ON THE EXISTENCE OF DEGENERATE SOLUTIONS
OF THE TWO-DIMENSIONAL H-SYSTEM
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ABSTRACT. We consider entire solutions w € H'(R?; R?) of the H-system
Aw = 2wz A wy ,

which we refer to as bubbles. Surprisingly, and contrary to conjectures raised in the literature,
we find that bubbles with degree at least three can be degenerate: the linearized H-system
around a bubble can admit solutions that are not tangent to the smooth family of bubbles. We
then give a complete algebraic characterization of degenerate bubbles.

1. INTRODUCTION

In this short note we study critical points of the functional £: H'(R?;R?) — R defined by
1 2

E(u) == / |Vu)? dL? + / (u, g A uy) dL? (1.1)
2 Jr2 3 JRre2

where (-, -) denotes the standard inner product in R?, £? the 2-dimensional Lebesgue measure
and u,, u, the partial derivatives of u with respect to x,y respectively. Both terms in ([1.1f) are

conformally invariant and so, after identifying R2 = S? through stereographic projection, the
term

V(u) = ;/R (11, g A uy) AL (1.2)

corresponds to the signed algebraic volume of the region enclosed by u(S?), whenever u is

regular. For maps which are just in the homogeneous Sobolev space H 1(R?;R3), one can define
V(u) through its continuous extension [26].

The functional ([L.1]) is very classical, as it appears naturally in the study of constant mean
curvature surfaces, see e.g. [25, Section II1.5] and the references therein. To see this connection,
we note that the first variation £&: H'(R?;R3) — H~*(R?;R3) is given by

E'(u) = —Au+ 2uy Auy, (1.3)
and thus we arrive at the following:
Definition 1.1. A bubble is a map w € H'(R?;R3) such that & (w) = 0, i.e.,
Aw = 2w, Aw, in D'(R?). (1.4)

In other words, bubbles are simply entire finite-energy solutions of (1.4]), which is known as

the H-system. Any such solution is necessarily weakly conformal, i.e., it satisfies
|wz|? — |wy|? = (we,wy) =0 in R?. (1.5)

Combined, equations ((1.4) and (1.5 assert that w is a (possibly branched) weakly conformal
parametrization of a closed surface with mean curvature identically 1. In fact, a classical
theorem due to Hopf asserts that any such surface is a unit sphere. This can also be seen as
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a consequence of the following classification result, due to Brezis and Coron [I, Lemma A.1],
which describes completely the collection of bubbles:

Theorem 1.2 (Classification of bubbles [1]). Let w € H'(R?;R3) be a bubble. Then there exist
complex polynomials P,Q € C[z]| and a vector b € R3 such that

p (Z))
w(z)=m + b, 1.6

@=7(36 o)
where m: C — S? is the inverse stereographic projection, i.e.,

2z |22 -1
= 1.
7(2) <|212+17 \z|2+1> | (L.7)

and where we identify z = (x,y) = x + iy. Moreover, if
P/Q is irreducible, k := max{deg P,degQ}, (1.8)

then we have

1
/ |Vw?dL? = k.
87'(' R2

We refer to k € N as in Theorem [1.2| as the degree of w, since it coincides with the topological
degree of w, viewed as a map between two-dimensional unit spheres.

Theorem shows that the collection of bubbles can be seen as a disjoint union of the
smooth, finite-dimensional manifolds

M, = {(P,Q,b) € Clz] x C[z] x R : P,Q are non-zero, P is monic and (T.8)) holds} . (1.9)

An important problem is to understand the behavior of £ near its critical points. To be more
concrete, for any bubble w € My, we regard the second variation of £ at w as a linear operator
E(w): HY(R%R3) — HY(R%R3). In view of (1.3) it is explicitly given by

d

ENw)u] == T tzogl(w +tu) = —Au+ 2(wy Aty + uzp Awy) . (1.10)

Variations tangent to My, at w generate elements in the kernel of £”(w), so that
dimker " (w) > dim My = 4k + 5.
This leads us to the following standard concept:

Definition 1.3. A bubble w with degree k is said to be degenerate if dimker " (w) > 4k + 5,
and it is said to be non-degenerate otherwise.

As each My, is smooth, non-degeneracy is equivalent to the usual notion of integrability, see
e.g. 22, Section 3.13]. Due to the conformal invariance of £, we can and will regard each bubble
as a map w: S — R3.

In [14, Lemma 5.5] it was shown that bubbles with degree one are non-degenerate, see further
[B, Appendix] and [20, Section 3|, while in [23] Theorem 1.1] it was shown that the standard
k-bubble, corresponding to the choice P(z) = z* and Q(z) = 1 in (L.6]), is non-degenerate as
well. These works also raise the conjecture that all bubbles should be non-degenerate, cf. [5l
page 190] and [23| page 4]. Surprisingly, in this note we observe that although this is generically
the case, for k > 3 there is an exceptional set of degenerate bubbles in My:
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Theorem 1.4 (Characterization of degenerate bubbles). Let w: S?* — R3 be a bubble as in
(1.6) whose set of branch points is given by

{IVwl =0} = {p1, -, pn}-

Let z be a conformal coordinate on S? with respect to which none of the branch points is co. Then
w is degenerate if and only if there exists a non-zero polynomial R € C|z] with degR < n —4
such that the meromorphic function h: C — C defined by

R(2)
(z=p1)...(z—pn)

h(z) =

solves the algebraic system of equations

h )
Resp, <(P/)’) =0 forje{l,...,n}.

We note that Theorem implies that the set of degenerate bubbles of degree k has (real)
codimension at least two in My, see the comment after [9, Theorem 2]. The above character-
ization follows from a correspondence between nontrivial elements in the kernel of £”[w] and
solutions of a well-studied Schrédinger equation on S2, cf. [7, 8, [, 10, [16, 19, 21]. As immediate
consequences of Theorem [1.4] we obtain the following:

Corollary 1.5 (Examples of non-degenerate bubbles). Let w be a degree k bubble as in (1.6]).
If w is degenerate then it has at least 4 branch points. In particular:
(i) if k < 2 then w is non-degenerate ;

(ii) the standard k-bubble corresponding to
P(z)=2F, Q(2)=1,

is non-degenerate for all k € N.

Other non-degenerate examples can be inferred from [19], see e.g. [19, Corollary 15].

Corollary 1.6 (Examples of degenerate bubbles). Let w be a degree k bubble as in (1.6). If
k = 3 then w is degenerate if and only if

P(z)=2*4+2, Q(2)=z,

up to a Mobius transformation of the sphere.

An interesting question that can subsequently be pursued is to prove optimal Lojasiewicz
inequalities for degenerate bubbles. There are only a few examples of variational problems
where this is achieved [II), 12]. We also refer the reader to [I8] for a related result, where
Lojasiewicz inequalities near the simplest possible bubble tree in a surface with positive genus
were obtained. Such inequalities determine in a precise way the leading order behavior of &
near a bubble, and this information is useful in arguments involving blow-up or perturbative
analysis, see e.g. [I}, 2, [3, [4] (5], 14} [15] 23] 24].
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through the Sonderforschungsbereich (SFB) 1060 and the Hausdorff Center for Mathematics
(HCM) under Germany’s Excellence Strategy -EXC-2047/1-390685813.
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2. CHARACTERIZATION OF DEGENERATE BUBBLES

As explained in the introduction, the non-degeneracy of bubbles (cf. Definition is char-
acterized through the study of the kernel of the linearized operator &"(w): H HR%LR3) —
H~1(R?%;R3) defined in (1.10). In other words, we are interested in classifying the space of
solutions u € H'(R?;R?) to

Au = 2(wy Auy +uz Awy) in D'(R?) (2.1)
for an arbitrary bubble w. We note that, by elliptic regularity, any such solution is necessarily
smooth.

Given a bubble w as in (1.6, we can assume without loss of generality that b = 0, since £ is
invariant under translations in the target. Then, due to the conformal invariance of £, we can
regard bubbles as maps w: S? — S? € R3. More explicitly, given a bubble w, we will write

=7(p(z z) = P()
w(z) =m(p(2),  ¢(2): 20

where 7 is as in (1.7) and P,Q € C[z] for some conformal coordinate z on S?; the assumption
on the degrees of P, Q) can always be achieved by choosing a suitable coordinate z.

deg P < deg @, (2.2)

We find it convenient to use complex notation, and henceforth we will write
0. :=(0; —10y)/2, 0z := (0, +10y)/2

for the usual Wirtinger derivatives. Let the Euclidean inner product (-,-) in R? be extended
as a complex-bilinear form on C3. Then the fact that each bubble is weakly conformal is
expressed concisely as

(ws,wz) =01in C, (2.3)

and the linearization of this equation leads us, as in [I3, Section 2], to the following:

Definition 2.1. Given a bubble w: S — S? and a vector field v € H'(S?;R?), we say that v
is a conformal Jacobi field along w if (w,,v,) =0.

We can also express equations and respectively as
Wyz = Tws Aw,, (2.4)
Uyz = i(uz Awy + ws Auy), (2.5)
in complex notation. We then have the following:

Lemma 2.2. Let u: S? — R? solve (2.5) for a bubble w. Then u is a conformal Jacobi field.

Proof. We use (2.4]) and (2.5)) to compute

Oz(wz,uy) =1 ((wWs A wy, uy) + (Ws, uz Aw, + wz Auy))
=i ((wz Awy, uy) + (Wy,ws Auy)) =0,

~—

where the last equality is simply an algebraic identity resulting from (a,b A ¢) = det(alb|c
where (a|b|c) denotes the 3 x 3 matrix with column vectors a, b, ¢ (in this order). Thus (w,,u
is integrable and holomorphic, hence by Liouville’s theorem it is zero.

oL

Note that each bubble w as in (2.2) is a harmonic map into S?, i.e.,
Aw+ |Vw)Pu=0 <= w4+ |w.]’w=0, (2.6)
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as can be checked directly by differentiating |w| = 1, using the weak conformality of
w. Since the target is a 2-sphere, w is an integrable harmonic map [I3]; we note that this
integrability does not hold for higher-dimensional spheres [I7]. The following proposition is
essentially a consequence of this integrability result.

Proposition 2.3 (Decomposition). Let w: S — S? be a degree k bubble and decompose maps
u € ker £"(w) according to

ker &’ (w) = T(w) & N(w)w, u=[u— (u,w)w] + (U, w)w,

where this decomposition is orthogonal pointwise with respect to the inner product of R3. The
elements of T'(w) are generated by infinitesimal variations in the coefficients of ¢ in (2.2)), so
that dim T'(w) = 4k + 2, and

N(w):={f € C®(S*;;R) : Af + |[Vw|*f =0} . (2.7)
Proof. Let us note that the equation defining N(w) can be written in complex notation as
fez+lw:f=0. (2.8)
We now observe that f € N(w) if and only if the map fw solves ([2.5)), since
(fw)zz — l((fw)é Nwy + wz A (fw)z)
= frzw—ifwu: Aw, + fawz + frw, —i (frw Aw; + fowz Aw)
= [fzz + |Wz|2f] w,
where in the second line we used and in the last line we used the identities
W, = TwWAW,, Wy =iws Aw, andiwz/\w,g:\wz\zw, (2.9)

which follow from the fact that (‘l/g“z, ﬁwy,
wl? [Vl

R3. In view of (2.5)), N(w)w C ker £”(w), and reversely, for any u € ker £”(w) using (2.4)), (2.5)
and we have (u,w) € N(w), and so from the above, (u,w)w € ker £”(w). Note that, by
elliptic regularity, any f € H 1(S%;R) solving is actually smooth.

It remains to prove the characterization of T'(w). For this, we first note that since |w|? = 1
we have (w,,w) = 0. Thus, by ([2.3), for any f € H'(S%;R) the vector field fw is a conformal
Jacobi field along w. By Lemma any u € ker £”(w) is also a conformal Jacobi field along w,
and hence by linearity the same also holds for the map @ := u — (u,w)w. Moreover, note that
u(z) € Tw(z)SQ. Let us assume that the polynomials P, () in satisfy det P < deg @, the
other case being entirely analogous. Applying [I3, Lemma 3], we deduce that u is integrable,
i.e., there are polynomials A, B € C|z] such that

- d P+ tA
_— 2.1
to”<Q+tB>’ (2.10)

—w) is a positively oriented orthonormal frame of

U:a

where deg(A) < deg(P) and deg(B) < det(Q). Conversely, given polynomials A, B satisfying
these conditions, we can define a map u € T'(w) through (2.10]). This completes the characteri-
zation and thus dim 7T'(w) = 4k + 2. O

Corollary 2.4. We have dim N (w) > 3 with equality if and only if w is non-degenerate.

Proof. By (2.6)), the linear space
L(w) :== {{{,w) : £ € R?} (2.11)



6 ANDRE GUERRA, XAVIER LAMY, AND KONSTANTINOS ZEMAS

is a subspace of N(w), and thus dim N(w) > 3. By Proposition equality holds if and only
if dimker £”(w) = 4k + 5, i.e., if and only if w is non-degenerate. O

We refer to L(w) as the space of trivial solutions to the Schrédinger equation (2.8). Since w
is conformal, (2.8)) can be rewritten as

Agwf+ Qf: 0, where g, := w*gy and f:: for te H(S*:R).

Here g,, is the pullback metric of the standard round metric gg on S? induced by w: S? — S?;
the metric g, in general has conical singularities at the branch points of w. Equation ([2.8)
has received a lot of attention in the last decades, and the space of solutions is completely
understood, see e.g. [7, [8, 9L 10} 16}, 19, 21]. Surprisingly, for non-generic w there are non-trivial
solutions to , i.e. dim N (w) > 3; the space of such w has codimension larger than one [10]
Proof of Theorem A]. In general, dim N(w) — 3 is even, since N(w)/L(w) is a complex vector
space [19, Proposition 18], and so we can write dim N(w) = 3 + 2d for d € Ny. The 2d extra
directions can be interpreted as arising from smooth one-parameter families of harmonic maps
with values in higher dimensional spheres [8, Theorem A].

The following result provides a concrete algebraic characterization of those bubbles w for
which there are nontrivial elements in N (w).

Theorem 2.5 ([10,19]). Let w be a bubble as in [2.2), let {p1,...,pn} C S? be its set of branch
points and z a conformal coordinate on S? with respect to which none of the branch points is
o0o. There is a linear bijection between the space N(w)/L(w) of non-trivial solutions to (2.8)
and the space of non-zero polynomials R € Clz] with deg R < n — 4 and such that
R(z)
(z—=p1)...(z—ppn)

Resy, (h/¢') =0 for all j € {1,...,n}, where h(z) := (2.12)

The proof of Theorem in the above references is carried out in a more general context.
In order to keep the exposition mostly self-contained, we include here a direct proof of their
result in our setting, following essentially the arguments in [19].

The main idea behind Theorem [2.5]is to use the Gauss parametrization [6]. A surface S C R3
with invertible Gauss map w is locally parametrized by an immersion

X = fut Vo f = fut ‘:P (Faws + fows) (2.13)

where f = (X,w) is the support function of S. Thus, in the setting of Theorem we have a
local correspondence between functions f: S?\ {p1,...,p,} — R and punctured surfaces with
generalized Gauss map w. The next lemma gives a geometric interpretation of the condition
f € N(w) (recall (2.7)) in terms of the corresponding immersion defined through (2.13):

Lemma 2.6. Let w be a bubble with branch points {p1,...,pn} C S?, let f € C°(S%;R) and
let X:S2\ {p1,...,pn} — R3 be defined as in (2.13)). Then

feNw) <= X isminimal, i.e., it is weakly conformal and harmonic.
Proof. Using and |w| = 1, after differentiation we deduce that
Wyy = [log(lwz|2)]zwz. (2.14)
An elementary but lengthy calculation, using , then shows that
[log(|w:|*)] .. + lw:|> = 0. (2.15)
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Note also that ('L(ﬁ) = logl(LwTi ) this, combined with ( and , yields

Xo = (fur + lw2f) — % |2 +hf| ’ (2.16)
where we set
hy:= f.. — [log(\wz|2)]zfz. (2.17)
We can then further compute

4 z|2

The lemma follows from the above identities using elementary calculations. If f € N(w)
then clearly X is weakly conformal by (2.18|) and one can also check that X,z = 0, thus X is
minimal. Conversely, if X is minimal then f € N(w): this can be deduced from ([2.16) since

<Xz27w> = - (sz + |wz’2f) )
so if X is harmonic then f € N(w). O

It will be useful to convert between w and ¢ through the stereographic projection, as in (2.2)).
Using the fact that ¢ is meromorphic, one can verify that

ws 1 (1—¢% i(1+p?)
Iwz!?:so’< S R (2.19)

The next lemma, is a simple consequence of the above calculations.

Lemma 2.7. For any conformal coordinate z on' S* and f € N(w), let hy: S*\{p1,...,pn} = R
be defined as in (2.17). Then:

(i) hy is meromorphic, i.e., Oz hy =0 on S?\ {p1,...,pn}, and its poles are simple;

(ii) the meromorphic function hy/¢', where ¢ = P/Q, has zero residue at each pole p;.

Proof. For [(i)] we note that, since f € N(w), from (2.16) and (2.19) we obtain

wr _hy (1-¢* i(1+¢°)
XZth|OJZ|2:/< 2 y ,QO . (220)

© 2
Thus Ozhy = 0, since ¢ is meromorphic and Xz = 0 according to Lemma @ Moreover, the
poles of hy are simple, since in f is smooth and |w,| vanishes to finite order at each branch
point. Claim follows again from (2.20), which implies that hs/¢'dz = (X' —iX?).dz: the
latter differential has zero integral along any loop, and hence zero residue at each pole. Il

Corollary 2.8. For f € N(w) and any choice of conformal coordinate z with respect to which
none of the branch points is 0o, there exists R € C[z] of degree at most n — 4 such that

. R@)
A Al e Py

(2.21)

Proof. Applying a translation in the complex plane if necessary, we may without restriction fix
a conformal coordinate w in which none of the poles of ¢ is 0 or co. By Lemma [2.7(i), there
exists an entire function g and aq, ..., a, € C such that

hf +Z

w — p]
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If w = w(z) is a conformal change of variables then the meromorphic quadratic differential
hy(w)(dw)? pulls back to hy(w(z))(dw/dz)?(dz)?. Thus, when w(z) = 1/z, we obtain a new
meromorphic function

di'll} 1 s i n » E(Z)
hf(w(z))<dz> 01/ 42} A/t 3H; 1z = 1/p)”

for some R € C[z] with deg R < n—1. In these new coordinates, Lemma implies that the
entire function g is zero and that R(z) = 23R(z) for some R € C[z] with deg R < n — 4. O

Proof of Theorem [2.5, By Lemma and Corollary for each f € N(w) one can associate
a function hy: S*\ {p1,...,pn} — R satisfying (2.12). It is easy to see from (2.14) and (2.17)
that if f € L(w) then hy = 0, i.e., the corresponding polynomial R in ({2.21)) is zero.

Conversely, given a function h: S?\ {p1,...,p,} — R satisfying (2.12)), one constructs an
immersion X,: S%\ {p1,...,pn} — R3 such that

0.Xp = h—=,
||
cf. (2.20). In fact, we construct X by
Xh = Re/azXh dZ, (2.22)

where the path starts from a fixed point on S?\ {p1,...,p,}; the no residue condition in ([2.12))
guarantees that X}, is independent of the choice of path. Moreover, X}, is unique up to addition
of a constant vector in R3. We claim that (X;,w) € N(w). Once this is shown the theorem
follows, since the linear maps

N( )Bfﬁfw"i_ (fzwé+fiwz)a X'_><X7W>GN(W)

jws?

are inverse to each other, and hence
N(w)/L(w) > fr hg,  h= (Xp,w) € N(w)/L(w)

are also inverses, since adding a constant to Xj; amounts to adding a trivial solution to f.

Thus, to complete the proof, it remains to show that (X,,w) € N(w). To be precise, note
that (Xj,w) is only defined in S?\ {p1, ..., p,} and that, in this punctured sphere, it is a solution
of the Schrédinger equation ([2.8)), since

025(Xn, w) + |w: > (Xp, w) = 95 ((0:Xp, w) + (Xp, w2)) + |w:|* (X, w)
= (Xp,wszz) + (Xp, |w:w) = 0.
The last equality follows from ([2.6)) and to pass to the second line we used that

h
<aZ_Xh7OJ> = W<w;,w> = 07
since |w| = 1, and that, since X}, is a real vector field,

(0:Xpywz) = (0: X, ws) = (0, Xp,w,) = (wy,wy) =0,

J:[?

cf. (2.3). Thus from elliptic regularity theory we deduce that (Xj,w) can be extended to a
function in N (w) once we show that (X, w) € L¥(S?\ {p1,...,pn}).
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To prove the boundedness of (X}, w), fix p; for some j = 1,...,n, and choose a local conformal
coordinate z in a neighborhood of p; with z(p;) = 0. Up to a rotation in R?, we can suppose
that ¢(z) = 2™ in this neighborhood, where m; > 1, and so, from (2.19), we see that

h 1-m; _ 14+my; (¢, 1-m; 1+my
6ZXh:<z 2,2 ,z(z ;—z ),2z>.

(2.23)

m;
In these coordinates we may write h as h(z) = L + 3922 ¢z, for some (c¢)ren € C, so that
(2.22) and (2.23) imply that in a neighbourhood of 0,

B 1
2mj(1 - mj)
- o(z) : :
where ;g% 22 = 0. By (2.2) and (L.7) the bubble w can be expressed in these coordinates as
() 22™Mi |22 — 1
w(z) =
|2[2™5 + 17 |22 +1) 7

hence the fact that (X}, w) is bounded near 0 follows from the last two formulas. t

Xn(2) (coRe(zl_mJ')—i-o(zl_mj ), colm (2179 ) 4-0(21 ™), co(l—mj)QRe(z)+o(z)) ,

Proof of Theorem[I.4} The result follows by combining Corollary [2.4 with Theorem O

Proof of Corollary[1.5, The main claim follows from Theorem since if w is degenerate then
there must exist a corresponding non-zero polynomial R with deg R < n — 4, where w has
n branch points, say pi,...,pn. Hence if w is degenerate we must have n > 4. This also
immediately implies To prove note that if m; > 1 is the multiplicity of w at p; (i.e.
if m; — 1 is the algebraic multiplicity of p; as a zero of |Vw|), then by the Riemann-Hurwitz

formula we have
n

2k —1)=> (m; —1), (2.24)
j=1
where k is the degree of w. Thus w can have at least 4 branch points only if £ > 3. O

Proof of Corollary[1.6, Note that, by ([2.24]), a degree 3 bubble can only have at most 4 different
branch points, so by Corollary [L.5]if w is degenerate then indeed it must have exactly 4 different
branch points p1, ..., ps. By Theorem we see that w is degenerate if and only if

Resy, (1/¢') =0 for j=1,2,3,4,

where ¢ = P/Q is as in (2.2). Elementary computations then yield the conclusion, see [19], page
171] for further details. O
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