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Abstract. In any dimension n ≥ 3, we prove an optimal stability estimate for the Möbius
group among maps u : Sn−1 → Rn, of the form

inf
λ>0,ϕ∈Möb(Sn−1)

ˆ
Sn−1

∣∣∣∣ 1

λ
∇Tu−∇Tϕ

∣∣∣∣n−1

dHn−1 ≲ En−1(u) .

Here, En−1(u) is a conformally invariant deficit which measures simultaneously lack of confor-
mality and the deviation of u(Sn−1) from being a round sphere in an isoperimetric sense. This
entails in particular the following qualitative statement: sequences with vanishing deficit, once
appropriately normalized by the action of the Möbius group, are compact. Both the qualitative
and the quantitative results are new for all dimensions n ≥ 4.

1. Introduction

In this work we investigate stability properties of the conformal group of the sphere. To be
precise, a map u ∈W 1,n−1(Sn−1;Rn) is said to be weakly conformal if and only if it satisfies

(∇Tu)
t∇Tu =

|∇Tu|2

n− 1
Ix (1.1)

for Hn−1-a.e. x ∈ Sn−1. Here and in the rest of the paper we take n ≥ 3, ∇Tu denotes the
tangential gradient of u and Ix : TxSn−1 → TxSn−1 is the identity map, see Sections 1.5 and 2 for
further details and notation. The prototypical solution of (1.1) is a Möbius transformation of
Sn−1, i.e., an Sn−1-valued map obtained as the composition of rotations and spherical inversions.
The class of such maps forms a finite dimensional Lie group, which we denote by Möb(Sn−1).

A classical theorem in conformal geometry, which is usually credited to Liouville, classifies
completely the solutions to the nonlinear system (1.1) in the case of Sn−1-valued maps:

Liouville’s Theorem. Let u ∈W 1,n−1(Sn−1; Sn−1) be a solution to (1.1).

(i) If n = 3, then u is holomorphic, after identifying S2 with the Riemann sphere Ĉ. In
particular, if |deg u| = 1, then u ∈ Möb(S2).

(ii) If n ≥ 4, then u ∈ Möb(Sn−1).

Liouville’s Theorem makes manifest that system (1.1) behaves very differently depending
on the dimension: for maps u : S2 → S2, it reduces to the Cauchy–Riemann equations, which
form a linear determined system, while in higher dimensions it is genuinely nonlinear and
overdetermined. In fact, the rigidity in (ii) above holds even on subdomains of Sn−1, cf. [36,
Chapter 5]. We will discuss this difference in behavior in more detail below.

The constraint on the image of the maps in Liouville’s Theorem is crucial, as there is an
enormous family of solutions u : Sn−1 → Rn to (1.1): for instance, the Uniformization Theorem
provides us with many examples of conformal maps from S2 to R3 which are not rescaled and
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translated copies of Möbius transformations. Moreover, according to the Nash–Kuiper theorem
[49, 39] and its refinements [4, 15, 17, 12], there is an abundance of C1,α-isometric embeddings
of Sn−1, for α > 0 small enough: in particular, there are many wild Sobolev solutions to (1.1).

1.1. Main results. In this paper we address the question of stability of the Möbius group
among maps u : Sn−1 → Rn: if u is nearly conformal and its image u(Sn−1) is nearly spherical,
is u close to a Möbius transformation in a strong sense? While the isoperimetric inequality
and its stability properties [30, 24] give a natural characterization of nearly spherical sets, a
fundamental aspect of this problem also lies in deciding how to measure the deviation from
conformality, and in this regard we will pursue the strategy of [42].

For a map u ∈W 1,n−1(Sn−1;Rn), we consider the conformal (n− 1)-Dirichlet energy

Dn−1(u) :=

 
Sn−1

(
|∇Tu|2

n− 1

)n−1
2

dHn−1 , (1.2)

and the extrinsic volume functional

Vn(u) :=
 
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1 , (1.3)

studied in detail for n = 3 by Wente [69]. In (1.3), we have identified an (n − 1)-vector in Rn
with its Hodge dual. It is well-known but not obvious at first sight that Vn(u) is well-defined
for u ∈W 1,n−1(Sn−1;Rn), and we refer the reader to Section 2.2 for further details.

Following [42] (see the discussion after (1.9) therein), we consider a combined conformal-
isoperimetric deficit, via

En−1(u) :=

 [Dn−1(u)]
n

n−1

|Vn(u)| − 1 if Vn(u) ̸= 0 ,

+∞ if Vn(u) = 0 .
(1.4)

We note that this deficit is invariant under translations, rotations and dilations of the maps,
as well as precompositions with Möbius transformations of Sn−1, and its choice is precisely
justified by the following:

Proposition 1.1 (Conformal isoperimetric inequality). For all u ∈W 1,n−1(Sn−1;Rn) we have

En−1(u) ≥ 0 ,

with equality if and only if (u− y0)/|Vn(u)|1/n ∈ Möb(Sn−1) for some y0 ∈ Rn.

Our first theorem is a novel compactness result for sequences of maps with vanishing deficit,
up to normalization and extraction of a single bubble, i.e., up to precomposition with Möbius
transformations:

Theorem 1.2 (Compactness). Let (uj)j∈N ⊂W 1,n−1(Sn−1;Rn) be a sequence such that

lim
j→∞

En−1(uj) = 0 . (1.5)

Up to a non-relabeled subsequence, there exist (ϕj)j∈N ⊂ Möb(Sn−1) and O ∈ O(n) such that

uj ◦ ϕj −
ffl
Sn−1 uj ◦ ϕj

|Vn(uj)|1/n
→ O idSn−1 strongly in W 1,n−1(Sn−1;Rn) . (1.6)
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We note that if u is Sn−1-valued, then the conclusion of Theorem 1.2 is a simple consequence
of a topological argument that allows us to pick (ϕj)j∈N ⊂ Möb(Sn−1) so that

ffl
Sn−1 uj ◦ϕj = 0.

This normalization, combined with the sharp Poincaré inequality on Sn−1 and the convexity
of Dn−1, easily yields the conclusion, see [42, Lemma A.3] and [32, Lemma 2.4]. The main
difficulty in proving Theorem 1.2 thus resides in the lack of constraint on the image of u.

For n = 3, Theorem 1.2 was already known (cf. [10, Lemma 2.1]), and it can also be retrieved
as a consequence of the seminal bubbling analysis of Brezis–Coron [5, Theorem 0.3] and Struwe
[60, Proposition 3.7] for the H-system. Their tools, which we will explain in more detail below,
do not apply in higher dimensions, where a new strategy is needed.

Having a qualitative compactness result available, one can hope for a quantitative result.
This is precisely the content of our main theorem.

Theorem 1.3 (Optimal quantitative stability). There exists a dimensional constant Cn > 0
such that, for all maps u ∈W 1,n−1(Sn−1;Rn), we have

inf
ϕ∈Möb(Sn−1)

 
Sn−1

∣∣∣∣ ∇Tu

|Vn(u)|1/n
−∇Tϕ

∣∣∣∣n−1

dHn−1 ≤ CnEn−1(u) . (1.7)

For n = 3, Theorem 1.3 was proved in [42, Theorem 1.4]. In fact, in the same work a
W 1,∞-local version of the theorem was established also in dimensions n ≥ 4 (cf. Corollary 1.6
therein). In particular, Theorem 1.3 provides the optimal quantitative version of these results
in any dimension, global in W 1,n−1(Sn−1;Rn) and with an explicit dilation factor of u.

For sphere-valued maps u ∈ W 1,n−1(Sn−1; Sn−1) we have Vn(u) = deg(u). In this case, one
can consider the purely conformal deficit

δn−1(u) := Dn−1(u)− 1.

For maps of degree ±1 and whenever 0 ≤ δn−1(u) ≪ 1, we have

En−1(u) = (1 + δn−1(u))
n

n−1 − 1 ≲ δn−1(u) ,

and so Theorem 1.3 immediately yields the following:

Corollary 1.4 (Stability for sphere-valued maps). There is a dimensional constant C ′
n > 0

such that, for all u ∈W 1,n−1(Sn−1;Sn−1) with |deg(u)| = 1, we have

inf
ϕ∈Möb(Sn−1)

 
Sn−1

|∇Tu−∇Tϕ|n−1 dHn−1 ≤ C ′
nδn−1(u) . (1.8)

Previously, we had proved Corollary 1.4 in [32], although with a different proof. See also
[2, 35, 64, 58] for the case n = 3.

Remark 1.5 (Optimality). As shown in [32, Appendix A], estimate (1.8) is optimal, in the
sense that on its right-hand side the deficit δn−1(u) cannot be replaced with δn−1(u)

β for some
β > 1. In particular, this shows that Theorem 1.3 is also optimal, even if we restrict ourselves to
Sn−1-valued maps: on the right-hand side of (1.7) the deficit En−1(u) also cannot be raised to a
higher power. Theorem 1.3 is also optimal in terms of the distance used, in the sense that (1.7)
establishes stability for the gradients in the conformally-invariant norm: clearly one cannot
hope for a better result without stronger a priori assumptions on the maps under consideration.

The problem of stability for Liouville’s Theorem was first studied by Lavrentiev in [40]. As
mentioned above, a crucial feature of this problem resides in deciding how to measure the
deviation from conformality. Lavrentiev considered maps u : Ω → Ω′, where Ω,Ω′ ⊂ Sn−1 are
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proper domains, and he showed that if u is C1,α and has angle distortion uniformly close to 1,
then u is uniformly close to a Möbius transformation. There were many subsequent works in
this line of investigation, see for instance [27, 21, 2, 35, 64, 58], the works [53, 54] where a deficit
somewhat reminiscent of En−1 is considered, and the monograph [55]. Although these works
consider both pointwise and integral measures of deviation from conformality, all of them study
the stability of the Möbius group among maps for which the domain and the target have the
same dimension. An important feature of this setting is that compactness properties of nearly
conformal maps are a straightforward consequence of lower semicontinuity arguments; in other
words, the analogue of Theorem 1.2 in this setting is easily established. We note, however, that
subtler issues arise if one works in Sobolev spaces with lower integrability [70, 71, 48].

1.2. Proof of Theorem 1.2 and relation to H-systems. Energies similar to En−1 appear in
the works of Heinz, Hildebrandt, and Wente, among others, in relation to the Plateau problem
for surfaces with prescribed mean curvature, see e.g. the survey [3] and the references therein.
This perspective is quite useful in our work, as we now explain.

In the setting of Theorem 1.2, by using the invariances of the deficit and after identifying
Rn−1 := Rn−1 ∪ {∞} with Sn−1 via stereographic projection, it suffices to consider sequences
(uj)j∈N ⊂ W 1,n−1(Rn−1;Rn) normalized so that Vn(uj) = 1. We are interested in sequences
satisfying the minimizing property (1.5). By Ekeland’s Variational Principle [19], we can move
our attention to such sequences that further satisfy a perturbed form of the Euler–Lagrange
system for En−1, which simply means that

∆n−1uj +Hj∂x1uj ∧ · · · ∧ ∂xn−1uj = gj ,

{
supj∈N ∥∇uj∥Ln−1(Rn−1) < +∞ ,

gj → 0 in (W 1,n−1)∗(Rn−1;Rn) ,
(1.9)

where (Hj)j∈N ⊂ R+ is an appropriate bounded sequence and ∆pu := div(|∇u|p−2∇u) is
the p-Laplace operator. Condition (1.9) asserts that (uj)j∈N is a Palais–Smale sequence [61,
Section II.2]. Up to a subsequence, we have Hj → H for some H in R, ∇uj ⇀ ∇u weakly in
Ln−1(Rn−1), and u solves the H-system

∆n−1u+H ∂x1u ∧ · · · ∧ ∂xn−1u = 0 , (1.10)

cf. [62, Theorem 1.1]. The interpretation of this system (for n = 3) is that any weakly
conformal solution to (1.10) is a (possibly branched) parametrization of a hypersurface with

mean curvature equal to −H/(n− 1)
n−1
2 .

In order to prove Theorem 1.2 we need to show that (∇uj)j∈N ⊂ Ln−1(Rn−1) is strongly
compact, at least up to pre-composition with Möbius maps. By a relatively standard argument,
cf. [62], (1.9) implies the subcritical convergence

∇uj → ∇u strongly in Lp(Rn−1) for all 1 ≤ p < n− 1 , (1.11)

for some limit map u ∈ W 1,n−1(Rn−1;Rn). In (1.9) the perturbations (gj)j∈N are vanishing
only in an energy-critical space and, as a consequence, strong compactness fails in general: by
(1.11), this lack of compactness is due to the presence of concentration effects. Our task is to
show that these effects result solely from the action of the non-compact group Möb(Sn−1) on
the domain.

1.2.1. Bubbling analysis for n = 3. When n = 3, Brezis–Coron [5] and Struwe [60] proved in
two independent works that the possible concentrations in Palais–Smale sequences for the H-
system can be characterized very precisely. This characterization relies on the classification of



OPTIMAL QUANTITATIVE STABILITY OF THE MÖBIUS GROUP 5

the global solutions of (1.10), i.e., finite-energy solutions defined over R2: such solutions turn
out to be rational functions in the complex variable, see [5, Lemma 0.1]. They then show that
the sequence (uj)j∈N possibly concentrates only on a finite number of points, and moreover that
at each concentration point it behaves exactly like a concentrating sequence of global solutions,
usually known as a bubble.

Besides the classification of global solutions, the analysis of [5, 60] relies on two other ingre-
dients. The first such ingredient is the special multilinear structure of the semilinear term in
the H-system, which guarantees that the difference uj −u solves a system very similar to (1.9);
that this structure is crucial can be seen, for instance, from the fact that there is no bubbling
theorem for Palais–Smale sequences in the closely-related case of harmonic maps into spheres
[52, 41]. Its multilinear structure also means that the nonlinearity in the H-system lies in the
Hardy space H 1(R2;R3), which is a subspace of L1(R2;R3) suited for harmonic analysis [14].
The second ingredient is the Wente-type result

∆u ∈ H 1(R2) =⇒ u ∈ C0(R2) , (1.12)

with a corresponding estimate. Such an estimate leads to the strong convergence

uj → u in L∞(R2) , (1.13)

from which the above characterization of concentrations follows.

1.2.2. The higher dimensional case n > 3: difficulties. In the last decades there have been
many works studying sequences of approximate solutions to conformally-invariant variational
problems in higher dimensions, see e.g. [33, 65, 45, 16, 68, 62, 67, 44]. However, neither these
works nor their methods can lead to a characterization of concentrations in Palais–Smale se-
quences, as in the case n = 3. In fact, currently it is not even known that the defect measure
associated to the sequence (|∇uj |n−1)j∈N is concentrated on a finite number of points. We now
briefly detail the difficulties associated with the higher dimensional case.

Although the H-system (1.10) has a multilinear structure in all dimensions, as soon as n > 3
the analogue of (1.12) does not hold, and we have

∆n−1u ∈ H 1(Rn−1) ≠⇒ u ∈ C0(Rn−1) , (1.14)

see [26, 37] for counter-examples and an optimal result in this direction. As far as we know, the
only known way of proving strong convergence in Ln−1 of Palais–Smale sequences is to show
the analogue of (1.13), i.e., to show that

uj → u in L∞(Rn−1) , (1.15)

cf. [45, Proposition 2.5] for a very general result in this direction. Nonetheless, due to (1.14),
obtaining (1.15) for n > 3 has remained elusive.

A different, deeper difference between the cases n = 3 and n > 3 is that, in the latter,
solutions to the H-system (1.10) are not known to be necessarily weakly conformal and, for
non-conformal solutions, the geometric interpretation of this system as describing parametrized
constant mean curvature hypersurfaces is lost. In particular, there is no characterization of
global solutions to (1.10) for n > 3.

The above difficulties are closely related to challenging regularity problems: the regularity
theory of conformally invariant systems of quadratic growth in the plane is well-understood,
after Rivière’s foundational work [56], but extending these results to higher dimensions remains
a difficult open problem. We refer the reader to the survey [59] for an extensive list of references
on this problem, as well as [66, 18, 28, 43] for some partial results.
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1.2.3. The higher dimensional case n > 3: proof sketch. We now sketch the proof strategy that
we pursue. Instead of simply looking at Palais–Smale sequences as in (1.9), in order to prove
Theorem 1.2 we will use the full strength of our minimality assumption (1.5). This approach
is inspired by the work of Caldiroli–Musina who, for n = 3, gave in [10, Lemma 2.1] a direct
variational proof of Theorem 1.2, see also [13, Lemma 2.1] and [60, Lemma 2.2] in a different
context. The proof of [10], in particular, bypasses completely the perturbed Euler–Lagrange
system (1.9).

In our setting, we are forced to pass through the analysis of (1.9) in order to obtain the
subcritical compactness (1.11). This compactness allows us to obtain the expansion

Dn−1(uj) = Dn−1(u) +Dn−1(uj − u) + o(1)

for the conformal Dirichlet energy, as a consequence of the Brezis–Lieb lemma. We emphasize
that, when n = 3, this expansion is a direct consequence of the weak convergence ∇uj ⇀ ∇u
in L2(R2), since in this case the conformal energy is quadratic, but in higher dimensions the
expansion is not obvious. The weak convergence alone also leads to a similar expansion for the
volume, namely

Vn(uj) = Vn(u) + Vn(uj − u) + o(1) ,

thanks to the weak continuity properties of the minors.

Plugging the above expansions into (1.5) and using the non-negativity of the deficit ensured
by Proposition 1.1 together with a convexity argument, leads to the desired strong convergence
∇uj → ∇u in Ln−1(Rn−1), provided the weak limit u is non-constant.

In order to ensure that the limit u is not a constant map, one needs to construct maps
(ϕj)j∈N ⊂ Möb(Sn−1) which spread out the energy of the modified sequence (uj ◦ ϕj)j∈N,
guaranteeing that the limiting map is non-constant. These are precisely the maps in (1.6).

We note that the above argument relies crucially on the minimality assumption: unlike the
case n = 3, in general we cannot prove strong convergence in the critical space Ln−1(Rn−1) if
(1.5) is replaced with

lim
j→∞

En−1(uj) ≤ ε ,

where ε > 0 is arbitrarily small.

1.3. Quantitative stability and the proof of Theorem 1.3. We now turn to the proof
of the main quantitative result of this work. We first note that, by a standard contradiction
argument and the compactness result of Theorem 1.2, it suffices to prove Theorem 1.3 for maps
u ∈W 1,n−1(Sn−1;Rn) such that

En−1(u) ≪ 1 ,

 
Sn−1

u = 0 ,
∥∥u− idSn−1

∥∥
W 1,n−1(Sn−1)

≪ 1 .

Ultimately, as in many stability problems, the nonlinear estimate of Theorem 1.3 relies on a
suitable linear inequality. After the above reduction, if one rescales u appropriately and sets

w := u− idSn−1 ,

then the crucial inequality concerns the coercivity of the second variation of the deficit at the
identity,

Qn(w) := E ′′
n−1(idSn−1)[w,w] ,

see (2.22) below for the explicit formula of this quadratic form. Note that, due to the invariance
of the deficit under the action of Möb(Sn−1), one can only hope for coercivity of Qn in theW 1,2-
orthogonal complement of the Lie algebra of infinitesimal Möbius transformations, which we
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denote by mob(Sn−1). One of the main results in [42] asserts precisely that this coercivity holds,
see already (2.25), and the proof relies on a fine interplay between the Fourier decomposition
of a W 1,2(Sn−1;Rn)-vector field into Rn-valued spherical harmonics and the properties of the
quadratic form V ′′

n(idSn−1).

When n = 3, it is not difficult to pass from a linear estimate to a nonlinear one. To do so, in
[42] the authors consider a formal Taylor expansion that turns out to be of the form

E2(u) = Q3(w) + o

( 
S2
|∇Tw|2

)
and in order to conclude, by the coercivity of Q3 in the orthogonal complement of mob(S2), it
suffices to choose ϕ ∈ Möb(S2) such that (u ◦ ϕ − idS2)⊥mob(S2). This is achieved through a
topological argument involving the Inverse Function Theorem.

For n ≥ 4, a similar formal Taylor expansion of the deficit in (1.4) only gives

En−1(u) = Qn(w) +O
( 

Sn−1

|∇Tw|3
)
.

Since the higher order terms are now cubic in ∇Tw, the linear estimate alone implies the nonlin-
ear estimate (1.7) only in a W 1,∞-neighborhood of idSn−1 , cf. [42, Corollary 1.6]. Generically, it
does not provide a control in the desired optimal conformally invariantW 1,n−1-norm. Moreover,
even a suboptimal estimate with an L2-norm in the left hand side of (1.7) would be hindered
by the presence of the higher-order cubic terms in the expansion.

To overcome these issues, we take inspiration from the work of Figalli–Zhang [25], where they
prove a sharp quantitative version of the Sobolev inequality in Rn. There, the same difficulty
is present: the linearized estimate only provides subcritical control. In order to overcome it,
instead of the exact expansion of the p-Dirichlet energy, they use a Taylor-type lower inequality,
which can be thought of as an interpolation between the first up to quadratic terms and the
highest-order p-term. It includes a term controlling the critical norm, but the quadratic terms
have to be replaced by a lower, nonquadratic quantity. The core insight allowing to conclude is
that, for small perturbations, this lower nonquadratic quantity still provides a control similar
to the quadratic terms of the exact expansion.

In our case, we combine the same Taylor-type inequality for the conformal (n− 1)-Dirichlet
energy in (1.2) (see Lemma 5.6) with a careful analysis of the terms which arise from expanding

the volume Vn(idSn−1 +w). This eventually leads to a nonquadratic quantity Q̃n(w) which is
similar to but lower than the quadratic form Qn(w), and to an estimate of the form

En−1(idSn−1 + w) ≳
 
Sn−1

|∇Tw|n−1 dHn−1

+ Q̃n(w)−B[w,∇Tw]− ∥∇Tw∥2+αL2(Sn−1)
,

(1.16)

for some bilinear form B and some α > 0. The proof is completed by showing that the last
line in (1.16) is nonnegative for w⊥ mob(Sn−1). We obtain this as a consequence of the linear
stability estimate for Qn(w) from [42, Theorem 1.5] and a compactness argument similar to [25,
Proposition 3.8].

It is worth noting that for the proof in [25], the nonquadratic quantity analogous to Q̃n(w)
only needs to control terms without derivatives. This is due to the fact that the denominator
in the deficit of the Sobolev inequality contains no derivatives, and is a key feature for the
compactness argument in [25, Proposition 3.8(iii)]. Instead, the denominator in our deficit
(1.4) does contain derivatives, and the highest order term cannot absorb all other gradient
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terms. The precise structure of these gradient terms in the last line of (1.16) is crucial in order
to make our compactness argument work.

1.4. Outline of the paper. After fixing some notation in the next subsection, in Section 2 we
collect some basic facts about the notion of topological degree for Sobolev mappings (adapted
to our setting), the volume functional Vn, and also the geometry of Möbius transformations
of Sn−1. In the final subsection 2.4 therein, we derive the first variation of the deficit En−1

introduced in (1.4), discuss some standard properties of its critical points, and we also include
the linear stability estimate obtained originally in [42, Theorem 1.5], which as described will
be crucial in obtaining the nonlinear estimate. Sections 3, 4 and 5 are devoted to the proofs
of Proposition 1.1 and Theorems 1.2, 1.3 respectively, the proofs being split in several different
steps of possibly independent interest in each case.

1.5. Notation. The following standard notation will be adopted throughout the paper.

{ei}ni=1, ⟨·, ·⟩, | · | the standard orthonormal basis, inner product, norm in Rn

A : B, |A| the Frobenius inner product and norm for matrices in Rn×m

At the transpose of a matrix or the adjoint of a linear map

a⊗ b the matrix with entries (a⊗ b)ij := aibj , where a ∈ Rn, b ∈ Rm

Sn−1,Bn the subsets {x ∈ Rn : |x| = 1} and {x ∈ Rn : |x| ≤ 1} of Rn

ωn the Euclidean volume of the unit ball in Rn

{τ1, . . . , τn−1}
a positively oriented orthonormal frame for TxSn−1 so that, for all
x ∈ Sn−1, {τ1(x), · · · , τn−1(x), x} is a positively oriented frame of Rn

Hk,Ld the k-dimensional Hausdorff and d-dimensional Lebesgue measures

O(n), SO(n) the orthogonal and special orthogonal groups of Rn

In, Ix the identity matrix in Rn and the identity transformation on TxSn−1

∇Tu
the tangential gradient of u : Sn−1 → Rn, represented in local
coordinates by the n× (n− 1) matrix with entries (∇Tu)lm = ∂τmu

l

J(u) the tangential Jacobian of u, J(u) := ∂τ1u ∧ · · · ∧ ∂τn−1u

idSn−1 , PT the identity map on Sn−1 and its gradient ∇T idSn−1

divSn−1 , ∆Sn−1 the tangential divergence and the Laplace-Beltrami operator on Sn−1

C0
b (Rn;R) the space of continuous bounded functions from Rn to R

Ck, Ck,α
the spaces of k-times continuously differentiable maps and of maps
with α-Hölder continuous derivatives of order k
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Lp,W s,p the standard Lebesque or fractional Sobolev spaces on Sn−1, where
the norms are taken with respect to the normalized Hn−1-measure

≲M1,M2,...,∼M1,M2,...

the corresponding inequality or equality holds up to a constant multiplicative factor
that depends only on the parameters M1,M2, . . . , or only on the
dimension when the subscripts are absent

c, C > 0
constants whose value is allowed to vary from line to line but which
depend only on the dimension

1D the indicator function of a set D ⊂ Rn

2. Preliminaries

2.1. Multilinear algebra and calculus on the sphere. In what follows, we always suppose
that n ≥ 3. Given vectors v1, . . . , vn−1 ∈ Rn, we define their vector product v1∧ · · · ∧ vn−1 ∈ Rn
(identified with its Hodge dual) as the unique v ∈ Rn such that

⟨v, w⟩ = det(v1, . . . , vn−1, w) for all w ∈ Rn,

where the expression on the right-hand side is the determinant of the n×n matrix with columns
v1, . . . , vn−1, w. The vector product is intimately connected to the cofactor matrix, which for
A ∈ Rn×n satisfies the identity

(cof A)tA = (detA) In . (2.1)

In particular, we have

(cof A)(v1 ∧ · · · ∧ vn−1) = Av1 ∧ · · · ∧Avn−1 ∀v1, . . . , vn−1 ∈ Rn . (2.2)

With these notations, for the local orthonormal frame {τ1, . . . , τn−1} of TxSn−1, we have

τ1 ∧ · · · ∧ τn−1 = x . (2.3)

In order to facilitate many calculations in the paper, it will be useful to consider extensions
of maps u ∈W 1,n−1(Sn−1;Rn). To that end, we note that W 1,n−1(Sn−1;Rn) is contained in the
image ofW 1,n(Bn;Rn) under the trace operator (see [31, Proposition 28] for an elementary proof
due to Jan Malý). In particular, for any u ∈ W 1,n−1(Sn−1;Rn), there exists U ∈ W 1,n(Bn;Rn)
such that

U |Sn−1 = u, and ∥U∥W 1,n(Bn) ≲ ∥u∥W 1,n−1(Sn−1) . (2.4)

Applying (2.2) with A = ∇U and using also (2.3), we see that for Hn−1-a.e. x ∈ Sn−1,

cof(∇U)x = (∇U)τ1 ∧ · · · ∧ (∇U)τn−1 =
n−1∧
i=1

∂τiu =: J(u) . (2.5)

Let us also note here, for later use, the Hadamard-type inequality

|J(u)| = | cof(∇U)x| ≤
(
|∇Tu|2

n− 1

)n−1
2

Hn−1-a.e. on Sn−1 , (2.6)

which is a straightforward consequence of the Cauchy–Schwarz and arithmetic mean–geometric
mean inequalities.
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2.2. On the topological degree and the volume functional. The reader may have noticed
that it is not immediately clear how to make sense of (1.3) for maps u ∈ W 1,n−1(Sn−1;Rn),
although the integral therein is clearly meaningful if in addition u is essentially bounded. In
this subsection we recall how to interpret (1.3) and, on the way to do so, we will gather some
useful properties of the volume functional and of related objects, in particular the notion of
(local) topological degree. In fact, the issue of giving a meaning to (1.3) for maps in the critical
space is closely related to the theory of VMO-degree developed by Brezis and Nirenberg [8, 9].

We begin by stating a standard identity relating bulk integrals of det∇U , with U as in (2.4),
with boundary integrals of J(u); this identity follows from Piola’s identity

div cof∇U = 0 in D′(Bn) , (2.7)

the chain rule and (2.1), see e.g. [34, Lemma 3.14] for further details.

Lemma 2.1. For all U ∈ W 1,n(Bn;Rn) with u := U |Sn−1 ∈ W 1,n−1(Sn−1;Rn) as in (2.4), we
have ˆ

Bn

(div V )(U(x)) det∇U(x) dx =

ˆ
Sn−1

⟨V (U(x)), cof(∇U)x⟩ dHn−1 , (2.8)

whenever V ∈ C1
c (Rn;Rn) .

If U ∈ (W 1,n ∩ L∞)(Bn;Rn) then, by taking suitable approximations of the vector field
V (x) = x, Lemma 2.1 combined with (2.5) yield the identity 

Bn

det∇U dx =

 
Sn−1

⟨u, J(u)⟩ dHn−1 = Vn(u) , (2.9)

where the last equality is simply definition (1.3). The integral on the left-hand side is mean-
ingful for U ∈ W 1,n(Bn;Rn), and hence (2.9) can be used to define the volume Vn(u) for
u ∈ W 1,n−1(Sn−1;Rn). In fact, the same reasoning allows to extend Vn to the trace space of
W 1,n(Bn;Rn) (similar considerations are exploited in [7, Section 2] to study fine properties of
Jacobian determinants). Note that, since the extension U ∈ W 1,n(Bn;Rn) depends continu-
ously on u ∈ W 1,n−1(Sn−1;Rn), see (2.4), this definition of Vn(u) coincides with the one used
e.g. in [46, Corollary 3.5] by combining compensation properties of Jacobians [14] and duality
properties of Hardy spaces [23].

We now discuss the notion of local topological degree, which is closely related to the volume
functional. Let us first explain how to define the local degree for maps U ∈W 1,n(Bn;Rn). First
recall that, in the case of U ∈ C1(Bn;Rn), for every regular value y of U such that y /∈ U(Sn−1),
the local degree at y is defined as

deg(U,Bn; y) :=
∑

z∈U−1(y)

sgn(det∇U)(z) .

By the fact that Ln(U(Sn−1)) = 0 and Sard’s theorem, deg(U,Bn; y) is well-defined for Ln-a.e.
y ∈ Rn. In this case, the generalized area formula immediately yields the identityˆ

Bn

η(U(x)) det∇U(x) dx =

ˆ
Rn

η(y) deg(U,Bn; y) dy, (2.10)

whenever η ∈ C0
b (Rn;R), see [63, Corollary 1].

We now want to define the local degree for a general map U ∈ W 1,n(Bn;Rn) with trace
u := U |Sn−1 ∈ W 1,n−1(Sn−1;Rn), precisely in such a way that (2.10) stays true, and so we will
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essentially use this identity as a definition. To be precise, consider the distribution TU ∈ D′(Rn)
defined as

(TU , φ) :=

ˆ
Bn

φ(U(x)) det∇U(x) dx ,

where φ ∈ C∞
c (Rn) and (·, ·) stands for the duality pairing. This distribution can be identified

with a finite Radon measure, but we have in fact:

Lemma 2.2. For any U ∈ W 1,n(Bn;Rn) with trace u := U |Sn−1 ∈ W 1,n−1(Sn−1;Rn), we have
TU ∈ BV(Rn;Z).

Proof. Consider an approximating sequence (Uj)j∈N ⊂ C∞(Bn;Rn) such that

Uj → U Ln-a.e. in Bn and strongly in W 1,n(Bn;Rn), sup
j∈N

∥uj∥W 1,n−1(Sn−1) < +∞ , (2.11)

where as usual uj := Uj |Sn−1 . It suffices to show that

(i) TUj

∗
⇀ TU in D′(Rn),

(ii) (TUj )j∈N is equibounded in BV (Rn),

as then, by compactness, TU ∈ BV (Rn;Z), since TUj → TU in L1
loc(Rn) and TUj is integer-valued

for every j ∈ N.
We note that (i) follows easily from the fact that det∇Uj → det∇U in L1(Bn) and Uj → U

Ln-a.e. on Bn. For (ii), by the smoothness of (Uj)j∈N and (2.11), we have

sup
j∈N

∥TUj∥L1(Rn) ≲ sup
j∈N

ˆ
Bn

|∇Uj |n dx < +∞ ,

and by (2.8), (2.6) and (2.11),

sup
j∈N

|DTUj |(Rn) = sup
j∈N

sup
ψ∈C1

c (Rn;Rn)

{ˆ
Bn

(divψ)(Uj(x)) det∇Uj(x) dx : ∥ψ∥L∞(Rn) ≤ 1

}
= sup

j∈N
sup

ψ∈C1
c (Rn;Rn)

{ˆ
Sn−1

⟨ψ ◦ Uj , cof(∇Uj)x⟩ dHn−1 : ∥ψ∥L∞(Rn) ≤ 1

}
≤ sup

j∈N

ˆ
Sn−1

|J(uj)| dHn−1

≲ sup
j∈N

ˆ
Sn−1

|∇Tuj |n−1 dHn−1 < +∞ ,

completing the proof. □

We now define the local degree of U ∈W 1,n(Bn;Rn) with U |Sn−1 ∈W 1,n−1(Sn−1;Rn), as

deg(U,Bn; ·) := TU , (2.12)

and by Lemma 2.2 we see that the local degree is essentially integer-valued and satisfies the

identity (2.10), as the latter is valid along the sequence (Uj)j∈N ⊂ C∞(Bn;Rn), and TUj

∗
⇀ TU

in BVloc(Rn), as we saw in (i)-(ii) above. Summarizing this discussion, we have shown:

Theorem 2.3. For any U ∈W 1,n(Bn;Rn) with trace u := U |Sn−1 ∈W 1,n−1(Sn−1;Rn) and the
local degree being defined as in (2.12), the identity (2.10) holds, whenever η ∈ C0

b (Rn;R).
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Remark 2.4 (Comparison with VMO-degree). Let U ∈ W 1,n(Bn;Rn). Due to the inclusion

W 1,n(Bn;Rn) ⊂ VMO(Bn;Rn), if y ̸∈ U(Sn−1) then deg(U,Bn; y) can be defined as in [9, Section
II.2], and it coincides with the limit of (deg(Uj ,Bn; y))j∈N for a smooth approximating sequence;

in particular, it also coincides with the notion of degree defined in (2.12). But U(Sn−1) may
generically have positive Ln-measure, so this does not define deg(U,Bn; ·) Ln-a.e. in Rn. See
also [63, page 114] for related results and discussion.

In fact, under our additional assumption that u := U |Sn−1 ∈ W 1,n−1(Sn−1;Rn), the tools
developed in [8, 9] do provide a pointwise characterization of the local topological degree
deg(U,Bn; ·) Ln-a.e. in Rn. Specifically, we show in Appendix A, following ideas from [38, 11],
that for Ln-a.e. y ∈ Rn,

uy :=
u− y

|u− y|
∈W 1,n−1(Sn−1; Sn−1) and deg(U,Bn; y) = deg(uy,Sn−1;Sn−1) ,

where deg(uy, Sn−1; Sn−1) is the VMO-degree defined in [8]. This generalizes [9, Section II.4]

where the identity deg(U,Bn; y) = deg(uy, Sn−1; Sn−1) is proved for all y /∈ U(Sn−1).

Remark 2.5 (Sphere-valued maps). The discussion of the previous remark, combined with
(2.9), also shows that, as claimed in the introduction, if u ∈W 1,n−1(Sn−1; Sn−1) then

Vn(u) = deg(u) := deg(u,Sn−1;Sn−1)

is the usual VMO-degree.

We conclude this subsection by recalling some useful facts from [32, Section 2.3] regarding
the expansion of Vn around idSn−1 , as a polynomial in the derivatives of the perturbation. For
convenience of the reader, we recall the notation used therein. Let A ∈ Rn×n with its set of
eigenvalues (be them real or complex) being labeled as {µ1, . . . , µn}. We then have

det(In +A) = 1 +
n∑
k=1

σk(A) ,

where σk(A) denotes the k-th elementary symmetric polynomial in the eigenvalues of A:

σk(A) :=
∑

1≤i1<···<ik≤n
µi1 . . . µik . (2.13)

Note that the k-homogeneity of σk implies the Euler identity

σk(A) =
1

k
σ′k(A) : A ,

where σ′k(A) ∈ Rn×n is the gradient of σk with respect to the A-variable. With this notation,
we have the following:

Lemma 2.6. Let w ∈W 1,n−1(Sn−1;Rn). Then

Vn(idSn−1 + w) = 1 +
n∑
k=1

n

k

 
Sn−1

⟨w, [σ′k(∇TwP
t
T )]

tx⟩dHn−1 , (2.14)

where σk are as in (2.13). Moreover, the first and last summands have the simple forms

n

 
Sn−1

⟨w, [σ′1(∇TwP
t
T )]

tx⟩dHn−1 = n

 
Sn−1

⟨w, x⟩ dHn−1 , (2.15)

 
Sn−1

⟨w, [σ′n(∇TwP
t
T )]

tx⟩dHn−1 =

 
Sn−1

〈
w, J(w)

〉
dHn−1 = Vn(w) , (2.16)
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and the intermediate summands for k ∈ {2, . . . n− 1} are estimated by

n

k

∣∣∣∣ 
Sn−1

⟨w, [σ′k(∇TwP
t
T )]

tx⟩ dHn−1

∣∣∣∣ ≤ Cn

 
Sn−1

|w||∇Tw|k−1 dHn−1 , (2.17)

where Cn > 0 is a constant depending only on n.

The proof of Lemma 2.6 follows directly from [32, Lemma 2.6] combined with identity (2.9),
and [32, Remark 2.7].

2.3. Möbius transformations. As mentioned in the Introduction, we define Möb(Sn−1) to
be the group of Möbius transformations of Sn−1,

Möb(Sn−1) := {Oϕξ,λ : O ∈ O(n), ξ ∈ Sn−1, λ > 0} , (2.18)

where

ϕξ,λ := σ−1
ξ ◦ iλ ◦ σξ ,

with σξ : Sn−1 → Rn−1 the stereographic projection from −ξ ∈ Sn−1 , and iλ : Rn−1 → Rn−1

the dilation by factor λ > 0. Explicitly, we may write

σξ(x) =
x− ⟨x, ξ⟩ξ
1 + ⟨x, ξ⟩

,

ϕξ,λ(x) =
−λ2(1− ⟨x, ξ⟩)ξ + 2λ(x− ⟨x, ξ⟩ξ) + (1 + ⟨x, ξ⟩)ξ

λ2(1− ⟨x, ξ⟩) + (1 + ⟨x, ξ⟩)

(2.19)

for all x ∈ Sn−1. This coincides with the classical characterization of Möbius transformations
of Rn−1 in terms of inversions, see [55, Section 2.1] and [42, Remark A.1] for more details. For

instance, the inversion ψ : x 7→ x/|x|2 in Rn−1 corresponds simply to the orthogonal reflection
Sξ ∈ O(n) with respect to ξ⊥ := {y ∈ Rn : ⟨y, ξ⟩ = 0}, i.e., SξidSn−1 = σ−1

ξ ◦ ψ ◦ σξ.
We also denote by Möb±(Sn−1) the subfamilies of orientation preserving and orientation-

reversing Möbius transformations, corresponding to multiplication by O ∈ SO(n) or by O ∈
O(n) \ SO(n) respectively.

We note that Möb(Sn−1) is a Lie group of dimension n(n + 1)/2. Using (2.19), it is an
elementary calculation to show that the corresponding Lie algebra TidSn−1 (Möb(Sn−1)) can be
identified with

mob(Sn−1) :=
{
XS,ξ,µ : S + St = 0, ξ ∈ Sn−1, µ ∈ R

}
, (2.20)

where XS,ξ,µ : Sn−1 → Rn is defined by XS,ξ,µ(x) := Sx+ µ
(
⟨x, ξ⟩x− ξ

)
.

2.4. The first and second variations of the deficit. In this subsection, we will consider
without restriction maps u ∈ W 1,n−1(Sn−1;Rn) for which Vn(u) > 0, without mentioning it
further in the sequel. In the case Vn(u) < 0, all the subsequent results can be retrieved by
composing with the flip in Rn, i.e., the map (x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1,−xn).

For the next result we use the notation

∆n−1(u) := divSn−1(|∇Tu|n−3∇Tu)

for the (n− 1)-Laplace operator on Sn−1. Recalling (1.4), we have:
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Lemma 2.7. A critical point u ∈ W 1,n−1(Sn−1;Rn) for En−1 with Vn(u) > 0, satisfies the
system

∆n−1(u) +HuJ(u) = 0 , where Hu := (n− 1)
n−1
2

Dn−1(u)

Vn(u)
, (2.21)

in the sense of distributions.

Proof. For every ψ ∈W 1,n−1(Sn−1;Rn), we compute the Gateaux derivative

E ′
n−1(u)[ψ] :=

d

dt

∣∣∣
t=0

En−1(u+ tψ)

=
n

n− 1

Dn−1(u)
1

n−1

Vn(u)2

(
Vn(u)D′

n−1(u)[ψ]−
n− 1

n
Dn−1(u)V ′

n(u)[ψ]

)
.

We then compute each of the Gateaux derivatives separately. For the first derivative, we have

D′
n−1(u)[ψ] =

1

(n− 1)
n−3
2

 
Sn−1

|∇Tu|n−3∇Tu : ∇Tψ dHn−1 .

For the derivative of the volume, we pick extensions U,Ψ ∈ W 1,n(Bn;Rn) of u, ψ, and use
Piola’s identity (2.7) together with the divergence theorem, to get

V ′
n(u)[ψ] =

 
Bn

cof∇U : ∇Ψdx

= n

 
Sn−1

⟨cof(∇U)x, ψ⟩ dHn−1 = n

 
Sn−1

⟨J(u), ψ⟩dHn−1 ,

where in the last equality we used also (2.5). Collecting all the above identities, we obtain

Vn(u)
(n− 1)

n−1
2

 
Sn−1

|∇Tu|n−3∇Tu : ∇Tψ dHn−1 −Dn−1(u)

 
Sn−1

⟨J(u), ψ⟩dHn−1 = 0 ,

which is precisely the distributional form of (2.21). □

Solutions to (2.21) enjoy the following regularity properties, shown by Mou and Yang in [46,
Theorem 3.6]:

Theorem 2.8. Let u ∈W 1,n−1(Sn−1;Rn) be a solution to (2.21). Then u ∈ C1,α(Sn−1;Rn) for
some α ∈ (0, 1).

Remark 2.9. It is expected that continuity of solutions holds provided that the constant Hu

in (2.21) is replaced by a bounded and Lipschitz function H : Sn−1 → R, cf. [59, Problem 2.4].

Let Ln := E ′′
n−1(idSn−1) denote the second variation of the deficit En−1 at idSn−1 , and let Qn

the associated quadratic form on W 1,2(Sn−1;Rn), which is given by

Qn(w) :=
1

2

n

n− 1

 
Sn−1

|∇Tw|2 +
n(n− 3)

2(n− 1)2

 
Sn−1

(divSn−1w)2 −
n

2

 
Sn−1

⟨w,A(w)⟩ , (2.22)

where

A(w) := (divSn−1w)x−
n∑
j=1

xj∇Tw
j , (2.23)

cf. [42, (1.12) and Subsection 5.1]. In particular, for every u ∈W 1,n−1(Sn−1;Rn) with 
Sn−1

u = 0 ,

 
Sn−1

⟨u, x⟩ = 1 ,
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conditions that for our purposes can be ensured by a translation and a rescaling, if one writes
u := idSn−1 +w, then a formal Taylor expansion gives (cf. [42, Appendix B] and the discussion
in Subsection 1.3)

En−1(u) = Qn(w) +O
(  

Sn−1

|∇Tw|3
)
.

The following coercivity result is proven in [42, Theorem 1.5].

Theorem 2.10 (Linear stability). There is a constant Cn > 0 such that for all w ∈ Hn, where

Hn :=

{
w ∈W 1,2(Sn−1;Rn) :

 
Sn−1

w = 0 ,

 
Sn−1

⟨w, x⟩ = 0

}
, (2.24)

the following estimate holds:

Qn(w) ≥ Cn

 
Sn−1

∣∣∇Tw −∇T (Πn,0w)
∣∣2 dHn−1 , (2.25)

where Πn,0 : Hn → Hn,0 is the W 1,2-orthogonal projection onto the kernel Hn,0 of Qn in Hn,
which is isomorphic to mob(Sn−1) defined in (2.20).

Remark 2.11. We note that the proof of Theorem 2.10 given in [42, Subsection 5.1] is sub-
stantially more involved for n > 3 than for n = 3: indeed, in the latter case the middle term in
(2.22) is absent, and the quadratic form Q3 and the operator A commute, leading to an explicit
diagonalization of Q3. In higher dimensions this is no longer the case, and the optimal constant
in (2.25) is not known, see [42, Remark 5.1] for further discussion.

3. The parametric conformal isoperimetric inequality

The purpose of this section is to prove Proposition 1.1, which we restate here for the reader’s
convenience.

Proposition 3.1. For all maps u ∈W 1,n−1(Sn−1;Rn) we have

En−1(u) ≥ 0 ,

with equality if and only if (u− y0)/|Vn(u)|1/n ∈ Möb(Sn−1) for some y0 ∈ Rn.

As mentioned in the Introduction, Proposition 3.1 is based on an optimal parametric form
of the isoperimetric inequality. The non-parametric form of the isoperimetric inequality is
well-known, see e.g. [51, (2.10)] and the references therein. The parametric isoperimetric in-
equality is an immediate consequence of the corresponding inequalities for currents, see e.g.
[22, Corollary 6.5] or [1]. Here we give a simple proof of this result, starting from the usual
isoperimetric inequality and following the approach of [47, Lemma 1.3]; we begin by proving a
related statement in Euclidean space, for which we recall (2.5) and the definition of local degree
in (2.12).

Proposition 3.2. For all U ∈W 1,n(Bn;Rn) with u := U |Sn−1 ∈W 1,n−1(Sn−1;Rn) we have

nω1/n
n

(
∥deg(U,Bn; ·)∥L1(Rn)

)n−1
n ≤

ˆ
Sn−1

|J(u)| dHn−1 . (3.1)

If equality holds, then either Hn−1
(
{J(u) ̸= 0}

)
= 0, or there is a ball B ⊂ Rn such that

deg(U,Bn; y) = ±1B(y) for Ln-a.e. y ∈ Rn , (3.2)

u(x) ∈ ∂B for Hn−1-a.e. x ∈ {J(u) ̸= 0} . (3.3)
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Proof. The proof of (3.1) follows essentially [47, Lemma 1.3], which we reproduce here to make
the discussion of equality cases transparent. For every V ∈ C1

c (Rn;Rn) with ∥V ∥L∞(Rn) ≤ 1,
using (2.10), (2.8) and (2.5), we estimateˆ

Rn

(div V )(y)deg(U,Bn; y) dy =

ˆ
Bn

(div V )(U(x)) det∇U(x) dx

=

ˆ
Sn−1

⟨V (U(x)), cof(∇U)x⟩dHn−1(x)

≤ ∥V ∥L∞(Rn)

ˆ
Sn−1

| cof(∇U)x| dHn−1 ≤
ˆ
Sn−1

|J(u)| dHn−1 ,

so that supremizing over all such V and using the duality between finite Radon measures and
continuous bounded functions, this estimate leads us to∣∣D[deg(U,Bn; ·)]

∣∣(Rn) ≤ ˆ
Sn−1

|J(u)| dHn−1 . (3.4)

By the Sobolev inequality for BV -functions, see e.g. [29, (1.4)], (3.4) yields

nω1/n
n ∥ deg(U,Bn; ·)∥

L
n

n−1 (Rn)
≤
ˆ
Sn−1

|J(u)|dHn−1 , (3.5)

with equality if and only if

deg(U,Bn; y) = α1B(y) for Ln-a.e. y ∈ Rn , (3.6)

for some ball B := Br(y0) ⊂ Rn, r > 0, y0 ∈ Rn and some α ∈ R. In fact, since the local degree is

integer-valued, cf. Lemma 2.2, we must have α ∈ Z. Thus, |deg(U,Bn; ·)| ≤ |deg(U,Bn; ·)|
n

n−1 ,
and estimate (3.1) follows.

We now characterize the equality cases, so assume that (3.1) holds with equality. Clearly we
must then have α ∈ {−1, 0, 1}. In the case α = 0, by the equality cases in the above inequalities
we get ˆ

Sn−1

|J(u)|dHn−1 = nω1/n
n ∥ deg(U,Bn; ·)∥

L
n

n−1 (Rn)
= 0 ,

and so J(u) = 0 Hn−1-a.e. on Sn−1. Otherwise, we see from (3.6) that the local degree of U is
(up to a sign) the indicator function of the ball B, thus (3.2) holds. We must also have equality
in (3.4) and (3.5), and thus by (3.6),ˆ

Sn−1

|J(u)|dHn−1 =
∣∣D[deg(U,Bn; ·)]

∣∣(Rn) = Hn−1(∂B) = nωnr
n−1 . (3.7)

Notice however that, by (3.6), and denoting by ν∂B the outward pointing unit normal to ∂B,∣∣D[deg(U,Bn; ·)]
∣∣(Rn) = sup

V ∈C1
c (Rn;Rn)

∥V ∥L∞(Rn)≤1

ˆ
Rn

deg(U,Bn; y)(div V )(y) dy

= sup
V ∈C1

c (Rn;Rn)
∥V ∥L∞(Rn)≤1

−α
ˆ
∂B

⟨V, ν∂B⟩ ≤ Hn−1(∂B) = nωnr
n−1 ,

and by (3.7) we see that the supremum in the above estimate is achieved for any vector field

V0 ∈ C1
c (Rn;Rn) with ∥V0∥L∞(Rn) ≤ 1 and V0|∂B = −αν∂B . (3.8)
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Using again (3.7), (2.10) and (2.8), we deduce that for every such V0,ˆ
Sn−1

|J(u)|dHn−1 =

ˆ
Rn

deg(U,Bn; y)(div V0)(y) dy

=

ˆ
Sn−1

⟨V0 ◦ u, J(u)⟩ dHn−1 ≤
ˆ
Sn−1

|V0 ◦ u||J(u)|dHn−1

≤ ∥V0 ◦ u∥L∞(Sn−1)

ˆ
Sn−1

|J(u)|dHn−1 ≤
ˆ
Sn−1

|J(u)|dHn−1 ,

which further implies that

|V0(u(x))| = sup
Sn−1

|V0 ◦ u| = 1 for Hn−1-a.e. x ∈ {J(u) ̸= 0} . (3.9)

Picking for instance a vector field V0 satisfying (3.8) and moreover being such that

|V0(y)| < 1 ∀y ∈ Rn \ ∂B ,

we deduce that (3.9) readily implies (3.3). □

As an immediate consequence of Proposition 3.2, we obtain:

Corollary 3.3 (Parametric isoperimetric inequality). For all u ∈W 1,n−1(Sn−1;Rn) we have 
Sn−1

|J(u)| dHn−1 ≥ |Vn(u)|
n−1
n . (3.10)

Proof. Clearly we may assume that Vn(u) ̸= 0, as otherwise there is nothing to prove. Let
U ∈W 1,n(Bn;Rn) be an extension of u as in (2.4). Combining (2.10) (for η ≡ 1) and (3.1), we
see that

ω1/n
n

∣∣∣∣ˆ
Bn

det∇U dx

∣∣∣∣n−1
n

≤ 1

n

ˆ
Sn−1

|J(u)| dHn−1 ,

and the claim follows by applying (2.9) and rearranging. □

Proof of Proposition 3.1. The non-negativity of the deficit En−1 follows at once from (3.10)
and Hadamard’s inequality (2.6), so to complete the proof it remains to characterize the maps
u ∈W 1,n−1(Sn−1;Rn) such that

En−1(u) = 0 . (3.11)

Since such a map u is in particular a critical point for En−1, by Theorem 2.8 it is necessarily in
C1,α(Sn−1;Rn) for some α ∈ (0, 1). Moreover, by (2.10) (applied with η ≡ 1), (2.9) and (3.11),
we have that u satisfies (3.1) with equality, and hence by Proposition 3.2 also (3.2) and (3.3)
hold. Note that for the ball B := Br(y0) therein, by (3.7), (3.10) and (3.11), we have

r =

( 
Sn−1

|J(u)| dHn−1

) 1
n−1

= |Vn(u)|
1
n , (3.12)

so that by replacing u with (u−y0)/|Vn(u)|1/n, we can assume without restriction that B = Bn.
We claim that the open set

Ω := {x ∈ Sn−1 : u(x) ̸∈ Sn−1}
is empty. To see this, note that by (3.3) we have

J(u) = 0 in Ω . (3.13)
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Since (3.11), (3.10) and (2.6) imply that equality must hold in (2.6) pointwise, (3.13) in turn
implies that

∇Tu = 0 in Ω .

But this means that u is constant in each connected component of Ω. Since u is continuous
and u(Sn−1 \ Ω) ⊆ Sn−1, we see that Ω = ∅, and therefore u(Sn−1) ⊆ Sn−1.

As mentioned in the previous paragraph, equality holds in (2.6) pointwise, which by the
equality cases in the Cauchy–Schwarz and arithmetic mean-geometric mean inequalities means
that the vectors {∂τ1u, . . . , ∂τn−1u} are all pairwise orthogonal and have the same norm. Equiv-

alently, at every x ∈ Sn−1 the singular values of the (n− 1)× (n− 1) matrix (∇Tu(x))
t∇Tu(x)

are all the same, which means precisely that u solves (1.1). Moreover, by (3.7) (for r = 1 and
y0 = 0 as we have without restriction assumed) and (3.12), we deduce that

|Vn(u)| =
( 

Sn−1

|J(u)|
) n

n−1

= 1 ,

i.e., the weakly conformal map u ∈W 1,n−1(Sn−1;Sn−1) has topological degree ±1 on Sn−1, cf.
Remark 2.5. The conclusion now follows from Liouville’s Theorem. □

4. Compactness of sequences with vanishing deficit

The purpose of this section is to prove Theorem 1.2. To do so, and as mentioned in the
beginning of Subsection 2.4, we can assume without restriction that

Vn(uj) > 0 ∀j ∈ N . (4.1)

Moreover, all the subsequent statements hold up to extraction of a subsequence, which we will
neither relabel nor mention further in the sequel.

4.1. Some auxiliary results of general character. Before getting to the core of the proof
of Theorem 1.2, we begin by stating and proving some general results from the Calculus of
Variations.

The first result we will need is essentially well-known, and its proof is a variant of that of [62,
Theorem 2.2], see also [20, Theorem 3 on page 40], [33, Theorem on page 3] and [16]: it essen-
tially says that a good control on the p-Laplace operator of a sequence of maps yields a subcriti-
cal form of compactness. For the statement, recall the notation ∆pu := divSn−1(|∇Tu|p−2∇Tu).

Proposition 4.1 (Subcritical compactness). Let p ≥ 2 and let (vj)j∈N ⊂ W 1,p(Sn−1;Rn) be
weak solutions to

∆pvj + fj = gj , (4.2)

where

K := sup
j∈N

∥vj∥W 1,p(Sn−1) + sup
j∈N

∥fj∥L1(Sn−1) < +∞ , (4.3)

and, with p′ := p
p−1 ,

gj → 0 strongly in W−1,p′(Sn−1;Rn) . (4.4)

If vj ⇀ v in W 1,p(Sn−1;Rn) then vj → v strongly in W 1,q(Sn−1;Rn) whenever 1 ≤ q < p.

Remark 4.2. Proposition 4.1 holds also for 1 < p < 2, but in this case the proof has a
few additional technicalities, as (4.10) below does not hold. As we will ultimately apply the
proposition with p := n− 1 ≥ 2, we decided to omit this case.
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Proof of Proposition 4.1. The proof is essentially the same as in [33, Theorem on page 3], the
only difference is the presence of the right-hand side gj in estimate (4.14) below. It suffices to
prove that for q ∈ [1, p) fixed, and for each δ ∈ (0, 1],

ˆ
Sn−1

|∇T vj −∇T v|q dHn−1 = o(δ) + oδ(1/j) , (4.5)

where, for a function M(δ, j), we say that

(i) M(δ, j) = o(δ) if limδ↘0 supj∈N |M(δ, j)| = 0 ,

(ii) M(δ, j) = oδ(1/j) if for each δ ∈ (0, 1] we have limj→∞ |M(δ, j)| = 0 .

The assertion then follows by first passing to the limit in (4.5) as j → ∞ and then δ ↘ 0.

Since vj → v strongly in Lp(Sn−1;Rn), up to passing to a non-relabeled subsequence we may
assume that vj → v also pointwise Hn−1-a.e. on Sn−1. We then consider the sets

Eδ,j := {x ∈ Sn−1 : |vj(x)− v(x)| ≥ δ} , so that Hn−1(Eδ,j) = oδ(1/j) . (4.6)

By weak lower semicontinuity and the assumption that vj ⇀ v in W 1,p(Sn−1;Rn), we have

∥v∥W 1,p(Sn−1) ≤ lim inf
j→∞

∥vj∥W 1,p(Sn−1) ≤ K ,

hence, by Hölder’s inequality,ˆ
Eδ,j

|∇T vj −∇T v|q dHn−1 ≤ [Hn−1(Eδ,j)]
p−q
p ∥∇T vj −∇T v∥qLp(Eδ,j)

≲ Kq[Hn−1(Eδ,j)]
p−q
p ,

so that, by (4.6), ˆ
Eδ,j

|∇T vj −∇T v|q dHn−1 = oδ(1/j) . (4.7)

The rest of the proof is dedicated to proving thatˆ
Sn−1\Eδ,j

|∇T vj −∇T v|p dHn−1 = o(δ) + oδ(1/j) , (4.8)

as then (4.5) follows from (4.7), (4.8) and another application of Hölder’s inequality. In order
to prove (4.8), we define the auxiliary function

η : Rn → Rn, η(y) := min
{
δ/|y|, 1

}
y , (4.9)

for which ∥η∥L∞(Rn) ≤ δ. Let us recall here the elementary algebraic inequality

⟨|a|p−2a− |b|p−2b, a− b⟩ ≥ 22−p|a− b|p for all a, b ∈ Rm and p ≥ 2 , (4.10)

which follows from the simple observation

⟨|a|p−2a− |b|p−2b, a− b⟩ = |a|p−2 + |b|p−2

2
|a− b|2 + (|a|p−2 − |b|p−2)(|a|2 − |b|2)

2

≥ |a|p−2 + |b|p−2

2
|a− b|2 ≥ 22−p|a− b|p .
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Since η(y) = y when |y| ≤ δ, using (4.10) we can estimate

ˆ
Sn−1\Eδ,j

|∇T vj −∇T v|p ≲
ˆ
Sn−1\Eδ,j

(|∇T vj |p−2∇T vj − |∇T v|p−2∇T v) : ∇T (vj − v)

=

ˆ
Sn−1\Eδ,j

|∇T vj |p−2∇T vj : ∇T (η ◦ (vj − v))

−
ˆ
Sn−1\Eδ,j

|∇T v|p−2∇T v : ∇T (vj − v)

=:

ˆ
Sn−1\Eδ,j

Ij −
ˆ
Sn−1\Eδ,j

IIj .

(4.11)

For the second term in the last line of (4.11) we can easily estimate∣∣∣∣∣
ˆ
Sn−1\Eδ,j

IIj

∣∣∣∣∣ ≤
∣∣∣∣ˆ

Sn−1

|∇T v|p−2∇T v : ∇T (vj − v)

∣∣∣∣+ ˆ
Eδ,j

|∇T v|p−1(|∇T v|+ |∇T vj |)

≲

∣∣∣∣ˆ
Sn−1

|∇T v|p−2∇T v : ∇T (vj − v)

∣∣∣∣+K

(ˆ
Eδ,j

|∇T v|p
) 1

p′

= oδ(1/j) ,

(4.12)

where we used ∇T (vj−v)⇀ 0 weakly in Lp(Sn−1;Rn), |∇T v|p−2∇T v ∈ Lp
′
(Sn−1;Rn), and that

by (4.6), Hn−1(Eδ,j) = oδ(1/j). We now focus on estimating the first term in the last line of
(4.11), for which clearly

ˆ
Sn−1\Eδ,j

Ij =

ˆ
Sn−1

Ij −
ˆ
Eδ,j

Ij , (4.13)

and we will estimate the two integrals separately. Testing (4.2) against η ◦ (vj − v), the bounds
(4.3) and (4.4) yield∣∣∣∣ˆ

Sn−1

Ij

∣∣∣∣ ≤ ∣∣∣∣ˆ
Sn−1

〈
fj , η ◦ (vj − v)

〉∣∣∣∣+ ∣∣∣(gj , η ◦ (vj − v))W−1,p′ ,W 1,p

∣∣∣
≤ ∥η∥L∞(Rn) sup

j∈N

∥∥fj∥∥L1(Sn−1)
+
∣∣∣(gj , η ◦ (vj − v))W−1,p′ ,W 1,p

∣∣∣
≤ Kδ + oδ(1/j) = o(δ) + oδ(1/j) .

(4.14)

On the other hand, note that η ◦ (vj − v) = δ
vj−v
|vj−v| on Eδ,j by (4.6) and (4.9), and therefore,

Hn−1-a.e. on this set,

Ij = δ|∇T vj |p−2∇T vj : ∇T
vj − v

|vj − v|

= δ|∇T vj |p−2
n∑
l=1

〈
∇T v

l
j ,
|vj − v|∇T (v

l
j − vl)− (vlj − vl)∇T |vj − v|

|vj − v|2

〉
=: I

′
j,δ − I

′′
j,δ ,

(4.15)



OPTIMAL QUANTITATIVE STABILITY OF THE MÖBIUS GROUP 21

where

I
′
j,δ := δ

|∇T vj |p−2

|vj − v|

n∑
l=1

〈
∇T v

l
j ,∇T v

l
j −

(vlj − vl)

|vj − v|2
n∑

m=1

(vmj − vm)∇T v
m
j

〉

= δ
|∇T vj |p−2

|vj − v|

(
|∇T vj |2 −

∣∣∑n
l=1(v

l
j − vl)∇T v

l
j

∣∣2
|vj − v|2

)
,

(4.16)

and

I
′′
j,δ := δ

|∇T vj |p−2

|vj − v|

n∑
l=1

〈
∇T v

l
j ,∇T v

l −
(vlj − vl)

|vj − v|2
n∑

m=1

(vmj − vm)∇T v
m
〉
. (4.17)

By the Cauchy-Schwarz inequality we see that I′j,δ ≥ 0. Thus, combining (4.11)–(4.17), we get
ˆ
Sn−1\Eδ,j

|∇T vj −∇T v|p ≲ o(δ) + oδ(1/j)−
ˆ
Eδ,j

I′j,δ +

ˆ
Eδ,j

I
′′
j,δ

≤ o(δ) + oδ(1/j) +

ˆ
Eδ,j

I
′′
j,δ .

(4.18)

Finally, for the last integral in (4.18), recalling (4.6), we have the following pointwise estimate
Hn−1-a.e. on Eδ,j :

|I′′j,δ| ≤ |∇T vj |p−2

(
|∇T vj ||∇T v|+

|vj − v|2|∇T vj ||∇T v|
|vj − v|2

)
≤ 2|∇T vj |p−1|∇T v| .

Hence, by Hölder’s inequality and (4.3), we obtain∣∣∣∣∣
ˆ
Eδ,j

I
′′
j,δ

∣∣∣∣∣ ≤ 2

ˆ
Eδ,j

|∇T vj |p−1|∇T v|

≤ 2∥∇T vj∥p−1
Lp(Eδ,j)

∥∇T v∥Lp(Eδ,j) ≤ 2Kp−1∥∇T v∥Lp(Eδ,j) = oδ(1/j) ,

(4.19)

since ∇T v ∈ Lp(Sn−1) and Hn−1(Eδ,j) = oδ(1/j). Combining (4.18) and (4.19) we arrive at
(4.8), which together with (4.7) finally yields (4.5), completing the proof. □

We next state the Brezis–Lieb Lemma, which is a sharper version of Fatou’s Lemma, see e.g.
[20, Chapter 1, Theorem 8] for the simple proof.

Lemma 4.3. Let p ≥ 1, (vj)j∈N ⊂W 1,p(Sn−1;Rn) be such that vj ⇀ v weakly inW 1,p(Sn−1;Rn)
and ∇T vj → ∇T v pointwise Hn−1-a.e. on Sn−1. Then,

lim
j→∞

[ 
Sn−1

|∇T vj |p −
 
Sn−1

|∇T vj −∇T v|p
]
=

 
Sn−1

|∇T v|p . (4.20)

The next lemma is also well-known and gives an analogous statement to (4.20) for the volume
functional, relying on its multilinear structure.

Lemma 4.4. Let (vj)j∈N ⊂W 1,n−1(Sn−1;Rn) be such that vj ⇀ v weakly in W 1,n−1(Sn−1;Rn).
Then,

lim
j→∞

Vn(vj) = Vn(v) + lim
j→∞

Vn(vj − v) . (4.21)
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Proof. We consider extensions (Vj)j∈N ⊂ W 1,n(Bn;Rn) of (vj)j∈N as in (2.4), as well as the
corresponding extension V of v. By (2.4) and vj ⇀ v in W 1,n−1(Sn−1;Rn) it is easy to see that
up to a subsequence,

Vj ⇀ V weakly in W 1,n(Bn;Rn) .
Recalling (2.9), (4.21) is equivalent to

lim
j→∞

 
Bn

det∇Vj dx =

 
Bn

det∇V dx+ lim
j→∞

 
Bn

det∇(Vj − V ) dx . (4.22)

Let us set for brevity Wj := Vj − V ⇀ 0 in W 1,n(Bn;Rn). The calculation required to obtain
(4.22) can be concisely expressed using differential forms, since det∇V dx = dV 1 ∧ · · · ∧ dV n.
Indeed, we calculate 

Bn

det∇Vj dx =

 
Bn

det∇(V +Wj) dx

=

 
Bn

d(V 1 +W 1
j ) ∧ · · · ∧ d(V n +Wn

j )

=

 
Bn

(det∇V + det∇Wj) dx+
∑

#K,#L>0

sgn(σK,L)

 
Bn

dV K ∧ dWL
j ,

(4.23)

where K = {k1, . . . , km} and L = {l1, . . . ln−m} are complementary subsets of {1, . . . , n} such
that k1 < · · · < km, l1 < · · · < ln−m, σK,L is the permutation which naturally orders (K,L),

dV K := dV k1 ∧· · ·∧dV km , and similary for dWL
j . Since #L > 0 and Wj ⇀ 0 in W 1,n(Bn;Rn),

each of the terms dWL
j in the sum in (4.23) converges weakly to 0 in L

n
n−m (Bn), see for instance

[57, Theorem 1.1]. As dV K ∈ L
n
m (Bn), (4.22) and thus also (4.21) follow. □

The final auxiliary ingredient we need for the proof of Theorem 1.2 is Ekeland’s variational
principle [19] applied to the functional En−1, which is continuous in the strongW 1,n−1(Sn−1;Rn)-
topology.

Lemma 4.5 (Ekeland’s variational principle for En−1). Let (uj)j∈N ⊂ W 1,n−1(Sn−1;Rn) be a
sequence satisfying (4.1) which is minimizing for En−1, i.e.,

lim
j→∞

En−1(uj) = 0 . (4.24)

Then, there exists another minimizing sequence (vj)j∈N ⊂W 1,n−1(Sn−1;Rn), i.e.,
lim
j→∞

En−1(vj) = 0 , (4.25)

satisfying (4.1), with the following further properties:

lim
j→∞

∥uj − vj∥W 1,n−1(Sn−1) = 0 , (4.26)

and, in the sense of distributions,

∆n−1(vj) +HvjJ(vj) = gj , (4.27)

where gj → 0 strongly in (W 1,n−1)∗(Sn−1;Rn) .

Lemma 4.5 asserts that any minimizing sequence can be replaced with another minimizing
sequence of approximate solutions to the Euler–Lagrange system (2.21), where the perturbations
are small in the dual ofW 1,n−1(Sn−1;Rn); sequences verifying this type of condition are usually
referred to as Palais–Smale sequences [61, Section II.2].
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4.2. The proof of Theorem 1.2. We are now ready to begin the core of the proof of Theorem
1.2, which is strongly inspired by the proof of [10, Lemma 2.1] for the case n = 3. The main
difference, related to the genuinely nonlinear nature of En−1 for n ≥ 4, is that the expansion of
Dn−1(uj) in (4.33) is in the latter case not straightforward: we are forced to consider Palais–
Smale sequences through Lemma 4.5 and to carefully combine all the previous auxiliary results.

We begin with a key lemma which asserts that weakly convergent minimizing sequences are
compact in the strong sense, provided that their limit is non-constant.

Lemma 4.6. Let (uj)j∈N ⊂W 1,n−1(Sn−1;Rn) satisfy (4.1), (4.24), and assume that

uj ⇀ u weakly in W 1,n−1(Sn−1;Rn) , (4.28)

for some non-constant u. Then actually,

uj → u strongly in W 1,n−1(Sn−1;Rn) , (4.29)

and in particular En−1(u) = 0.

Proof. For (uj)j∈N as in the statement of the lemma, let (vj)j∈N ⊂ W 1,n−1(Sn−1;Rn) be the
sequence provided by Lemma 4.5, which satisfies (4.25)–(4.27). In particular, by (4.28) also

vj ⇀ u weakly in W 1,n−1(Sn−1;Rn) , (4.30)

and by (4.1) and the fact that limj→∞ |Vn(uj)− Vn(vj)| = 0, we also have that Vn(vj) > 0 for
all j ∈ N large enough. We prove next that actually

vj → u strongly in W 1,n−1(Sn−1;Rn) , (4.31)

which clearly yields (4.29) by (4.26).

To prove (4.31), we first observe that (vj)j∈N satisfies the conditions for the application of
Proposition 4.1. Indeed, in view of (4.27), and since supj∈N ∥vj∥W 1,n−1(Sn−1) < +∞ by (4.30),
setting

fj := HvjJ(vj) ,

with Hvj as in (2.21) , we only need to verify that

sup
j∈N

∥fj∥L1(Sn−1) < +∞ . (4.32)

To see this, by (2.6) and (1.4), we estimate

∥fj∥L1(Sn−1) ≤ Hvj

 
Sn−1

|J(vj)| ≲
[Dn−1(vj)]

2

Vn(vj)
= [Dn−1(vj)]

n−2
n−1
(
En−1(vj) + 1

)
,

so that (4.32) follows from (4.30) and (4.25). Applying Proposition 4.1 with p := n− 1 to the
sequence (vj)j∈N, we deduce that

vj → u strongly in W 1,q(Sn−1;Rn) for all 1 ≤ q < n− 1 ,

and so, up to a subsequence, ∇T vj → ∇Tu pointwise Hn−1-a.e. on Sn−1. Hence, by (4.30) and
applying Lemmata 4.3 and 4.4 we deduce that

Dn−1(u) = Dn−1(vj)−Dn−1(vj − u) + o(1) ,

Vn(u) = Vn(vj)− Vn(vj − u) + o(1) ,
(4.33)

where o(1) simply denotes a quantity which vanishes as j → ∞.
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The rest of the proof is identical to that of [10, Lemma 2.1, Step 2] but, for the sake of
completeness, we include the details here. Note that (4.33) and (4.25) imply that

Dn−1(u) = Dn−1(vj)−Dn−1(vj − u) + o(1)

= |Vn(vj)|
n−1
n −Dn−1(vj − u) + o(1)

= |Vn(u) + Vn(vj − u)|
n−1
n −Dn−1(vj − u) + o(1)

≤ |Vn(u)|
n−1
n + |Vn(vj − u)|

n−1
n −Dn−1(vj − u) + o(1)

≤ Dn−1(u) + o(1) ,

(4.34)

the inequality between the third and fourth line following from the algebraic inequality

|t+ s|
n−1
n ≤ |t|

n−1
n + |s|

n−1
n ∀t, s ∈ R , (4.35)

while the last inequality follows simply from the nonnegativity of the deficit applied to u and
vj − u, cf. Proposition 3.1. Passing to a further non-relabeled subsequence for which

lim
j→∞

Vn(vj − u) =: V ∈ R ,

and taking the limit superior as j → ∞ in (4.34), we infer that actually

|Vn(u) + V|
n−1
n = |Vn(u)|

n−1
n + |V|

n−1
n =⇒ Vn(u) = 0 or V = 0 ,

by the cases of equality in (4.35). If Vn(u) = 0, then instead of (4.34) we would simply have

Dn−1(u) = Dn−1(vj)−Dn−1(vj − u) + o(1)

= |Vn(vj)|
n−1
n −Dn−1(vj − u) + o(1)

= |Vn(vj − u)|
n−1
n −Dn−1(vj − u) + o(1) ≤ o(1) ,

thus Dn−1(u) = 0, which is a contradiction to the fact that u is non-constant. Hence, we must
have V = 0. Starting with the lower semicontinuity of the conformal Dirichlet energy and then
arguing as in the derivation of (4.34), we get

Dn−1(u) ≤ lim inf
j→∞

Dn−1(vj) ≤ lim sup
j→∞

Dn−1(vj)

= lim sup
j→∞

|Vn(vj)|
n−1
n

= lim sup
j→∞

|Vn(u) + Vn(vj − u)|
n−1
n = |Vn(u)|

n−1
n ≤ Dn−1(u) .

Thus, limj→∞Dn−1(vj) = Dn−1(u) which, together with (4.30), implies (4.31), concluding the
proof. □

We are finally ready to complete the proof of our compactness theorem which, after all our
preparations, is a direct adaptation of the argument in Step 3 of the proof of [10, Lemma 2.1],
now in general dimension n ≥ 3.

Proof of Theorem 1.2. As the proof is somewhat long, we split it into several steps.

Step 1: Construction of the normalizing maps (ϕj)j∈N. Let (uj)j∈N ⊂ W 1,n−1(Sn−1;Rn) be
a minimizing sequence as in (1.5) and (4.1), and let us set for brevity

µj :=
[
Vn(uj)

]−1/n
> 0 .
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By the scaling invariance of En−1, the sequence (µjuj)j∈N ⊂ W 1,n−1(Sn−1;Rn) is again energy
minimizing, with

Vn(µjuj) = 1 , hence lim
j→∞

Dn−1(µjuj) = 1 . (4.36)

In what follows, for t ∈ [−1, 1] we denote by

Sn−1
t,± :=

{
x ∈ Sn−1 : xn ≷ t

}
,

omitting the dependence on t when t = 0.

The main purpose of this step is to construct maps (ϕj)j∈N ⊂ Möb(Sn−1) (recall (2.18)), such
that if we set

ũj :=
uj ◦ ϕj −

ffl
Sn−1 uj ◦ ϕj[

Vn(uj)
]1/n , (4.37)

then, up to a subsequence, we have

(i)

 
Sn−1

ũj = 0 , Vn(ũj) = 1 ,

(ii) lim
j→∞

Dn−1(ũj) = 1 ,

(iii)
nωn
k + 1

≤
ˆ
Sn−1
s,+

( |∇T ũj |2

n− 1

)n−1
2

dHn−1 ≤ nωnk

k + 1
for any s ∈ [−r0, 0] ,

(4.38)

where both k := k(n) ∈ N and r0 > 0 will be specified later. Note that (i) and (ii) follow
from the translation, scaling and conformal invariance of the deficit and (4.36), so in particular
(ũj)j∈N ⊂ W 1,n−1(Sn−1;Rn) is another minimizing sequence. In turn, property (iii) is not
obvious and depends on the construction of the sequence (ϕj)j∈N. We also note that this last
property will be crucial to ensure non-concentration of the energy in the next steps.

To construct the sequence (ϕj)j∈N, it is more convenient to work in Rn−1, after stereograph-
ically projecting, so we consider the maps

vj := (µjuj) ◦ σ−1
en : Rn−1 → Rn .

We can find k := k(n) ∈ N and points {p1, . . . , pk} ⊂ Bn−1 such that

Bn−1 ⊂ Ωk :=
k⋃
ℓ=1

Bn−1
1 (pℓ) , (4.39)

where all balls are in Rn−1 for this part of the argument. Note that σen(Sn−1
+ ) = Bn−1 ⊂ Rn−1.

Since Ωk in (4.39) is an open cover, there exists ρ0 > 1 such that Bn−1
ρ0 (0) ⊂ Ωk. In particular,

for r0 :=
ρ20−1

ρ20+1
> 0, we have

Sn−1
−r0,+ = σ−1

en

(
Bn−1
ρ0 (0)

)
.

We now choose points (qj)j∈N ⊂ Rn−1 and radii (ρj)j∈N ⊂ R+ such that

ˆ
Bn−1

ρj
(qj)

(
|∇vj |2

n− 1

)n−1
2

dy = sup
q∈Rn−1

ˆ
Bn−1

ρj
(q)

(
|∇vj |2

n− 1

)n−1
2

dy =
nωn
k + 1

. (4.40)

The supremum in (4.40) is attained for any fixed ρ ≥ 0 in the place of ρj , as the supremum of
a nonnegative continuous function in Rn−1 tending to zero at infinity. Moreover, the value of
this supremum grows continuously from 0 at ρ = 0, to nωnDn−1(µjuj) as ρ → ∞, so that a
choice of ρj satisfying the last equality in (4.40) is possible thanks to (4.36).



26 ANDRÉ GUERRA, XAVIER LAMY, AND KONSTANTINOS ZEMAS

Let now Tj : Rn−1 → Rn−1 be defined via Tj(y) := ρjy + qj , and consider the new sequence

ṽj := vj ◦ Tj .

By a change of variables in (4.40) this new sequence satisfies

ˆ
Bn−1

(
|∇ṽj |2

n− 1

)n−1
2

dy = sup
q∈Rn−1

ˆ
Bn−1

1 (q)

(
|∇ṽj |2

n− 1

)n−1
2

dy =
nωn
k + 1

. (4.41)

Finally, for the definition in (4.37), we take

ϕj := σ−1
en ◦ Tj ◦ σen ∈ Möb+(Sn−1) .

With this definition, the lower bound in (4.38)(iii) follows from the conformal invariance of the
energy, (4.41), and the fact that Bn−1 ⊂ σen(Sn−1

s,+ ) whenever s ≤ 0. For the upper bound in
(4.38)(iii), we argue similarly: since s ∈ [−r0, 0], using again conformal invariance, the simple
observation below (4.39) and (4.41), we have

ˆ
Sn−1
s,+

(
|∇T ũj |2

n− 1

)n−1
2

dHn−1 ≤
ˆ
Sn−1
−r0,+

(
|∇T ũj |2

n− 1

)n−1
2

dHn−1

=

ˆ
Bn−1

ρ0
(0)

(
|∇ṽj |2

n− 1

)n−1
2

dy

≤
k∑
ℓ=1

ˆ
Bn−1

1 (pℓ)

(
|∇ṽj |2

n− 1

)n−1
2

dy ≤ nωnk

k + 1
,

as claimed.

To conclude this step we note that, by (4.38)(i),(ii) and Poincaré’s inequality, we have
supj∈N ∥ũj∥W 1,n−1(Sn−1) < +∞. Hence, up to a non-relabeled subsequence,

ũj ⇀ u weakly in W 1,n−1(Sn−1;Rn) . (4.42)

We claim that u ∈ W 1,n−1(Sn−1;Rn) is non-constant. Note that, if u is constant, then by
(4.38)(i) and the fact that ũj → u strongly in Ln−1(Sn−1;Rn), we must have

u =

 
Sn−1

u = lim
j→∞

 
Sn−1

ũj = 0 . (4.43)

We now assume for the sake of contradiction that (4.43) is the case.

Step 2: Construction of (n − 2)-spheres where no energy concentration occurs. We now
construct a particular sequence (sj)j∈N ⊂ [−r0, 0] such that

lim
j→∞

∥ũj∥
W

1− 1
n−1 ,n−1

(∂Sn−1
sj ,+

)
= 0 . (4.44)

By the general slicing properties of Sobolev functions, for L1-a.e. s ∈ (−r0, 0) we have that

ũj |Sn−2
s

∈W 1,n−1(Sn−2
s ;Rn) , where Sn−2

s := ∂Sn−1
s,+ , (4.45)

the latter intended of course in the sense of relative boundary with respect to Sn−1. Moreover,
denoting by ∇Sn−2

s
the tangential gradient on the intermediate (n − 2)-sphere Sn−2

s , we define
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the sets

Ij,1 :=

{
s ∈ (−r0, 0) : (4.45) holds,

ˆ
Sn−2
s

∣∣∇Sn−2
s

ũj
∣∣n−1 ≤ 3

r0

ˆ
Sn−1

∣∣∇T ũj
∣∣n−1

}
,

Ij,2 :=

{
s ∈ (−r0, 0) : (4.45) holds,

ˆ
Sn−2
s

|ũj |n−1 ≤ 3

r0

ˆ
Sn−1

|ũj |n−1

}
.

(4.46)

By Fubini’s theorem and since |∇T ũj | ≥ |∇Sn−2
s

ũj | Hn−2-a.e. on Sn−2
s , we obtain

ˆ
Sn−1

|∇T ũj |n−1 ≥
ˆ 0

−r0

( ˆ
Sn−2
s

|∇T ũj |n−1

)
ds ≥

ˆ
(−r0,0)\Ij,1

( ˆ
Sn−2
s

|∇Sn−2
s

ũj |n−1

)
ds

>
3

r0
L1((−r0, 0) \ Ij,1)

ˆ
Sn−1

|∇T ũj |n−1 ,

hence L1(Ij,1) >
2r0
3 . A similar argument shows that L1(Ij,2) >

2r0
3 . Thus,

L1(Ij,1 ∩ Ij,2) = L1(Ij,1) + L1(Ij,2)− L1(Ij,1 ∪ Ij,2) ≥
2r0
3

+
2r0
3

− r0 =
r0
3
.

In particular, we can pick sj ∈ Ij,1∩Ij,2, and using the Gagliardo–Nirenberg–Sobolev inequality
in fractional Sobolev spaces [6, Theorem 1] and (4.46), we deduce that

∥ũj∥
W

1− 1
n−1 ,n−1

(Sn−2
sj

)
≲r0 ∥ũj∥

n−2
n−1

W 1,n−1(Sn−2
sj

)
∥ũj∥

1
n−1

Ln−1(Sn−2
sj

)

≲r0 ∥ũj∥
n−2
n−1

W 1,n−1(Sn−1)
∥ũj∥

1
n−1

Ln−1(Sn−1)
,

(4.47)

so that (4.44) follows from (4.42), (4.43) and (4.47).

Step 3: Construction of extensions of the traces on the good (n−2)-spheres. For every j ∈ N,
let ζj ∈W 1,n−1(Sn−1

sj ,+
;Rn) be an extension of ũj |∂Sn−1

sj ,+
satisfying

∥ζj∥W 1,n−1(Sn−1
sj ,+

) ≲ ∥ũj∥
W

1− 1
n−1 ,n−1

(∂Sn−1
sj ,+

)
,

similarly to (2.4). In particular, (4.44) yields

lim
j→∞

∥ζj∥W 1,n−1(Sn−1
sj ,+

) = 0 . (4.48)

Let ψj ∈ Möb−(Sn−1) be the Möbius transformation that maps conformally Sn−1
sj ,+

onto Sn−1
sj ,−,

keeping ∂Sn−1
sj ,+

invariant, while reversing the orientation. For every j ∈ N we now define

u1,j(x) :=

{
ũj(x) if x ∈ Sn−1

sj ,+
,

ζj(ψ
−1
j (x)) if x ∈ Sn−1

sj ,− ,
and u2,j(x) :=

{
ũj(ψj(x)) if x ∈ Sn−1

sj ,+
,

ζj(ψ
−1
j (x)) if x ∈ Sn−1

sj ,− .

By the invariance of the (n− 1)-Dirichlet energy under conformal reparametrizations, we get

Dn−1(u1,j) =
1

nωn

(ˆ
Sn−1
sj ,+

(
|∇T ũj |2

n− 1

)n−1
2

+

ˆ
Sn−1
sj ,+

(
|∇T ζj |2

n− 1

)n−1
2
)
,

Dn−1(u2,j) =
1

nωn

(ˆ
Sn−1
sj ,−

(
|∇T ũj |2

n− 1

)n−1
2

+

ˆ
Sn−1
sj ,+

(
|∇T ζj |2

n− 1

)n−1
2
)
,

(4.49)
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hence

Dn−1(u1,j) +Dn−1(u2,j) = Dn−1(ũj) +
2

nωn

ˆ
Sn−1
sj ,+

(
|∇T ζj |2

n− 1

)n−1
2

. (4.50)

For the volume term, recalling the notation in (2.5), using the change of variables formula and
the fact that ψj reverses the orientation, we have

Vn(u1,j) =
1

nωn

( ˆ
Sn−1
sj ,+

⟨ũj , J(ũj)⟩ −
ˆ
Sn−1
sj ,+

⟨ζj , J(ζj)⟩
)
,

Vn(u2,j) =
1

nωn

(
−
ˆ
Sn−1
sj ,−

⟨ũj , J(ũj)⟩ −
ˆ
Sn−1
sj ,+

⟨ζj , J(ζj)⟩
)
,

hence

Vn(u1,j)− Vn(u2,j) = Vn(ũj) . (4.51)

Step 4: The limit u is non-constant. We now proceed similarly to the proof of Lemma 4.6.

First note that, since (ũj)j∈N ⊂ W 1,n−1(Sn−1;Rn) is a minimizing sequence, combining (4.50),
(4.48), (4.51), (4.35), and the non-negativity of En−1, we have

Dn−1(u1,j) +Dn−1(u2,j) = Dn−1(ũj) + o(1)

= |Vn(ũj)|
n−1
n + o(1)

= |Vn(u1,j)− Vn(u2,j)|
n−1
n + o(1)

≤ |Vn(u1,j)|
n−1
n + |Vn(u2,j)|

n−1
n + o(1)

≤ Dn−1(u1,j) +Dn−1(u2,j) + o(1) .

(4.52)

Passing to further subsequences if necessary, we can assume that the following limits exist:

lim
j→∞

Dn−1(u1,j) =: D1 ∈ R+ , lim
j→∞

Dn−1(u2,j) =: D2 ∈ R+ ,

lim
j→∞

Vn(u1,j) =: V1 ∈ R , lim
j→∞

Vn(u2,j) =: V2 ∈ R ,

and taking the limit as j → ∞ in (4.52), we infer in particular that

|V1 − V2|
n−1
n = |V1|

n−1
n + |V2|

n−1
n =⇒ V1 = 0 or V2 = 0 .

Both cases lead to a contradiction. Indeed, if limj→∞ Vn(u1,j) = V1 = 0, (4.52) actually gives

Dn−1(u1,j) +Dn−1(u2,j) ≤ |Vn(u1,j)|
n−1
n + |Vn(u2,j)|

n−1
n + o(1)

= |Vn(u2,j)|
n−1
n + o(1)

≤ Dn−1(u2,j) + o(1) ,

so that passing to the limit j → ∞, we get D1 = 0. This, combined with (4.48) and (4.49),
gives

lim
j→∞

ˆ
Sn−1
sj ,+

(
|∇T ũj |2

n− 1

)n−1
2

dHn−1 = 0 ,
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contradicting the first inequality in (4.38)(iii). In the second case, if limj→∞ Vn(u2,j) = V2 = 0,
by the very same argument, we get

lim
j→∞

ˆ
Sn−1
sj ,−

(
|∇T ũj |2

n− 1

)n−1
2

dHn−1 = 0 ⇐⇒ lim
j→∞

ˆ
Sn−1
sj ,+

(
|∇T ũj |2

n− 1

)n−1
2

dHn−1 = nωn ,

by (4.38)(ii), which contradicts the second inequality in (4.38)(iii). Thus, in either case we
obtain a contradiction, and this shows that the limiting u in (4.42) is non-constant, as claimed.

Step 5: Conclusion. By the previous step, the limit u is non-constant. Hence, applying
Lemma 4.6, we deduce that actually

ũj → u strongly in W 1,n−1(Sn−1;Rn) , (4.53)

and u is a minimizer for En−1 with

Dn−1(u) = 1 , Vn(u) = 1 ,

 
Sn−1

u = 0 , (4.54)

as a consequence of (4.38)(i),(ii) and (4.53). In particular, by (4.54) and Proposition 3.1 we
have that u ∈ Möb+(Sn−1), see also Remark 2.5. The zero-average condition in (4.54) implies
by a standard argument that in fact

u = R idSn−1 for some R ∈ SO(n) , (4.55)

cf. [42, Lemma A.3] or [32, Lemma 2.4]. Indeed, using (4.54), Jensen’s inequality, and the sharp
Poincaré inequality on Sn−1 for functions with zero average, cf. [32, (2.7)], we have

1 =

 
Sn−1

(
|∇Tu|2

n− 1

)n−1
2

≥
( 

Sn−1

|∇Tu|2

n− 1

)n−1
2

≥
( 

Sn−1

|u|2
)n−1

2
= 1 ,

the last equality following from the fact that u is Sn−1-valued. Hence equality holds throughout
in the above chain of inequalities and, in particular, u satisfies the sharp Poincaré inequality
on Sn−1 with equality, so it must be linear, i.e., u(x) = Rx for some R ∈ Rn×n. Finally, since
u ∈W 1,n−1(Sn−1; Sn−1) has degree one, it must be that R ∈ SO(n).

Combining now (4.37), (4.53) and (4.55), we conclude the proof of the theorem. □

5. Quantitative stability

5.1. Reduction to the local stability problem. The purpose of this section is to prove the
quantitative Theorem 1.3. With the qualitative analogue at hand, i.e., Theorem 1.2, a standard
contradiction/compactness argument shows that it suffices to prove the W 1,n−1(Sn−1;Rn)-local
version of the desired estimate, as claimed in the next lemma.

Lemma 5.1. It suffices to prove the W 1,n−1(Sn−1;Rn)-local version of Theorem 1.3, i.e, it
suffices to prove it for maps in the class

Bδn,εn :=

u ∈W 1,n−1(Sn−1;Rn) :

(i)
ffl
Sn−1 u = 0

(ii)
ffl
Sn−1 |∇Tu− PT |n−1 ≤ δn

(iii) En−1(u) < εn

 , (5.1)

for some δn, εn ∈ (0, 1) sufficiently small constants.
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Proof. That without loss of generality we can assume (i) is obvious, since the deficit En−1 is
translation-invariant. That we can assume property (iii) is also immediate, because for every
u ∈ W 1,n−1(Sn−1;Rn) with Vn(u) ̸= 0 and En−1(u) ≥ εn, and for every ϕ ∈ Möb(Sn−1), by the
conformal invariance of the (n− 1)-Dirichlet energy, we trivially obtain 

Sn−1

∣∣∣∣ ∇Tu

|Vn(u)|1/n
−∇Tϕ

∣∣∣∣n−1

≤ 2n−2

(
|Vn(u)|−

n−1
n

 
Sn−1

|∇Tu|n−1 +

 
Sn−1

|∇Tϕ|n−1

)

= 2n−2(n− 1)
n−1
2

[(
[Dn−1(u)]

n
n−1

|Vn(u)|

)n−1
n

+ 1

]

= cn

[(
1 + En−1(u)

)n−1
n

+ 1

]
≤ cn

(
2 +

n− 1

n
En−1(u)

)
≤ cn

(
2

εn
+
n− 1

n

)
En−1(u) ,

(5.2)

where cn := 2n−2(n−1)
n−1
2 , and in the last line we used the algebraic inequality (1+t)γ ≤ 1+γt,

valid for all t ≥ 0 and γ ≤ 1. Therefore, it suffices to prove Theorem 1.3 in the εn-small deficit
regime.

Suppose now that we have proven Theorem 1.3 for maps in Bδn,εn , but for the sake of
contradiction that the theorem fails to hold globally. Then, for every j ∈ N there exists
uj ∈W 1,n−1(Sn−1;Rn) with Vn(uj) ̸= 0 such that for every ϕ ∈ Möb(Sn−1), 

Sn−1

∣∣∣∣ ∇Tuj

|Vn(uj)|1/n
−∇Tϕ

∣∣∣∣n−1

dHn−1 ≥ jEn−1(uj) . (5.3)

Combining (5.2) and (5.3), we immediately see that for j ∈ N large enough,

0 ≤ En−1(uj) ≤
2cn

j − cn
n−1
n

→ 0 as j → ∞ .

We can now use the compactness result from Theorem 1.2 to obtain a contradiction: by its
application, we can find (ϕj)j∈N ⊂ Möb(Sn−1) and O ∈ O(n) so that, up to a non-relabelled
subsequence,

vj :=
uj ◦ ϕj −

ffl
Sn−1 uj ◦ ϕj

|Vn(uj)|1/n
→ O idSn−1 strongly in W 1,n−1(Sn−1;Rn) .

Without loss of generality (by considering O−1vj instead of vj) we can also suppose that O = In.
Then, for the constants δn, εn ∈ (0, 1) in the statement, we can find j0 := j0(δn, εn) ∈ N such
that the sequence (vj)j≥j0 ⊂ Bδn,εn . Hence, by the assumption that (1.7) is valid in this class,
we deduce that there exists (ψj)j≥j0 ⊂ Möb(Sn−1) such that 

Sn−1

∣∣∣∣ ∇Tuj

|Vn(uj)|1/n
−∇T (ψj ◦ ϕ−1

j )

∣∣∣∣n−1

=

 
Sn−1

∣∣∇T vj −∇Tψj
∣∣n−1

≲ En−1(vj) = En−1(uj) ,

for all j ≥ j0, which clearly contradicts (5.3). □

Ultimately, the nonlinear stability estimate (1.7) is a consequence of its linear analogue quoted
in Theorem 2.10. In order to apply the latter result, we need to use the invariance of the deficit
under the action of Möb(Sn−1) to fix some of the degrees of freedom in the problem. This is the
content of the next lemma, whose proof can be obtained by following verbatim the steps of proof
of [42, Lemma 4.13], just adapted to general dimension n ≥ 3 . See also [72, Lemma 4.1.12],



OPTIMAL QUANTITATIVE STABILITY OF THE MÖBIUS GROUP 31

where ∇T (u ◦ψ) is actually shown to be close to PT in L2 – instead of Ln−1 as in (ii) of (5.1) –
but since Lemma 5.2 perturbs u along the finite-dimensional manifold Möb+(Sn−1), the choice
of norm is immaterial.

Lemma 5.2. Given δn, εn ∈ (0, 1) sufficiently small, there exists δ̃n ∈ (0, 1) that depends only

on δn and such that δ̃n → 0 as δn → 0, so that for every u ∈ Bδn,εn there exists ψ ∈ Möb+(Sn−1)
such that (

u ◦ ψ −
 
Sn−1

u ◦ ψ
)

∈ B
δ̃n,εn

with Πn,0(u ◦ ψ) = 0 , (5.4)

where Πn,0 is the projection onto the kernel Hn,0 of Qn := E ′′
n−1(idSn−1) as in Theorem 2.10 .

In order to apply Theorem 2.10, we want to consider perturbations of idSn−1 which are
W 1,2(Sn−1)-orthogonal to it. In that respect, let us set

λu,ψ :=

 
Sn−1

⟨u ◦ ψ, x⟩ dHn−1 , (5.5)

and define w ∈W 1,n−1(Sn−1;Rn) via

w :=
1

λu,ψ

(
u ◦ ψ −

 
Sn−1

u ◦ ψ
)
− idSn−1 . (5.6)

We then have the following simple result:

Lemma 5.3. The map w defined through (5.6) satisfies w ∈ Hn and Πn,0w = 0. Moreover,
there is a constant Cn > 0 such that, if δn ∈ (0, 1) is sufficiently small,

 
Sn−1

|∇Tw|n−1 dHn−1 ≤ Cnδ̃n =: θn.

Proof. The first claims are immediate from (5.4), (5.5) and the definition of Hn in (2.24). To
prove the estimate, we begin by recalling the convention that the Lp-norms are taken with
respect to the normalized Hn−1-measure. Then, by the cancellation property

ffl
Sn−1 x = 0, the

Poincaré inequality on Sn−1, Hölder’s inequality and (5.4), we obtain

∣∣λu,ψ − 1
∣∣ = ∣∣∣∣ 

Sn−1

〈
(u ◦ ψ − x)−

 
Sn−1

(u ◦ ψ − x), x
〉∣∣∣∣

≤
∥∥∥(u ◦ ψ − x)−

 
Sn−1

(u ◦ ψ − x)
∥∥∥
L2(Sn−1)

≲
∥∥∥∇T (u ◦ ψ)− PT

∥∥∥
L2(Sn−1)

≲
∥∥∥∇T (u ◦ ψ)− PT

∥∥∥
Ln−1(Sn−1)

≤ (δ̃n)
1

n−1 ≤ 1

2
,

(5.7)
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by choosing δn ∈ (0, 1) sufficiently small so that δ̃n ∈ (0, 1) is also small. Hence, as u ∈ Bδn,εn
(cf. (5.1)), and by (5.4) and the conformal invariance of the (n− 1)-Dirichlet energy, we get

 
Sn−1

|∇Tw|n−1 =

 
Sn−1

∣∣∣∣ 1

λu,ψ
∇T (u ◦ ψ)− PT

∣∣∣∣n−1

≲
∣∣∣ 1

λu,ψ
− 1
∣∣∣n−1

 
Sn−1

|∇T (u ◦ ψ)|n−1 +

 
Sn−1

|∇T (u ◦ ψ)− PT |n−1

≲ |λu,ψ − 1|n−1

 
Sn−1

|∇Tu|n−1 +

 
Sn−1

|∇T (u ◦ ψ)− PT |n−1

≲ δ̃n

( 
Sn−1

|∇Tu− PT |n−1 +

 
Sn−1

|PT |n−1

)
+ δ̃n

≲ δ̃n(δn + 1) ,

as wished. □

5.2. Proof of Theorem 1.3. We now begin the proof of the main quantitative estimate of
this section: by the preparations of the previous subsection, this estimate will imply Theorem
1.3 easily.

Proposition 5.4 (Local nonlinear stability). There exists a constant c̃n > 0 and sufficiently
small constants θn, εn ∈ (0, 1) such that

En−1(idSn−1 + w) ≥ c̃n

 
Sn−1

|∇Tw|n−1 dHn−1 , (5.8)

for all maps w ∈W 1,n−1(Sn−1;Rn) such that

w ∈ Hn , Πn,0w = 0 , and idSn−1 + w ∈ Bθn,εn , (5.9)

where Hn, Πn,0 are as in Theorem 2.10 and Bθn,εn is defined through (5.1) .

Before giving the proof of the proposition, we start with some auxiliary calculations for a
Taylor-type expansion of the deficit En−1 around the identity, with perturbations as the ones
in (5.9). We begin with the expansion of the volume.

Lemma 5.5 (Expansion of the volume). Let w ∈W 1,n−1(Sn−1;Rn) satisfy (5.9), then

Vn(idSn−1 +w) = 1 +
n

2

 
Sn−1

⟨w,A(w)⟩+
n−1∑
k=3

n

k

 
Sn−1

⟨w, [σ′k(∇TwP
t
T )]

tx⟩+ Vn(w) , (5.10)

where recall that A is the linear operator defined in (2.23). In particular, if θn ∈ (0, 1) is chosen
sufficiently small, then

1

2
≤ Vn(idSn−1 + w) ≤ 3

2
. (5.11)

Proof. The expansion (5.10) is an immediate consequence of (2.14), using the fact that the k = 1
term therein vanishes by (2.15) and (5.9), the k = 2 term therein is precisely n

2

ffl
Sn−1⟨w,A(w)⟩,

cf. (2.23), and the k = n term is the volume by (2.16).
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To prove (5.11), we start from (5.10) and we estimate using (2.17) and Hölder’s inequality:

|Vn(idSn−1 + w)− 1| ≤

∣∣∣∣∣
n−1∑
k=2

n

k

 
Sn−1

⟨w, [σ′k(∇TwP
t
T )]

tx⟩

∣∣∣∣∣+ ∣∣Vn(w)∣∣
≲

n−1∑
k=2

 
Sn−1

|w||∇Tw|k−1 +
∣∣Vn(w)∣∣

≤
n−1∑
k=2

∥w∥
L

n−1
n−k (Sn−1)

∥∇Tw∥k−1
Ln−1(Sn−1)

+
∣∣Vn(w)∣∣

≤
n−1∑
k=2

∥w∥Ln−1(Sn−1)∥∇Tw∥k−1
Ln−1(Sn−1)

+
[
Dn−1(w)

] n
n−1

≲
n∑
k=2

∥∇Tw∥kLn−1(Sn−1) ≲ θ
2

n−1
n ≤ 1

2
,

provided that θn ∈ (0, 1) is chosen sufficiently small. Note that here we have also used the
Poincaré inequality in W 1,n−1(Sn−1;Rn) (which is applicable due to (5.9)), and again the para-
metric conformal-isoperimetric inequality. □

We next give a Taylor-type lower inequality for the conformal (n−1)-Dirichlet energy, which
is essentially the one devized in [25].

Lemma 5.6 (Expansion of the (n − 1)-Dirichlet energy). Let w ∈ W 1,n−1(Sn−1;Rn) satisfy
(5.9). For every κ ∈ (0, 1) there exists c(κ) > 0 such that

Dn−1(idSn−1 + w) ≥ 1 +
(1− κ)

2

 
Sn−1

|∇Tw|2 + c(κ)

 
Sn−1

|∇Tw|n−1

+
(1− κ)(n− 3)

2

 
Sn−1

|N(PT ,∇Tw)|n−3
(
|PT | − |PT +∇Tw|

)2
,

(5.12)

where

N(X,Y ) :=


X
|X| if |X| ≤ |X + Y | ,(
|X+Y |
|X|

) 1
n−3
(
X+Y
|X|

)
if |X| ≥ |X + Y | .

(5.13)

Proof. For κ ∈ (0, 1) arbitrary, using the algebraic inequality obtained in [25, Lemma 2.1(ii)]
with p := n− 1 ≥ 2, we deduce that for some constant c(κ) > 0,

|PT +∇Tw|n−1 ≥ |PT |n−1 + (n− 1)|PT |n−3PT : ∇Tw + c(κ)|∇Tw|n−1

+
(1− κ)(n− 1)

2

[
|PT |n−3|∇Tw|2

+ (n− 3)|M(PT ,∇Tw)|n−3
(
|PT | − |PT +∇Tw|

)2] (5.14)

Hn−1-a.e. on Sn−1, where for every X,Y ∈ Rn×(n−1) we have denoted

M(X,Y ) :=

X if |X| ≤ |X + Y | ,(
|X+Y |
|X|

) 1
n−3

(X + Y ) if |X| ≥ |X + Y | .
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By using the fact that |PT | =
√
n− 1, integrating (5.14) on Sn−1, using 

Sn−1

PT : ∇Tw =

 
Sn−1

divSn−1w = (n− 1)

 
Sn−1

⟨w, x⟩ = 0 ,

(cf. (5.9)) and rearranging terms, we arrive at (5.12). □

We are now ready to give the proof of Proposition 5.4, which is based on the above two
lemmata, the coercivity estimate of Theorem 2.10, and a contradiction/compactness argument
inspired by [25, Proposition 3.8].

Proof Proposition 5.4. Let us choose θn ∈ (0, 1) small enough so that Lemma 5.5 applies, and
let also κ ∈ (0, 1) to be chosen later. In what follows, we will tacitly assume that the value of
the constant c(κ) > 0 can vary along the proof, as long as it always depends only on κ and n,
but not on w.

Using (5.10)–(5.12) together with the algebraic inequality (1 + t)
n

n−1 ≥ 1 + n
n−1 t, valid for

t ≥ 0, we obtain

3

2
En−1(idSn−1 + w) ≥

[
Dn−1(idSn−1 + w)

] n
n−1 − Vn(idSn−1 + w)

≥ (1− κ)Q̃n(w) + c(κ)

 
Sn−1

|∇Tw|n−1 − κn

2

 
Sn−1

⟨w,A(w)⟩

−

[
n−1∑
k=3

n

k

 
Sn−1

⟨w, [σ′k(∇TwP
t
T )]

tx⟩+ Vn(w)

]
,

(5.15)

where we have set

Q̃n(w) :=
1

2

n

n− 1

 
Sn−1

|∇Tw|2 −
n

2

 
Sn−1

⟨w,A(w)⟩

+
n(n− 3)

2(n− 1)

 
Sn−1

|N(PT ,∇Tw)|n−3(|PT +∇Tw| − |PT |)2 ,
(5.16)

with N as in (5.13) and A as in (2.23). Recalling also the definition of Qn in (2.22), note that

Q̃n(w) = Qn(w) +Rn(w) ,

with Rn given by

Rn(w) :=
n(n− 3)

2(n− 1)

 
Sn−1

(
|N(PT ,∇Tw)|n−3(|PT +∇Tw| − |PT |)2 −

(divSn−1w)2

n− 1

)
.

We now split the rest of the proof into two steps.

Step 1: Estimating the last term in (5.15). The volume term can be simply estimated by the
isoperimetric inequality of Proposition 3.1:

Vn(w) ≤
[
Dn−1(w)

] n
n−1 ∼

[ 
Sn−1

|∇Tw|n−1

] n
n−1

≤ c(κ)

2

 
Sn−1

|∇Tw|n−1 ,

if θn ∈ (0, 1) is chosen sufficiently small. Thus, after redefining c(κ), we get

3

2
En−1(idSn−1 + w) ≥ (1− κ)Q̃n(w) + c(κ)

 
Sn−1

|∇Tw|n−1 − κn

2

 
Sn−1

⟨w,A(w)⟩

−
n−1∑
k=3

n

k

 
Sn−1

⟨w, [σ′k(∇TwP
t
T )]

tx⟩ .
(5.17)
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To estimate the last sum, we claim that, with αn := 1
2(n−1) > 0 and βn := n+1

n αn > 0, for all

k ∈ {3, . . . , n− 1} we have 
Sn−1

⟨w, [σ′k(∇TwP
t
T )]

tx⟩ ≲
ˆ
Sn−1

|w| |∇Tw|k−1

≲
( 

Sn−1

|∇Tw|2
)1+αn

+
( 

Sn−1

|∇Tw|n−1
)1+βn

,

(5.18)

where the first inequality is simply (2.17). In fact, as we will now see, (5.18) holds for any
w satisfying

ffl
Sn−1 w = 0, which in particular is ensured by (5.9). The proof of (5.18) is an

application of Sobolev and Hölder’s inequalities with appropriate choices of exponents. First,
by Hölder’s inequality we have 

Sn−1

|w| |∇Tw|k−1 ≤ ∥w∥L2n(Sn−1)

( 
Sn−1

|∇Tw|γ
) 2n−1

2n
, γ :=

2n(k − 1)

2n− 1
∈ (2, n− 1) .

To estimate the first factor on the right hand side, we use the Sobolev and Hölder’s inequalities
once again, to obtain

∥w∥L2n(Sn−1) ≲ ∥∇Tw∥Lpn−1 (Sn−1) ≤ ∥∇Tw∥Ln−1(Sn−1) ,

where pn−1 ∈ (1, n − 1) is such that p∗n−1 := (n−1)pn−1

n−1−pn−1
= 2n. In order to estimate the second

factor, we use the simple algebraic inequality

2 ≤ γ ≤ n− 1 =⇒ |∇Tw|γ ≤ |∇Tw|2 + |∇Tw|n−1 Hn−1-a.e. on Sn−1 .

Hence, using also that
(s+ t)a ≤ sa + ta ∀s, t ≥ 0, a ∈ [0, 1] ,

we deduce 
Sn−1

|w| |∇Tw|k−1 ≲ ∥∇Tw∥Ln−1(Sn−1)

( 
Sn−1

(|∇Tw|2 + |∇Tw|n−1)
) 2n−1

2n

≲ ∥∇Tw∥Ln−1(Sn−1)

(
∥∇Tw∥

2n−1
n

L2(Sn−1)
+ ∥∇Tw∥

(n−1) 2n−1
2n

Ln−1(Sn−1)

)
≲ ∥∇Tw∥

n−n−1
2n

Ln−1(Sn−1)
+ ∥∇Tw∥Ln−1(Sn−1)∥∇Tw∥

2n−1
n

L2(Sn−1)
.

Finally, using Young’s inequality to estimate the last term, we obtainˆ
Sn−1

|w| |∇Tw|k−1 ≲ ∥∇Tw∥
n−n−1

2n

Ln−1(Sn−1)
+ ∥∇Tw∥

2n−1
n−1

L2(Sn−1)
,

since ∥∇Tw∥nLn−1(Sn−1) ≤ ∥∇Tw∥
n−n−1

2n

Ln−1(Sn−1)
by (5.9); this last estimate is precisely (5.18). Re-

turning to (5.17), and since αn, βn > 0, by choosing θn ∈ (0, 1) smaller if necessary and redefin-
ing c(κ), (5.18) yields

3

2
En−1(idSn−1 + w) ≥ (1− κ)Q̃n(w) + c(κ)

 
Sn−1

|∇Tw|n−1

− κn

2

 
Sn−1

⟨w,A(w)⟩ − cn

( 
Sn−1

|∇Tw|2
)1+αn

,

(5.19)

for any map w satisfying (5.9).

Before continuing with the second part of the proof, let us remark that the choice of the
exponent αn := 1

2(n−1) in (5.18) is arbitrary, in the sense that it could be replaced by any

exponent α ∈ (0, 1
n−1), up to adjusting the value of the multiplicative constant in front of the
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right hand side of the estimate. Indeed, one could alternatively apply the Sobolev inequality for
any p ∈ (1, n− 1) in the argument below (5.18) and adjust the exponents with which Hölder’s
and Young’s inequalities are applied afterwards.

Step 2: Stability estimate for Q̃n. From the estimate (5.19) we see that, if the linear stability

estimate (2.25) is still valid when Qn is replaced by the nonlinear form Q̃n with a possibly
smaller cn > 0 and for maps satisfying (5.9), then for small enough θn, κ ∈ (0, 1) the terms in

the last line of (5.19) can be absorbed into (1− κ)Q̃n(w) and this would conclude the proof of

(5.8); compare with [25, Proposition 3.8(iii)]. In fact, it may be that Q̃n does not satisfy such
an estimate, but a weaker estimate suffices: it is sufficient to prove that, for any given C,α > 0
and c ∈ R with |c| small enough, there exists θ := θ(n,C, α, c) > 0, such that

Q̃n(w) ≥ c

 
Sn−1

⟨w,A(w)⟩+ C
(  

Sn−1

|∇Tw|2
)1+α

, (5.20)

whenever (5.9) holds with θ in the place of θn. Recall again here that A is the first order
differential operator defined in (2.23). Indeed, once the above estimate is shown, we can apply
it for

c :=
κn

2(1− κ)
, C :=

cn
1− κ

> 0 , α := αn =
1

2(n− 1)

for κ ∈ (0, 1) sufficiently small, and θn ∈ (0, 1) small accordingly, and combining it with (5.19),
we are led to (5.8).

Thus it remains to prove (5.20), and for that we argue by contradiction: for fixed C,α > 0
and c ∈ R with |c| ∈ (0, 1) sufficiently small, assume that the estimate fails. In this case, there
exists a sequence (wj)j∈N ⊂W 1,n−1(Sn−1;Rn) satisfying (5.9), such that

δj :=

 
Sn−1

|∇Twj |n−1 → 0 as j → ∞ ,

Q̃n(wj) < c

 
Sn−1

⟨wj , A(wj)⟩+ C
( 

Sn−1

|∇Twj |2
)1+α

.

(5.21)

Recalling the definition of Q̃n in (5.16), the latter inequality is equivalent to

1

2

n

n− 1

 
Sn−1

|∇Twj |2 + Ξn(wj)

<
(n
2
+ c
) 

Sn−1

⟨wj , A(wj)⟩+ C
( 

Sn−1

|∇Twj |2
)1+α

,

(5.22)

where

Ξn(w) :=
n(n− 3)

2(n− 1)

 
Sn−1

|N(PT ,∇Tw)|n−3(|PT +∇Tw| − |PT |)2 , (5.23)

and N as in (5.13) Now let

εj :=
( 

Sn−1

|∇Twj |2
) 1

2 ≤ δ
1

n−1

j → 0 as j → ∞ , ŵj :=
wj
εj
,

so that
ffl
Sn−1 |∇T ŵj |2 = 1. Rewriting (5.22) in terms also of ŵj , we get

1

2

n

n− 1
+

Ξn(wj)

ε2j
<
(n
2
+ c
) 

Sn−1

⟨ŵj , A(ŵj)⟩+ C ε2αj . (5.24)
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Extracting a subsequence, we can assume ŵj ⇀ ŵ weakly in W 1,2(Sn−1;Rn), so ŵj → ŵ
strongly in L2(Sn−1;Rn), where ŵ ∈W 1,2(Sn−1;Rn) also satisfies 

Sn−1

ŵ = 0 , Πn,0ŵ = 0 . (5.25)

In particular, taking the liminf as j → ∞ in (5.24), we deduce that

1

2

n

n− 1
+ lim inf

j→+∞

[
Ξn(wj)

ε2j

]
≤
(n
2
+ c
) 

Sn−1

⟨ŵ, A(ŵ)⟩ . (5.26)

Since Ξn ≥ 0, the left-hand side of (5.26) is bounded from below by n/(2n− 2), so we deduce
in particular that  

Sn−1

|∇T ŵ|2 > 0 . (5.27)

We now claim that

1

2

n

n− 1
+ lim inf

j→+∞

[
Ξn(wj)

ε2j

]
≥ 1

2

n

n− 1

 
Sn−1

|∇T ŵ|2 +
n(n− 3)

2(n− 1)2

 
Sn−1

(divSn−1ŵ)2 . (5.28)

Once this is shown, and recalling the definition (2.22) of Qn, we see that (5.26) implies

Qn(ŵ) ≤ c

 
Sn−1

⟨ŵ, A(ŵ)⟩ ≲ |c|
 
Sn−1

|∇T ŵ|2 ,

the last estimate following from the Cauchy-Schwarz inequality, (2.23), and the Poincaré in-
equality on Sn−1 for functions with zero mean, which is applicable by (5.25). But according to
(5.27) ŵ is a nontrivial map satisfying (5.25), so this last estimate is a clear contradiction to
the coercivity estimate (2.25) for small enough |c| > 0.

Therefore, to complete the proof of (5.20) it suffices to prove (5.28). By the fundamental
theorem of calculus, we have that Hn−1-a.e. on Sn−1,

|PT +∇Twj | − |PT |
εj

=

ˆ 1

0

PT + t∇Twj
|PT + t∇Twj |

: ∇T ŵj dt = fj + gj ,

where

fj :=

ˆ 1

0

PT + t∇Twj
|PT + t∇Twj |

: ∇T ŵ dt ,

gj :=

ˆ 1

0

PT + t∇Twj
|PT + t∇Twj |

: (∇T ŵj −∇T ŵ) dt .

Recall by (5.21) that ∇Twj → 0 strongly in Ln−1(Sn−1), hence also Hn−1-a.e. up to a non-
relabeled subsequence, and therefore for every t ∈ [0, 1]

PT + t∇Twj
|PT + t∇Twj |

→ PT
|PT |

Hn−1-a.e. on Sn−1.

By the dominated convergence theorem and the fact that ŵj ⇀ ŵ inW 1,2(Sn−1;Rn), we deduce

fj →
PT : ∇T ŵ

|PT |
=

divSn−1ŵ√
n− 1

strongly in L2(Sn−1) , gj ⇀ 0 weakly in L2(Sn−1) .
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Recalling the definition (5.23) of Ξn, we have

Ξn(wj)

ε2j
=
n(n− 3)

2(n− 1)

 
Sn−1

|N(PT ,∇Twj)|n−3(fj + gj)
2

≥ n(n− 3)

2(n− 1)

 
Sn−1

|N(PT ,∇Twj)|n−3f2j +
n(n− 3)

n− 1

 
Sn−1

|N(PT ,∇Twj)|n−3fjgj .

Moreover, recalling (5.13), we have

1 ≥ |N(PT ,∇Twj)| → 1 Hn−1-a.e. on Sn−1 ,

so that by the dominated convergence theorem and the above convergences of fj and gj we infer

lim inf
j→+∞

Ξn(wj)

ε2j
≥ n(n− 3)

2(n− 1)2

 
Sn−1

(divSn−1ŵ)2 .

This inequality, combined with the weak lower semicontinuity of the Dirichlet energy, implies
(5.28), thus concluding the proof of the proposition. □

The proof of our main theorem follows now easily by combining all the above auxiliary steps.

Proof of Theorem 1.3. In view of Lemma 5.1, it suffices to prove the theorem for maps u ∈ Bδn,εn
as in (5.1), for δn, εn ∈ (0, 1) sufficiently small to be chosen in the sequel, so that also Lemma
5.2 is applicable. Then, by Lemma 5.3 the map w ∈W 1,n−1(Sn−1;Rn) defined in (5.6) satisfies
the hypotheses of Proposition 5.4, for some θn ∈ (0, 1) that can be chosen sufficiently small
depending on δn. In particular, by the scaling, translation, and conformal invariance of the
deficit En−1, (5.6) and (5.8), we obtain

En−1(u) = En−1(idSn−1 + w)

≥ c̃n

 
Sn−1

|∇Tw|n−1 = c̃n

 
Sn−1

∣∣∣∣ 1

λu,ψ
∇T (u ◦ ψ)− PT

∣∣∣∣n−1

,
(5.29)

so that the only thing that remains to be justified is why we can replace λu,ψ with [Vn(u)]
1
n in

(5.29). In that respect, we prove that∣∣∣∣ 1

[Vn(u)]
1
n

− 1

λu,ψ

∣∣∣∣ ≲ [En−1(u)
] 1
n−1 . (5.30)

Once (5.30) is established, the assertion follows by setting ϕ := ψ−1 ∈ Möb+(Sn−1), so that
using the conformal invariance of the (n− 1)-Dirichlet energy and (5.29), we get

 
Sn−1

∣∣∣∣ ∇Tu

[Vn(u)]
1
n

−∇Tϕ

∣∣∣∣n−1

≲

∣∣∣∣ 1

[Vn(u)]
1
n

− 1

λu,ψ

∣∣∣∣n−1  
Sn−1

|∇Tu|n−1 +

 
Sn−1

∣∣∣∣∇T (u ◦ ψ)
λu,ψ

− PT

∣∣∣∣n−1

≲ En−1(u) ,

which proves (1.7).

Thus, as a final step, we prove (5.30). For simplicity, let us write ũ := (u ◦ ψ)/λu,ψ. We
recall that, for a, b ∈ Rm, by convexity of the function a 7→ |a|n−1 we have the local Lipschitz
estimate ∣∣|a|n−1 − |b|n−1

∣∣ ≲ (|a|n−2 + |b|n−2)|a− b| .
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Applying this inequality with a := ∇T ũ and b := PT (Hn−1-a.e. on Sn−1), and using (5.4),
(5.1)(iii) and (5.29), we obtain∣∣Dn−1(ũ)− 1

∣∣ ∼ ∣∣∣∣  
Sn−1

(∣∣∇T ũ
∣∣n−1 − |PT |n−1

)∣∣∣∣
≲
 
Sn−1

(
|∇T ũ|n−2 + |PT |n−2

) ∣∣∇T ũ− PT
∣∣

≲
(
∥∇T ũ∥n−2

Ln−1(Sn−1)
+ 1
)∥∥∇T ũ− PT

∥∥
Ln−1(Sn−1)

≲
δ̃n

[En−1(u)]
1

n−1 ≲
δ̃n
ε

1
n−1
n ≤ 1

2
.

(5.31)

Since the function t 7→ t
1

n−1 is smooth around t = 1, (5.31) in particular implies∣∣∣[Dn−1(ũ)]
1

n−1 − 1
∣∣∣ ≲ |Dn−1(ũ)− 1| ≲ [En−1(u)]

1
n−1 .

Taking δn ∈ (0, 1) sufficiently small, we can of course ensure that Dn−1(u) ∈ [12 ,
3
2 ], so that∣∣∣∣ 1

λu,ψ
− 1

[Vn(u)]
1
n (1 + En−1(u))

1
n

∣∣∣∣ = ∣∣∣∣ 1

λu,ψ
− 1

[Dn−1(u)]
1

n−1

∣∣∣∣
∼
∣∣∣[Dn−1(ũ)]

1
n−1 − 1

∣∣∣ ≲ [En−1(u)]
1

n−1 ,

(5.32)

since λn−1
u,ψ Dn−1(ũ) = Dn−1(u). Notice that, similarly to (5.11), we also have Vn(u) ∈ [12 ,

3
2 ],

provided that δn ∈ (0, 1) is sufficiently small: indeed, this follows easily from definition (5.6)
and estimate (5.7). Hence, by elementary analysis, we obtain

1

[Vn(u)]
1
n

∣∣∣∣∣ 1

(1 + En−1(u))
1
n

− 1

∣∣∣∣∣ ≲ (1 + En−1(u))
1
n − 1 ≲ En−1(u) . (5.33)

Combining (5.32) and (5.33), we arrive at (5.30), which completes the proof. □

Appendix A. A pointwise characterization of the local topological degree

In this appendix we prove the following.

Proposition A.1. Let U ∈W 1,n(Bn;Rn) such that u := U |Sn−1 ∈W 1,n−1(Sn−1;Rn). Then

uy :=
u− y

|u− y|
∈ VMO(Sn−1;Sn−1) for Ln-a.e. y ∈ Rn,

and

deg(U,Bn; y) = deg(uy, Sn−1; Sn−1) for Ln-a.e. y ∈ Rn, (A.1)

where the local degree deg(U,Bn; y) is defined by (2.12) and deg(uy,Sn−1;Sn−1) is the VMO-
degree defined in [8, Section I.3].

The main tools to prove Proposition A.1 are the properties of the local degree from Subsec-
tion 2.2 and of the VMO-degree from [8], together with the following lemma.

Lemma A.2. For any u ∈W 1,n−1(Sn−1;Rn) we have

uy =
u− y

|u− y|
∈W 1,n−1(Sn−1;Sn−1) for Ln-a.e. y ∈ Rn, (A.2)
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and the mapping

Φ: W 1,n−1(Sn−1;Rn) → L1
loc(Rn;W 1,n−1(Sn−1,Sn−1)) ,

u 7→ (y 7→ uy) (A.3)

is continuous.

The proof of Lemma A.2 will be given below.

Proof of Proposition A.1. The fact that uy ∈ VMO(Sn−1;Sn−1) for Ln-a.e. y ∈ Rn follows from
(A.2) and the embedding W 1,n−1(Sn−1;Sn−1) ⊂ VMO(Sn−1;Sn−1) [8, Example 2, page 209].
Then note that the identity (A.1) is true if U ∈ C1(Bn;Rn), since in that case Ln(u(Sn−1)) = 0
and (A.1) is satisfied for all y /∈ u(Sn−1) [50, Remark 1.5.10]).

Now fix a sequence (Uj)j∈N ⊂ C1(Bn;Rn) such that Uj → U Ln-a.e. in Bn and strongly in
W 1,n(Bn;Rn), and uj := Uj |Sn−1 → u strongly in W 1,n−1(Sn−1;Rn). By the above, we have

deg(Uj ,Bn; y) = deg((uj)y,Sn−1;Sn−1) for Ln-a.e. y ∈ Rn, (A.4)

and all j ∈ N. Moreover, the proof of Lemma 2.2 ensures that

deg(Uj ,Bn; y) → deg(U,Bn; y) for Ln-a.e. y ∈ Rn (A.5)

as j → ∞. Thanks to the continuity of the map Φ in Lemma A.2 and Fatou’s lemma, for Ln-a.e.
y ∈ Rn there is a subsequence j′ → ∞ such that (uj′)y → uy strongly in W 1,n−1(Sn−1;Sn−1).
By the embedding W 1,n−1(Sn−1; Sn−1) ⊂ VMO(Sn−1;Sn−1) and [8, Section I.3, Theorem 1],
this implies

deg((uj′)y, Sn−1; Sn−1) → deg(uy, Sn−1; Sn−1) as j′ → ∞.

Combining this with (A.4)-(A.5) proves (A.1). □

Proof of Lemma A.2. The proof is inspired by [38, Lemma 4.3] and [11, Lemma 3.8], with slight
modifications due to the fact that we do not impose u ∈ L∞(Sn−1;Rn).

Let u ∈ W 1,n−1(Sn−1;Rn). First note that the set {y ∈ Rn : Hn−1({u = y}) > 0} is at most
countable since {y ∈ Rn : Hn−1({u = y}) ≥ 1/N} is finite for any integer N ≥ 1. Therefore uy
is well-defined Hn−1-a.e. on Sn−1, for Ln-a.e. y ∈ Rn.

For δ > 0 and y ∈ Rn define

Py,δ : Rn → Rn, z 7→ z − y

max |z − y|, δ
,

Py : Rn \ {y} → Rn , z 7→ z − y

|z − y|
,

so that uy = Py(u), and since Py,δ → Py pointwise on Rn \ {y} as δ → 0 and |Py,δ| ≤ 1, by the
dominated convergence theorem we have

uy,δ := Py,δ(u) −→ uy in D′(Sn−1;Rn) as δ → 0 .

Since Py,δ is Lipschitz we have uy,δ ∈W 1,n−1(Sn−1;Rn), and

∇Py,δ(u)∇Tu = ∇Tuy,δ −→ ∇Tuy in D′(Sn−1;Rn) as δ → 0 . (A.6)
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For all z ∈ Rn \ {y} we have

∇Py(z) =
1

|z − y|

(
In −

z − y

|z − y|
⊗ z − y

|z − y|

)
,

∇Py,δ(z) = 1|z−y|>δ∇Py(z) + 1|z−y|≤δ

(
1

δ
In

)
,

and therefore

|∇Pδ,y(u)∇Tu−∇Py(u)∇Tu| ≤ 2
|∇Tu|
|u− y|

Hn−1-a.e. on Sn−1 .

For any y ∈ Rn satisfying

|∇Tu|
|u− y|

∈ Ln−1(Sn−1) , (A.7)

then by the dominated convergence theorem we would get

∇Tuy,δ = ∇Py,δ(u)∇Tu −→ ∇Py(u)∇Tu strongly in Ln−1(Sn−1;Rn×(n−1)) ,

and therefore, thanks to (A.6),

∇Tuy = ∇Py(u)∇Tu Hn−1-a.e. on Sn−1 .

Thus, since also |∇Py(u)∇Tu| ≤ |∇Tu|/|u − y| pointwise Hn−1-a.e. on Sn−1, we would infer
that

∇Tuy ∈ Ln−1(Sn−1;Rn×(n−1)) .

Hence, in order to prove (A.2) it suffices to show the integrability (A.7) for Ln-a.e. y ∈ Rn. For
any R > 0 we have by Fubini’s theorem,ˆ

|y|≤R

ˆ
Sn−1

|∇Tu(x)|n−1

|u(x)− y|n−1
dHn−1(x) dy ≤MR

ˆ
Sn−1

|∇Tu(x)|n−1 dHn−1(x) ,

where

MR := sup
z∈Rn

ˆ
|y|≤R

dy

|z − y|n−1
.

For |z| ≥ 2R we have ˆ
|y|≤R

dy

|z − y|n−1
≤
ˆ
|y|≤R

dy

Rn−1
≲ R ,

and similarly for |z| ≤ 2R we also haveˆ
|y|≤R

dy

|z − y|n−1
≤
ˆ
|y|≤3R

dy

|y|n−1
≲ R .

Hence, MR ≲ R and alsoˆ
|y|≤R

ˆ
Sn−1

|∇Tu(x)|n−1

|u(x)− y|n−1
dHn−1(x) dy ≲ R

ˆ
Sn−1

|∇Tu|n−1 dHn−1 <∞ ,

for any R > 0, which implies that (A.7) is satisfied for Ln-a.e. y ∈ Rn and concludes the proof
of (A.2).
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Next we show that the mapping Φ defined in (A.3) is continuous. To that end, we fix a
sequence (uj)j∈N ⊂ W 1,n−1(Sn−1;Rn) such that uj → u strongly in W 1,n−1(Sn−1;Rn), and
assume without loss of generality that also uj → u pointwise Hn−1-a.e. on Sn−1. We computeˆ

|y|≤R

ˆ
Sn−1

|∇T (uj)y −∇Tuy|n−1 dHn−1 dy

=

ˆ
|y|≤R

ˆ
Sn−1

|∇Py(uj)∇Tuj −∇Py(u)∇Tu|n−1 dHn−1 dy

≲ Ij1 + Ij,δ2 + Ij,δ3 ,

where we introduce an arbitrary δ > 0 and set

Ij1 :=

ˆ
|y|≤R

ˆ
Sn−1

|∇Py(uj)|n−1|∇Tuj −∇Tu|n−1 dHn−1 dy ,

Ij,δ2 :=

ˆ
|y|≤R

ˆ
Sn−1

|∇Py,δ(uj)−∇Py,δ(u)|n−1|∇Tu|n−1 dHn−1 dy ,

Ij,δ3 :=

ˆ
|y|≤R

ˆ
Sn−1

(|∇Py,δ −∇Py|(u) + |∇Py,δ −∇Py|(uj))n−1 |∇Tu|n−1 dHn−1 dy .

We estimate the first term using Fubini’s theorem, the fact that |∇Py(z)| ≲ 1/|z − y| and the
above estimate on MR, and obtain

Ij1 ≲ R

ˆ
Sn−1

|∇Tuj −∇Tu|n−1 dHn−1 ,

and the right hand side of the above estimate tends to zero as j → ∞. Since |∇Py,δ| ≲ 1/δ,

for fixed δ > 0 the second term Ij,δ2 tends to zero as j → ∞ by the dominated convergence

theorem. Finally, by Fubini’s theorem, the third term Ij,δ3 satisfies

Ij,δ3 ≲MR,δ

ˆ
Sn−1

|∇Tu|n−1 dHn−1 ,

where

MR,δ := sup
z∈Rn

ˆ
|y|≤R

|∇Py(z)−∇Py,δ(z)|n−1 dy .

All this implies that, for any δ > 0,

lim sup
j→∞

ˆ
|y|≤R

ˆ
Sn−1

|∇T (uj)y −∇Tuy|n−1 dHn−1 dy ≲MR,δ

ˆ
Sn−1

|∇Tu|n−1 dHn−1 . (A.8)

Finally, using the explicit expressions of ∇Py and ∇Py,δ, and in particular the fact that

∇Py(z)−∇Py,δ(z) = 0 for |z − y| ≥ δ ,

we find that

MR,δ ≲ sup
|z|≤R+δ

ˆ
|z−y|≤δ

dy

|z − y|n−1
≲ δ .

Letting δ ↘ 0 in (A.8), shows that for every R > 0 fixed,

lim
j→∞

ˆ
|y|≤R

ˆ
Sn−1

|∇T (uj)y −∇Tuy|n−1 dHn−1 dy = 0 .



OPTIMAL QUANTITATIVE STABILITY OF THE MÖBIUS GROUP 43

This, together with the fact that by the dominated convergence theorem once again,

lim
j→∞

ˆ
|y|≤R

ˆ
Sn−1

|(uj)y − uy|n−1 dHn−1 dy = 0 ,

concludes the proof that the map Φ defined in (A.3) is continuous in the appropriate topologies.
□
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[48] S. Müller, V. Šverák, and B. Yan. Sharp stability results for almost conformal maps in even dimensions. J.

Geom. Anal., 9(4):671–681, 1999.
[49] J. Nash. C1 Isometric Imbeddings. Ann. Math., 60(3):383, 1954.
[50] L. Nirenberg. Topics in nonlinear functional analysis. Notes by Ralph A. Artino., volume 6 of Courant Lect.

Notes Math. Providence, RI: American Mathematical Society (AMS); New York, NY: Courant Institute of
Mathematical Sciences, revised reprint of the 1974 original edition, 2001.

[51] R. Osserman. The isoperimetric inequality. Bull. Am. Math. Soc., 84(6):1182–1239, 1978.
[52] T. H. Parker. Bubble tree convergence for harmonic maps. J. Differ. Geom., 44(3):595–633, 1996.
[53] Y. G. Reshetnyak. On Stability in Liouville’s Theory of Conformal Mappings of Space. Dokl. Akad. Nauk

SSSR, 152(2):286–287, 1963.
[54] Y. G. Reshetnyak. On stability bounds in the Liouville theorem on conformal mappings of multidimensional

spaces. Sib. Math. J., 11(5):833–846, 1970.
[55] Y. G. Reshetnyak. Stability Theorems in Geometry and Analysis. Springer Netherlands, Dordrecht, 1994.
[56] T. Rivière. Conservation laws for conformally invariant variational problems. Invent. Math., 168(1):1–22,

2007.
[57] J. W. Robbin, R. C. Rogers, and B. Temple. On weak continuity and the Hodge decomposition. Trans. Am.

Math. Soc., 303(2):609–609, 1987.
[58] M. Rupflin. Sharp quantitative rigidity results for maps from S2 to S2 of general degree. arXiv:2305.17045,

2023.
[59] A. Schikorra and P. Strzelecki. Invitation to H-systems in higher dimensions: known results, new facts, and

related open problems. EMS Surv. Math. Sci., 4(1):21–42, 2017.
[60] M. Struwe. Large H-surfaces via the mountain-pass-lemma. Math. Ann., 270:441–459, 1985.
[61] M. Struwe. Variational Methods. Springer, Berlin, Heidelberg, 4th edition, 2008.
[62] P. Strzelecki and A. Zatorska-Goldstein. A compactness theorem for weak solutions of higher-dimensional

H-systems. Duke Math. J., 121(2):269–284, 2004.
[63] V. Šverák. Regularity properties of deformations with finite energy. Arch. Ration. Mech. Anal., 100(2):105–

127, 1988.
[64] P. M. Topping. A rigidity estimate for maps from S2 to S2 via the harmonic map flow. Bull. Lond. Math.

Soc., 55(1):338–343, 2023.
[65] T. Toro and C. Wang. Compactness properties of weakly p-harmonic maps into homogeneous spaces. Indiana

Univ. Math. J., 44(1):87–113, 1995.
[66] C. Wang. Regularity of high-dimensional H-systems. Nonlinear Anal. Theory, Methods Appl., 38(6):675–686,

1999.
[67] C. Wang. A compactness theorem of n-harmonic maps. Ann. Inst. Henri Poincaré (C) Anal. Non Linéaire,
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