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Résumé

De nombreux phénomènes physiques peuvent être décrits par des modèles mathéma-
tiques similaires: cristaux liquides, supraconductivité, micromagnétisme, elasticité, for-
mation de motifs, etc. Les états d’équilibre minimisent une certaine énergie, caractérisée
par la compétition entre deux effets: un terme pénalise les déformations, mais un autre
terme favorise les transitions de phases. Cette compétition encourage la formation de
singularités: des déformations abruptes dans de petites régions où se concentrent les
transitions de phases, et des déformations minimales en dehors. Les méthodes math-
ématiques du calcul des variations et des équations aux dérivées partielles permettent
d’étudier les propriétés de ces états et de leurs singularités.

Les travaux présentés dans ce mémoire portent sur l’analyse de deux types de singu-
larités: singularités ponctuelles ou linéaires dans des systèmes de dimension 3, et singu-
larités linéaires dans des systèmes de dimension 2. Cette distinction reflète aussi leurs
liens avec deux types d’équations aux dérivées partielles: elliptiques ou hyperboliques.

L’étude des singularités du premier type est motivée ici essentiellement par la physique
des cristaux liquides, et structurée en deux axes de recherche: comprendre l’effet de
l’immersion de particules étrangères, et celui d’une anisotropie dans la pénalisation des
déformations. Pour le premier axe, la présence de particules impose des déformations
au cristal liquide, et l’objectif est de décrire les singularités engendrées par ces défor-
mations, ainsi que les interactions entre particules immergées. Pour le deuxième axe,
l’anisotropie des déformations, physiquement plus réaliste, restreint considérablement
les outils mathématiques disponibles: le défi principal est de développer de nouvelles
techniques qui permettent d’analyser efficacement les modèles anisotropes.

L’étude des singularités du second type est motivée par de très divers phénomènes
physiques: cristaux liquides, élasticité, micromagnétisme, formation de motifs, physique
statistique. L’objectif est de comprendre les phénomènes de concentration de singulartiés
linéaires: peuvent-elle s’accumuler au point de former des structures fractales? L’accent
est mis ici sur la quantification des déformations admissibles et la stabilité de structures
élémentaires bien identifiées. Du point de vue mathématique, ces questions présentent
l’originalité d’aborder des équations hyperboliques par le biais du calcul des variations.
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Chapter 1

Introduction

This memoir contains a survey of my post-PhD work on singularities arising in phase
transition models of Ginzburg-Landau type. I divided these models in two big cate-
gories depending on the type of singularities they feature: singularities of codimension
2 or 3, motivated mostly by the physics of liquid crystals; and line singularities in two
dimensions, which can have various physical motivations (liquid crystals, but also mi-
cromagnetism, elasticity, statistical physics, etc.).

All variational models under consideration are characterized by the competition,
at a typically small length-scale ε, of at least two terms: an elastic term penalizing
deformations, and a potential term penalizing values away from a given manifold. A
classical example is the Ginzburg-Landau energyˆ (

1

2
|∇u|2 +

1

ε2
(1− |u|2)2

)
dx,

where the potential penalizes values away from S1 ⊂ R2. More generally, the potential
can penalize values away from a submanifold N ⊂ Rk, and additional terms can be
present. The limiting objects, as ε → 0, are energy-minimizing manifold-valued maps,
which solve an elliptic PDE. They can have singularities of codimension 2 (with infinite
energy), and of codimension 3 or higher (with finite energy).

In some cases, an additional divergence constraint can be imposed (directly or via
other terms in the energy), and we obtain a second type of models, where the limiting
objects are divergence-free manifold-valued vector-fields. The corresponding PDE is
usually hyperbolic, and they typically have singularities of codimension one.

In Chapter 2 I present results on models of the first type arising in the description
of liquid crystals, and in Chapter 3 on two-dimensional models of the second type.

The type of models studied in Chapter 2 has a rich mathematical history, which
includes the theory of harmonic maps – see for instance the monograph [Simon, 1996]
– and the analysis of the Ginzburg-Landau energy initiated in [Bethuel et al., 1994]. I
focus here on two specific lines of research motivated by the physics of liquid crystals: in
§ 2.2 I present results about exterior problems modelling the presence of foreign particles
immersed in liquid crystals, and in § 2.3 about the effects of elastic anisotropy on the
regularity and qualitative properties of minimizing configurations.
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CHAPTER 1. INTRODUCTION 5

In Chapter 3, the limiting objects are weak solutions of the eikonal |∇u| = 1 (equiv-
alently, divergence-free S1-valued vector fields m = ∇⊥u), or of Burgers’ equation
ut + (u2/2)x = 0. These are extremely classical equations, with a well-studied class of
specific solutions: viscosity solutions for the eikonal equation, entropy solutions for Burg-
ers’ equation. Here, however, the variational models under study lead to a much larger
class of solutions which are still far from being well-understood. I present results on
their regularity, and about rigidity and stability properties of specific solutions within
that class.
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Chapter 2

Defects in liquid crystals

2.1 Introduction

2.1.1 Order parameters

Liquid crystals are a state of matter characterized by their orientational order. There
are many different types of liquid crystals with different levels of order and symmetries.
Here we focus mostly on nematic liquid crystals, which present the most basic type of
orientational order : roughly speaking, molecules are elongated and tend to align in the
same direction. Two types of macroscopic order parameter can be used to describe the
nematic phase:

• a unit director n ∈ S2, giving the local direction of alignment of the molecules,

• or a so-calledQ-tensorQ ∈ R3×3
sym, tr(Q) = 0, whose eigendirections and eigenvalues

reflect the local alignment (via the anisotropic response to external fields caused
by orientational order), and which can be related to the statistics of alignement of
the molecules at the microscopic level [De Gennes and Prost, 1993].

The Q-tensor order parameter can describe phase transitions between non-ordered and
ordered states. One can distinguish three types of phases depending on their symmetry:

• Isotropic: Q commutes with all rotations; all eigenvalues are equal and Q = 0.

• Uniaxial: Q commutes with rotations of a given axis n ∈ S2; two eigenvalues are
equal but nonzero, and one can write Q in the form

Q = s

(
n⊗ n− 1

3
I

)
, s ∈ R \ {0}, n ∈ S2. (2.1)

• Biaxial: Q does not commute with any nontrivial rotation; its three eigenvalues
are distinct.
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CHAPTER 2. DEFECTS IN LIQUID CRYSTALS 10

The director description can be interpreted via (2.1) as considering only uniaxial phases
with fixed eigenvalues. Because n and −n are equivalent in this context (in agree-
ment with head-to-tail symmetry of nematic molecules), it is actually more accurate to
consider n ∈ RP2 = S2/{±1}. (This leads to interesting lifting issues which we will
not discuss here in detail, see e.g. [Bethuel and Chiron, 2007, Ball and Zarnescu, 2011,
Bedford, 2016, Ignat and Lamy, 2019, Canevari and Orlandi, 2019].)

2.1.2 Energy functionals

A nematic configuration in a domain Ω ⊂ R3 will be described by a map

n : Ω→ S2,

or

Q : Ω→ S0 =
{
Q ∈ R3×3

sym : trQ = 0
}
.

Singularities of the map n, or of the map Q’s eigenvectors, are called defects. Equilibrium
configurations are expected to be local minima of a certain energy, and we wish to exploit
this variational characterization to gain insight into the physics of defects.

In a simplified setting, the energy of a director configuration is given by

E(n) =

ˆ
Ω
|∇n|2 dx,

and minimizing configurations (with respect to their own boundary conditions) are S2-
valued harmonic maps. They are smooth away from a discrete set of point singularities
[Schoen and Uhlenbeck, 1982, Schoen and Uhlenbeck, 1983], all modeled on the radial
map ±x/|x| [Brezis et al., 1986].

Again in a simplified setting, the energy of a Q-tensor configuration is of the form

Eε(Q) =

ˆ
Ω

(
1

2
|∇Q|2 +

1

ε2
f(Q)

)
dx, (2.2)

where f(Q) ≥ 0 is a potential accounting for phase transitions, and ε > 0 is the charac-
teristic length scale at which the two terms compete.

The potential f(Q) is a quartic polynomial whose coefficients depend on material
properties. Most relevant to us here is that it is frame invariant, f(RQR−1) = f(Q) for
any isometry R ∈ O(3), and minimized by uniaxial Q-tensors:

f−1({0}) =

{
s∗

(
n⊗ n− 1

3
I

)
: n ∈ S2

}
=: U∗ ≈ RP2, (2.3)

where s∗ > 0 depends on the precise expression of f . Moreover that minimum is non-
degenerate: the Hessian of f at any element Q∗ ∈ U∗ is positive definite in directions
orthogonal to the tangent plane TQ∗U∗.
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Hence for ε� 1 one expects minimizers of the energy (2.2) to satisfy

Q(x) ≈ s∗
(
n(x)⊗ n(x)− 1

3
I

)
,

where n : Ω→ S2 minimizes the Dirichlet energy. This approximation is very good away
from singularities of n [Majumdar and Zarnescu, 2010, Nguyen and Zarnescu, 2013], and
the fine properties of singularities can be understood by zooming in at scale ε, which
leads to the study of entire solutions of the Euler-Lagrange equations ∆Q = ∇f(Q).

Such considerations are extremely similar to the analysis of the Ginzburg-Landau
energy, pioneered in [Bethuel et al., 1994], where R2-valued maps approach S1-valued
maps. Yet several differences arise, due for instance to the different topological properties
of S1 and RP2, the higher codimension of the embedding RP2 ⊂ S0 versus S1 ⊂ R2,
and the specific symmetries and phases of Q-tensors. Moreover, physical applications
motivate new types of questions.

In the above simplified models, the elastic energy densities |∇n|2 and |∇Q|2 are
highly symmetric. More realistic models must, however, take into account elastic anisotropy:
|∇n|2 may be replaced by the Oseen-Frank energy density

k1(∇ · n)2 + k2(n · ∇ × n)2 + k3|n× (∇× n)|2,

for some elastic constants k1, k2, k3 > 0 respectively associated to splay, twist and bend
deformations (configurations for which only the corresponding term is nonzero). For
k1 = k2 = k3 (the one-constant approximation) one recovers an energy density propor-
tional to |∇n|2, up to a null Lagrangian term. Similarly, |∇Q|2 may be replaced by
A(Q)[∇Q], where A(Q) is a positive definite quadratic form on gradients of S0-valued
maps. The reduced symmetry of these more general models strongly restrict the avail-
able mathematical tools, and many questions are open.

In the rest of this chapter I will describe my and my coauthors’ contributions on two
types of problems about minimizers of these energy functionals:

• understanding the effects of foreign particles immersed in nematic configurations
(§ 2.2),

• and understanding the effects of elastic anisotropy (§ 2.3).

2.2 Nematic colloids

Nematic colloids are systems composed of foreign particles immersed in nematic liquid
crystal. Nematic alignment is modified by these particles via their anchoring prop-
erties: liquid crystal molecules are forced to align in a certain way at the particles’
surfaces. Different aspects of such systems lead to different types of mathematical
questions. One can for instance consider densely packed colloid particles and study
them from a homogenization perspective [Berlyand et al., 2005, Calderer et al., 2014,
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Canevari and Zarnescu, 2020b, Canevari and Zarnescu, 2020a]. Here we concentrate in-
stead on the effect of a single particle, with the long-term goal of characterizing inter-
actions between particles that are not too densely packed. This is motivated by the
so-called electrostatic analogy, an approximation that can be found in the physics litera-
ture, where each particle is replaced by a singular forcing term in a linearized equation:
the form of the singular term depends on the type of defects and long-range deformations
induced by the single particle (see e.g. the review article [Muševič, 2019]).

To fix ideas, consider a spherical particle represented by the unit ball B ⊂ R3, so
the liquid crystal is contained in the exterior domain Ω = R3 \B, and assume that the
particle’s surface promotes radial anchoring: within a director description, this amounts
to

n = er on ∂B, where er =
x

|x|
.

Far away from the particle, uniform alignment is favored, say along the e3 direction:

n(x)→ e3 for |x| → +∞.

The topological constraint imposed by these boundary conditions forces the appearance
of singularities: the map er : S2 → S2 is not homotopic to a constant within S2-valued
maps. Two types of defects are observed in experiments:

• a single point singularity forming a dipole with the particle,

• or a line singularity forming a ‘Saturn ring’ around the particle.

Figure 2.1: Schematic representations of a dipole (left) and a Saturn ring (right) config-
uration [Stark and Ventzki, 2001].

Remark 2.1. To understand how the topological constraint is resolved by such singular-
ities, it is convenient to think about axisymmetric configurations, fully determined by
their restriction to a planar slice containing the e3 axis,

n̄ : R2 \D → S1,
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where D ⊂ R2 is the unit disk. The boundary datum n∂D = er has winding number, or
degree, equal to 1. This topological charge needs to be cancelled in π1(S1) ≈ Z in order to
match the degree 0 constant map at infinity. The simplest way to do that is to create one
point singularity of degree −1, placed on the e3 axis: this gives the dipole configuration;
see Figure 2.1. To describe the Saturn ring configuration, recall that n and −n should
actually be equivalent, so singularities of half-integer degree are allowed (half a turn
brings n to −n). Therefore the degree 1 boundary data can also be cancelled by two
point singularities of degree −1/2, to the left and the right ofD: in the three-dimensional
axially symmetric picture, these are the trace of a ring singularity around the particle;
see Figures 2.1 and 2.3. (Similarly, in the absence of a foreign particle, a +1 point
defect is topologically equivalent to a +1/2 ring defect, and determining the occurrence
of both configurations has motivated several interesting works [Dipasquale et al., 2021a,
Dipasquale et al., 2020, Dipasquale et al., 2021b, Yu, 2020].)

•

Figure 2.2: Schematic view of a (−1/2) defect in a planar slice, to the right of the
particle’s equator. Along a horizontal ray, the director goes from er at the particle’s
surface, to e3 at infinity. Rotating this picture around the vertical axis gives a Saturn
ring as in Figure 2.1.

There are two important qualitative differences between these topologically admissi-
ble configurations: their symmetry and orientability properties. First, unlike the dipole,
the Saturn-ring is mirror-symmetric across the equatorial plane. Second, the dipole
configuration is orientable: it can be described by an S2-valued map continuous outside
the singular point. But the Saturn ring requires an RP2-valued map: an S2-valued map
would be singular on the full equatorial plane.

In my PhD thesis, we gave, in collaboration with S. Alama and L. Bronsard, a
mathematical justification of the occurrence of these two configurations depending on
the particle’s radius [Alama et al., 2016]: within the Q-tensor description, we proved
that minimizers have a Saturn ring structure if the particle is much smaller than the
characteristic length scale ε, and a dipole structure if the particle is much larger. Among
many questions left open by that work, one concerns the description of Saturn ring
structures around not-so-small particles, which seem stable in experiments; and another
one is the asymptotic description of nematic alignment far away from the particle, which
is at the basis of the aforementioned electrostatics analogy. These questions are the
subject of the three works I describe in the rest of this section:

• In [Alama et al., 2018] with S. Alama and L. Bronsard we investigate the stabiliz-
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ing effect of an external magnetic field on the Saturn ring structure.

• In [Alama et al., 2021] with S. Alama, L. Bronsard and D. Golovaty we obtain
Saturn ring configurations around large particles as minimizers subject to a mirror
symmetry constraint.

• In [Alama et al., 2022] with S. Alama, L. Bronsard and R. Venkatraman we study
the far-field expansion of minimizing configurations and characterize its first coef-
ficient as a function of the particle and its anchoring properties.

2.2.1 The effect of an external field

Experiments [Gu and Abbott, 2000, Loudet and Poulin, 2001] and numerical simula-
tions [Fukuda et al., 2004a, Fukuda and Yokoyama, 2006] have demonstrated that ap-
plying a strong enough electric or magnetic field stabilizes the Saturn-ring defect around
a colloid particle. A heuristic explanation is proposed in [Stark, 2002, Fukuda and Yokoyama, 2006]:
the applied field favorizes uniform alignment, hence confines deformations to a thin re-
gion around the particle. Under this confinement, conjectured orders of magnitude
suggest that the Saturn ring costs less energy than the dipole, provided the external
field has high enough amplitude. In this section, we present energy bounds proved in
[Alama et al., 2018] and showing that, although the orders of magnitude conjectured in
[Stark, 2002, Fukuda and Yokoyama, 2006] seem incorrect, the minimizing configuration
should indeed be a Saturn ring when the field’s amplitude is well above a critical value.

Following [Fukuda et al., 2004a, Fukuda and Yokoyama, 2006] we make the simpli-
fying assumption that the external field is constant throughout the system: very far
from the challenging mathematical analysis of interactions between electromagnetic field
and nematic material (see e.g. the monograph [Sandier and Serfaty, 2007] for supercon-
ductors), we simply want to identify, in the most elementary mathematical setting, the
confinement mechanism described in [Stark, 2002]. This amounts to adding a symmetry-
breaking term to the Landau-de Gennes energy (2.2):

Eε,η(Q; Ω) =

ˆ
Ω

(
1

2
|∇Q|2 +

1

ε2
f(Q) +

1

η2
g(Q)

)
dx. (2.4)

Here the new characteristic length η is related to the amplitude h of the applied field
via η ∼ ε/h. The potential g(Q) =

√
2/3−Q33/|Q| (and g(0) = 0) satisfies

g(Q) ≥ 0 and g−1({0}) = {λ Q∞ : λ ≥ 0} ,

Q∞ =

(
e3 ⊗ e3 −

1

3
I

)
,

hence induces alignment along the direction e3 of the applied field. Recall that the
domain Ω = R3 \ B is the exterior of the unit ball representing the (rescaled) particle.
The uniform alignment favored by the external field competes with radial anchoring
conditions at the particle surface:

Q = Qb = s∗

(
er ⊗ er −

1

3
I

)
on ∂Ω = ∂B. (2.5)
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Here s∗ > 0 is uniquely determined by the potential f via (2.3). The confinement effect
comes from the competition between field-induced alignment and boundary anchoring,
which suggests a boundary layer of width η.

One way of characterizing the Saturn ring configuration is via its mirror symmetry
with respect to the equatorial plane {x3 = 0}, which is completely broken by the dipole
configuration. For a high enough external field, this symmetry is satisfied asymptotically
by the energy of minimizers:

Theorem 2.2. If ηε > 0 is such that

0 < ηε �
1

| ln ε|
as ε→ 0,

and Qε : Ω→ S0 minimizes Eε,ηε with radial anchoring conditions (2.5), then

Eε,ηε(Qε; Ω ∩ {x3 > 0}) ∼ Eε,ηε(Qε; Ω ∩ {x3 < 0}) as ε→ 0.

In terms of external field amplitude, the condition η � 1/| ln ε| corresponds to h�
ε| ln ε|, in agreement with the critical value hc ≈ ε| ln ε| conjectured in [Fukuda and Yokoyama, 2006].
Theorem 2.2 is proved in [Alama et al., 2018] as a consequence of more precise energy
asymptotics: we show that the energy is concentrated in a boundary layer of size η,
where a one-dimensional transition takes place, along radial rays, from the boundary
value Qb to a field-aligned state proportional to Q∞.

The energy of such one-dimensional transition is given by

Fλ(Q) =

ˆ ∞
1

(∣∣∣∣dQdr
∣∣∣∣2 + λ2f(Q) + g(Q)

)
dr,

where λ ∈ [0,∞] is the limit of the ratio η/ε. The case λ = ∞ should be understood
as imposing that Q takes values in U∗ = f−1({0}). The energy of the boundary layer is
then described via the function Dλ : S0 → [0,∞] given by

Dλ(Q0) = min
{
Fλ(Q) : Q ∈ H1

loc([1,∞);S0), Q(1) = Q0

}
. (2.6)

The existence of a minimizer can be shown using the direct method of the calculus
of variations. Moreover the function Dλ is continuous on its domain {Dλ < ∞}, and
its values depend continuously on λ. (The degenerate case λ = 0 was left aside in
[Alama et al., 2018] because finite-energy maps do not necessarily have a limit as r →
∞, but this constitutes in fact no obstacle and that case can be included with minor
modifications.)

The main result of [Alama et al., 2018] states that, to main order, the energy corre-
sponds indeed to that boundary layer.

Theorem 2.3. Let ηε > 0 be such that

0 < ηε �
1

| ln ε|
and

ηε
ε
→ λ ∈ [0,∞] as ε→ 0,



CHAPTER 2. DEFECTS IN LIQUID CRYSTALS 16

and Qε : Ω → S0 minimize Eε,ηε with radial anchoring conditions (2.5). For any mea-
surable U ⊂ S2, the energy in the cone C(U) = {tω : t > 1, ω ∈ U} ⊂ Ω satisfies

Eε,ηε(Qε; C(U)) ∼ 1

ηε

ˆ
U
Dλ(Qb(ω)) dH2(ω),

as ε→ 0.

This implies the asymptotic mirror symmetry stated in Theorem 2.2 because the
boundary condition Qb is itself symmetric.

The proof of Theorem 2.3 relies on a lower bound obtained via an elementary scaling
argument, and a matching upper bound, obtained via different methods for λ <∞ and
λ =∞. We focus here on the case λ =∞, which is more interesting because η is closer
to the critical value 1/| ln ε|. Moreover we have a more precise description in that case,
because minimizers of F∞ can be determined explicitly:

Proposition 2.4. For nb ∈ S2 of spherical coordinates (θ, ϕ) ∈ [0, π] × [0, 2π) with
θ 6= π/2, and Qb = s∗ (nb ⊗ nb − I/3) ∈ U∗, the minimum D∞(Qb) in (2.6) is attained
exactly by a map r 7→ Q(r, θ, ϕ) of the form

Q(r, θ, ϕ) = s∗

(
n(r, θ, ϕ)⊗ n(r, θ, ϕ)− 1

3
I

)
,

where n(r, θ, ϕ) ∈ S2 is

• axisymmetric: n(r, θ, ϕ) = Rϕn(r, θ, 0), for Rϕ the rotation of axis e3 and angle
ϕ,

• and mirror-symmetric: n(r, π− θ, ϕ) = Sn(r, θ, ϕ), for S the reflection across e⊥3 .

Moreover, in the upper half domain {r ≥ 1, 0 ≤ θ < π/2}, the map n is smooth, and

|n− e3|2 + |∇n|2 ≤ Ce−κr,

for some constants C, κ > 0 depending only on s∗.

Remark 2.5. The map n is given explicitly, for 0 ≤ θ < π/2, by

n(r, θ, ϕ) = (cosϕ sin Θ(r, θ), sinϕ sin Θ(r, θ), cos Θ(r, θ)) ,

Θ(r, θ) = 2 arctan

(
e
κ
2

(1−r) tan
θ

2

)
, κ =

(24)
1
4

s∗
.

The proof follows classical ideas for the existence of heteroclinic connections, see e.g.
[Sternberg, 1991]. This also provides the explicit value D∞(Qb) = s∗κ(1− | cos θ|). For
θ = π/2, the problem D∞(Qb) admits two minimizers, described by the left and right
limits n(r, (π/2)+, ϕ) and n(r, (π/2)−, ϕ).
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The upper bound in Theorem 2.3 for λ =∞ is obtained by constructing a comparison
map with a boundary layer given by Proposition 2.4:

Q(r, θ, ϕ) ≈ Q
(

1 +
r − 1

η
, θ, ϕ

)
.

Because Q is discontinuous at the equatorial plane {x3 = 0} = {θ = π/2}, this needs to
be modified around that plane, and replaced by a Saturn ring defect with energy cost
of order | ln ε|, hence the upper bound

minEε,η ≤
1

η

ˆ
S2
D∞(Qb) dH2 + s2

∗π
2| ln ε|+O (1) . (2.7)

The map providing this upper bound is U∗-valued, except in the defect core of the Saturn
ring, of thickness ε. The second term is negligible if | ln ε| � 1/η, and this is where the
critical value η ∼ 1/| ln ε| comes from.

One can be slightly more precise concerning this critical value, by recalling that Sat-
urn ring and dipole can be distinguished not only via their symmetry, but also through
their orientability properties. Because in the regime ε � η (λ = ∞) we expect the
boundary layer to be mostly U∗-valued, it makes sense to consider U∗-valued competi-
tors. We call a U∗-valued map Q orientable if it can be written in the form

Q = s∗

(
n⊗ n− 1

3
I

)
,

where n : Ω → S2 has finite energy
´

Ω |∇n|
2 dx < ∞. In that case, the value of n out-

side the boundary layer must choose one of the two orientations ±e3 (which would be
equivalent in the nonorientable RP2-valued setting). With this restriction, the mini-
mization of F∞ provides a value twice as high (not four times, as erroneously stated in
[Alama et al., 2018, Proposition 1.6]), and we deduce that

min {Eε,η(Q; Ω), Q : Ω→ U∗ orientable} ≥
2

η

ˆ
S2
D∞(Qb) dH2.

Comparing with (2.7), this suggests that the Saturn ring configuration has lower energy
whenever η < βc/| ln ε|, where s2

∗π
2βc =

´
S2 D∞(Qb) dH2, that is, s∗βc = 2κ/π.

Following our work [Alama et al., 2018], the critical regime η ∼ β/| ln ε| has been
studied in much greater detail in [Alouges et al., 2021], which the authors even generalize
later on to non-spherical geometries [Alouges et al., 2022]. They perform a complete
Γ-convergence analysis and are able to describe the regimes in which Saturn ring or
dipole are minimizing or locally minimizing. Their conclusions confirm in particular the
critical value s∗β = 2κ/π (with κ = 2c∗ in their notations) as the value at which both
configurations have the same asymptotic energy.

2.2.2 Saturn-ring configurations under a symmetry constraint

In the absence of an external field, we proved in [Alama et al., 2016] with S. Alama and
L. Bronsard that very small particles with radial anchoring generate a Saturn ring defect
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around them. Since the particle is represented by the unit ball B, this corresponds to
the regime ε � 1 in the Landau-de Gennes energy (2.2). This approach provides a
very good description of the Saturn ring, but is not entirely satisfactory because Saturn
rings are observed in practice around quite larger particles [Lubensky et al., 1998]. In
this section we present a description of a Saturn ring configuration for ε� 1, obtained
in [Alama et al., 2021] by minimizing the Landau-de Gennes energy under a mirror
symmetry constraint. The main result of [Alama et al., 2021] can be split in two parts:

• Precise energy asymptotics consistant with the presence of a single ring defect in
the equatorial plane, at distance ∼ 1/| ln ε| from the particle. This is essentially an
adaptation of now-standard arguments from the study of the 2D Ginzburg-Landau
functional [Bethuel et al., 1994, Struwe, 1994, Jerrard, 1999, Sandier, 1998], and
weighted versions of it [André and Shafrir, 1998, Beaulieu and Hadiji, 1998], to-
gether with recent adjustments for theQ-tensor setting [Golovaty and Montero, 2014,
Canevari, 2015].

• A refined study of the limit configuration ruling out the possible presence of point
defects, under an extra axisymmetry assumption. This part is much less standard,
as point defects are not “seen” by the energy asymptotics of the first part, and
it is well known that energy-minimizing S2-valued maps may have many point
singularities even in the absence of topological constraints [Hardt and Lin, 1986].

In [Alama et al., 2021] axisymmetry is imposed all along, but is really needed only for
the second part, as we will explain below.

We first introduce some notations. As in the previous section, we work in the exterior
domain Ω = R3 \ B. We impose radial boundary conditions at the particle’s surface
(2.5), and uniform alignment at infinity:

ˆ
Ω

|Q−Q∞|2

r2
dx <∞, Q∞ = s∗

(
e3 ⊗ e3 −

1

3
I

)
.

Moreover we impose a mirror symmetry constraint:

Q(Sx) = SQ(x)S−1 ∀x ∈ Ω,

where S = I − e3 ⊗ e3 is the reflection across the equatorial plane e⊥3 . We denote by
Hmirror the space of maps Q ∈ H1

loc(Ω;S0) satisfying these constraints. The Landau-de
Gennes energy

Eε(Q; Ω) =

ˆ
Ω

(
1

2
|∇Q|2 +

1

ε2
f(Q)

)
dx,

admits a minimizer Qε in this space (as can be seen with the direct method of the
calculus of variations, using Hardy’s inequality to obtain coercivity).
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Energy asymptotics

A first important remark is that, in the equatorial plane {x3 = 0}, mirror symmetry
forces e3 to be an eigenvector of Q(x1, x2, 0). There is no continuous path in U∗ going
from Qb(x1, x2, 0) to Q∞ while having e3 as an eigenvector: therefore, at least one
singularity will form in each radial direction in the equatorial plane, creating a singular
ring around the particle.

The energetic cost of an interior ring defect of degree (−1/2) should be of order
`(π/2)| ln ε|, where ` is the length of the ring. If the ring is at distance σ from the
equator, that length is ` = 2π(1 + σ), so one would like to take σ → 0, and the ring
defect is no longer interior: from scale ε to σ its cost is `(π/2) ln(σ/ε), and from scale σ
to 1 it has the cost `0π| lnσ| of a boundary ring defect of degree (−1/2), with `0 = 2π.
The total energy cost, divided by 2π, is therefore of order

π

2
ln
σ

ε
+ σ

π

2
ln

1

ε
+ π ln

1

σ
.

Minimizing this with respect to σ gives σ = 1/| ln ε|. This type of reasoning is standard in
the study of weighted Ginzburg-Landau energies [André and Shafrir, 1998, Beaulieu and Hadiji, 1998].
Note that it actually does not distinguish between a ring defect of degree −(1/2), which
is the configuration we expect, or degree +(1/2), which could be compensated by point
singularities of negative degrees: the lower energy cost of point singularities would not
change the main order asymptotics.

These heuristic considerations lead to the following energy bounds.

Theorem 2.6. Let Qε minimize Eε in Hmirror. We have, as ε→ 0,
1

2π
Eε(Qε; Ω) =

π

2
| ln ε|+ π

2
ln | ln ε|+O(1),

and the energy is concentrated near the equatorial circle C = ∂B∩{x3 = 0}. Specifically,
for any δ > 0, its δ-neighborhood Ωint

δ = Ω ∩ {dist(·, C) ≤ δ} satisfies the energy lower
bound

1

2π
Eε(Qε; Ωint

δ ) ≥ π

2
| ln ε|+ π

2
ln | ln ε| − π| ln δ| − C,

for some absolute constant C > 0.

The upper bound in the energy asymptotics of Theorem 2.6 is obtained by construct-
ing an axisymmetric configuration with a ring defect at distance σ = 1/| ln ε| from the
particle. By axisymmetric we mean, using cylindrical coordinates (ρ, ϕ, z), that

Q(ρ, ϕ, z) = RϕQ(ρ, 0, z)R−1
ϕ , (2.8)

where Rϕ is the rotation of axis e3 and angle ϕ. The proof of the lower bound starts by
writing

Eε(Q; Ω) =

ˆ 2π

0

¨
ρ2+z2>1

(
|∇ρ,zQ|2 +

1

ρ2
|∂ϕQ|2 +

1

ε2
f(Q)

)
ρ dρdz dϕ

≥
ˆ 2π

0
E2D
ε (Q(·, ϕ, ·);U) dϕ,
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where U =
{

(ρ, z) : ρ > 0, ρ2 + z2 > 1
}
is the 2D azimuthal slice of Ω, and

E2D
ε (Q;U) =

¨
U

(
|∇Q|2 +

1

ε2
f(Q)

)
ρ dρdz,

is a weighted Landau-de Gennes functional, with weight ρ. For almost every azimuthal
angle ϕ, the trace Q = Q(·, ϕ, ·) inherits the radial boundary conditions (2.5) on the
half-circle ∂U ∩ {ρ > 0}, uniform far-field alignment

¨
U

|Q−Q∞|2

ρ2 + z2
ρ dρdz,

and the mirror symmetry

Q(ρ,−z) = SQ(ρ, z)S−1.

Studying minimizers ofE2D
ε among configurations satisfying these constraints, the heuris-

tic arguments outlined above Theorem 2.6 can be made rigorous using ideas from
[Bethuel et al., 1994, Struwe, 1994, Jerrard, 1999, Sandier, 1998, André and Shafrir, 1998,
Beaulieu and Hadiji, 1998, Golovaty and Montero, 2014, Canevari, 2015], and this pro-
vides the lower bound

minE2D
ε (·;U) ≥ π

2
| ln ε|+ π

2
ln | ln ε|+O(1).

After integrating with respect to ϕ this gives the energy asymptotics in Theorem 2.6.
Moreover, because of the matching upper bound, the lower bound on E2D

ε must be
saturated on a.e. azimuthal slice, and this saturation implies that the energy is in fact
concentrated near (ρ, z) = (1, 0):

E2D
ε (Qε(·, ϕ, ·;U intδ ) ≥ π

2
| ln ε|+ π

2
ln | ln ε| − π| ln δ| − C,

where U intδ = U ∩{(ρ− 1)2 + z2 < δ}. Integrating with respect to ϕ concludes the proof
of the last assertion in Theorem 2.6.

Limit configuration in the axisymmetric case

The above energy asymptotics provide the upper bound

1

2π
Eε(Qε; Ωext

δ ) ≤ π| ln δ|+O(1),

where Ωext
δ = Ω \ Ω

int
δ = Ω ∩ {dist(·, C) > δ}

Here, recall that C = ∂Ω ∩ {x3 = 0} is the equatorial circle. Classically, this al-
lows one to extract a sequence Qε → Q∗ in H1

loc(Ω \ C;S0), and Q∗ is a U∗-valued
maps which is energy minimizing with respect to compact perturbations in Ω \ C. This
implies [Schoen and Uhlenbeck, 1982, Schoen and Uhlenbeck, 1983] that Q∗ is smooth
away from a set of point singularities isolated in Ω \ C. We would like to show that Q∗
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is actually smooth in Ω \ C, but are not able to do so in that generality: we restrict
ourselves to axisymmetric maps.

Because the energy asymptotics of Theorem 2.6 rely on an axisymmetric upper bound
and on a lower bound for azymuthal slices, it is also valid when considering minimizers
subject to the axisymmetry constraint (2.8), and this is in fact the way it is stated in
[Alama et al., 2021]. In that case we obtain an axisymmetric U∗-valued limit Q∗ which
can be written in the form

Q∗(ρ, ϕ, z) = s∗

(
Rϕn(ρ, z)⊗Rϕn(ρ, z)− 1

3
I

)
,

for a map n : U → S2 (recall U = {(ρ, z) : ρ > 0, ρ2 + z2 > 1}) which minimizes the
energy

Ê(n;U extδ ) =

ˆ
Uextδ

(
|∇n|2 +

n2
1 + n2

2

ρ2

)
ρ dρdz,

U extδ = U \ U intδ = U ∩
{

(ρ− 1)2 + z2 > δ
}
,

among maps m : U extδ → S2 such that m⊗m is mirror symmetric and equal to n⊗ n on
∂U extδ . The second term in the energy Ê comes from the azimuthal derivative |∂ϕQ∗|2,
and makes the far-field alignment condition superfluous. The choice of an orienta-
tion (n is S2-valued and not RP2-valued) is possible because U is simply connected
[Bethuel and Chiron, 2007, Ball and Zarnescu, 2011], and it forces the radial boundary
conditions to take the following form:

n =

{
+er on ∂U ∩ {ρ > 0, z > 0} ,
−er on ∂U ∩ {ρ > 0, z < 0} .

(2.9)

On the equatorial plane, the mirror symmetry imposes

n = τe3 on U ∩ {z = 0} , τ ∈ {±1}, (2.10)

Similarly to the regularity of minimizing harmonic maps in two dimensions, one can
show that n is smooth away from the Saturn-ring at (ρ, z) = (1, 0) and from the vertical
axis {ρ = 0}, where the weight in the energy degenerates. The second main result of
[Alama et al., 2021] states that n is actually smooth also on the vertical axis.

Theorem 2.7. The map n is smooth in U \{(1, 0)}. Moreover it satisfies the additional
symmetry property n2(ρ, z) = 0.

The symmetry property n2(ρ, z) = 0 implies that Rϕn(ρ, z) takes values in the
azimuthal plane generated by eρ, ez, and the azimuthal vector eϕ is an eigenvector of
Q∗(ρ, ϕ, z). The fact that this symmetry is valid is similar to why geodesics on S2 are
contained in a plane: projecting the values of n onto {n2 = 0} decreases the energy.
However, a bit of work is required to make that simple argument work, because boundary
conditions are not explicit on the small circle arc ∂U extδ ∩U , so one cannot be sure that
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the projection preserves them. This difficulty is dealt with by taking advantage of the
upper bound

Ê(n;U extδ ) ≤ π| ln δ|+O(1), (2.11)

which is inherited from the analogous bound on Eε(Qε; Ωext
δ ). To explain how to exploit

(2.11), it is convenient to use polar coordinates (r, θ) around the point (1, 0),

ρ = 1 + r cos θ, z = r sin θ.

The circle arc ∂U extδ ∩ U corresponds to r = δ and θ ∈ (−θ0(r), θ0(r)), where θ0 ≈ π/2.
Along that arc, the boundary conditions (2.9)-(2.10) force n to go from n0 ≈ −e1 at
θ ≈ −π/2 to n1 ≈ e1 at θ ≈ π/2, via τe3 at θ = 0; see Figure 2.3. The corresponding
geodesic on S2 has energy ≈ π, and this provides a lower bound which matches the upper
bound (2.11). Hence this lower bound is saturated, and thanks to stability properties of
geodesics on S2 this imposes

n(r, θ) ≈ (sin θ, 0, τ cos θ) for r � 1.

This closeness, in an appropriate sense, can be used to make the above energy comparison
argument work and show that n2 = 0 everywhere.

z

•
ρ

U extδ

δ
• θ

r

Figure 2.3: The domain U extδ (left), and zoom near the equator (right): coordinates
(r, θ) and oriented boundary conditions.

The proof that n is smooth on the vertical axis is inspired by a similar statement in
[Alama et al., 2016]. Since n is constrained by the second energy term to be equal to
±e3 on the vertical axis, singularities correspond to jump between those two values. On
the other hand, if the sets {n3 ≥ 0} or {n3 ≤ 0} have connected components which don’t
touch the boundary ∂U extδ ∩ {ρ > 0}, one can reflect n at no cost of energy and make
that connected component disappear. If n3 does not change sign on ∂U extδ ∩ {ρ > 0},
this is enough to rule out any sign change of n3 on the vertical axis, and therefore any
singularity. We have n3 > 0 on ∂U ∩ {0 < ρ < 1}, so it remains to understand what
happens on small circle arcs surrounding the singular point (ρ, z) = (1, 0). There one



CHAPTER 2. DEFECTS IN LIQUID CRYSTALS 23

can take advantage again of the rigidity provided by the energy bound (2.11), which
imposes

n3 ≈ τ cos θ on ∂U extδ ∩ U = {r = δ, −θ0(r) < θ < θ0(r)}.

If τ = +1 this is enough to conclude that n3 > 0, by carefully studying what happens
near θ = ±θ0(r).

But if τ = −1 we conclude that n has two mirror-symmetric point singularites on
the vertical axis. That configuration is perfectly allowed by topological constraints: it
corresponds to a positively charged ring of degree +1/2 (whose two traces on a meridian
plane provide a +1 topological charge), compensated by two −1 charges on the vertical
axis, and the +1 charge of the radial boundary conditions. Moreover, it doesn’t seem
possible to rule out that possibility using only the minimizing properties of the map
n. Instead we go back to the energy asymptotics of Theorem 2.6 and compute more
precisely the O(1) remainder. This is the most technical part of the argument, achieved
in [Alama et al., 2021, § 4.3.2], and it enables us to rule out the case τ = −1 and to
prove Theorem 2.7.

Remark 2.8. One may think that determining the O(1) remainder is very similar to the
classical Ginzburg-Landau analysis [Bethuel et al., 1994], but it is not obvious that it
could be directly transposed. Consider for instance that the radial scaling property of
an interior vortex, reflected in the identity | ln(ε/r)| = | ln ε| − | ln r|, is crucially used in
[Bethuel et al., 1994, Chapter VIII]. Here the singularity is deformed when approaching
the boundary and that nice scaling behavior is lost: the energy expansion of Theorem 2.6
does not behave well when replacing ε by ε/r.

2.2.3 Far-field asymptotics

Interactions between particles suspended in nematic liquid crystals are commonly de-
scribed in the physics literature using the so-called electrostatics analogy [Muševič, 2019].
This approximation originates in [Brochard and de Gennes, 1970] and replaces each sin-
gle particle by a singular forcing term in a linearized equation, which allows to explicitly
compute the interactions. The precise form of the singular forcing term depends on the
properties of the corresponding particle, via the far-field deformation it generates in the
nematic alignment. This relies on two implicit assumptions:

• far away from the particle, the asymptotic expansion of the order parameter solves
a linearized equation (around a fixed uniform alignment),

• and the first nontrivial term of that expansion is characterized by the properties
(size, symmetry, etc.) of the particle.

This legitimizes replacing the particle by a singular forcing term (derivatives of a Dirac
mass) which generates the same asymptotic behavior in the linearized equation. The
second assumption is the most mathematically challenging, this is where all the non-
linear nature of the original problem is retained. In this section we present results of
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[Alama et al., 2022] which provide a precise statement regarding the first assumption,
and a first step towards justifying the second assumption.

We represent the particle by a smooth bounded domain G ⊂ R3, and describe
nematic alignment by a director field n : R3 \G→ S2. Its energy is given by

F (n) =

ˆ
R3\G

|∇n|2 dx+ Fs(nb∂G), (2.12)

where

Fs : H
1
2 (∂G; S2)→ [0,∞],

is a weakly lower semicontinuous surface energy, with non-empty domain {Fs < ∞},
which describes the particle’s anchoring properties. For instance the domain of Fs may
consist of one map nb : ∂G → S2, which corresponds to Dirichlet boundary conditions
n∂Ω = nb, but Fs can be much more general.

Uniform far-field alignment is imposed by requiring
ˆ
R3\G

|n− n0|2

1 + r2
dx <∞, (2.13)

for some n0 ∈ S2. We denote by Hn0(G) the space of maps n ∈ H1
loc(R3 \G;S2) satis-

fying this far-field alignment condition. The direct method of the calculus of variations
ensures the existence of a map n minimizing the energy F over Hn0(G). Such map
satisfies the harmonic map equation

−∆n = |∇n|2n in R3 \G,

whose linearization around the constant n0 is simply ∆n = 0. The asymptotic expansion
can be split into a harmonic part, which solves that linearized equation, and a non-
harmonic correction.

Theorem 2.9. As r = |x| → +∞, we have

n = n0 + nharm + ncorr +O
(

1

r4

)
,

where

nharm =
1

r
v0 +

3∑
j=1

pj∂j

(
1

r

)
+

∑
1≤k,`≤3

ck`∂k∂`

(
1

r

)
,

for some coefficients v0, pj , ck` ∈ R3, and

ncorr = −|v0|2

r2
n0 −

|v0|2

2r3
v0 −

1

3r

3∑
j=1

v0 · pj∂j
(

1

r

)
n0.

Moreover, the coefficients v0, pj are orthogonal to n0.
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One could of course obtain an expansion to any order, which would consist of a har-
monic part, and a non-harmonic correction depending on the coefficients of the harmonic
part. The interesting feature of the expansion up to O(1/r4) is that, if the first term in
nharm vanishes, v0 = 0, which, as we will see, is a natural assumption, then ncorr = 0.

Consider for instance an axisymmetric situation: assume RG = G for all rotations
R of axis n0, and n minimizes F in Hn0(G) subject to the axisymmetry constraint

n(Rx) = Rn(x) ∀x ∈ R3 \G,

for all rotations R of axis n0. Theorem 2.9 is still valid for that constrained minimizer,
and plugging the expansion into the axisymmetry constraint imposes Rv0 = v0 for all
rotations of axis n0, so v0 = 0 because v0 ⊥ n0. Therefore in that setting, the physicists’
first assumption, that the asymptotic expansion solves the linearized equation, is correct
up to O(1/r4).

The proof of Theorem 2.9 is obtained by applying iteratively a standard surjectivity
property of the Laplace operator:

f = O
(

1

rγ

)
for some non-integer γ > 3,

⇒ ∃u = O
(

1

rγ−2

)
such that ∆u = f.

Applying this to f = ∆n provides a harmonic part n−u which has an expansion in terms
of derivatives of the fundamental solution 1/r. That expansion can be plugged back into
the equation −∆n = |∇n|2n in order to identify the non-harmonic correction. One can
then repeat this operation to improve the order of the expansion. The orthogonality
conditions on v0, pj simply come from the constraint |n|2 = 1.

The only technical issue is that one needs to get the iteration started, by showing
that

∆n = O
(

1

rγ

)
for some γ > 3.

A simple rescaling of small energy estimates for harmonic maps [Schoen, 1984] provides
the decay ∆n = o(1/r3), which is just not enough. We present in [Alama et al., 2022]
two different proofs of a starting decay estimate ∆n = O(1/r4−). The first proof is
by adapting small energy estimates of [Hardt et al., 1986, Luckhaus, 1988], to compare
the energy decay of S2-valued minimizing maps with the energy decay of Tn0S2-valued
minimizing maps. The latter behave well since they solve a linear equation. The sec-
ond proof, inspired by [Schoen, 1983], is obtained by differentiating the Euler-Lagrange
equation −∆n = |∇n|2n, which provides a linearized equation for w = ∂jn. A rescaled
Cacciopoli’s inequality then allows to improve the initial decay |w|2 = o(1/r3). The first
proof is slightly more flexible in the sense that it adapts directly to a more general class
of energies (than the Dirichlet energy).

The next question is to understand the link between the expansion provided by
Theorem 2.9, and properties of the particle, given by the domain G and its anchoring
energy Fs appearing in (2.12). We succeed to do so only for the first coefficient v0:
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Theorem 2.10. Recall that Hn0(G) is the space of maps n ∈ H1
loc(R3 \G; S2) aligned

with n0 at far-field, in the sense of (2.13). The function F̂ : S2 → [0,∞), defined by

F̂ (n0) = min {F (n) : n ∈ Hn0(G)} ,

is Lipschitz, and for a.e. n0 ∈ S2 we have

∇F̂ (n0) = −8πv0(n0), (2.14)

where v0(n0) = limr→∞ r(n−n0) for any minimizing map n ∈ Hn0(G) such that F̂ (n0) =
F (n). Moreover F̂ is semiconcave: for all n0 ∈ S2, any v0 as above, and all m0 ∈ S2,
we have

F̂ (m0) ≤ F̂ (n0)− 8πv0 · (m0 − n0) + C|m0 − n0|2,

for some constant C = C(G,Fs) > 0.

This shows in particular that, if n0 is a differentiable point of F̂ , then the coefficient
v0 is unique, although minimizing maps n need not be unique. At a hypothetical non-
differentiable point, there may be several possible v0, and they are all admissible in the
semiconcavity inequality.

The validity of (2.14) is suggested by formal calculations in [Brochard and de Gennes, 1970]
showing, in an axisymmetric setting, that the torque applied by particle G on the ne-
matic is proportional to n0×v0. These formal calculations can be interpreted as follows.
Given nt0 ≈ n0 for t ≈ 0, assume that the minimization problem for F̂ (nt0) is attained a
map nt ∈ Hnt0(G) depending smoothly on t. Then one may write

d

dt

∣∣∣∣
t=0

F̂ (nt0) =
d

dt

∣∣∣∣
t=0

F (nt) = DF (n0)[ṅ0],

where ṅ0 = (d/dt)|t=0n
t. But because n0 minimizes F overHn0(G), we haveDF (n0)[v] =

0 for any perturbation v which preserves (infinitesimally) the space Hn0(G). The map
v = ṅ0 does not have that property, because it moves the condition at infinity, but this
tells us that the result should only depend on the far-field behavior of the minimizing
map n0. In fact, performing these calculations on a finite ball BR, we are left only with
a boundary term on ∂BR, which gives (2.14) when sending R→ +∞.

Here we have no hope of showing that minimizing maps in Hn0(G) depend smoothly
on n0, so this argument does not apply. Instead we construct rather natural comparison
maps which enable us to prove the semiconcavity inequality, and then (2.14) follows at
any differentiable point n0.

Theorem 2.10 has the advantage of telling us that the first asymptotic coefficient v0

is uniquely determined by the far-field condition n0, generically. It does express v0 by a
formula (2.14) depending only on n0, G and Fs, but that formula is not easy to calculate
in practice. Nevertheless, it has some simple corollaries which do seem to bring valuable
information.
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First consider that, at equilibrium, a given particle should tend to align itself in
a position that minimizes the energy. From the physical point of view, rotating the
particle or the far-field alignment is totally equivalent, so we may view that equilibrium
condition as requiring that n0 be a local minimizer of F̂ . Moreover the semiconcavity
condition ensures that F̂ is differentiable at a local minimum, and therefore v0 = 0 as a
consequence of (2.14).

Corollary 2.11. If n0 ∈ S2 is locally minimizing for F̂ , then any map n minimizing F
over Hn0(G) has an asymptotic expansion

n = n0 + nharm +O
(

1

r4

)
, ∆nharm = 0, nharm = O

(
1

r2

)
,

as r = |x| → +∞.

Second, consider the case of symmetric particles. We say that G is axisymmetric
around u ∈ S2 if, for any rotationR of axis u, we haveRG = G and Fs(Rn◦R−1) = Fs(n)
for all n ∈ H1/2(∂G; S2). And G is spherically symmetric if this is true for any rotation
R, of any axis. The function F̂ inherits the same invariances: F̂ (Rn0) = F̂ (n0) for
all n0 ∈ S2 and rotation R in the symmetry group of G. Differentiating this identity
automatically gives us, via (2.14), information about v0.

Corollary 2.12. If G is axisymmetric around u ∈ S2, then for a.e. n0 ∈ S2 we have

v0(n0) · (u× n0) = 0.

If in addition F̂ is differentiable at u then v0(u) = 0. If G is sperically symmetric, then
v0(n0) = 0 for all n0 ∈ S2.

As in Corollary 2.11, one could also write down corresponding consequences con-
cerning the asymptotic expansion given by Theorem 2.9. Note that we do not know
whether there exist axisymmetric particles such that F̂ would not be differentiable at
u. In that case, the semiconcavity of F̂ would force it to have a local maximum at u,
with its graph looking locally like a cone.

Remark 2.13. All results presented in this section for the isotropic Dirichlet energy can
be directly generalized to more general energies, for instance the anisotropic Oseen-Frank
energy, and also to higher dimensions.

2.2.4 Perspectives

The main motivation of the works presented here about nematic colloids is to eventually
gain a rigorous understanding of interactions between immersed particles. So far we
have concentrated on the effect of a single particle, and I present here some further per-
spectives about this question, before evoking the next step of determining interactions.
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Single particle

In § 2.2.2 we describe a Saturn-ring configuration obtained by minimizing under a
mirror-symmetry constraint. The equatorial defect line arising in the limit ε → 0
is a length-maximizing closed curve on the sphere, and as such we would expect the
Saturn-ring configuration to be unstable. But numerical evidence [Fukuda et al., 2004b,
Lubensky et al., 1998] indicates that it is stable. That apparent paradox is resolved if we
consider that the Saturn ring configuration is stable only in a neighborhood that shrinks
as ε → 0, and this phenomenon may be due to boundary effects. Tools developed in
[Serfaty, 2005, Canevari and Orlandi, 2021] are related to this stability issue and will
provide a starting point to investigate it.

In § 2.2.3, Corollary 2.12 can be interpreted as a result of symmetry at infinity
for minimizing maps. It is natural to expect that this can be used, at least in the
sperically symmetric setting, to prove that minimizers are axisymmetric: examples were
asymptotic symmetry is used to deduce full symmetry can be found in [Mironescu, 1996,
Millot and Pisante, 2010]. (Note that methods of [Sandier and Shafrir, 1993] to prove
axisymmetry of S2-valued maps will not apply here.)

Finally, it seems important in view of applications to adapt the analysis of § 2.2.3 to
the Q-tensor description: obtain far-field asymptotics uniform with respect to ε, and an
equivalent of Theorem 2.10. The methods of [Contreras and Lamy, 2022] will provide a
technical framework to resolve the first step.

Interactions

In the absence of a full understanding of the next terms in the asymptotic expan-
sion of Theorem 2.9, a reasonable way to approach the problem of estimating in-
teractions between particles is suggested by the phenomenological model proposed in
[Lubensky et al., 1998, § 5]. There, the presence of particles is modeled by additional
singular terms in the energy, but without linearizing the equation. In that context, jus-
tifying the electrostatic analogy amounts to a linearization procedure where the issue of
boundary anchoring and accompanying defects has been hidden in that simplified en-
ergy. A first step will be to consider two particles and obtain an asymptotic expansion
of the full energy as their mutual distance grows to infinity: this amounts to a rigorous
justification of formal arguments in [Lubensky et al., 1998, § 5]. It is then natural to
move on to the case of many particles.

2.3 The effects of elastic anisotropy

As mentioned in the introduction of this chapter, within the director description, the
isotropic Dirichlet energy

E(n) =

ˆ
Ω
|∇n|2 dx, n : Ω→ S2,
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is a simplification of the more general Oseen-Frank model,

EOF (n) =

ˆ
Ω

(
k1|∇ · n|2 + k2(n · ∇ × n)2 + k3|n× (∇× n)|2

)
dx, (2.15)

which we call anisotropic whenever k1, k2, k3 > 0 are distinct. In contrast with isotropic
harmonic maps, minimizers of the anisotropic Oseen-Frank energy are not that well
understood: their singular set has dimension strictly less than one [Hardt et al., 1986,
Hardt et al., 1988], but is not known whether it is discrete (unless the constants are
almost equal [Almgren and Lieb, 1988]), and it is not known for all values of k1, k2, k3

whether the map x/|x| is minimizing [Hélein, 1987, Lin, 1987, Cohen and Taylor, 1990,
Kinderlehrer and Ou, 1992, Ou, 1992, Alouges and Ghidaglia, 1997].

More generally, one may consider anisotropic energies (with elliptic integrands)
for maps with values into a given submanifold. In addition to the unknown dimen-
sion of a minimizing map’s singular set, there is a long list of questions that are
solved in the isotropic case and open for anisotropic integrands: smoothness of critical
maps in a two-dimensional domain [Hélein, 2002, Rivière, 2007], regularity of stationary
critical maps [Evans, 1991, Bethuel, 1993], regularity of anisotropic minimal surfaces
[De Lellis et al., 2021, De Rosa and Tione, 2022], etc.

These difficulties are due to important structural properties that are absent in the
anisotropic case. Let us illustrate this with two basic observations:

• The isotropic Euler-Lagrange system

−∆n = |∇n|2n,

is, at main order, determined by the scalar operator −∆ which acts diagonally
on n. This specific diagonal structure is absent in the anisotropic case: all that
remains is a quasilinear strongly elliptic system with a right-hand side quadratic
in ∇n.

• The isotropic energy density enjoys a decoupling

|∇n|2 = |∂rn|2 +
1

r2
|∇ωn|2,

into radial and angular derivatives. This ensures that tangent maps (limits of
rescaled maps nr(x) = n(rx) along sequences r → 0) are 0-homogeneous, by pro-
viding a monotonicity formula for the energy of rescaled maps. Such decoupling is
absent in the anisotropic case (see [Allard, 1973] in the case of anisotropic minimal
surfaces).

Another interesting observation is that, like geodesics, isotropic harmonic maps are
intrinsic geometric objects: the energy density

|∇n|2 =
∑
j

|∂jn|2
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depends only on the riemannian structure of S2 (to define the norm of the tangent
vectors ∂jn), but not on the isometric embedding S2 ⊂ R3. In contrast, the anisotropic
Oseen-Frank energy does depend on that embedding: applying a rotation changes in
general the value of the energy [Kinderlehrer et al., 1993].

These structural properties also play an important role in the analysis of minimizers
and critical points of the Landau-de Gennes energy (2.2). In the anisotropic case, new
tools are needed to circumvent the non-diagonal form of the Euler-Lagrange system and
the lack of monotonicity formula. In the rest of this section I describe three works where
such new tools are developed, and anisotropy-related phenomena are unveiled:

• in [Contreras and Lamy, 2022] with A. Contreras we prove uniform convergence
of minimizers of an anisotropic version of (2.2) towards minimizers of the Oseen-
Frank energy, away from singularities;

• in [Lamy and Zùñiga, 2022] with A. Zùñiga and in [Kowalczyk et al., 2022] with
M. Kowalczyk and P. Smyrnelis we study two-dimensional entire solutions (which
describe the fine structure of defects) of an anisotropic Ginzburg-Landau system.

2.3.1 Small energy estimates for Landau-de Gennes

In [Majumdar and Zarnescu, 2010, Nguyen and Zarnescu, 2013] (see also [Contreras et al., 2018])
the authors consider minimizers of the Landau-de Gennes energy

Eε(Q; Ω) =

ˆ
Ω

(
1

2
|∇Q|2 +

1

ε2
f(Q)

)
dx

in a bounded domain Ω ⊂ R3, with fixed smooth U∗-valued boundary conditions on ∂Ω.
They prove that, along a sequence ε → 0, these converge uniformly away from a finite
number of points, to a U∗-valued map Q∗ = s∗(n ⊗ n − 1

3I). The map n : Ω → S2 is a
minimizing harmonic map, which is smooth away from said finite set of point.

The main tool of the proof is a small-energy estimate for smooth solutions of the
Euler-Lagrange equation

∆Q =
1

ε2
∇f(Q), (2.16)

which asserts the existence of δ > 0 such that

r2 sup
Br/2

|∇Q|2 ≤ C 1

r
Eε(Q;Br) if

1

r
Eε(Q;Br) ≤ δ2, (2.17)

for any ball Br ⊂ Ω and ε � 1. Inspired by similar arguments in [Schoen, 1984,
Chen and Struwe, 1989, Bethuel et al., 1993, Chen and Lin, 1993], this small energy es-
timate is obtained as a consequence of a Bochner inequality for the energy density:

−∆[eε(Q)] ≤ Ceε(Q)2, eε(Q) =
1

2
|∇Q|2 +

1

ε2
f(Q).
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Note that here the operator −∆ acting on scalar-valued functions is related to the
specific diagonal form of the Euler-Lagrange system (2.16), and this argument seems
therefore constrained to the isotropic setting. That Bochner inequality can then be com-
bined with the energy monotonicity formula (another specifically isotropic ingredient)
as in [Chen and Lin, 1993, Majumdar and Zarnescu, 2010, Nguyen and Zarnescu, 2013],
or with a Moser iteration as in [Haslhofer and Müller, 2011, Lemma 3.3], to prove the
small-energy estimate (2.17).
Remark 2.14. Methods in [Bethuel et al., 2001] also use the isotropic structure, and
are moreover tailored for C-valued maps converging to S1-valued maps. In that case,
the smallness requirement in (2.17) can be relaxed to a logarithmic bound with small
factor, see e.g. [Bethuel et al., 2005]. For the isotropic Landau-de Gennes energy, this
is achieved in [Canevari, 2017].

In the anisotropic setting where |∇Q|2 is replaced by a general positive definite
quadratic form A(Q)[∇Q], there is no known equivalent of a Bochner inequality. In
a two-dimensional domain, one can take advantage of Sobolev embeddings to avoid
using that inequality [Bauman et al., 2012], but this does not seem easily generalizable
to higher dimensions. In [Contreras and Lamy, 2022] we propose a different argument
leading to analogous estimates and uniform convergence results, in the presence of elastic
anisotropy.

For any positive definite quadratic form A on (S0)3, we consider maps Q : Ω → S0

minimizing (with respect to their own boundary conditions) the anisotropic energy

EA
ε (Q; Ω) =

ˆ
Ω

(
A[∇Q] +

1

ε2
f(Q)

)
dx.

We may allow the coefficients of A to depend smoothly on x, but not on Q at this stage
(although it would be desirable in view of applications, see e.g. [Golovaty et al., 2021]).
A widely used example is the quadratic form

A[∇Q] = L1|∇Q|2 + L2 |∇ ·Q|2,

where the divergence ∇ ·Q is taken row-wise, and 3L1 + 5L2 > 0.
Any sequence Qε of minimizing maps with bounded energy EA

ε (Qε; Ω) ≤ C as ε→ 0,
is precompact in H1

loc(Ω;S0) (see e.g. [Canevari, 2017]) and converges, along a subse-
quence, to a minimizing U∗-valued map. Thanks to the regularity theory of anisotropic
harmonic maps [Hardt et al., 1986, Hardt et al., 1988, Luckhaus, 1988], that U∗-valued
map is smooth away from a closed singular set of dimension strictly less than one. We
show that the convergence is uniform away from that singular set, as a consequence of
the following small-energy estimate.

Theorem 2.15. For any α ∈ (0, 1), there exist δ, ε0 > 0 such that, for any map Q : Br →
S0 minimizing the anisotropic energy EA

ε (·;Br), we have

r2α|Q|Cα(Br/2) ≤ C
1

r
EA
ε (Q;Br) if

1

r
EA
ε (Q;Br) ≤ δ2, (2.18)

provided 0 < r ≤ 1 and 0 < ε < ε0r.
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The proof of Theorem 2.15 starts from the observation that it is true in the limit,
that is, for U∗-valued energy-minimizing maps [Hardt et al., 1986, Hardt et al., 1988,
Luckhaus, 1988]. But, in contrast with the limit problem, the energy EA

ε is not scale-
invariant, due to the presence of the potential term and the characteristic length scale
ε > 0. Roughly speaking, at large scales r � ε one expects a minimizing map Q to “look
like” a U∗-valued map, but at small scales r ≤ ε it should simply look like a solution
of the rescaled Euler-Lagrange system LAQ = ∇f(Q), where LA is the elliptic operator
naturally associated to A. In both cases, there is a regularity theory, and the proof of
Theorem 2.15 follows that dichotomy: we obtain energy decay estimates at large scales
by adapting the regularity theory of manifold-valued maps, and at small scales using
classical elliptic regularity.

An unexpected difficulty concerns the small scales, which boil down to regularity
estimates for the semilinear elliptic system LAQ = ∇f(Q). One needs an initial bound
in order to start bootstrapping. In the isotropic case it is very easy to obtain L∞ bounds
under reasonable boundary conditions, but in general this seems surprisingly hard. We
rely instead on ad hoc estimates exploiting the low dimension and the specific form of
the potential (a quartic polynomial).

Remark 2.16. Let us describe more specifically the issue of L∞ bounds. In the isotropic
case A[∇Q] = |∇Q|2, if a potential f ≥ 0 has the coercivity property that

sup
|Q|≤R0

f(Q) ≤ inf
|Q|≥R0

f(Q) for some R0 > 0,

then any map Q minimizing Eε(·; Ω) in a bounded domain Ω satisfies the maximum
principle

‖Q‖L∞(Ω) ≤ max(R0, ‖Q‖L∞(∂Ω)).

The reason is simple: projecting the values of Q orthogonally onto the ball {|Q| ≤ R0}
decreases both terms in the energy. This is no longer true when the elastic term is
anisotropic. In fact, a maximum principle in this form cannot be valid for a truly
anisotropic A, because the homogeneous linear system LAQ = 0 does not even enjoy
the sharp maximum principle ‖Q‖L∞(Ω) ≤ ‖Q‖L∞(∂Ω) [Kresin and Maz’ya, 2012]. Only
a weaker form with a multiplicative constant C > 1 is valid: this indicates that the
projection argument will not be easily adaptable to the anisotropic case. Nevertheless,
it seems reasonable to conjecture that for a potential f which is “coercive enough”, any
minimizer Q of EA

ε (·,Ω) will satisfy

‖Q‖L∞(Ω) ≤ C max(R0, ‖Q‖L∞(∂Ω)),

for some constants C > 1, R0 > 0 depending on A and f . We were, however, not able
to prove that conjecture.

The method used to prove the interior estimate of Theorem 2.15 can also be applied
to obtain boundary estimates. We consider in [Contreras and Lamy, 2022] two types of
boundary conditions:
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• Dirichlet boundary conditions

Q = Qb on ∂Ω,

for a fixed smooth map Qb : ∂Ω→ U∗. In that case, small-energy estimates at the
boundary are valid, similar to Theorem 2.15.

• Weak anchoring conditions described by a surface energy: the energy to minimize
becomes

EA
ε (Q; Ω) +

ˆ
∂Ω
g(x,Q) dx,

for some smooth map g : Ω× S0 → [0,∞[. In that case, we are only able to prove
small-energy estimates under the additional assumption of an a priori uniform L∞

bound. This assumption is verified for a large class of anchoring energy densities
g(x,Q) in the isotropic setting. Even in that restrictive case, the result seems new,
because the method based on Bochner’s inequality is not adapted to treat weak
anchoring conditions.

2.3.2 Two-dimensional vortex profiles

In this section we concentrate on a simplified two-dimensional model, in order to obtain a
more precise understanding of the qualitative differences introduced by elastic anistropy.
For a domain Ω ⊂ R2 and maps u : Ω→ R2, the anisotropic Ginzburg-Landau energy is
given by

Eδε(u; Ω) =

ˆ
Ω

(
Aδ[∇u] +

1

4ε2
(1− |u|2)2

)
dx,

Aδ[∇u] =
1

2
|∇u|2 +

δ

2

(
(∇ · u)2 − (∇× u)2

)
, |δ| < 1. (2.19)

The parameter δ ∈ (−1, 1) quantifies the anisotropy, the isotropic case δ = 0 corresponds
to the classical Ginzburg-Landau functional. The identity

Aδ[∇u] = (1 + δ)(∇ · u)2 + (1− δ)(∇× u)2 − 2 det(∇u),

where the last term is a null Lagrangian, allows to interpret this elastic energy as a
two-dimensional version of the anisotropic Oseen-Frank energy (2.15). It arises nat-
urally as a model for two-dimensional liquid crystal configurations [Lee et al., 2006,
Barboza et al., 2016, Barboza et al., 2013, Clerc et al., 2014], and various mathematical
aspects have been studied in [Colbert-Kelly and Phillips, 2013, Colbert-Kelly et al., 2017,
Golovaty et al., 2020, Golovaty et al., 2019]. In particular, an equivalent of the analy-
sis of minimizers of the classical Ginzburg-Landau energy [Bethuel et al., 1994] has been
obtained in [Colbert-Kelly and Phillips, 2013] when the boundary condition has positive
degree, but is open for negative degrees. The reason for this is that anisotropic vortices
of degree +1 behave very differently from vortices of other degrees (in particular, from
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vortices of degree −1). This difference will also be apparent in the results presented in
this section about vortex profiles: entire solutions of the Euler-Lagrange equation with
prescribed degree at infinity.

Entire vortex solutions arise when zooming in at scale ε around a singularity, which
has the effect of setting ε = 1, hence we consider solutions of the Euler-Lagrange system

Lδu = −
(
1− |u|2

)
u in R2, (2.20)

where the operator Lδ is defined by

Lδu = ∆u+ δ
(
∇(∇ · u)−∇⊥(∇× u)

)
,

with the notation ∇⊥ = (−∂2, ∂1). Given a weak solution u ∈ H1
loc(R2;R2) of (2.20), if

it has finite potential energy
ˆ
R2

(1− |u|2)2 dx <∞, (2.21)

then one can show (see e.g. [Kowalczyk et al., 2022, § 3]) that u is smooth and |u(x)| → 1
as |x| → ∞. This allows to define its degree, or winding number,

deg(u) = deg

(
u

|u|
, ∂DR

)
∈ Z ∀R� 1,

and we are interested here in solutions with a prescribed degree d ∈ Z.
In the isotropic case δ = 0, the classical Ginzburg-Landau equation

∆u = −(1− |u|2)u in R2,

admits, for any given degree d ∈ Z \ {0}, a radial solution

ud(re
iθ) = fd(r)e

idθ, fd ≥ 0, fd(0) = 0, lim
+∞

fd = 1,

and the radial profile fd is uniquely determined via the ordinary differential equation that
it must satisfy [Hervé and Hervé, 1994, Chen et al., 1994]. Each solution ud generates,
by invariance under translations and rotations, a three-dimensional family of solutions

eiαud(·+ a), α ∈ R, a ∈ R2.

There are no other entire solutions of degree d = ±1 [Mironescu, 1996], but for higher
degrees it is open whether there exist nonradial solutions.

In the anisotropic case δ 6= 0, the situation is different. The only solutions of (2.20)-
(2.21) of the form u(reiθ) = f(r)eiαeiθ with a real-valued radial profile f(r) are of
degree d = 1, and phase shift α ≡ 0 mod π/2 [Clerc et al., 2014]. This can be partially
interpreted in terms of symmetries of the equation: radial functions of the form f(r)eidθ

can be characterized as invariant under the transformations u(z)→ e−idαu(eiαz) for all
α ∈ R, but these transformations preserve the equation (2.20) if and only if δ = 0 or
d = 1.
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Remark 2.17. More specifically, it is instructive to make a list of the elementary sym-
metries of (2.20), which are the transformations

u(z) −→ τe−iαu(eiαz), α ∈ R, τ ∈ {±1},
u(z) −→ u(z̄),

u(z) −→ u(z + a), a ∈ R2,

associated to rotation equivariance, reflection equivariance, and translation invariance.
In the isotropic case δ = 0, the equation is, in addition, invariant under rotation and
reflection, separately in the variable and in the target. For instance, u(z) → eiαu(z)
preserves the isotropic equation for any α ∈ R, but for δ 6= 0 this is only true if α ≡ 0
mod π.

From the physical point of view, the most important vortex profiles are those of
degree ±1, since they correspond to defects that are stable in experiments (see e.g.
[Lee et al., 2006, Barboza et al., 2013, Clerc et al., 2014]). In the isotropic case δ = 0,
the two degrees d = ±1 are essentially equivalent since the transformation u → ū
maps one to the other, and their uniqueness [Mironescu, 1996] and stability properties
[Mironescu, 1995] are well understood. In the anisotropic case δ 6= 0, the two cases
d = ±1 are quite different:

• For d = 1 there is a radial solution, but its stability and uniqueness properties
are not fully understood. In [Lamy and Zùñiga, 2022] we show that it is linearly
stable for small anisotropy but loses stability when the anisotropy is higher.

• For d = −1 there is no radial solution, and the mere existence of an entire solution
is already an issue. In [Kowalczyk et al., 2022] we prove such existence for small
anisotropy |δ| < δ0.

Degree +1: linear stability analysis

In the isotropic case δ = 0, nondegenerate linear stability of the radial solution u = f(r)eiθ

has been proved in [Mironescu, 1995, Del Pino et al., 2004] and recently upgraded to a
nonlinear stability estimate [Gravejat et al., 2021]. Here we consider the radial solution
of the anisotropic equation (2.20) given by

uδrad(re
iθ) = f δ(r)eiθ, f δ(r) = f

(
r√

1 + δ

)
,

where f(r) = f0(r) is the radial profile of the isotropic vortex.
The second variation of the energy Eδ1 at uδrad is the quadratic form

Qδrad[v] =

ˆ
R2

(
Aδ[∇v]− (1− (f δ)2)|v|2 + 2(f δ)2(eiθ · v)2

)
dx,
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associated to the linear operator obtained by linearizing the equation (2.20) around uδrad.
Taking into account the expansion f(r) = 1 + O(r−2) ar r → ∞, the quadratic form
Qδrad is well defined on the space

Hlin =

{
v ∈ H1

loc(R2;R2) :

ˆ
R2

(
|∇v|2 +

|v|2

r2
+ (eiθ · v)2

)
dx <∞

}
.

Invariance by translation provides two elements of the kernel of Qrad, namely ∂ju
δ
rad

(j = 1, 2), and we denote by K the linear subspace of Hlin generated by these two
functions.

Theorem 2.18. There exists δ1 ∈ (0, 1) such that uδrad is

• nondegenerately stable if δ ∈ (−δ1, 0]: Qδrad[v] > 0 for all v ∈ Hlin \K.

• unstable if δ ∈ (−1,−δ1) ∪ (0, 1): Qδrad[v] < 0 for some v ∈ Hlin.

Remark 2.19. The asymmetry between δ > 0 and δ < 0 is due to the fact that eiθ is
energy-minimizing (among S1-valued maps depending only on θ) if and only if δ ≤ 0.
There is another radial solution, ũδrad(re

iθ) = f−δ(r)ieiθ, which is stable for 0 ≤ δ < δ1

and unstable otherwise. This completes at the end a symmetric picture: for |δ| < δ1

exactly one of the two radial solutions is stable, and for δ1 < |δ| < 1 they are both
unstable.

The proof of Theorem 2.18 is very close to the stability analysis of the isotropic case
[Mironescu, 1995] (see also [Del Pino et al., 2004, Ignat et al., 2016a, Ignat et al., 2016b]),
based on separation of variables: the Fourier decomposition

v = eiθ
∑
n≥0

(
wn(r)einθ + w−n(t)e−inθ

)
,

turns out to be orthogonal for the quadratic form Qδrad, hence it suffices to study each
mode separately. The lower modes n = 0, 1 play a special role and can be studied via
a decomposition introduced in [Mironescu, 1995], using the equation satisfied by the
radial profile f . They are both stable for δ ∈ (−1, 0], and the n = 0 mode is unstable
for δ > 0.

The main novelty, with respect to the isotropic case, is the mechanism of instability
for δ close to −1. In the isotropic case, the higher modes n ≥ 2 are automatically stable
as a consequence of the stability of lower modes, but here this principle is broken: for
−1 < δ < −δ1, the lower modes are stable and instability is caused by high modes.
Note that stability of the high modes for δ close to 0 can be obtained by a perturbation
argument from the isotropic case δ = 0, but direct careful estimates of the anisotropic
quadratic form provide a quantitative range of stability: we know that δ1 ≥ 1/

√
5.

Degree −1: existence

When trying to prove existence of an entire solution with prescribed degree d, a natural
strategy is to obtain solutions on finite disks DR by minimizing the energy with some
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boundary condition of degree d, and then let R → ∞. The hard part is to check that
the degree constraint is conserved in that limit. For radial solutions f(r)eidθ this is not
an issue, since the symmetry constraint passes easily to the limit. But in the anisotropic
case δ = 0, one cannot look for radial solutions unless d = 1. To obtain the existence of
solutions of degree −1, we use instead a discrete symmetry constraint: we impose

u(ei
π
2 z) = −ei

π
2 u(z) ∀z ∈ R2. (2.22)

Since it is compatible with the symmetries of (2.20) (see Remark 2.17), minimizing
under this constraint does provide solutions of (2.20), which are energy-minimizing with
respect to compact modifications. Moreover, one can check that, if u has a well-defined
degree, then the constraint (2.22) implies

deg(u; ∂Dr) ≡ −1 mod 4.

This is not enough to fix the degree, but ensures at least that it is nontrivial. Moreover,
in the equivalence class −1 + 4Z, the degree with the lowest modulus is precisely −1,
hence energy-minimizing configurations are likely to have degree −1, at least if the
anisotropy is not too large.

Theorem 2.20. There exists δ0 > 0 such that, for |δ| < δ0, the anisotropic Ginzburg-
Landau equation (2.20) admits an entire solution u : R2 → R2 with finite potential energy
(2.21) and deg(u) = −1.

Remark 2.21. The same ideas apply to construct solutions of any negative degree d ≤ −1
(but not for d ≥ 2). Moreover, imposing in addition one of the two different symmetry
constraints u(z̄) = ±u(z), we can obtain two distinct solutions (modulo the elementary
symmetries of Remark 2.17). These two solutions converge, as δ → 0, to ud and iud,
where ud = fd(r)e

idθ is the isotropic radial solution of degree d.

The proof of Theorem 2.20 follows the two steps described above:

• The first step is to obtain an entire solution of (2.20)-(2.21) which minimizes the
energy under the symmetry constraint (2.22). This follows by imposing well-chosen
boundary conditions on ∂DR and using a Pohozaev identity to bound the potential
energy uniformly in R. This does not require any restriction on δ ∈ (−1, 1).

• The second step is to take advantage of the minimal modulus property of −1 in the
equivalence class −1 + 4Z in order to show that this solution actually has degree
−1. This is the most technical part of the proof, and where we need the smallness
assumption on |δ|.

Let us describe more precisely the second step. The main idea comes from the proof
in [Shafrir, 1994] that nontrivial minimizing entire solutions of the isotropic Ginzburg-
Landau equation must have degree ±1, relying on the quantization effect proved in
[Brezis et al., 1994]: a solution of degree d has energy of order πd2 lnR on a large disk
DR. But one can modify such solution inside DR to obtain a configuration of energy
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π|d| lnR, with one central vortex of degree ±1 and (|d| − 1) escaping vortices of degree
±1 (say on a circle of radius R/4). The minimizing property therefore implies d2 ≤ |d|,
so d = ±1.

One difficulty we face in our case is that it is not obvious at all that a quantization
effect could be valid in the anisotropic case. In fact in degree d = +1 there are two
solutions with different energy asymptotics. However we can obtain non-sharp upper
and lower bound by simply using the fact that Aδ[∇u] = (1 +O(δ))|∇u|2. Accordingly,
we will only be able to prove that d2 ≤ (1+O(δ))|d|, and this implies |d| = 1 only under
a smallness assumption on δ.

Another difficulty is of a more technical nature: in order to perform a construction
similar to [Shafrir, 1994], one must modify the original solution in a boundary layer
DR \ DR/2 with low energy cost. For this, it is enough to have a logarithmic bound
on the energy, which in the isotropic case is a byproduct of the quantization result of
[Brezis et al., 1994]. Here we don’t know if such bound could be proved for all solutions
with finite potential energy (2.21), but we obtain it using again the minimizing property
and constructing a competitor based on harmonic extensions of phase and modulus.
This argument also makes use of Aδ[∇u] = (1 + O(δ))|∇u|2 and therefore requires a
smallness assumption on δ. Note however that the threshold δ0 in Theorem 2.20 is
completely explicit.

2.3.3 Perspectives

One central open problem about anisotropic energies is the regularity of anisotropic
harmonic maps: could the singular set of anisotropic Oseen-Frank minimizers be larger
than locally finite? An answer to this question seems out of reach at this stage, and
the stand point adopted in this chapter is to explore a variety of physically motivated
questions about anisotropic energies in order to develop new methods and understand
anisotropy-specific phenomena. I present here some perspectives concerning the two-
dimensional Ginzburg-Landau energy (2.19) of § 2.3.2, and the radial defect x/|x| in
three dimensions.

Two-dimensional Ginzburg-Landau

Concerning the radial vortex profile of degree one, a natural follow-up to the linear
stability study in Theorem 2.18, is to establish a nonlinear stability estimate analog to
[Gravejat et al., 2021], in the linearly stable regime. An interesting feature is that the
rotational symmetry which plays an important role in [Gravejat et al., 2021] is broken
as soon as δ 6= 0: a nonlinear stability estimate will provide a quantitative insight into
that phenomenon.

Concerning entire vortex profiles of degree -1, an outstanding question left unresolved
by Theorem 2.20 is their existence for all values |δ| < 1. We plan to achieve this by
applying continuation methods in the spirit of [Kowalczyk et al., 2012]. To that end, the
first step is to obtain, for |δ| � 1, good asymptotic estimates of the solution provided
by Theorem 2.20. This is related to another important issue: the asymptotic analysis
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of negative degre minimizers of the anisotropic Ginzburg-Landau energy Eδε (2.19).
To gain insight into that question, an even more basic problem is that of S1-valued

minimizers of Eδε in an annulus. In a work in preparation with A. Contreras, we inves-
tigate all 0-homogeneous (that is, r-independent) S1-valued critical points of degree -1:
we find that, in a annulus with small hole, they are not minimizing with respect to their
own boundary conditions for 0 < |δ| � 1. This seems connected to the regularity issue
for general anisotropic harmonic maps in dimension n ≥ 3: improved estimates in the
isotropic case are due to the fact that tangent maps must be 0-homogeneous, but here
we have a situation where 0-homogeneous maps can not be minimizing.

Still regarding the asymptotic analysis of Eδε , for positive degrees a renormalized
energy is obtained in [Colbert-Kelly and Phillips, 2013], but it is not explicit enough to
understand how the classical logarithmic Coulomb interaction is modified. In another
work in preparation with A. Contreras, we obtain a description of the anisotropic in-
teraction for small |δ|, and it will be interesting to investigate how the corresponding
crystallization phenomena are modified.

The radial singularity in three dimensions

There is a range of values of the elastic constants in the anisotropic Oseen-Frank energy
(2.15) for which the radial map x/|x| is known to be linearly stable, but whether it is
minimizing (even locally) with respect to its own boundary conditions is an open ques-
tion. One reason why the linear stability does not provide enough information is that,
for perturbations which move the central singularity, the linear stability does not control
the next nonlinear terms [Cohen and Taylor, 1990]. This motivates studying the effect of
inner variations, which we do in a work in preparation with P. Bousquet and R. Rodiac.
Another interesting direction is to study the stability of the radial profile in a Ginzburg-
Landau approximation (there, stability does imply local minimality), which should be at-
tainable by combining methods of [Cohen and Taylor, 1990, Kinderlehrer and Ou, 1992]
and of [Ignat et al., 2015].

A related question is to obtain, in the range where x/|x| is known to be minimizing,
nonlinear stability estimates with respect to boundary perturbations, in the spirit of
[Hardt and Lin, 1989]. That work relies very much on the monotonicity formula, and
generalizations to an anisotropic setting are therefore all the more interesting. Here there
is a hope to obtain such generalization because the linearized equation is completely
explicit, and bad solutions that are usually ruled out by the monotonicity formula are
simply not present.



Chapter 3

Line-energy models in 2D

3.1 Introduction

3.1.1 Eikonal equation and energy concentration

Several two-dimensional physical models have in common to exhibit concentration phe-
nomena on one-dimensional subsets, corresponding to singularities of the eikonal equa-
tion

|∇u|2 = 1 in Ω ⊂ R2,

or, for the two-dimensional vector-field m = ∇⊥u,

∇ ·m = 0 in D′(Ω), |m| = 1 a.e. in Ω. (3.1)

Subject to the boundary conditions u = 0 on ∂Ω, the gradient of the viscosity solution
u(x) = dist(x, ∂Ω) has bounded variation, which is enough to ensure energy concentra-
tion on a one-dimensional subset (in a sense precised below). However, for the physical
models under consideration here, the relevant class of solutions is larger, and energy
concentration is not fully understood.

Let us focus here on one model, the Aviles-Giga functional

AGε(m; Ω) =

ˆ
Ω

(
ε

2
|∇m|2 +

1

2ε
(1− |m|2)2

)
dx,

m : Ω→ R2, ∇ ·m = 0.

Via the identification m = ∇⊥u, which can be made in any simply connected do-
main, this functional can also be seen as a second-order Ginzburg-Landau energy. Pro-
posed in [Aviles and Giga, 1987] as a model for smectic liquid crystals, it is related to
several physical applications (thin-film elasticity, micromagnetism, pattern formation),
and we refer to the introduction of [Jin and Kohn, 2000] for a review of these applica-
tions. When imposing tangential boundary conditions m · n∂Ω = 0, it is conjectured in
[Ortiz and Gioia, 1994] that minimizers of AGε(·; Ω) converge to the viscosity solution

40
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m = ∇⊥ dist∂Ω. That conjecture is proved only in the case of an ellipse or very similar
domains [Marconi, 2021a]; see also [Ignat and Merlet, 2012], where counterexamples in
nonconvex domains are given.

Given a sequence of bounded energyAGε(mε) ≤ C, it is shown in [Ambrosio et al., 1999,
DeSimone et al., 2001, Jabin and Perthame, 2001] that (mε) is precompact in L1(Ω),
and therefore any limit m = limmε solves the eikonal equation (3.1). Moreover, the
calibration method developed in [Jin and Kohn, 2000] provides the lower bound

lim inf AGε(mε; Ω) ≥ 1

6

ˆ
Jm

|m+ −m−|3 dH1, (3.2)

where Jm ⊂ Ω is the 1-rectifiable jump set of m, with traces m± on each side of it. This
makes sense if m is of bounded variation (BV ), but also for any limit m = limmε of a
bounded energy sequence thanks to results of [De Lellis and Otto, 2003]. Ifm ∈ BV (Ω),
a matching upper bound (in the sense of Γ-convergence) is available [Conti and De Lellis, 2007,
Poliakovsky, 2007], thus showing energy concentration on the 1D set Jm. The construc-
tion providing that upper bound is done by replacing the sharp jumps between m+ and
m− with one-dimensional transitions at scale ε in the direction normal to the jump set.
Performing this modification and estimating its energy requires fine information about
the structure of m, provided in this case by the theory of BV functions.

If m /∈ BV (Ω), validity of a matching upper bound is a long-standing open question:
this, and related open questions, are the central theme of the present chapter. The main
difficulty is to understand the fine structure, ideally BV -like, of solutions of the eikonal
equation (3.1) which are limits m = limmε of bounded energy sequences.

3.1.2 Entropy productions

To understand that class of solutions, an important concept, introduced in [DeSimone et al., 2001]
and borrowed from scalar conservation laws, is that of entropy : a smooth map Φ: S1 → R2

is an entropy for the eikonal equation (3.1) if ∇ · Φ(m) = 0 for any smooth solution m
of (3.1). This is equivalent to the condition

eiθ · d
dθ

Φ(eiθ) = 0 ∀θ ∈ R.

For a general weak solution m, the entropy production ∇ ·Φ(m) is a distribution, which
should “detect” singularities. Here we are interested in solutions m = limmε which are
limits of bounded energy sequences. This imposes a finite-entropy condition: entropy
productions are finite real-valued Radon measures [DeSimone et al., 2001]. Moreover,
their absolute variation is bounded by the energy:

|∇ · Φ(m)|(U) ≤ C‖Φ‖C2 lim inf
ε→0

AGε(mε;U) ∀U ⊂ Ω. (3.3)

In fact, the lower bound (3.2) is obtained by the same principle, using a specific family
of entropies.
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A first outcome of the bound (3.3) is that zero-energy states (limits m = limmε

of vanishing energy sequences Eε(mε; Ω) → 0) have zero entropy production. As a
consequence, they satisfy a a kinetic formulation

eis · ∇1m·eis>0 = 0 in D′(Ω), ∀s ∈ R. (3.4)

This follows from the fact that Φs(z) = eis1z·eis>0 can be approximated by smooth
entropies [DeSimone et al., 2001, Jabin et al., 2002]. The kinetic equation (3.4) can be
interpreted as a weak way of expressing that m is constant along characteristics of
direction m⊥, and this is used in [Jabin et al., 2002] to obtain a rigid characterization
of zero-energy states:

• in Ω = R2, m must be a constant, or any translation of a vortex m(x) = ±ix/|x|;

• in a smooth bounded simply connected domain Ω, with the natural boundary
condition m · n∂Ω = 0 (m tangent at the boundary), Ω must be a disk and m a
centered vortex.

As another consequence of the bound (3.3), concentration properties of the energy im-
ply concentration properties of the entropy production measures. Therefore, it becomes
crucial to understand the following question concerning the structure of finite-entropy
solutions: are entropy productions supported on a 1-rectifiable subset ?

A first result in that direction, proved in [De Lellis and Otto, 2003], is that the one-
dimensional part of the entropy production is countably rectifiable. More precisely, the
Radon-Nikodym decomposition of the measure ∇ ·Φ(m) with respect to H1 is given by

∇ · Φ(m) = (Φ(m+)− Φ(m−)) · νH1
bJm + ηΦ, ηΦ ⊥ H1,

where Jm is a countably 1-rectifiable subset of Ω, with unit normal ν, on each side
of which m admits strong L1 traces m±. A more precise description of the higher-
dimensional part ηΦ has been given recently in [Marconi, 2021a], but it is still not enough
to conclude that ηΦ = 0.

All these results are relevant for the Aviles-Giga functional presented here, but also
for micromagnetics models studied in [Rivière and Serfaty, 2001, Rivière and Serfaty, 2003,
Alouges et al., 2002]. In the case of [Rivière and Serfaty, 2001, Rivière and Serfaty, 2003]
the setting can be slightly simplified, an equivalent of the rectifiability results of [De Lellis and Otto, 2003]
can be found in [Ambrosio et al., 2002], and it is shown in [Marconi, 2021b] that ηΦ = 0.

3.1.3 Burgers’ equation

Questions very similar to the ones presented above arise when the eikonal equation (3.1)
is replaced by Burgers’ equation

∂tu+ ∂x

(
u2

2

)
= 0. (3.5)
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Formally, the connection with the eikonal equation (3.1) can be seen by considering
u = −m1, m2 =

√
1− u2, so that ∇ ·m = 0 becomes

∂1u− ∂2f(u) = 0,

where f(u) =
√

1− u2 ≈ −u2/2 for |u| � 1.
Weak solutions of Burgers’ equation (3.5) arise in limits of several variational models:

large deviation principles for some stochastic processes [Varadhan, 2004, Mariani, 2010,
Bellettini et al., 2010], variational characterizations of vanishing viscosity solutions [Poliakovsky, 2008]
(see also [Blaser and Rivière, 2010]), smectic liquid crystals [Novack and Yan, 2022].
Again, the relevant solutions are those whose entropy productions

∂tη(u) + ∂xq(u), η ∈ C2(R), q′(v) = vη′(v),

are finite measures. This is a strictly larger class than that of Kruzkov’s entropy solu-
tions [Kružkov, 1970], whose entropy productions are nonpositive measures for convex
entropies η (and which constitute an analog of viscosity solutions of the eikonal equa-
tion).

Also there, 1-rectifiability of the entropy productions plays a central role. This
rectifiablity has been established recently in [Marconi, 2022b], which constitutes major
progress on the type of questions considered in this chapter. However, completing the
Γ-convergence of the corresponding variational models does still seem to require more
information on the structure of finite-entropy solutions.

3.1.4 Outline

In the rest of this chapter I present several results which help understand the structure
of finite-entropy solutions to the above equations:

• In [Ghiraldin and Lamy, 2020] with F. Ghiraldin we characterize finite-entropy
solutions of the eikonal equation in terms of Besov regularity.

• In [Lamy et al., 2020] with A. Lorent and G. Peng, we characterize zero-entropy
solutions of the eikonal equation as solutions of a differential inclusion.

• In [Lamy and Otto, 2018] with F. Otto, in [Contreras Hip and Lamy, 2021, Contreras Hip et al., 2022]
with A. Contreras Hip and E. Marconi, in [Lamy and Marconi, 2022] with E. Mar-
coni, we prove various stability results for solutions of Burgers and the eikonal
equation.

3.2 Optimal regularity estimates

It has been remarked in [Jabin and Perthame, 2001] that limits m = limmε of bounded
energy sequences AGε(mε; Ω) ≤ C satisfy a kinetic formulation similar to (3.4), but
with a forcing term:

eis · ∇x1m(x)·eis>0 = ∂sσ in D′(Ω× S1), (3.6)
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where σ is a finite Radon measure on Ω× S1. Here and in the sequel we systematically
identify S1 and R/2πZ. This kinetic formulation can be interpreted in terms of entropy
productions: for any g ∈ C∞(S1), the map

Φg(z) =

ˆ
S1
g(s)eis1z·eis>0 ds, (3.7)

is an entropy, and according to (3.6) its entropy production is the finite measure

∇ · Φg(m) = −
ˆ
S1
g′(s) dσ(·, s).

Kinetic equations of the form (3.6) have been long known to enjoy regularity properties
via averaging lemmas (see e.g. [Lions et al., 1994]), which are usually obtained by argu-
ments of harmonic analysis. As a consequence, solutions of (3.6) belong toW (1/3)−,(3/2)−

loc

[Jabin and Perthame, 2002]. Another type of averaging lemmas, based on identities rem-
iniscent of compensated compactness, has been used in [Golse and Perthame, 2013] to
show that finite-entropy solutions of Burgers’ equation have the Besov regularity B1/3

3,∞.
This, and examples in [De Lellis and Westdickenberg, 2003], suggests that the optimal
regularity of finite-entropy solutions of the eikonal equation should be m ∈ B1/3

3,∞, that
is,

h 7→ ‖m(·+ h)−m‖L3

|h|
1
3

∈ L∞.

This is indeed what we prove in [Ghiraldin and Lamy, 2020], locally.

Theorem 3.1. Let m : Ω→ R2 a weak solution of the eikonal equation (3.1). Then the
following are equivalent:

(i) ∇ · Φ(m) ∈Mloc(Ω) for all C2 entropies Φ,

(ii) m satisfies the kinetic formulation (3.6) with σ ∈Mloc(Ω× S1),

(iii) m ∈ B1/3
3,∞,loc(Ω).

Note that the finite-entropy condition (i) is satisfied by limits of bounded energy
sequences thanks to (3.3). Its link with the kinetic formulation is explained above via
the family of entropies (3.7), which makes it clear that (ii) implies (i). The reverse im-
plication is crucial in our argument and follows from a beautiful application of Banach-
Steinhaus’ uniform boundedness principle that we learnt from [De Lellis et al., 2003],
and a generalized Riesz representation theorem for Radon measures (see [Lorent and Peng, 2021,
Appendix B] for details to the originally very succinct proof of [Ghiraldin and Lamy, 2020,
Lemma 3.4]).

The fact that (iii) implies (i) follows from a commutator argument similar to the
proof of energy conservation for regular enough solutions of Euler’s equation [Constantin et al., 1994]
(note that our regularity exponent 1/3 is the same as in Onsager’s conjecture). That



CHAPTER 3. LINE-ENERGY MODELS IN 2D 45

commutator argument has already been used in the context of the eikonal equation
to prove rigidity (vanishing of all entropy productions) for regular enough solutions
[De Lellis and Ignat, 2015]. In [Ghiraldin and Lamy, 2020] we simply remark that the
threshold regularity B1/3

3,∞ implies that entropy productions are finite measures. The idea
is to use a regularizationmε ofm at scale ε, and to estimate ∇·Φ(mε) for an appropriate
extension of the entropy Φ to R2. The map mε is smooth and divergence free, but it
is not S1-valued, so ∇ · Φ(mε) is not zero (as it would be for a smooth solution of the
eikonal equation), but can be estimated in terms of the error 1− |mε| from solving the
equation, which can be viewed as a commutator |m|ε − |mε|.

The fact that (i)-(ii) implies (iii) follows from adapting smart calculations of [Golse and Perthame, 2013],
and the way they are revisited in [Goldman et al., 2015]. There, specific identities al-
low to express integrals of the increment |Dhm|3 = |m(· + h) − m|3 in terms of the
kinetic measure σ in (3.6) and lead to the Besov estimate (iii). Let us explain here in
more details the link with compensated compactness: the starting point is the div-curl
estimateˆ

X1 ×X2 dx . pp′‖X‖Lp‖∇ ·X‖W−1,p′ , 1 < p <∞,

valid for smooth vector fields X1, X2 ∈ C∞c (R2;R2), where ∇ · X denotes the vector
(∇ ·X1,∇ ·X2). Applying this to the increments

Xj = χDhΦj(m) = χ (Φj(m(·+ h))− Φj(m))

for some entropies Φ1,Φ2 and a smooth cut-off χ, and using the finite-entropy property,
leads to the boundˆ

χ2DhΦ1(m)×DhΦ2(m) dx . pp′‖Φ‖L∞(1 + ‖Φ‖C2)|h|1−2/p,

for all p > 2. Taking linear combinations of such bounds, for different entropies Φ1,Φ2,
it turns out that one can obtain a left-hand side where the integrand is bounded below
by |Dhm|3+ , leading to the regularity B(1/3)−

3+,∞ . This type of argument, already present in
[Golse, 2010], is used in [Goldman et al., 2021] to prove regularity of zero-energy states
of an unoriented Aviles-Giga energy. The borderline regularity B

1/3
3,∞ in Theorem 3.1

is attained replacing that argument with integration by parts reminiscent of the same
div-curl structure, but directly in the kinetic formulation.
Remark 3.2. In [Lamy et al., 2022a, Lamy et al., 2022b] we prove generalizations of The-
orem 3.1 to finite-entropy solutions of degenerate equations. For entropy solutions, we
also obtain new averaging lemmas in [Gess and Lamy, 2019].

3.3 Zero-energy states as solutions of a differential inclusion

A particular set of two entropies plays a distinguished role for the Aviles-Giga energy:
the Jin-Kohn entropies

Σ1(z) =
2

3
(z3

2 , z
3
1), Σ2(z) = ei

π
4 Σ1(e−i

π
4 z),
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introduced in [Jin and Kohn, 2000] as calibrations to prove the lower bound (3.2), which
is conjectured to be sharp. Their link with that lower bound is made apparent by the
identity

1

6
|m+ −m−|3H1

bJm = |∇ · Σ(m)| if m ∈ BV,

where |∇·Σ(m)| is the absolute variation of the vector-valued measure (∇ · Σ1(m),∇ · Σ2(m)).
Note that this can be used to give a sense to the right-hand side of (3.2) when m /∈ BV .

Remark 3.3. The absolute variation |∇·Σ(m)| can also be viewed as the supremum mea-
sure of the entropy productions∇·Σθ(m) of all rotated entropies Σθ(z) = eiθΣ1(e−iθz) =
cos(2θ) Σ1(z) + sin(2θ) Σ2(z).

If the total variation |∇ · Σ(m)|(Ω) is indeed the Γ-limit of the Aviles-Giga energy
AGε(·; Ω), it should be possible to characterize zero-energy states by imposing only
∇ · Σ(m) = 0. This is indeed what is proved in [Lorent and Peng, 2018]: if a solu-
tion of (3.1) is such that its Jin-Kohn entropy productions vanish, then all its entropy
productions vanish. One of the main ideas in [Lorent and Peng, 2018] is to view the
condition ∇ · Σ(m) = 0 as a differential inclusion: there exists w = (w1, w2) such that
∇wk = iΣk(m), and therefore

∇w ∈ K = Σ⊥(S1) ⊂ R2×2, (3.8)

where Σ⊥(z) is the matrix whose two rows are iΣ1(z), iΣ2(z).
The set K has no rank-one connections, which implies that the differential inclusion

(3.8) has no obvious irregular solutions where ∇w would jump across a line. But tangent
lines to K do have rank-one connections, and it is therefore not elliptic (in the sense of
[Šverák, 1993]), so classical methods to obtain regularity of w are not available. This is
of course no surprise, since we know that the zero-energy state m = ix/|x| provides a
solution w which is singular at the origin. Nevertheless, the differential inclusion (3.8)
retains a degenerate form of ellipticity:

det(A−B) & |A−B|4 ∀A,B ∈ K, (3.9)

and this can be used to obtain some starting Besov regularity. This can also be formu-
lated via the div-curl arguments of Section 3.2, since (3.9) implies

DhΣ1(m)×DhΣ2(m) & |Dhm|4.

Compared to Section 3.2, here we know that ∇ · Σ(m) = 0, so the div-curl estimate
can be improved to obtain m ∈ B

1/3
4,∞. This is then smartly combined with algebraic

identities satisfied by entropies, to conclude that all entropy productions vanish.
A natural question to ask is: does the differential inclusion, by itself, enjoy the same

rigidity as zero-energy states? We answer this positively in [Lamy et al., 2020].

Theorem 3.4. Let Ω ⊂ R2 and w : Ω→ R2 satisfy the differential inclusion (3.8) almost
everywhere. Then ∇w = Σ⊥(m), with m is a zero-energy state.
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In particular, the characterization of zero-energy states in [Jabin et al., 2002] im-
plies that ∇w is Lipschitz outside a discrete set of singular points, and in any convex
neighborhood of a singular point ∇w(x) = Σ⊥(±ix/|x|) (in coordinates centered at the
singular point). This seems to be the first rigidity result of that kind for a non-elliptic
differential inclusion.

For the study of the Aviles-Giga functional, one interesting consequence of Theo-
rem 3.4 is that stability estimates for zero-energy states may now be approached from the
point of view of differential inclusion, where a large variety of tools have been developed
for that purpose: see for instance [John, 1961, Reshetnyak, 1994, Friesecke et al., 2002,
Faraco and Zhong, 2005, Lewicka and Müller, 2016, Luckhaus and Zemas, 2022]. In that
perspective, the non-elliptic nature of our differential inclusion is a major obstacle to
overcome, and we will comment more on that in Section 3.5.

Let us now comment on the proof of Theorem 3.4. The result of [Lorent and Peng, 2018]
can be phrased as

(|m| = 1, ∇ ·m = 0, ∇ · Σ(m) = 0) ⇒ ∇ · Φ(m) = 0,

for any entropy Φ, and Theorem 3.4 reaches the same conclusion without the assumption
that m is divergence-free. Therefore it boils down to the implication

(|m| = 1, ∇ · Σ(m) = 0) ⇒ ∇ ·m = 0. (3.10)

The very starting point is that this implication is true if m is a smooth vector field,
thanks to the identity

∇ ·m = −2m1m2∇ · Σ1(m) + (m2
1 −m2

2)∇ · Σ2(m),

valid for any smooth m : Ω → S1. When m is not smooth, it is natural to consider its
regularization mε at scale ε, and perform similar calculations. But the map mε is not
S1-valued anymore, so extra error terms appear, related to the commutator 1− |mε| =
|m|ε − |mε|. One would like to show that these error terms tend to zero: this requires
quite a lengthy process, in which we involve all the entropy productions ∇ · Φ(m).

We explain here the main underlying idea. Information about∇·Φ(m) is obtained by
studying the approximation ∇·Φ(mε), where Φ is an extension of Φ ∈ C2(S1;R2) to the
unit disk D, where mε takes its values. The crucial observation we make is that different
extensions may provide different information. Accordingly, we consider two types of ex-
tensions: either we simply extend radially, or by solving an appropriate elliptic boundary
value problem (which already played an important role in [Lorent and Peng, 2018]). It
turns out that the only way to reconcile the different informations provided by these
two types of extension is that ∇ · m = 0. Interestingly, to reach that conclusion we
make use of the fact that the Hilbert transform is not bounded from C0(S1) to L∞(S1)
[Zygmund, 2002, § VII].

3.4 Stability estimates

One way to gain insight into the structure of general finite-entropy solutions is to es-
tablish quantitative stability estimates which measure, in terms of the energy, how far
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a finite-entropy solution may be from specific well-understood solutions: zero-energy
states, elementary jump solutions, entropy or viscosity solutions, etc.

Let us discuss first the case of Burgers’ equation

∂tu+ ∂x

(
u2

2

)
= 0.

Entropy solutions are bounded weak solutions such that their entropy productions

µη = ∂tη(u) + ∂xq(u), η′′ ≥ 0, q′(v) = vη′(v),

are nonpositive measures µη ≤ 0. Natural initial-value problems are well-posed in the
class of entropy solutions [Kružkov, 1970]. It turns out that a single convex entropy is
sufficient to characterize entropy solutions: if a bounded weak solution u of Burgers’
equation is such that

µ = ∂t
u2

2
+ ∂x

u3

3
, (3.11)

is a nonpositive measure, then u is an entropy solution [Panov, 1994, De Lellis et al., 2004].
This leads to the natural stability question: if the positive part of the measure µ is
small, can we quantify how close u is to an entropy solution? We provide a first answer
in [Lamy and Otto, 2018].

Theorem 3.5. Let u be a bounded weak solution of Burgers’ equation (3.5) in Q =
(−1, 1)t × (−1, 1)x, such that the entropy production µ (3.11) is a measure. Then there
exists a bounded entropy solution uent of (3.5) in Q, such that

ˆ
1
2
Q

∣∣u− uent∣∣4 dtdx ≤ C µ+(Q)
4
35 ,

where C > 0 depends only on ‖u‖∞.

In [Lamy and Otto, 2018] we use this stability estimate to obtain information about
Lebesgue points of u: using the fact that entropy solutions are one-sided Lipschitz,
together with scaling arguments, we deduce from Theorem 3.5 that the set of non-
Lebesgue points of a finite-entropy solution has Hausdorff dimension at most one. More
precisely, any point z0 = (t0, x0) at which the entropy production satisfies |µ|(Br(z0)) =
O(r1+α) as r → 0+, for some α > 0, is a Lebesgue point, and a standard covering
argument implies the dimension estimate. This is reminiscent of what a BV solution
satisfies: H1-a.e. point z0 at which |µ|(Br(z0)) = o(r) is a Lebesgue point. Here we
miss the points at which |µ|(Br)/r decays to 0 more slowly than algebraically. Since
then, another proof of that Lebesgue point property has been given in [Marconi, 2022a],
which applies to more general scalar conservation laws, but a complete analog of the
Lebesgue point properties of BV solutions is still missing.

The proof of Theorem 3.5 is in two main steps: first we obtain a weaker estimate
(essentially aW−1,1 estimate), then we improve it to an L4 estimate using the regularity
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provided by the finite-entropy condition. The first step is the most original and relies
on the correspondence between Burgers equation and the Hamilton-Jacobi equation

∂th+
1

2
(∂xh)2 = 0, u = ∂xh.

The strategy consists in refining estimates of [De Lellis et al., 2004], to obtain a quanti-
tative version of the fact that a weak solution h is a viscosity solution if µ+ = 0.

Besides obtaining information about Lebesgue points, another motivation of such
stability estimate is even more directly related to the open question of proving up-
per bounds for the associated variational models: this requires constructing approx-
imations of u whose energy is very precisely controlled. An approach proposed in
[Bellettini et al., 2010] is to separate regions were µ is mostly positive or mostly nega-
tive, and use a backward or forward (depending on the sign of µ) vanishing viscosity
approximation. Then one needs to quantify how close u is to an entropy (or a backward
entropy) solution in the corresponding regions, and to do so in a way that all errors can
be summed. This motivates looking for sharp stability estimates (the exponent 4/35 in
Theorem 3.5 is most probably not sharp).

It is not clear which norm is the most adapted to sharp estimates: for instance, the
classical theory of entropy solutions suggests using L1 distances, and the arguments of
[Marconi, 2022a] employ Wasserstein distances. Relative entropy methods, which first
arose in [Dafermos, 1979, DiPerna, 1979] to prove weak-strong stability results, provide
an L2-based framework. In [Contreras Hip and Lamy, 2021, Contreras Hip et al., 2022]
we adapt the relative entropy methods of [Leger, 2011, Leger and Vasseur, 2011, Krupa and Vasseur, 2019,
Krupa and Vasseur, 2020] to study the stability of shock waves, which are particular en-
tropy solutions of Burgers’ equation of the form

S(t, x) = S0(x− vt),

S0(x) = u`1x<0 + ur1x>0, v =
u` + ur

2
,

for some u` > ur. We prove that the L2 distance of u(t) = u(t, ·) to a small drift of
a shock wave τh(t)S(t) = S(t, · − h(t)), is estimated by the initial distance, plus the
positive part of the entropy production.

Theorem 3.6. Let u a bounded finite-entropy solution of Burgers’ equation (3.5) on
(0, T )× R. For any shock wave S, any t ∈ [0, T ] and R > 0 we have

ˆ R

−R
|u(t)− τh(t)S(t)|2 dx

≤
ˆ R+tV

−R−tV
|u0 − S0|2 dx+ C µ+([0, t]× [−R− tV,R+ tV ]),

where V = max {|u`|, |ur|, ‖u‖∞}, C > 0 is an absolute constant, and h(t) is a Lipschitz
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drift controlled by

1

C
(u` − ur)

ˆ t

0
h′(τ)2dτ

≤
ˆ 2V t

−2V t
|u0 − S0|2 dx+ µ+([0, t]× [−2V t, 2V t]).

This generalizes results of [Krupa and Vasseur, 2019], where it is assumed that µ ≤ 0
(µ+ = 0) and that u satisfies an additional trace assumption. The necessity of introduc-
ing a drift, at least in the case µ ≤ 0, is proved in [Vasseur, 2016].

The relative entropy method is based on the identity

1

2
∂t(u− v0)2 = µ− ∂xq(u; v0),

for any constant v0 and some polynomial q(u; v0), whenever u is a weak solution of Burg-
ers’ equation. This automatically provides estimates on the L2 distance to a constant
solution. When dealing with shocks, applying this on both sides of the shock provides
an estimate with additional boundary terms, and it was realized in [Leger, 2011] that
a well-chosen drift can make these extra terms nonpositive, when u is an entropy solu-
tion. To prove Theorem 3.6 we check that the positive part of these extra terms can be
controlled by the entropy production.

Moreover, an extra trace assumption on u is needed in [Leger, 2011] in order to
construct the drift h(t). We are able to remove that trace assumption by showing in
[Contreras Hip et al., 2022] that any finite-entropy solution admits generalized charac-
teristic curves. These generalized characteristics are obtained via a Lagrangian represen-
tation introduced in [Marconi, 2022a], and which is the main tool in the proof of recti-
fiability of the entropy production [Marconi, 2022b]. Roughly speaking, the Lagrangian
representation describes the evolution of the hypograph Ht = {(x, v) : v < u(t, x)} by
decomposing it into particles (γx(t), γv(t)) which evolve according to the characteristic
equation γ̇x = γv. Generalized characteristics should do the same for the evolution of
the graph Gt = {(x, v) : v = u(t, x)}. The Lagrangian representation provides fairly
natural candidates (essentially “infima” of Lagrangian curves), and the difficulty is to
show that these candidates do satisfy the characteristic equation γ̇ = u(γ) (which needs
to be interpreted correctly since u is not continuous). To achieve this, our main new
ingredient is a formula expressing the entropy flux across a curve (or a hypersurface for
higher dimensional scalar conservation laws) in terms of the Lagrangian representation.

Remark 3.7. Combining the two estimates of Theorem 3.6 gives a drift-less estimate of
the form

ˆ R

−R
|u(t)− ush(t)|2 dx ≤

ˆ R+St

−R−St
|u0 − ush0 |2 dx+ C‖µ+‖

+ CS
3
2

√
t

√ˆ 2St

−2St
|u0 − ush0 |2 dx+ C‖µ+‖.
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Approximating initial conditions by piecewise constant functions, we also prove similar
estimates on the L2-distance to entropy solutions with BV initial data. Next, one could
use the regularity provided by the finite-entropy condition to approximate u0 with BV
functions, iterate the above estimates on small time-intervals, and deduce for instance

ˆ 1

−1
|u(t)− uent(t)|2 dx ≤ C

√
µ+([−1, t]× [−1− 2t, 1 + 2t]),

if ‖u‖∞ ≤ 1, where uent is the entropy solution equal to u at t = 0, and C > 0 an
absolute constant. This gives a strong improvement of Theorem 3.5, but a really useful
estimate should not have a square root in the right-hand side.

We turn now to the eikonal equation, and to the question of making quantitative
the rigidity statement of [Jabin et al., 2002]: if m is a zero-energy state in a smooth
bounded simply connected domain Ω, with tangent boundary conditions m · n∂Ω = 0,
then Ω must be a disk, and m a vortex.

The first (non-sharp) quantitative version of that rigidity result was obtained in
[Lorent, 2014] (see also [Lorent, 2012]), under the extra assumptions that Ω is convex,
and that the trace m∂Ω does not jump (between the two opposite unit tangents). In
[Lamy and Marconi, 2022] we obtain a sharp stability estimate and remove the convexity
and extra trace assumptions:

Theorem 3.8. Let Ω ⊂ R2 a C1,1 simply connected domain with H1(∂Ω) = 2π, and
m : Ω → R2 a finite-entropy solution of the eikonal equation such that m · n∂Ω = 0 on
∂Ω. Then, up to translating Ω, we have

ˆ
∂Ω

∣∣∣∣n∂Ω(x)− x

|x|

∣∣∣∣2 dH1(x) ≤ C‖σ‖,

where C > 0 depends on the maximal absolute curvature of ∂Ω, and ‖σ‖ is the total
variation on Ω× S1 of the kinetic defect measure (3.6).

Recall that ‖σ‖ ≤ c lim inf AGε(mε; Ω) if m = limmε thanks to (3.3) and the inter-
pretation of σ in terms of the entropies (3.7), so Theorem 3.8 really implies a bound
in terms of the energy. Moreover, this is valid for other types of energies, as the one
considered in [Alouges et al., 2002]. This estimate is sharp in the sense that, if Ω is a
smoothed out N -gon and m = ∇⊥ dist∂Ω, then both sides of the inequality are of order
N−2. As a corollary, we obtain other estimates which are, however, probably not sharp:

dist(∂Ω; ∂D1) ≤ C‖σ‖
1
2 ,

ˆ
Ω

∣∣∣∣m− αi x|x|
∣∣∣∣4 dx ≤ C‖σ‖ 2

3 ,

for some α ∈ {±1}, up to translating Ω.
The main tool that allows us to prove Theorem 3.8 is a Lagrangian representation

constructed in [Marconi, 2021a], inspired by the superposition principle for transport
equations [Ambrosio and Crippa, 2014]. That tool has already been very successfully
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applied to solve a variety of questions related to the present chapter [Marconi, 2022b,
Marconi, 2021b]. It allows to disintegrate the kinetic dissipation measure σ along La-
grangian trajectories (γx(t), γs(t)) taking values in {m(x) ·eis > 0} ⊂ Ω×S1, and solving
the characteristic equation γ̇x = eiγs . Along each curve γ, the disintegrated dissipation
corresponds to the total variation of γs: how much the curve γx turns.

In the absence of dissipation (σ = 0), the Lagrangian curves would be straight lines.
Following them from the boundary, elementary geometric arguments provide the rigidity
of zero-energy states, in the spirit of [Jabin et al., 2002]. If the domain is not a disk, the
same elementary geometric arguments show that the curves must turn, and this creates
dissipation. The main technical achievement in [Lamy and Marconi, 2022] is to quantify
that dissipation along well-chosen packets of Lagrangian curves, whose contributions can
then be summed to bound from below the total dissipation ‖σ‖, in terms of how much
the unit normal n∂Ω deviates from being radial.

3.5 Perspectives

As explained in this chapter’s introduction, the central question is to complete the
Γ-convergence of the Aviles-Giga energy or similar models [Rivière and Serfaty, 2001,
Rivière and Serfaty, 2003, Alouges et al., 2002, Varadhan, 2004, Bellettini et al., 2010],
that is, construct approximating sequence with an energy upper bound matching the
lower bound (3.2) – or similar lower bounds for other models.

In the literature, the focus has been placed mostly on proving BV -like properties
of finite-entropy solutions: rectifiability of the jump set, rectifiability of the entropy
productions, Lebesgue points outside the jump set. The state of the art depends on
the model, and this program is more advanced for Burgers equation or solutions of
the eikonal equation coming from the micromagnetics model [Rivière and Serfaty, 2001,
Rivière and Serfaty, 2003], than for the Aviles-Giga energy or [Alouges et al., 2002] –
where rectifiability of the entropy productions and one-dimensionality of non-Lebesgue
point are still open. The main perspectives I propose here concern sharp stability esti-
mates and techniques related to E. Marconi’s Lagrangian representation.

Lebesgue points

In a work in preparation with E. Marconi, we will extend the results of [Lamy and Otto, 2018,
Marconi, 2022a] on Lebesgue points for Burgers’ equation, to finite-entropy solutions of
the eikonal equation. We do this by building on the strategy of [Marconi, 2022a]. That
strategy does not directly work for finite-entropy solutions of the eikonal equation, ba-
sically because S1 is not ordered, while R is. As a consequence, configurations that are
impossible in the case of Burgers are not obviously ruled out here: essentially, oscil-
lations between two opposite directions ±m0 ∈ S1. This is also why the rectifiability
results of [Marconi, 2022b, Marconi, 2021b] are not known for finite-entropy solutions
of the eikonal equation (as made apparent in the expression of the kinetic measure in
[Marconi, 2021a]).



CHAPTER 3. LINE-ENERGY MODELS IN 2D 53

We will complement the arguments of [Marconi, 2022a] by proving that such oscil-
lations, if they happen, can be quantified in a way to contradict the vanishing mean
oscillation property which is satisfied at H1-a.e. non-jump point thanks to the structure
result of [De Lellis and Otto, 2003]. We achieve this quantitative oscillation property by
exploiting the Lagrangian formulation, much in the spirit of Theorem 3.8’s proof.

Stability and differential inclusions

We would like to extend the stability of zero-energy states of Theorem 3.8 to a case
without any boundary conditions. Theorem 3.4 suggests approaching that question
from the point of view of differential inclusions: show for instance that

inf
∇ϕ∈K

ˆ
B1/2

|∇w −∇ϕ|2 dx ≤ C
(ˆ

B1

dist2(∇w,K) dx

)α
,

for some α ∈ (0, 1). What we gain here, compared to solutions of the eikonal equation,
is the possibility of starting out by looking at smooth perturbations of exact solutions
∇ϕ ∈ K (which are in correspondence with zero-energy states) – since here we do not
have the constraint to satisfy the eikonal equation.

Because the set K ⊂ R2 is not elliptic, we know that, unlike what happens for
K = SO(2) [Friesecke et al., 2002, Faraco, 2004], the exponent α cannot be equal to
1. Instead, it seems reasonable to conjecture that α = 1/2, and to follow the general
strategy of [John, 1961, Reshetnyak, 1994, Friesecke et al., 2002, Faraco, 2004], which is
in two main steps: first, prove an infinitesimal version for smooth perturbations of exact
solutions; second, deduce the general case.

As a training ground to gain insight into these issues, in [Lamy et al., 2022c] we prove
a general stability result for arbitrary closed curves K ⊂ R2×2 which are elliptic, going
beyond the explicit case ofK = SO(2) [Friesecke et al., 2002]. The first step of the above
strategy follows directly from general Korn-type inequalities of [John, 1961], and the
second step uses ideas related to a well-studied correspondence between quasiconformal
mappings and quasilinear elliptic equations in two dimensions [Astala and Faraco, 2002,
Faraco, 2004, Faraco and Székelyhidi, 2008, Astala et al., 2009, Astala et al., 2020, Astala et al., 2012,
Astala et al., 2017, Astala et al., 2019].

To apply that strategy for the nonelliptic differential inclusion (3.8), the first step
will not reduce directly to the linear estimates of [John, 1961] (or their recent generaliza-
tions in [Arroyo-Rabasa, 2021]), but we will probably need to combine these with some
interpolation inequalities. The second step should be significantly harder, and require
new regularity estimates for degenerate quasilinear elliptic equations, in the spirit of
[Santambrogio and Vespri, 2010, Colombo and Figalli, 2014a, Colombo and Figalli, 2014b,
Bousquet and Brasco, 2018].

Stability estimates for Burgers

Theorem 3.6 about the stability of elementary shock waves is not entirely satisfactory
because of the presence of the drift. It is proved in [Vasseur, 2016] that this drift is
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necessary, in the case where µ+ = 0. It could very well be that the extra freedom
provided by the µ+ term removes the necessity of that drift: there is a hope of proving
a drift-less version of Theorem 3.6. To do so will definitely require new ingredients. One
promising approach is to relax the L2-norm setting to allow for more general quantities
which are bounded above and below by multiples of the L2-norm, as done e.g. in
[Kang, 2021] with a weighted relative entropy method.

Another, completely different approach to optimal stability estimates for Burgers
is suggested by [Marconi, 2022a]: use Wasserstein distances which arise naturally in
connection with the kinetic formulation of finite-entropy solutions. In that setting, one
thing that would have to be understood before considering stability estimates among
finite-entropy solutions, is whether such distances behave well among entropy solu-
tions, an issue possibly related to the methods in [Brenier, 1984, Gigli and Otto, 2013,
Esselborn et al., 2016].
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Résumé

De nombreux phénomènes physiques peuvent être décrits par des modèles mathé-
matiques similaires: cristaux liquides, supraconductivité, micromagnétisme, elasticité,
formation de motifs, etc. Les états d’équilibre minimisent une certaine énergie, carac-
térisée par la compétition entre deux effets: un terme pénalise les déformations, mais un
autre terme favorise les transitions de phases. Cette compétition encourage la formation
de singularités: des déformations abruptes dans de petites régions où se concentrent les
transitions de phases, et des déformations minimales en dehors. Les méthodes math-
ématiques du calcul des variations et des équations aux dérivées partielles permettent
d’étudier les propriétés de ces états et de leurs singularités.

Les travaux présentés dans ce mémoire portent sur l’analyse de deux types de singu-
larités: singularités ponctuelles ou linéaires dans des systèmes de dimension 3, et singu-
larités linéaires dans des systèmes de dimension 2. Cette distinction reflète aussi leurs
liens avec deux types d’équations aux dérivées partielles: elliptiques ou hyperboliques.

L’étude des singularités du premier type est motivée ici essentiellement par la physique
des cristaux liquides, et structurée en deux axes de recherche: comprendre l’effet de
l’immersion de particules étrangères, et celui d’une anisotropie dans la pénalisation des
déformations. Pour le premier axe, la présence de particules impose des déformations
au cristal liquide, et l’objectif est de décrire les singularités engendrées par ces défor-
mations, ainsi que les interactions entre particules immergées. Pour le deuxième axe,
l’anisotropie des déformations, physiquement plus réaliste, restreint considérablement
les outils mathématiques disponibles: le défi principal est de développer de nouvelles
techniques qui permettent d’analyser efficacement les modèles anisotropes.

L’étude des singularités du second type est motivée par de très divers phénomènes
physiques: cristaux liquides, élasticité, micromagnétisme, formation de motifs, physique
statistique. L’objectif est de comprendre les phénomènes de concentration de singulartiés
linéaires: peuvent-elle s’accumuler au point de former des structures fractales? L’accent
est mis ici sur la quantification des déformations admissibles et la stabilité de structures
élémentaires bien identifiées. Du point de vue mathématique, ces questions présentent
l’originalité d’aborder des équations hyperboliques par le biais du calcul des variations.
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