g| ≤ 1 and |g|2 > 2Cε2. Hence we deduce that

|u| > 0 in {|g| ≥ Cε} for 0 ≤ t ≤ ln
1

ε
− C.
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In the case without initial zeros, this proves in particular Corollary 1.3.
Moreover, combining this with (12) we have |u(t)| > 0 outside the disks
B(ẑj(t), Cε). By homotopy invariance of the topological degree, u(t) must
have at least one zero zj(t) ∈ B(ẑj(t), Cε). Next we verify that this zero is
unique.

Recall that g(t) is invertible on B(z0, r), and maps B(zj(t), Cε) into
B(0,Kε), for some constant K depending on u0, thanks to (12). The
flow map Φ(t) = Φ(t, ·) is invertible from B(0,Kε) onto B(0, R) given by

R = Φ̂(t,Kε), with inverse Φ(t)−1 = Φ(−t). Here Φ̂(t, r) = |Φ(t, reiθ)| for
any r > 0 and θ ∈ R.

Therefore v(t) = Φ(t) ◦ g(t) is invertible on B(zj(t), Cε), and

sup
v(B(ẑj(t),Cε))

|∇v(t)−1| . sup
|X|≤Φ̂(t,Kε)

|∇Φ(−t,X)|.

For t ≤ ln 1
ε − C we have

Φ(t,Kε) =
etKε√

1 +K2ε2(e2t − 1)
≤ etKε ≤ 1

2
,

provided C is large enough, and, for |X| ≤ 1/2,

∇Φ(−t,X) =
e−t√

1− |X|2(1− e−2t)

(
I +

1− e−2t

1− |X|2(1− e−2t)
X ⊗X

)
,

so we infer

sup
v(B(ẑj(t),Cε))

|∇v(t)−1| . e−t.

We use this to show that u(t) is injective on B(ẑj(t), Cε). Since the equation
y = u(x) = v(x) + etw(x) is equivalent to x = v−1(y− etw(x)), it suffices to
check that the map F : x 7→ v−1(y−etw(x)) is a contraction on B(ẑj(t), Cε),
for |y| < δ. Here δ > 0 is a small constant such that v−1 is well defined on
B(0, 2δ). Thanks to (10) we have |etw| ≤ δ provided C is large enough, and

sup
B(ẑj(t),Cε)

|∇F | . e−t‖et∇w‖∞ . ‖∇w‖∞.

Since ‖∇w‖∞ . ε
√
tet thanks to (11), we deduce that F is a contraction for

0 ≤ t ≤ Tε = ln
1

ε
− 1

2
ln ln

1

ε
− C0,

if the constant C0 is large enough, depending on u0. By the above discussion
this shows that u(t) is injective on B(ẑj(t), Cε), and

{u(t) = 0} = {z1(t), . . . , zN (t)} ,

for some zj(t) ∈ B(ẑj(t), Cε). This proves Theorem 1.1, except for its last
assertion (3). To verify (3), we note that (10) ensures |u− v| = |etw| ≤ 1/4
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for t = Tε, so it suffices to check that |v(Tε, x)| ≥ 3/4 for dist(x, {z0
j }) &

ε
√

ln(1/ε). We have

|v(Tε)| =
eTε |g|√

1 + |g|2(e2Tε − 1)
=

1√
1 + (1− |g|2)e−2Tε |g|−2

=
1√

1 + (1− |g|2)eC0

(
ε
√

ln(1/ε)

g

)2
.

If |g| ≥Mε
√

ln(1/ε) for some large enough M > 0, we deduce |v(Tε)| ≥ 3/4.

Thanks to (12) this implies that |v(Tε, x)| ≥ 3/4 for dist(x, {z0
j }) & ε

√
ln(1/ε)

and concludes the proof of Theorem 1.1.

3. Energy of u: proof of Theorem 1.4

First, we seek to obtain more precise estimates for w away from the bad
disks B(z0

j , Cε
√

ln(1/ε)). To this end we localize the equation by setting

w̃ = χ2w,

for some appropriate smooth cut-off function 0 ≤ χ(x) ≤ 1, to be chosen
later. From the equation (5) satisfied by w we deduce

∂tw̃ − ε2∆w̃ = −2(v · w̃)v − |v|2w̃ − e−tχ2N (v, etw)− e−tχ2R(14)

− ε2(∆χ2)w − 2ε2∇χ2 · ∇w.

Applying Lemma 2.1 to the equation (14) satisfied by w̃, and using (10)-(11)
to estimate the two last terms, we deduce

‖etw̃‖L∞ .
ˆ t

0
et−s‖esw̃‖2L∞ ds+

ˆ t

0
et−s‖χ2R(s)‖L∞ ds

+ (ε
√
t‖∇χ‖L∞ + ε2‖∇2χ‖L∞)ε2et(e2t − 1)1/2,

for all t ≤ ln(1/ε)− C. Applying Lemma 2.2 we therefore have

‖etχ2w‖L∞ .
ˆ t

0
et−s‖χ2R(s)‖L∞ ds(15)

+ (ε
√
t‖∇χ‖L∞ + ε2‖∇2χ‖L∞)ε2et(e2t − 1)1/2,

provided t ≤ ln(1/ε) − C and ε
√
t‖∇χ‖L∞ + ε2‖∇2χ‖L∞ ≤ 1. Using the

properties (12) of g, the fact that |ẑj(t) − z0
j | . ε

√
ln(1/ε) for t ≤ ln(1/ε)

thanks to (13), and letting

D(x) = dist(x, {z0
j }),

we have

D . |g| . D in

{
D ≥Mε

√
ln

1

ε

}
,
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for t ≤ ln(1/ε). Here M > 0 is a large constant that depends only on u0.

More precisely, it suffices to choose M such that 2|ẑj(t)−z0
j | ≤Mε

√
ln(1/ε),

which implies that D/2 ≤ dist(·, ẑj(t)) ≤ 3D/2 in {D ≥ Mε
√

ln(1/ε)}.
Since |∇g| . 1, recalling the explicit formulas (7) and (4) we deduce

|R| . ε2 et|g|(e2t − 1)

(1 + |g|2(e2t − 1))3/2

. ε2et(e2t − 1)
D

(1 + C−2D2(e2t − 1))3/2
,

in {D ≥ Mε
√

ln(1/ε)} for t ≤ ln(1/ε) − C. Therefore, choosing cut-off
functions χ satisfying

12λ≤D≤3λ ≤ χ ≤ 1λ≤D≤4λ, |∇χ| . 1

λ
, |∇2χ| . 1

λ2
,

for some λ & ε
√

ln(1/ε), from (15) we infer

|etw| . ε2etD

ˆ t

0

e2s − 1

(1 + C−2D2(e2s − 1))3/2
ds(16)

+
ε

D

√
1 + t ε2et(e2t − 1)1/2

in {D ≥Mε
√

ln(1/ε)} for t ≤ ln(1/ε)− C and ε small enough.
For any α ∈ (0, 1/2) we have

ˆ t

0

e2s − 1

(1 + α2(e2s − 1))3/2
ds

=
1

α2

ˆ (1+α2(e2t−1))1/2

1

(x2 − 1)

x2(x2 − 1 + α2)
dx ≤ 1

α2

ˆ ∞
1

dx

x2
,

thanks to the change of variable x = (1 + α2(e2s − 1))1/2. Hence, taking C
large enough that D/C < 1/2, from (16) we deduce

1

ε
|etw| . ε et

√
1 + t

D
(17)

in {D ≥ Mε
√

ln(1/ε)} for t ≤ ln(1/ε) − C and ε small enough. Using
Lemma 2.3 and (17) to estimate the right-hand side of (14), we also obtain
gradient bounds

et|∇w| . ε et
√
t

√
1 + t

D
(18)

in {D ≥Mε
√

ln(1/ε)} for t ≤ ln(1/ε)− C and ε small enough.
Next we refine these estimates by including the effect of the second term

−|v|2w̃ in the right-hand side of (14). We choose as above a cut-off function
χ supported in {λ ≤ D ≤ 4λ}, with |∇χ| . λ−1 and |∇2χ| . λ−2, for some
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λ ≥ Mε
√

ln 1
ε . Combining (10)-(11) and (17)-(18) to bound the two last

terms in (14), we have

∂tw̃ − ε2∆w̃ = −2(v · w̃)v − |v|2w̃ + F̃ ,(19)

|F̃ | . e−t‖etw̃‖2L∞ + e−t‖χ2R‖L∞

+
ε3

λ

√
1 + t min

(√
1 + t

λ
, (e2t − 1)

1
2

)
.

Arguing as in the proof of Lemma 2.1 but retaining the second term in the
right-hand side of (19), we have

∂t|w̃|+ |v|2|w̃| − ε2∆|w̃| ≤ |F̃ |.

In the support of χ we have

|v|2 =
e2t|g|2

1 + |g|2(e2t − 1)
= 1− 1− |g|2

1 + |g|2(e2t − 1)

≥ max

(
1− e−2t

C2λ2
, 0

)
hence

∂t|w̃|+ max

(
1− e−2t

C2λ2
, 0

)
|w̃| − ε2∆|w̃| ≤ |F̃ |.

We rewrite this as

∂t e
h(t)|w̃| − ε2∆ eh(t)|w̃| ≤ eh(t)|F̃ |,

where

h(t) =

ˆ t

0
max

(
1− e−2t

C2λ2
, 0

)
ds

=

{
0 for 0 < t < tλ,

t− tλ − 1
2C2λ2

(e−2t − e−2tλ) for t > tλ,

where tλ = ln(1/(Cλ)) is such that 1− e−2tλ/(C2λ2) = 0. Arguing again as
in Lemma 2.1 we deduce

‖w̃(t)‖L∞ ≤
ˆ t

0
eh(s)−h(t)‖F̃ (s)‖L∞ ds

=

ˆ tλ

0
‖F̃ (s)‖L∞ ds

+

ˆ t

tλ

es−te
1

2C2λ2
(e−2t−e−2s) ‖F̃ (s)‖L∞ ds

≤
ˆ tλ

0
‖F̃ (s)‖L∞ ds+ C

ˆ t

tλ

es−t ‖F̃ (s)‖L∞ ds
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hence, from the bound on F̃ in (19), and estimating the term χ2R exactly
as before (because the worst term in (19) is the last one anyway),

‖etw̃(t)‖L∞ .
ˆ t

0
et−s‖esw̃(s)‖2L∞ ds+

ˆ t

0
et−s‖χ2R(s)‖L∞ ds

+
ε3

λ
et
ˆ tλ

0

√
1 + s(e2s − 1)1/2 ds+

ε3

λ2

ˆ t

tλ

(1 + s) es ds

.
ˆ t

0
et−s‖esw̃(s)‖2L∞ ds+

ε2

λ
et +

ε3

λ2
et(1 + t).

Applying Lemma 2.2 we obtain

1

ε
|etw| . ε et 1 + (ε/D)(1 + t)

D
,(20)

and with the help of Lemma 2.3 the gradient bound

|et∇w| . ε et
√
t

1 + (ε/D)(1 + t)

D
.(21)

These bounds are valid in {D ≥ Mε
√

ln(1/ε)} for t ≤ ln(1/ε) − C and ε
small enough. Using

ˆ
{D≥Mε

√
ln 1
ε
}

1 + (ε2/D2)(1 + t)2

D2
dx

.
ˆ 1

ε
√

ln 1
ε

dr

r
+ ε2(1 + t)2

ˆ 1

ε
√

ln 1
ε

dr

r3
. ln

1

ε
,

and u− v = etw, we deduce the energy bounds
ˆ
{D≥Mε

√
ln 1
ε
}

|u− v|2

ε2
dx . ε2e2t ln

1

ε
,

ˆ
{D≥Mε

√
ln 1
ε
}
|∇u−∇v|2 dx . ε2e2tt ln

1

ε
,

and, using (10)-(11) to estimate the contributions from {D . ε
√

ln(1/ε)},
ˆ

Ω

(
|∇u−∇v|2 +

|u− v|2

ε2

)
dx . ε2e2tt ln

1

ε
.(22)

Note that this upper bound is . ln(1/ε) at t = Tε ≤ ln(1/ε
√

ln(1/ε)). Next,
we derive energy bounds for v. We have

1− |v|2 = 1− e2t|g|2

1 + |g|2(e2t − 1)
=

1− |g|2

1 + |g|2(e2t − 1)

≤ 1

1 + |g|2(e2t − 1)
,
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and since |g| is of the same order as dist(·, {ẑj(t)}) thanks to (12) we deduce

1

ε2

ˆ
Ω

(1− |v|2)2 dx ≤ 1

ε2

ˆ
Ω

1

(1 + |g|2(e2t − 1))2
dx

.
1

ε2

ˆ 1

0

1

(1 + C−2r2(e2t − 1))2
r dr

.
1

ε2

1

e2t − 1
.

We also have

|∇v| = |DXΦ(t, g)∇g| . et

(1 + |g|2(e2t − 1))1/2
,

hence ˆ
Ω
|∇v|2 . e2t

ˆ 1

0

1

1 + C−2r2(e2t − 1)
r dr

.
e2t

e2t − 1
ln(1 + C−2(e2t − 1)).

Gathering the above and recalling Tε = ln(1/ε)− 1
2 ln ln(1/ε)−C0, we obtain

ˆ
Ω

(
|∇v|2 +

1

ε2
(1− |v|2)2

)
dx . ln

1

ε
at t = Tε.

Combining this with the bounds (22) concludes the proof of Theorem 1.4.

4. Jacobian of u : proof of Theorem 1.5

Define uε(x) = u(Tε, x), where Tε = ln(1/ε) − (1/2) ln ln(1/ε) − C0 for a
large enough constant C0. We consider the jacobian

Juε = det(∇uε),

and show, as ε→ 0, the convergence

Juε → π

N∑
j=1

d̂jδz0j
,(23)

in the sense of distributions, where d̂j ∈ {±1} is the topological degree of
u0 at z0

j .

Note that one can check, by direct calculation, that Jv(Tε) converges to
this sum of Dirac masses. But the bounds we have obtained on etw = u− v
are not enough to directly infer (23). Instead we invoke the compactness
result of [JS02, Theorem 3.1]: thanks to the energy bound

Eε(uε) . ln
1

ε
,
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there exists a sequence εn → 0, integers d̃k ∈ Z \ {0} and distinct points
ak ∈ T2 such that

Juεn → π
M∑
k=1

d̃kδak .

We show next that we must have M = N , {ak} = {z0
j }, without loss of

generality aj = z0
j for j = 1, . . . , N , and d̃j = d̂j . Therefore the limit is

unique and this proves (23).
First we prove that {ak} ⊂ {z0

j }. This is a consequence of the bounds
obtained above on the map u, and the fact that the limit of Juε provides a
lower bound for Eε(uε)/ ln(1/ε) [JS02, Theorem 4.1]. By that lower bound,
for any δ > 0 we must have

Eεn(uεn ;B(ak, δ)) ≥ π|dk| ln
1

εn
+ o

(
ln

1

εn

)
,

as n → ∞. Note that |dk| ≥ 1. Therefore, to show that {ak} ⊂ {z0
j } it

suffices to obtain an upper bound of the form

Eε(uε;B(a, δ)) ≤ π

2
ln

1

ε
for ε� 1,

for any a /∈ {z0
j } and some δ > 0. Recall that we have u = v + etw, and the

pointwise bounds from § 3,

|∇v|2 +
1

ε2
(1− |v|2)2 .

1

1 +D2e2t

(
e2t +

1

ε2

1

1 +D2e2t

)
|∇etw|2 +

1

ε2
|etw|2 . ε2e2t t

2

D2
,

in {D ≥ Cε ln1/2(1/ε)} and for 1 ≤ t ≤ ln(1/ε) − C0. For t = Tε =
ln(1/ε)− (1/2) ln ln(1/ε)− C0 we deduce

|∇u|2 +
1

ε2
(1− |u|2)2 .

1 + (ε/D)2e4C0 ln2(1/ε) + e−2C0 ln(1/ε)

D2
,

in {D ≥ Cε ln1/2(1/ε)}. Hence at time t = Tε, for any δ ≥ ε ln(1/ε) and for
dist(a, {z0

j }) ≥ 4δ, we have

Eε(uε;B(a, δ)) . 1 +
(ε
δ

)2
e4C0 ln2 1

ε
+ e−2C0 ln

1

ε
≤ π

2
ln

1

ε
,

for ε� 1, provided C0 is chosen large enough. By the above discussion, this
implies that {ak} ⊂ {z0

j }.
Therefore we may write

Juεn → π
N∑
j=1

d̃jδz0j
,(24)
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where d̃j ∈ Z. Here we allow the possibility that d̃j = 0 because we have not

proven yet that {z0
j } ⊂ {ak}. To prove (23), it suffices to show that d̃j = d̂j .

To that end, note that for all small ε > 0 we have

1

π

ˆ
B(z0j ,r)

det(∇uε) = deg(uε, ∂B(z0
j , r)) = d̂j ,

for any small r > 0 and j = 1, . . . , N . This is because t 7→ u(t) is smooth
and u(t) doesn’t vanish on ∂B(z0

j , r) for small ε > 0 and all t ∈ [0, Tε], so

the degree of uε = u(Tε) is equal to the degree of u0 = u(0), which is d̂j
by definition. Therefore, testing (24) with a test function ϕ ≈ 1B(z0j ,r)

, we

obtain d̃j ≈ d̂j , hence d̃j = d̂j because these are integers. This concludes
the proof of (23).
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