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ABSTRACT. We study minimizers m : R2 → S2 of the energy func-
tional

Eσ(m) =

ˆ
R2

(
1

2
|∇m|2 + σ2m · ∇ ×m+ σ2m2

3

)
dx ,

for 0 < σ ≪ 1, with prescribed topological degree

Q(m) =
1

4π

ˆ
R2

m · ∂1m× ∂2m dx = ±1 .

This model arises in thin ferromagnetic films with Dzyaloshinskii-Moriya
interaction and easy-plane anisotropy, where these minimizers represent
bimeron configurations. We prove their existence, and describe them
precisely as perturbations of specific Möbius maps: we establish in par-
ticular that they are localized at scale of order 1/| ln(σ2)|. The proof
follows a strategy introduced by Bernand-Mantel, Muratov and Simon
(Arch. Ration. Mech. Anal., 2021) for a similar model with easy-axis
anisotropy, but requires several adaptations to deal with the less coercive
easy-plane anisotropy and different symmetry properties.

1. INTRODUCTION

1.1. Energy functional and topological degree. For maps

m = (m1,m2,m3) : R2 → S2 ⊂ R3 ,

and σ > 0, we consider the energy

Eσ(m) = D(m) + σ2
(
A(m) + H̃(m)

)
, (1.1)

D(m) =
1

2

ˆ
R2

|∇m|2 dx , A(m) =

ˆ
R2

m2
3 dx ,

H̃(m) = 2

ˆ
R2

m3(∂1m2 − ∂2m1) dx .

It arises in the description of a thin ferromagnetic film with Dzyaloshinskii-
Moriya interaction (DMI) and easy-plane anisotropy (see e.g. [2, 8]). The
map m represents the magnetization, the Dirichlet term D(m) corresponds
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to the exchange energy, and the term A(m) to easy-plane anisotropy favor-
ing the horizontal plane {m3 = 0}. The DMI term H̃(m) is well-defined
as soon as the two other terms are finite. Moreover, for 0 < σ < 1/2, the
energy density 1

eσ(m) =
1

2
|∇m|2 + σ2m2

3 + 2σ2m3(∂1m2 − ∂2m1)

≥ 1− 2σ

2
|∇m|2 + σ2(1− 2σ)m2

3 ≥ 0 ,

is integrable if and only if D(m) + A(m) < ∞.
If a map m : R2 → S2 is continuous and has a limit as |x| → +∞, then

it can be identified with a continuous map m̃ = m ◦Φ−1 : S2 → S2, where
Φ: R2 ∪ {∞} ≈ C ∪ {∞} → S2 is the inverse stereographic projection

Φ(z) =

(
2z

1 + |z|2
,
|z|2 − 1

1 + |z|2

)
∀z ∈ C ∪ {∞} . (1.2)

The continuous map m̃ : S2 → S2 carries a topological degree, which can
also be defined if m̃ ∈ H1(S2; S2) (see [5]), and which characterizes the
homotopy class of m̃. In terms of the original map m, this corresponds to
the topological degree

Q(m) =
1

4π

ˆ
R2

m · (∂1m× ∂2m) dx ∈ Z . (1.3)

see more details in Appendix A, in particular Corollary A.2. The purpose
of this article is to describe, for 0 < σ ≪ 1, minimizers of Eσ with unit
degree Q(m) = ±1, called bimerons [2]. The precise functional setting
will be presented in § 1.4.

An analogous question is analysed in [6, 4] for a model with easy-axis
anisotropy, where the minimizes stand for skyrmions. The results and proofs
share similarities, but also many differences and additional difficulties, and
we will carefully compare them after the statement of our main result. For
the easy-plane model considered here, results complementary to ours, deal-
ing with bounded domains and a wider range of parameters, are obtained
in [3]. In the context of bounded domains, boundary magnetic vortices are
also studied in the presence of the DMI term, see [12].

Remark 1.1. For maps m : R2 → S2 such that D(m) + A(m) < ∞ and
m3 decays sufficiently fast at ∞, the DMI term H̃(m) in (1.1) coincides
with the classical expression

H(m) =

ˆ
R2

m · ∇ ×m dx = lim
R→∞

ˆ
BR

m · ∇ ×m dx ,

1In our results, σ will be a small positive parameter 0 < σ ≪ 1.
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where ∇ is identified with (∂1, ∂2, 0), thanks to the identity

m · ∇ ×m− 2m3(∂1m2 − ∂2m1) = −∂1(m3m2) + ∂2(m3m1).

Under the mere condition that D(m) + A(m) < ∞, we do have

lim
Rk→∞

ˆ
BRk

m · ∇ ×m dx = H̃(m) ,

along a sequence Rk → ∞, but H(m) might not be well-defined and the
full limit as R → +∞ might fail to exist.

1.2. Symmetries. Several groups of geometric transformations play an im-
portant role in our analysis: dilations

Dρm(x) = m
(x
ρ

)
, ρ > 0 , (1.4)

translations

Tx0m(x) = m(x− x0) , x0 ∈ R2 , (1.5)

and corotations

Rϕm(x) = Re3,ϕm(e−iϕx) , ϕ ∈ R , (1.6)

where Re3,ϕ ∈ SO(3) is the rotation of axis e3 and angle ϕ in R3, and e−iϕ

is the rotation of angle −ϕ in R2 ≈ C.
Dilations have different effects on each energy term in (1.1) namely, for

any ρ > 0,

D(Dρm) = D(m) ,

H̃(Dρm) = ρH̃(m) ,

A(Dρm) = ρ2A(m) , (1.7)

and the topological degree (1.3) is invariant under dilations:

Q(Dρm) = Q(m) .

As for translations and corotations, they keep both energy and topological
degree invariant:

Eσ(Tx0m) = Eσ(Rϕm) = Eσ(m) , (1.8)

Q(Tx0m) = Q(Rϕm) = Q(m) , ∀x0 ∈ R2 ,∀ϕ ∈ R .

Finally we also note the effect of the reflection m⇝ −m, which keeps the
energy invariant but reverses the degree:

Eσ(−m) = Eσ(m), Q(−m) = −Q(m) . (1.9)

Thanks to this property, we reduce the study of minimizers under the topo-
logical constraint Q(m) = ±1, to the case Q(m) = −1.
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Remark 1.2. One consequence of the scaling properties (1.7) is that the
specific choice of coefficients in front of each term in (1.1) is not restrictive:
for any λ, ρ > 0 we have

λEσ(Dρm) = λD(m) + λρσ2H̃(m) + λρ2σ2A(m) ,

so any result about Eσ can be translated into a result about an energy with
arbitrary coefficients a = λ, b = λρσ2, c = λρ2σ2 > 0 in front of the
three energy terms. With these general coefficients, the regime σ2 ≪ 1
considered in this article corresponds to b2 ≪ ac.

1.3. The conformal limit: heuristic description. In the conformal limit
σ → 0, the energy Eσ in (1.1) formally reduces to the Dirichlet energy
D(m), whose minimizers with prescribed degree Q(m) are well-known
and satisfy D(m) = 4π|Q(m)| (see e.g. [14]). More precisely, the point-
wise inequality∣∣m · (∂1m× ∂2m)

∣∣ ≤ 1

2
|∇m|2 ,

implies indeed that

D(m) ≥ 4π|Q(m)|, (1.10)

with equality if and only if ∂1m · ∂2m = |∂1m|2 − |∂2m|2 = 0, that is,
m is conformal. Conformal maps of degree Q(m) = −1 are given by the
Möbius group

M =
{
Φ
(az + b

cz + d

)
: a, b, c, d ∈ C, ad− bc ̸= 0

}
, (1.11)

where Φ: C ∪ {∞} → S2 is the inverse stereographic projection defined
in (1.2). In the parametrization (1.11), the determinant ad − bc ∈ C \ {0}
can always be fixed, and the Möbius group is six-dimensional (as a real
manifold).

Formally, the constraint A(m) < ∞ forces m3 → 0 at ∞. For small
positive σ, one therefore expects minimizers of Eσ of degree −1 to be close
to conformal maps with |a| = |c| in the parametrization (1.11). Another
real parameter can be fixed by minimizing the DMI term, and this leaves a
four-real-parameter family of conformal maps. Three of these parameters
come from the translational and corotational invariance of the energy (1.8).
The last parameter can be interpreted as a scaling parameter ρ > 0, cor-
responding to a dilation (1.4). Performing these reductions explicitly, one
expects that a minimizer mσ of Eσ with Q(mσ) = −1 should be close to a
Möbius map

Ψ(z) = Φ
(
w∗

(z
ρ

))
, w∗(z) = i

z − 1

z + 1
,
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modulo translation (1.5) and corotation (1.6). The expression of w∗(z) fea-
tures a vortex at z = 1 and an antivortex at z = −1, characteristic of
bimeron structures, as described in [2] (see [9] or [11, § 7.2] for a survey
about the mathematical analysis of magnetic vortices).

The three energy terms have different scaling behaviors (1.7), so one fur-
ther expects the scale of concentration ρ > 0 to be fixed by the competition
between these three terms. However, since Möbius maps Ψ ∈ M have in-
finite anisotropy A(Ψ) = ∞, one cannot simply plug this ansatz into the
energy: identifying that concentration scale ρ is a more subtle task. For
skyrmions, this task was carried out in [4] by introducing several powerful
new tools and ideas. Here we adapt that strategy to bimerons, and obtain
that minimizers mσ of Eσ with topological degree Q(mσ) = −1 concen-
trate at scale

ρσ =
1 + o(1)

ln(1/σ2)
as σ → 0 ,

that is, mσ is close, in a sense to be made precise below, to the orbit of the
Möbius map

Ψσ(z) = Φ
(
w∗

( z

ρσ

))
, w∗(z) = i

z − 1

z + 1
,

under the action of translations (1.5) and corotations (1.6).

1.4. Functional framework and precise statement. For any measurable
map m : R2 → S2 belonging to the homogeneous Sobolev space

H(R2;S2) =

{
m ∈ H1

loc(R2;S2) :

ˆ
R2

|∇m|2 dx < ∞
}
, (1.12)

composing with the stereographic projection (1.2) gives a map

m̃ = m ◦ Φ−1 ∈ H1(S2;S2) ,

whose topological degree is a well-defined integer [5] and equal to the topo-
logical degree Q(m) defined in (1.3). See Appendix A for more details
about these claims.

For all σ > 0 we consider the energy Eσ defined by (1.1) on the set

W =
{
m ∈ H(R2;S2) : A(m) < ∞

}
(1.13)

=
{
m ∈ H(R2;S2) :

ˆ
R2

m2
3 dx < ∞

}
,

which the value of the topological degree partitions into the subsets

Wq =
{
m ∈ W : Q(m) = q

}
, for q ∈ Z . (1.14)
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Recall that the reflection m ⇝ −m provides a bijection between Wq and
W−q, while preserving the energy (1.9). With these notations, our main
result provides precise asymptotics for minimizers of Eσ on W−1 in the
limit σ → 0.

Theorem 1.3. There exist absolute constants σ0, C > 0 such that, for any
σ ∈ (0, σ0], the infimum of Eσ over W−1 is attained, satisfies

min
W−1

Eσ = 4π − 2πσ2

ln
(
(1/σ2) ln2(1/σ2)

) +O
( σ2

ln2(1/σ2)

)
,

and, for any minimizing map mσ ∈ W−1, there exist ρσ > 0 and ασ ∈ R
estimated by∣∣ ln(1/σ2) ρσ − 1

∣∣+ |ασ| ≤
C√

ln(1/σ2)
,

and a Möbius map Ψσ ∈ M characterized by

TzσRϕσΨσ(z) = Φ
(
w∗

(
e−iασ

z

ρσ

))
, w∗(z) = i

z − 1

z + 1
, (1.15)

for some translation Tzσ and corotation Rϕσ as in (1.5)-(1.6), such thatˆ
R2

∣∣∇(
mσ −Ψσ

)∣∣2 dx ≤ C
σ2

ln(1/σ2)
.

Remark 1.4. A slightly more precise description of the orbit of Möbius
maps closest to minimizers of Eσ with degree Q = −1 is given in Proposi-
tion 5.4. Its proof also makes the contribution of each energy term apparent:

D(mσ) = 4π +O
( σ2

ln2(1/σ2)

)
,

H(mσ) = −2A(mσ) = − 4π

ln
(
(1/σ2) ln2(1/σ2)

) +O
( 1

ln2(1/σ2)

)
.

Here, the Pohozaev identity H(mσ) = −2A(mσ) comes from criticality of
the minimizer mσ with respect to scaling.

1.5. Comparison with skyrmions. The main difference between bimerons
and skyrmions is that the easy-plane anisotropy A(m) in the energy (1.1) is
replaced by an easy-axis anisotropy

Aeasy-axis
1 (m) =

ˆ
R2

(1−m2
3) dx , (1.16)

or Aeasy-axis
2 (m) =

ˆ
R2

(1−m3) dx .

The first version is used in [4], and the second in [18, 6]. Formally, the
first enforces only m(x) → ±e3 as |x| → ∞, and the second selects the



THE CONFORMAL LIMIT FOR BIMERONS 7

orientation +e3. In practice, minimizers for the first version are obtained
in a space which already selects an orientation, see e.g. [4, § 2.1], and
the analysis of these two different easy-axis models is extremely similar.
We will not comment on additional nonlocal energy terms which are also
considered in [4].

Remark 1.5. Changing the anisotropy forces to change the DMI term. Let
m′ = (m1,m2) and ∇⊥ = (−∂2, ∂1). If D(m) + Aeasy-axis

j (m) < ∞ for
j = 1 or 2, the DMI term

H̃easy-axis(m) = −2

ˆ
R2

m′ · ∇⊥m3 dx ,

is well-defined, since |m′|2 = 1−m2
3 is controlled by the easy-axis anisotropy.

Similarly to Remark 1.1, it satisfies

H̃easy-axis(m) = lim
k→∞

ˆ
BRk

m · ∇ ×m dx ,

for some sequence Rk → ∞. Under the condition D(m) +Aeasy-axis
2 (m) <

∞ which selects the orientation +e3 at ∞, this DMI term can also be rewrit-
ten as

H̃easy-axis(m) =

ˆ
R2

(m− e3) · ∇ ×m dx

= 2

ˆ
R2

(m3 − 1)(∂1m2 − ∂2m1) dx , (1.17)

as used repeatedly in [18, 6, 4].

The main, obvious difference between our easy-plane anisotropy A(m)

and the easy-axis anisotropy Aeasy-axis
1 (m) is the structure of admissible con-

stant states, or, equivalently, admissible far-field limits: when it exists, the
limit m∞ = lim|x|→∞ m(x) ∈ S2 must satisfy

m∞ ∈ S1 × {0} if A(m) < ∞,

versus m∞ ∈ {±e3} if Aeasy-axis
1 (m) < ∞ .

We list next several consequences of this difference.

Sign of the topological degree. The set S1×{0} is connected, while {±e3}
has two components. They divide each homotopy class of S2-valued maps
into two distinct classes of admissible easy-axis maps, causing a distinction
between positive and negative topological degrees in the skyrmion model
[18, 6, 4]. This distinction is not present here.

Symmetric solutions. The corotational symmetry of the energy (1.8), also
valid in the easy-axis model, makes it natural to look for critical points
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which are axisymmetric: invariant under the action of corotations (1.6), that
is, m(x) = Re3,ϕm(e−iϕx) for all ϕ ∈ R. In polar coordinates z = reiθ,
axisymmetric maps are of the form msym(re

iθ) = Re3,θm(r). This ansatz
is compatible with m∞ ∈ {±e3} in the easy-axis case, and axisymmetric
skyrmions of degree Q = −1 are analysed in [15]. But there are no axisym-
metric bimerons, because this ansatz is not compatible with m∞ ∈ S1×{0},
and more generally with D(m) +A(m) < ∞. Indeed, for such a symmet-
ric ansatz, we haveˆ ∞

1

(1−m2
3)
dr

r
=

1

2π

ˆ
|x|≥1

|∂θmsym|2

r2
dx ≤ D(msym) ,

and
ˆ ∞

1

m2
3

dr

r
≤
ˆ ∞

1

m2
3 rdr +

ˆ ∞

1

m2
3

dr

r3
≤ A(msym) + 1 ,

hence D(msym) + A(msym) < ∞ would imply
´∞
1

dr/r < ∞, a contra-
diction.

Dimension of the selected Möbius maps. In the easy-plane case described
by Theorem 1.3, the selected orbit of Möbius maps (under the action of
translations and corotations) is three-dimensional, while for skyrmions it is
two-dimensional. This is related with the previous observation: the skyrmions’
orbit is smaller because it contains an axisymmetric map, which stays fixed
under the action of corotations (1.6).

Far-field behavior. The set S1 × {0} is one-dimensional, while {±e3}
is discrete. In that sense, easy-axis anisotropy is much more constraining,
and this is reflected in the far-field behavior of finite-energy configurations,
that is, their behavior as |x| → +∞. The assumption of finite easy-axis
anisotropy Aeasy-axis

j (m) < ∞ (for j = 1 or 2) implies that ∞ is a Lebesgue
point of m, in the sense that

mR := −
ˆ
|x|≥R

m
dx

(1 + |x|2)2
→ ±e3 as R → ∞ ,

see Corollary A.3. Here instead, under the finite easy-plane assumption
A(m) < ∞, we only know that dist(mR,S1 × {0}) → 0, and mR might
fail to have a limit as R → ∞. Consider for instance m(x) = Φ(eiφ(x)w∗(x))
with w∗ as in Theorem 1.3 and φ(x) = ln(1+ ln(1+ |x|2)), then m ∈ W−1

but ∞ is not a Lebesgue point of m.

Control of the DMI term. As another consequence of the previous point,
the easy-axis anisotropy provides a more efficient control on the DMI term:
indeed, using the expression (1.17) we see that∣∣H̃easy-axis(m)

∣∣2 ≤ 16D(m)

ˆ
R2

(1−m3)
2 dx ,
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and the last integral is controlled by Aeasy-axis
2 (m), but, near ∞, its integrand

is actually much smaller than the integrand (1−m3) of Aeasy-axis
2 (m). This

improved control is used crucially in [18] and [4], but is absent in our case.

1.6. Proof ideas. As explained above, the proof of Theorem 1.3 relies pri-
marily on adapting the strategy introduced in [4] for a similar model with
easy-axis anisotropy (1.16). The main tool is a stability estimate [4, Theo-
rem 2.4] (see [10, 23] for alternative proofs and [21] for a generalization to
higher degrees) which implies that minimizers of Eσ with degree Q = −1
must be close to the Möbius group (1.11). This information can then be
used to obtain lower bounds on each energy term, which depend on the
closest Möbius map. Comparing these lower bounds with energy competi-
tors which are close to the optimal orbit of Möbius maps (1.15) then implies
that the closest Möbius map must belong to a neighborhood of that optimal
orbit.

Next we underline the main new elements in our proof, compared to the
analysis performed in [4] (and also [18]).

• The classical parametrization (2.1) of the Möbius group (1.11), was
convenient in [4] to describe the Möbius maps close to skyrmions,
but is not well adapted to the orbit of Möbius maps (1.15) close to
bimerons. We provide a new and more adapted parametrization in
Lemma 2.1.

• As explained in the last point of § 1.5, the control on the DMI term
H(m) provided by the easy-plane anisotropy A(m) is less coercive
than that in the easy-axis case. This plays a role in two places,
where we cannot use the arguments in [18] and [4]: to obtain a
sharp lower bound on the DMI term, and to rule out ‘vanishing’ in
the proof of existence. We introduce new arguments to circumvent
that lack of efficient control: see § 5.2, and Step 3 in the proof of
Proposition 6.1.

• The upper bound is obtained by a construction which relies on mod-
ifying Möbius maps to make their anisotropy A(m) finite. Here we
use, as in [6], a basic cut-off construction at one scale. The con-
struction in [4] is more elaborate and cuts tails off in an optimal
way with a modified Bessel function. The two constructions turn
out to provide the same accuracy, see Remark 4.2. It only affects
the explicit bound on the remainder term of order σ2/ ln2 σ in the
energy expansion.

1.7. Plan of the article. The article is organized as follows. In § 2 we
describe our tailored parametrization of the Möbius group. In § 3 we calcu-
late the DMI energy of conformal maps. In § 4 we describe the construction
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which provides the energy upper bound. In § 5 we prove the lower bound
and characterize maps which almost saturate it. In § 6 we use that charac-
terization to prove existence of minimizers for 0 < σ ≪ 1 and conclude the
proof of Theorem 1.3.

Acknowledgments. The authors are supported in part by the ANR projects
ANR-22-CE40-0006 and ANR-21-CE40- 0004, and by LabEx CIMI.

2. A PARAMETRIZATION OF THE MÖBIUS GROUP

The Möbius group (1.11) can be parametrized by

m = SΦ

(
z − z0

ρ

)
, z0 ∈ C, ρ > 0, S ∈ SO(3). (2.1)

This parametrization was convenient for the study of skyrmions in [4]. It is
naturally expressed in terms of the translation operators Tz0 defined in (1.5),
and of the dilation operators Dρ defined in (1.4). The corotation operators
Rϕ defined in (1.6) do not appear, which is consistent with the fact that the
optimal orbit of Möbius maps closest to skyrmions contains an axisymmet-
ric map, as explained in § 1.5. But in our case we need to keep better track
of corotations, and we choose therefore a different parametrization.

Lemma 2.1. The Möbius group can be parametrized by

m{z0,ρ,ϕ,α,β} = Tz0DρRϕm
[α,β], (2.2)

z0 ∈ C, ρ > 0, ϕ, α, β ∈ R ,

where

m[α,β] = Re1,2βΦ(w∗(e
−iαz)) = Φ(w[α,β](z)),

w[α,β](z) =
cos(β)w∗(e

−iαz) + i sin(β)

i sin(β)w∗(e−iαz) + cos(β)
, w∗(z) = i

z − 1

z + 1
.

Remark 2.2. For β = π/4, we have w[α,π/4](z) = ei(
π
2
−α)z.

Remark 2.3. For β ∈ π
2
Z we have w[0,β] = w∗ or 1/w∗ depending on the

value of β modulo π/2, but these two maps are on the same orbit generated
by corotations: for ϕ = π we have Rπ[Φ(w∗)] = Φ(1/w∗).

Proof of Lemma 2.1. The maps (2.2) are clearly Möbius maps, we need to
check that all Möbius maps can be obtained this way.

Consider an arbitrary Möbius map m. There exists ϕ ∈ R such that
v = Re3,−ϕm(∞) belongs to e⊥1 ∩ S2, the large circle which contains e2
and e3. Then there exists β ∈ R such that Re1,−2βv = e2, so that

m̃ = Re1,−2βR−ϕm
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satisfies m̃(∞) = e2. As a consequence, m̃ can be written as

m̃(z) = Φ

(
i
z − a

z + b

)
,

for some a, b ∈ C such that a+ b ̸= 0. We infer that

m = RϕRe1,2σΦ(w̃), w̃(z) = i
z − a

z + b
.

Using the identities

Re1,2θΦ(w) = Φ

(
w cos(θ) + i sin(θ)

i w sin(θ) + cos(θ)

)
,

Re3,θΦ(w) = Φ(eiθw) ,

this becomes m = Φ(w) with

w(z) = eiϕ
cos(β)w̃(e−iϕz) + i sin(β)

i sin(β)w̃(e−iϕz) + cos(β)
.

Thus, for any z0 ∈ C and ρ > 0 we have

D1/ρT−z0m = RϕRe1,2βΦ(w̄),

with

w̄(z) = w̃(ρz + e−iϕz0) = i
z − (a− e−iϕz0)/ρ

z + (b+ e−iϕz0)/ρ
.

Choosing

ρ =
|a+ b|

2
, z0 = eiϕ

a− b

2
,

we obtain

w̄(z) = i
z − eiα

z + eiα
= w∗(e

−iαz), α = arg(a+ b).

We conclude that

m = Tz0DρRϕm
[α,β],

with m[α,β](z) = Re1,2βΦ(w∗(e
−iαz)) and the parametrization (2.2) is in-

deed surjective. □
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3. DMI ENERGY OF MÖBIUS MAPS

In this section we compute the DMI energy of Möbius maps

m(z) = Φ(w[α,β](z)) = Re1,2β−π/2Φ(w
[α,π/4](z))

= Re1,2β−π/2Φ(ie
−iαz) ,

where Φ is the stereographic map defined in (1.2). The equalities follow
from the definition of w[α,β] in Lemma 2.1 and from Remark 2.2. For such
map m, the integrand of H̃(m) is not absolutely integrable, but we will see
that the integral

H̃(m;BR) = 2

ˆ
BR

m3(∂1m2 − ∂2m1) dx , (3.1)

admits a limit as R → ∞, thus providing a meaningful definition of H̃(m).
Using the notation z = x+ iy ∈ C ≈ R2, we find

m1 =
2(x sin(α)− y cos(α))

x2 + y2 + 1
,

m2 =
cos(2β) (x2 + y2 − 1)

x2 + y2 + 1
+

2 (x cos(α) + y sin(α)) sin(2β)

x2 + y2 + 1
,

m3 =
sin(2β) (x2 + y2 − 1)

x2 + y2 + 1
− 2 (x cos(α) + y sin(α)) cos(2β)

x2 + y2 + 1
,

and

2m3(∂1m2 − ∂2m1) =
4g(x, y)h(x, y)

(1 + x2 + y2)3
,

where

g(x, y) = − sin(2β) +
(
x2 + y2

)
sin(2β)

− 2x cos(α) cos(2β)− 2y sin(α) cos(2β),

h(x, y) = cos(α)
(
1 + sin(2β) + (1− sin(2β))(x2 − y2)

)
+ 2x cos(2β) + 2xy sin(α) (1− sin(2β)) .

Integrating on BR, and using that a function f(x, y) has zero integral if
it satisfies one of the antisymmetry properties f(x,−y) = −f(x, y) or
f(−x, y) = −f(x, y) or f(y, x) = −f(x, y), we are left with

1

4
H̃(m;BR) = cos(α) sin(2β)(1 + sin(2β))I1

− 4 cosα cos2(2β)I2,
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where

I1 =

ˆ
BR

x2 + y2 − 1

(x2 + y2 + 1)3
dxdy = −π

R2

(1 +R2)2
,

I2 =

ˆ
BR

x2

(x2 + y2 + 1)3
dxdy =

π

4

R4

(1 +R2)2
,

and therefore
(1 +R2)2

4π
H̃(m;BR) = − cosα cos2(2β)R4

− cos(α) sin(2β)(1 + sin(2β))R2 .

Taking the limit as R → ∞, we deduce

H̃(m[α,β]) = lim
R→∞

H̃(m[α,β];BR) = −4π cos(α) cos2(2β) , (3.2)

and we also obtain the estimate∣∣H̃(m[α,β])− H̃(m[α,β];BR)
∣∣ ≤ C

R2
, (3.3)

for all R ≥ 2, where C > 0 is an absolute constant.

4. ENERGY UPPER BOUND

In this section we prove the upper bound on the minimal energy, by esti-
mating the energy of explicit competitors.

Proposition 4.1. The infimum of the energy Eσ defined in (1.1) over the
space W−1 defined in (1.14) is bounded by

inf
W−1

Eσ ≤ 4π − πσ2

ln
(
σ−1 ln(1/σ)

) + C
σ2

ln2 σ
, (4.1)

for some absolute constant C > 0.

Proof of Proposition 4.1. As explained in the introduction, one would like
to use Möbius maps as competitors, but they have infinite anisotropy en-
ergy A(m), so we first need to modify them. We introduce a truncation
parameter L > 0 and define wL

∗ : C → C as

wL
∗ (z) = χ(|z|/L)w∗(z) + (1− χ(|z|/L))i (4.2)

= i− χ(|z|/L) 2i

z + 1
,

where w∗(z) = i(z− 1)/(z+1) as in Lemma 2.1 and χ is a smooth cut-off
function satisfying

1r≤1 ≤ χ(r) ≤ 1r≤2, 0 ≥ χ′ ≥ −2 .
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In analogy with the parametrization of Möbius maps given in Lemma 2.1,
this truncated function wL

∗ can be used to define general truncated Möbius
maps

m
{z0,ρ,ϕ,α,β}
L = Tz0DρRϕm

[α,β]
L , z0 ∈ C, ρ > 0, ϕ, σ, α, β ∈ R ,

m
[α,β]
L = Re1,2βΦ(w

L
∗ (e

−iαz)) .

Recall that here Φ is the stereographic map defined in (1.2). Note that the
invariances of the Dirichlet energy ensureˆ

R2

|∇m
{z0,ρ,ϕ,α,β}
L −∇m{z0,ρ,ϕ,α,β}|2 dx

=

ˆ
R2

|∇[Φ(w∗)− Φ(wL
∗ )]|2 dz

=

ˆ
|z|≥L

|∇[Φ(w∗)− Φ(wL
∗ )]|2 dz ≤ C

L2
,

so for large enough L these modified maps mL must satisfy Q(mL) = −1,
and belong to the admissible set W−1 defined in (1.14).

If β ̸= 0 modulo π/2, these maps have infinite anisotropy A(m), and all
values of β = 0 modulo π/2 give the same energy, so we assume β = 0.
The invariances (1.8) allow us to assume without loss of generality z0 = 0
and ϕ = 0. We are therefore left with three free parameters and denote

mα,ρ,L(z) = Dρm
[α,0]
L (z) = Φ

(
wL

∗

(
e−iα z

ρ

))
.

Using the invariances of each energy term, the properties

(mα,1,L)
2
3 = |∇mα,1,L|2 = 0 in R2 \B2L ,

(mα,1,L)
2
3 ≤

C

L2
and |∇mα,1,L|2 ≤

C

L4
in B2L \BL ,

and wL
∗ = w∗ in BL, we find

D(mα,ρ,L) = D(m0,1,L) =

ˆ
BL

∣∣∇[Φ(w∗)]
∣∣2 dz +O(1/L2),

H̃(mα,ρ,L) = ρH̃(mα,1,L) = ρH̃(m[α,0];BL) +O(ρ/L) ,

A(mα,ρ,L) = ρ2A(m0,1,L) = ρ2
ˆ
BL

Φ2
3(w∗) dz +O(ρ2) .

The expressions involving Φ(w∗) and m[α,0] in the right-hand sides can be
calculated explicitly. For the Dirichlet energy we know that the limit is 4π
as L → ∞, and the decay |∇[Φ(w∗)]|2 ≤ C/|z|4 as |z| → ∞ gives an error
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of order 1/L2. For the DMI energy we use (3.2) and (3.3). And for the
anisotropy term we haveˆ

BL

Φ2
3(w∗) dz =

ˆ
BL

(|w∗|2 − 1)2

(|w∗|2 + 1)2
dz

=

ˆ
BL

(|z − 1|2 − |z + 1|)2

(|z − 1|2 + |z + 1|)2
dz = 4

ˆ 2π

0

ˆ L

0

cos2 θ r2

(1 + r2)2
rdr dθ

= 2π

ˆ L2

0

t

(1 + t)2
dt = 2π ln(1 + L2)− 2πL2

1 + L2

Thus we find

D(mα,ρ,L) = 4π +O(1/L2),

H̃(mα,ρ,L) = −4πρ cos(α) +O(ρ/L) ,

A(mα,ρ,L) = 4πρ2 lnL+O(ρ2) ,

and deduce

Eσ(mα,ρ,L) ≤ 4π + Eσ(α, ρ, L) +O(σ2ρ/L+ σ2ρ2), (4.3)

where Eσ(α, ρ, L) =
C1

L2
+ 4πσ2

(
ρ2 lnL− ρ cos(α)

)
,

for some absolute constant C1 > 0. Minimizing Eσ over α gives α = 0 and

Eσ(0, ρ, L) =
C1

L2
+ 4πσ2

(
ρ2 lnL− ρ

)
.

Minimizing over ρ gives ρL = 1/(2 lnL) and

Eσ(0, ρL, L) =
C1

L2
− πσ2

lnL
.

Minimizing over L leads to, at main order for σ → 0,

Lσ =

√
2C1

π

ln(1/σ)

σ
,

ρσ = ρLσ =
1

2 ln(1/σ)

(
1 +O

( ln ln(1/σ)
ln(1/σ)

))
,

and

Eσ(0, ρσ, Lσ) = − πσ2

ln
(
σ−1 ln(1/σ)

) +O
(

σ2

ln2 σ

)
.

Plugging this into (4.3), we deduce the upper bound (4.1). □

Remark 4.2. The constant C1 in the above proof depends on the trunca-
tion (4.2) that we used to transform Möbius maps into maps with finite
anisotropy energy A(m). In [4], this modification of Möbius maps is done
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in a much more refined way, in order to obtain an optimal constant C1.
However, we see in the above proof that the precise value of C1 does not
affect the upper bound at main order when σ → 0. That refinement is there-
fore superfluous here, and it seems to us that the results in [4] could also be
obtained without that refinement.

5. ENERGY LOWER BOUND

In this section we consider a map m in the space W−1 defined in (1.14),
that is, m ∈ H(R2;S2) such that A(m) < ∞ and Q(m) = −1, and prove
a sharp lower bound on its energy, following quite closely the strategy in
[4], with some necessary adaptations.

The most important tool in that strategy is a stability estimate for the
Möbius group (1.11) as minimizers of the Dirichlet energy D(m), proved
in [4, Theorem 2.4]. That theorem provides an absolute constant c∗ > 0
(which could be made explicit) such that, for any m ∈ H1

c (R2;S2), there
exists a Möbius map Ψ ∈ M satisfyingˆ

R2

∣∣∇(m−Ψ)
∣∣2dx ≤ c∗

(ˆ
R2

|∇m|2dx− 8π
)
. (5.1)

Moreover, it is apparent from the alternative proofs of this result in [10, 23]
that the map Ψ can be chosen so that

u = m ◦Ψ−1 − idS2 = (m−Ψ) ◦Ψ−1 ,

has zero average on S2. Applying the Moser-Trudinger inequality on S2

[19] and changing variables, this impliesˆ
R2

|∇Ψ|2 exp
(

|m−Ψ|2´
R2 |∇(m−Ψ)|2 dx

)
dx

= 2

ˆ
S2
exp

(
|u|2´

S2 |∇u|2dH2

)
dH2 ≤ cMT ,

for some explicit absolute constant cMT > 0. Defining

L =

(ˆ
R2

|∇m|2dx− 8π

)−1/2

, (5.2)

and setting

v = m−Ψ , Ψ = m{z0,ρ,ϕ,α,β} ,

for some z0 ∈ C, ρ > 0 and ϕ, α, β ∈ R (according to the parametrization
of M provided by Lemma 2.1) we have thereforeˆ

R2

|∇v|2 dx ≤ c∗
L2

, (5.3)
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and
ˆ
R2

exp

(
v23´

R2 |∇v3|2

)
|∇Ψ|2 dx ≤ cMT . (5.4)

In the next two subsections we use these stability estimates to provide lower
bounds on the anisotropy and DMI energy in terms of Ψ and L.

5.1. Lower bounds for the anisotropy term. In this section we prove two
lower bounds on the anisotropy term

A(m) =

ˆ
R2

m2
3 dx .

The first lower bound serves to show that the angle β must be close to 0
modulo π/2, which then makes the second lower bound quite sharp. The
proofs are natural modifications of the two lower bounds in [4, Lemma 6.1
& Lemma 6.4].

Lemma 5.1. There exist L0, C > 0 depending on cMT and c∗ such that, if
L defined in (5.2) satisfies L ≥ L0, then

A(m)

ρ2
≥ 1

C
sin2(2β)L2 , (5.5)

and
A(m)

ρ2
≥ 4π cos2(2β) lnL− C , (5.6)

where ρ > 0 and β ∈ R are such that (5.3) and (5.4) are satisfied.

Remark 5.2. From (5.5) we infer

cos2(2β) = 1− sin2(2β) ≥ 1− C

L2

A(m)

ρ2
.

Plugging this into (5.6), we deduce(
1 + 4πC

lnL

L2

)
A(m)

ρ2
≥ 4π lnL− C ,

and therefore
A(m)

ρ2
≥ 4π lnL− C , (5.7)

for all L ≥ L0 and a possibly larger constant C > 0.

Proof of Lemma 5.1. Using the invariances, we assume without loss of gen-
erality that ρ = 1, z0 = 0, ϕ = 0 and α = π/2, so by (5.3) we have

m = m[π/2,β] + v,

ˆ
R2

|∇v|2 dx ≤ c∗
L2

.

Recalling Remark 2.2, we have

m[π/2,β] = Re1,2β−π/2Φ ,
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and we deduce that the third component of m is given by

m3 = − cos(2β)Φ2 + sin(2β)Φ3 + v3 . (5.8)

From this identity, the proofs of the first and second lower bound (5.5) and
(5.6) follow different strategies. For the first, we fix R ≥ 1, square (5.8),
use the elementary inequality (a + b)2 ≥ a2/2 − 2b2 and integrate on BR,
which givesˆ

BR

m2
3 dx ≥ 1

2

ˆ
BR

(
sin(2β)Φ3 − cos(2β)Φ2)

2 dx

− 2

ˆ
BR

v23 dx .

Using polar coordinates x = reiθ and the explicit expression (1.2) of the
stereographic map Φ we can explicitly calculate the first integral in the
right-hand side,ˆ

BR

(
sin(2β)Φ3 − cos(2β)Φ2)

2 dx

= 2π sin2(2β)

ˆ R

0

(r2 − 1)2

(r2 + 1)2
rdr + 4π cos2(2β)

ˆ R

0

r2

(r2 + 1)2
rdr

= π sin2(2β)
(
R2 − 6 ln(1 +R2) +

6

1 +R2

)
+ 2π

(
ln(1 +R2) +

1

1 +R2

)
≥ π

2
sin2(2β)R2 + 2π lnR ,

if R ≥ R0 for a large enough absolute constant R0 ≥ 1. Next we estimate
the integral of v23 , relying as in [4, Lemma 6.1] on the Moser-Trudinger
inequality (5.4). First we apply the inequality xy ≤ ex + y ln(y/e) with
x = v23/

´
|∇v3|2dx and y = |∇Φ|−2, to write´
BR

v23 dx´
R2 |∇v3|2 dx

=

ˆ
BR

v23´
R2 |∇v3|2 dx

|∇Φ|−2|∇Φ|2 dx

≤
ˆ
BR

exp

(
v23´

R2 |∇v3|2 dx

)
|∇Φ|2 dx+

ˆ
BR

ln

(
1

e |∇Φ|2

)
dx.

Noting that |∇Φ|2 = 8/(1+ |x|2)2 = |∇m[π/2,β]|2 and recalling the Moser-
Trudinger inequality (5.4) where Ψ = m[π/2,β], we deduce´

BR
v23 dx´

R2 |∇v3|2 dx
≤ cMT + 16πR2 lnR ,
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and combining this with the stability estimate (5.3) givesˆ
BR

v23 dx ≤ cMT
c∗
L2

+ 16πc∗
R2

L2
lnR . (5.9)

Gathering the above inequalities, we inferˆ
R2

m2
3 dx ≥ π

4
sin2(2β)R2 + π lnR− 2cMT

c∗
L2

− 16πc∗
R2

L2
lnR .

Choosing R = L/(4
√
2c∗), this becomesˆ

R2

m2
3 dx ≥ π

27c∗
sin2(2β)L2 +

π

2
lnL− 2cMT

c∗
L2

− π

2
ln(4

√
2c∗)

≥ π

27c∗
sin2(2β)L2 ,

provided L ≥ L0 for a large enough L0 ≥ 1, and proves the first lower
bound (5.5).

The proof of the second lower bound (5.6) follows the strategy of [4,
Lemma 6.4] relying on the Fourier transform

Fφ(ξ) =

ˆ
R2

e−ix·ξφ(x) dx .

Differentiating the identity (5.8) and taking Fourier transforms we have, for
ℓ = 1, 2,

iξℓFm3 = − cos(2β)F(∂ℓΦ2) + sin(2β)F(∂ℓΦ3) + F(∂ℓv3) .

Since Φ3 and Φ2/x2 are radial and real-valued, a direct calculation using
polar coordinates shows that

ReF(∂ℓΦ3) = ImF(∂ℓΦ2) = 0 ,

and we deduce

ξℓ
|ξ|

ImFm3 = cos(2β)
F(∂ℓΦ2)

|ξ|
− ReF(∂ℓv3)

|ξ|
.

We fix µ ≥ 0, to be chosen later. Applying the identityˆ
R2

|f |2 dξ −
ˆ
R2

µ|ξ|2

1 + µ|ξ|2
|g|2 dξ + µ

ˆ
R2

|ξ|2|f − g|2 dξ

=

ˆ
R2

(1 + µ|ξ|2)
∣∣∣f − µ|ξ|2

1 + µ|ξ|2
g
∣∣∣2 dξ ≥ 0 ,
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valid for any f ∈ L2(R2; (1 + |ξ|2)dξ) and g ∈ L2(R2; |ξ|2dξ), to f =
ξℓ ImFm3/|ξ| and g = cos(2β)F(∂ℓΦ2)/|ξ|, and summing over ℓ = 1, 2
we obtainˆ

R2

(ImFm3)
2 dξ ≥ cos2(2β)

ˆ
R2

µ|ξ|2

1 + µ|ξ|2
|F(∇Φ2)|2

|ξ|2
dξ

− µ

ˆ
R2

|F(∇v3)|2 dξ .

Using Plancherel’s identity

4π2

ˆ
R2

|φ|2 dx =

ˆ
R2

|Fφ|2 dξ ,

this impliesˆ
R2

m2
3 dx ≥ cos2(2β)

ˆ
R2

µ|ξ|2

1 + µ|ξ|2
|F(∇Φ2)|2

4π2|ξ|2
dξ

− µ

ˆ
R2

|∇v3|2 dx . (5.10)

As in [4], the first integral in the right-hand side can be explicitly calculated.
It is shown in [4, Lemma A.5] that

F(∇Φ2) = −4πK1(|ξ|)ξ2
ξ

|ξ|
,

where K1 is a modified Bessel function [1, § 9.6]. Thus we haveˆ
R2

µ|ξ|2

1 + µ|ξ|2
|F(∇Φ2)|2

4π2|ξ|2
dξ = 4π

ˆ ∞

0

µr2

1 + µr2
K1(r)

2 rdr ,

and, using the known asymptotics of Bessel functions [1, § 9.6.11],

K1(r) =
1

r
+O(r ln r) as r → 0 ,

we inferˆ ∞

0

µr2

1 + µr2
K1(r)

2 rdr ≥
ˆ 1

0

µr2

1 + µr2
K1(r)

2 rdr

≥
ˆ 1

0

µr

1 + µr2
dr − c1

ˆ 1

0

r| ln r| dr

for some absolute constant c1 > 0, and thereforeˆ
R2

µ|ξ|2

1 + µ|ξ|2
|F(∇Φ2)|2

4π2|ξ|2
dξ

≥ 4π

ˆ 1

0

µr

1 + µr2
dr − c1 = 2π ln(1 + µ)− c1 .
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Coming back to the lower bound (5.10) on
´
m2

3 dx and using also the sta-
bility estimate (5.3), this givesˆ

R2

m2
3 dx ≥ 2π cos2(2β) ln(1 + µ)− c1 −

c∗µ

L2
.

Choosing µ = c1L
2/c∗ we inferˆ

R2

m2
3 dx ≥ 4π cos2(2β) lnL− 2c1 − | ln(c1/c∗)| ,

which proves the second lower bound (5.5). □

5.2. Lower bound for the DMI term. In this section we prove a lower
bound on the DMI term

H̃(m) = 2

ˆ
R2

m3(∂1m2 − ∂2m1) dx .

Similar to Step 2 of [4, Lemma 6.5], that lower bound is in term of the DMI
energy of the Möbius map Ψ and a small error term. Here the error term is
not as good as in [4], this is due to the different form of our DMI term, and
the fact that the components of the stereographic map Φ given by (1.2) have
different integrability properties: (Φ3 + 1)2 is integrable, but Φ2

1 and Φ2
2 are

not. This forces us to use a slightly more involved argument to control the
error term.

Lemma 5.3. There exist L0, C > 0 depending on cMT and c∗ such that, if
L defined in (5.2) satisfies L ≥ L0, then

H̃(m)

ρ
≥ −4π cos(α) cos2(2β)− C

√
lnL

L
− C√

L

√
A(m)

ρ2
,

where ρ > 0 and α, β ∈ R are such that (5.3) and (5.4) are satisfied.

Proof of Lemma 5.3. Using the invariances, we assume without loss of gen-
erality that ρ = 1, z0 = 0 and ϕ = 0. Taking Remark 2.2 into account, we
are therefore left with

m = Ψ+ v, Ψ = m[α,β] = Re1,β−π/2Φ̃ , Φ̃(z) = Φ(e−iαiz) ,

where Φ is the stereographic map defined in (1.2), and v satisfies (5.3) and
(5.4). The integrand of H̃(m) satisfies the identities

m3(∂1m2 − ∂2m1)−m3(∂1v2 − ∂2v1)

= Ψ3(∂1Ψ2 − ∂2Ψ1) + v3(∂1Ψ2 − ∂2Ψ1)

= m3(∂1Ψ2 − ∂2Ψ1) ,
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from which we infer

H̃(m)− 2

ˆ
R2

m3(∂1v2 − ∂2v1) dx

= H̃(Ψ;B√
L) + 2

ˆ
B√

L

v3(∂1Ψ2 − ∂2Ψ1) dx

+ 2

ˆ
|x|≥

√
L

m3(∂1Ψ2 − ∂2Ψ1) dx .

This implies

1

2

(
H̃(m)− H̃(Ψ;B√

L)
)

=

ˆ
R2

m3(∂1v2 − ∂2v1) dx+

ˆ
B√

L

v3(∂1Ψ2 − ∂2Ψ1) dx

+

ˆ
|x|≥

√
L

m3(∂1Ψ2 − ∂2Ψ1) dx ,

and, using the Cauchy-Schwarz inequality,

1

8

(
H̃(m)− H̃(Ψ;B√

L)
)2

≤ A(m)

ˆ
R2

|∇v|2 dx+

ˆ
B√

L

v23 dx

ˆ
R2

|∇Ψ|2 dx

+ A(m)

ˆ
|x|≥

√
L

|∇Ψ|2 dx .

Using the fact that |∇Ψ|2 = |∇Φ|2 = 8/(1 + |x|2)2, the stability estimate
(5.3) on

´
|∇v|2dx, and the estimate (5.9) on integrals of v23 , this implies

1

4

(
H̃(m)− H̃(Ψ;B√

L)
)2

≤ A(m)
c∗ + 8π

L
+ 8π

(
cMT

c∗
L

+ 8πc∗
lnL

L

)
Finally, recalling the explicit expression (3.2) of H̃(Ψ) and its error (3.3)
from H̃(Ψ;B√

L), we have

H̃(Ψ;B√
L) ≥ −4π cos(α) cos2(2β)− C

L
,

and combining this with the previous estimate gives the conclusion. □
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5.3. Lower bound for the full energy. In this section we combine the
lower bounds of Lemma 5.1 and Lemma 5.3 with elementary calculations
to deduce a sharp energy lower bound and characterize the case of near
equality.

Proposition 5.4. There exists C0 > 0 and σ0 ∈ (0, 1/4] depending explic-
itly on cMT and c∗ such that, for any map m ∈ W−1 defined in (1.14) and
0 < σ < σ0, the energy Eσ(m) defined in (1.1) is bounded below by

Eσ(m) ≥ 4π − πσ2

ln
(
σ−1 ln(1/σ)

) − C0
σ2

ln2 σ
. (5.11)

Moreover, if m = mσ saturates that lower bound, in the sense that

Eσ(mσ) ≤ 4π − πσ2

ln
(
σ−1 ln(1/σ)

) +K
σ2

ln2 σ
, (5.12)

for some K ≥ C0, then there exists a constant C(K) > 0 depending explic-
itly on K and a Möbius map Ψ = m{z0,ρ,ϕ,α,β} as in (2.2) such that

1

C(K)

σ2

ln2 σ
≤
ˆ
R2

|∇mσ −∇Ψ|2 dx ≤ C(K)
σ2

ln2 σ
,

and the parameters ρ > 0, α, β ∈ R satisfy∣∣∣∣ρ− 1

2 ln(1/σ)

∣∣∣∣ ≤ C(K)

ln
3
2 (1/σ)

, |α| ≤ C(K)√
ln(1/σ)

,

and |β| ≤ σ√
ln(1/σ)

.

Proof of Proposition 5.4. We first note, for 0 < σ < 1/4, the basic lower
bound

Eσ(m) ≥ σ2

2
A(m) + (1− 8σ2)D(m)

≥ σ2

2
A(m) + (1− 8σ2)4π|Q(m)| , (5.13)

where the last inequality follows from (1.10) and the first inequality from∣∣H̃(m)
∣∣ = 2

∣∣∣∣ ˆ
R2

m3(∂1m2 − ∂2m1) dx

∣∣∣∣
≤ 1

2

ˆ
R2

|m3|2 dx+ 2

ˆ
R2

(∂1m2 − ∂2m1)
2 dx

≤ 1

2
A(m) + 8D(m) .

We may assume without loss of generality that the map m satisfies

Eσ(m) ≤ 4π ,
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since otherwise (5.11) is automatically true. From the basic lower bound
(5.13) and the definition (5.2) of L, this implies, for 0 < σ < σ0 ≤ 1/4,

A(m) ≤ 64π and L ≥ 1

4σ
. (5.14)

If σ0 is small enough, then L ≥ L0, for L0 as in Lemma 5.1 and Lemma 5.3.
During the rest of the proof we will assume that L0 is as large as we need,
and will denote by C a generic constant which may change from line to line,
but whose explicit dependence on c∗ and cMT can be kept explicit track of.

Combining the definitions (1.1) of the energy Eσ and (5.2) of L with the
lower bound for the DMI term H̃(m), we find

Eσ(m) ≥ 4π +
1

2L2
+ σ2A(m)− 4πσ2ρ cos(α) cos2(2β)

− Cσ2

√
A(m) + ρ

√
lnL√

L
,

and, using

2ρ

√
lnL√
L

≤ ρ2 +
lnL

L
≤ ρ2 +

1√
L

and (5.14) to estimate the last term,

Eσ(m)− 4π + Cσ2(ρ2 +
√
σ)

≥ 1

2L2
+ σ2A(m)− 4πσ2ρ cos(α) cos2(2β) . (5.15)

Plugging in the lower bound (5.7) of Remark 5.2 for the anisotropy term
A(m) we find

Eσ(m)− 4π + Cσ2(ρ2 +
√
σ)

≥ 1

2L2
+ 4πσ2ρ2 lnL− 4πσ2ρ+ 4πσ2ρ (1− cosα)

+ 4πσ2ρ cos(α) sin2(2β)

≥ 1

2L2
+ 4πσ2ρ2 lnL− 4πσ2ρ+ 4πσ2ρ (1− cosα) . (5.16)

Using that the last term is nonnegative, that Eσ(m) ≤ 4π, and that 4πσ2ρ ≤
2πσ2ρ2 + 4πσ2, we deduce in particular that

4πσ2ρ2 lnL ≤ Cσ2ρ2 + Cσ5/2 + 4πσ2 .

If L0 is large enough and σ0 is small enough we can absorb the first term of
the right-hand side into the first term of the left-hand side, and the second
term of the right-hand side into the last, to deduce

2πσ2ρ2 lnL ≤ 8πσ2 ,
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and therefore, recalling that L ≥ 1/4σ,

ρ ≤ 8

ln(1/σ)
. (5.17)

Using this to estimate the third term in the first line of (5.16), we obtain

Eσ(m)− 4π + C
σ2

ln2 σ

≥ fσ
(
ρ,

1

L

)
+ 4πσ2ρ (1− cosα) , (5.18)

where fσ(ρ, t) =
t2

2
− 4πσ2ρ2 ln t− 4πσ2ρ .

The function t 7→ fσ(ρ, t) is convex, with zero derivative at t∗(ρ) = 2
√
πσρ,

and we have the identity

fσ(ρ, t)− fσ(ρ, t∗(ρ)) =
1

2
(t− t∗(ρ))

2

+ 4πσ2ρ2g∗
(
t∗(ρ)/t

)
, (5.19)

where g∗(x) = ln x− 1 +
1

x
≥ 0 ∀x > 0 .

Moreover, its minimal value at t∗ is given by

fσ
(
ρ, t∗(ρ)

)
= 2πσ2

(
ρ2 + 2ρ2 ln

( 1

2
√
πσρ

)
− 2ρ

)
≥ 4πσ2

(
ρ2 ln

( 1

2
√
πσρ

)
− ρ

)
= − πσ2

ln
(
σ−1 ln(1/σ)

)
+ 4πσ2 ln

( 1

2
√
πσρ

)(
ρ− 1

2 ln
(
1/(2

√
πσρ)

))2

+
πσ2 ln

(
1/(2

√
πρ ln(1/σ))

)
ln
(
σ−1 ln(1/σ)

)
ln
(
1/(2

√
πσρ)

) .
If σ0 is small enough, then thanks to (5.17) we have 2

√
πρ ≤ 1 and the

denominator of the last term is ≥ ln2 σ. Combining this with (5.19) and
(5.17), we deduce

fσ(ρ, t) ≥ − πσ2

ln
(
σ−1 ln(1/σ)

)
+ 4πσ2 ln

( ln(1/σ)
σ

)(
ρ− 1

2 ln
(
1/(2

√
πσρ)

))2
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+ 4πσ2ρ2g∗

(2√πσρ

t

)
+

πσ2 ln
(
4/(ρ ln(1/σ))

)
ln2 σ

− C
σ2

ln2 σ
.

Plugging this inequality into the lower bound (5.18) we obtain

Eσ(m)− 4π

σ2
+

π

ln
(
σ−1 ln(1/σ)

) +
C0

ln2 σ

≥ 4π ln
( ln(1/σ)

σ

)(
ρ− 1

2 ln
(
1/(2

√
πσρ)

))2

+
π ln

(
4/(ρ ln(1/σ))

)
ln2 σ

+ 4πρ2g∗
(
2L

√
πσρ

)
+ 4πρ (1− cosα) , (5.20)

for some absolute constant C0 > 0 depending explicitly on c∗ and cMT.
Since all terms in the last three lines of (5.20) are nonnegative, this implies
the lower bound (5.11).

Now we assume that the map m = mσ saturates that lower bound, that
is, it satisfies the upper bound (5.12) for some K ≥ C0. In the rest of the
proof, we will be denote by C(K) a generic positive constant depending on
K and the previous absolute constants, whose value may change from line
to line.

Under the assumption (5.12), all the nonnegative terms in the right-hand
side of (5.20) are bounded by 2K/ ln2 σ. For the second term, this implies

ρ ≥ 4e−2K/π

ln(1/σ)
,

and we deduce∣∣∣∣ 1

2 ln
(
1/(2

√
πσρ)

) − 1

2 ln(1/σ)

∣∣∣∣ = ln
(
1/(2

√
πρ)

)
2 ln(1/σ) ln

(
1/(2

√
πσρ)

)
≤ ln ln(1/σ) + CK

2 ln2 σ
.

This and the fact that the first term in the right-hand side of (5.20) is ≤
2K/ ln2 σ imply∣∣∣∣ρ− 1

2 ln(1/σ)

∣∣∣∣ ≤ C(K)

ln
3
2 (1/σ)

, (5.21)

which is the claimed estimate on ρ.
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Next we use that the third term in the right-hand side of (5.20) is ≤
2K/ ln2 σ and that C(K)ρ ≥ ln(1/σ), to obtain

g∗(2L
√
πσρ) ≤ C(K),

where we recall that g∗(x) = ln x− 1+ 1/x. Since g∗(x) → +∞ as x → 0
and x → ∞, we infer

1

C(K)
≤ Lσρ ≤ C(K),

and using (5.21) this gives
1

C(K)

ln(1/σ)

σ
≤ L ≤ C(K)

ln(1/σ)

σ
. (5.22)

The fact that the fourth term in the right-hand side of (5.20) is ≤ 2K/ ln2 σ,
implies

1

C
dist2(α, 2πZ) ≤ 1− cosα ≤ C(K)

ln(1/σ)
.

Since α can be chosen in [−π, π], this implies the claimed estimate on α.
Finally, plugging the assumption (5.12) and the estimate (5.21) of ρ back

into the inequality (5.15) implies

A(m) ≤ C(K)

ln(1/σ)
.

Combining this with the first lower bound (5.5) on A(m) and with the esti-
mates (5.21) and (5.22) of ρ and L gives

sin2(2β) ≤ C(K)σ2

ln(1/σ)
,

and therefore

dist2
(
β,

π

2
Z
)
≤ π2

4
sin2(2β) ≤ C(K)

σ2

ln(1/σ)
.

Taking into account Remark 2.3, after possibly redefining the angle ϕ this
implies the claimed estimate on β.

Recalling the definition (5.2) of L, the above bounds (5.22) turn into

1

C(K)

σ2

ln2 σ
≤
ˆ
R2

|∇mσ|2 dx− 8π ≤ C(K)
σ2

ln2 σ
.

Combining this with the stability estimate (5.1) and the classical identityˆ
R2

|∇mσ|2 dx− 8π =

ˆ
R2

|∇mσ −∇Ψ|2 dx

−
ˆ
R2

|∇Ψ|2|mσ −Ψ|2 dx
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≤
ˆ
R2

|∇mσ −∇Ψ|2 dx ,

which follows from the harmonic map equation −∆Ψ = |∇Ψ|2Ψ and the
identity |mσ −Ψ|2 = 2(Ψ−mσ) ·Ψ, we deduce

1

C(K)

σ2

ln2 σ
≤
ˆ
R2

|∇mσ −∇Ψ|2 dx ≤ C(K)
σ2

ln2 σ
,

thus concluding the proof of Proposition 5.4. □

6. EXISTENCE OF MINIMIZERS AND PROOF OF THEOREM 1.3

In this section we rely on the characterization of near-minimizers in Propo-
sition 5.4 to show that the infimum of Eσ on W−1 is attained, provided σ is
small enough. This follows the standard concentration-compactness strat-
egy applied also in [7, 16, 18, 6], but we need a different argument to rule
out “vanishing”.

Proposition 6.1. There exists an absolute constant σ0 > 0, depending ex-
plicitly on cMT and c∗, such that

inf
W−1

Eσ = min
W−1

Eσ ,

for 0 < σ < σ0.

Thanks to this existence result we may now prove our main theorem.

Proof of Theorem 1.3. The existence of a minimizer mσ ∈ W−1 is pro-
vided by Proposition 6.1. The upper bound (4.1) in the energy expansion
is provided by the construction in § 4. The lower bound and the descrip-
tion of the minimizer in terms of Möbius maps is provided by Proposi-
tion 5.4, taking into account the parametrization of Möbius maps provided
by Lemma 2.1. □

Finally we prove that Eσ attains its infimum on W−1.

Proof of Proposition 6.1. The proof is divided in three steps: some basic
observations on minimizing sequences, the conclusion under a tightness
assumption, and finally a proof of that tightness assumption. All these steps
follow well-known arguments, but we provide a fair amount of details to
convince the reader that they do adapt to our case.

Step 1: Basic observations.

The first observation is that the energy can be rewritten as

Eσ(m) =

ˆ
R2

eσ(m) dx, (6.1)
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eσ(m) =
1

2
(∂2m1 − 2σ2m3)

2 +
1

2
(∂1m2 + 2σ2m3)

2

+
1

2
(∂1m1)

2 +
1

2
(∂2m2)

2 + σ2(1− 4σ2)m2
3 .

For 0 < σ < 1/2, this identity impliesˆ
R2

m2
3 dx ≤ 1

σ2(1− 4σ2)
Eσ(m) ,

and
ˆ
R2

|∇m|2 dx ≤ 4Eσ(m) + 8σ4

ˆ
R2

m2
3 dx ,

so any minimizing sequence m(k) ∈ W−1 satisfying

Eσ(m
(k)) → inf

W−1

Eσ ,

admits a subsequence, still denoted m(k), such that

∇m(k) ⇀ ∇m and m
(k)
3 ⇀ m3 weakly in L2(R2) ,

for some m ∈ W , where the space W is defined in (1.13). Moreover, the
identity (6.1) also implies that Eσ is a convex function of m, and therefore
satisfies the lower semicontinuity property

Eσ(m) ≤ lim inf Eσ(m
(k)) = inf

W−1

Eσ . (6.2)

In order to conclude that m minimizes Eσ in W−1, it remains to show that
the weak limit m actually belongs to W−1. This is not directly obvious
because the topological degree Q(m) defined in (1.3) is not continuous
with respect to that weak convergence.

Note that, if 0 < σ < σ0 for a small enough σ0, the upper bound (4.1)
together with the basic lower bound (5.13) imply

inf
W−1

Eσ < inf
Wq

Eσ if |q| ≥ 2 . (6.3)

From this and (6.2) it follows that Q(m) ∈ {0,±1}. In order to conclude
that Q(m) = −1, we therefore only need to show that Q(m) < 0.

Step 2. Conclusion under a tightness condition.

As in [18] the proof that Q(m) < 0 relies on a concentration-compactness
argument. That argument shows that, along a non-relabeled subsequence
and modulo translations Tzk which keep the energy invariant (1.8), the L1

sequence

fk = |∇m(k)|2 + (m
(k)
3 )2 is uniformly tight, that is,

sup
k≥1

ˆ
|x|≥R

fk dx −→ 0 as R → +∞ . (6.4)
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That tightness, together with the strong convergence of m(k) in L2(BR) for
any R > 0 ensured by Rellich-Kondratchov’s theorem, implies, as in [18,
Lemma 4.1],

A(m(k)) + H̃(m(k)) −→ A(m) + H̃(m) .

Moreover, classical arguments, see e.g. [22, Theorem 1.6], show that the
functional D(m) + 4πQ(m) is lower semicontinuous on H1

c (R2;S2) with
respect to the weak convergence ∇m(k) ⇀ ∇m in L2(R2), because it can
be written as

D(m) + 4πQ(m) =

ˆ
R2

W (∇m,m) dx ,

W (∇m,m) =
1

2
|∇m|2 −m · ∂1m× ∂2m ≥ 0,

and W (m, ·) is a nonnegative, hence convex, quadratic form. Since Eσ =

D + σ2(A+ H̃), we infer the lower semicontinuity property

Eσ(m) + 4πQ(m) ≤ lim inf
k→∞

(
Eσ(m

(k)) + 4πQ(m(k))
)
.

Recalling that m(k) ∈ W−1 is a minimizing sequence, we deduce

Eσ(m) + 4πQ(m) ≤ inf
W−1

Eσ − 4π .

If 0 < σ < σ0 for a small enough σ0, the right-hand side is negative due
to the upper bound (4.1), and Eσ(m) ≥ 0 due to (5.13), so this implies
Q(m) < 0, hence Q(m) = −1 and m ∈ W−1. Together with (6.2) this
concludes the proof that the infimum of Eσ on W−1 is attained, provided
we show the tightness property (6.4).

Step 3. Proof of the tightness property.

As in [18], the tightness property (6.4) is obtained by ruling out, along
a subsequence, the two other cases in the alternative established in [17,
Lemma I.1]: vanishing, that is,

sup
z0∈R2

ˆ
|z−z0|≤R

fk dz → 0 , ∀R > 0 , (6.5)

and dichotomy, which implies, modulo translations Tzk , the existence of
Rk > 1 such that

lim inf

ˆ
|z|≤Rk

fk dz > 0, lim inf

ˆ
|z|≥2Rk

fk dz > 0 , (6.6)

and
ˆ
Rk≤|z|≤2Rk

fk dz → 0 .
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Contrary to [18, Lemma 4.2] for the easy-axis anisotropy, in our case van-
ishing (6.5) does not seem to directly imply that H̃(m(k)) → 0. We rely in-
stead on the upper bound (4.1) and the characterization of near-minimizers
in Proposition 5.4 to discard vanishing. Thanks to (4.1) and the fact that
m(k) is a minimizing sequence, we know indeed that m(k) satisfies (5.12)
for some absolute constant K > 0 and large enough k. According to Propo-
sition 5.4, there exists therefore a Möbius map Ψ(k) and zk ∈ R2 such thatˆ

R2

|∇m(k) −∇Ψ(k)|2 dz ≤ 1

4
,

and
ˆ
|z−zk|≤1

|∇Ψ(k)|2 dz ≥ 1 .

The second inequality follows from the fact that the concentration scale
ρ > 0 of the Möbius map Ψ provided by Proposition 5.4 is arbitrarily small
if σ0 is small enough. These two inequalities imply thatˆ

|z−zk|≤1

fk dz ≥
ˆ
|z−zk|≤1

|∇m(k)|2 dz ≥ 1

4
,

thus ruling out vanishing (6.5).
The dichotomy case (6.6) can be ruled out as in [18], by using the con-

struction of [6, Lemma 8] adapted to our setting. It provides two maps
m(k,1),m(k,2) ∈ W such that

m(k) = m(k,1) in BRk
, m(k) = m(k,2) outside B2Rk

,ˆ
|z|≥Rk

|∇m(k,1)|2 + (m
(k,1)
3 )2 dx −→ 0 ,

ˆ
|z|≤2Rk

|∇m(k,2)|2 + (m
(k,2)
3 )2 dx −→ 0 . (6.7)

We briefly sketch that construction. We select a radius ρk ∈ [Rk, 2Rk] such
that

Rk

ˆ
∂Bρk

fk dH1 ≤
ˆ
Rk<|z|<2Rk

fk dz = δk → 0 .

This implies that the map θ 7→ m̂(k)(θ) = m(k)(ρke
iθ) satisfies

1

2

ˆ 2π

0

|∂θm̂(k)|2 dθ +R2
k

ˆ 2π

0

(m̂
(k)
3 )2 dθ ≤ δk .

In particular, m̂(k) has small oscillation over S1, its average must be close
to S1 × {0} ⊂ S2, and we may find ξ(k) ∈ S1 × {0} such that

sup
θ∈S1

|m̂(k)(θ)− ξ(k)|2 ≤ Cδk .
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Then we define, using polar coordinates x = reiθ,

m(k,1) =

{
m(k) in Bρk ,

Π
(
ξ(k) + χ1(r/ρk)

(
m̂(k)(θ)− ξ(k)

))
for r ≥ ρk ,

m(k,2) =

{
m(k) outside Bρk ,

Π
(
ξ(k) + χ2(r/ρk)

(
m̂(k)(θ)− ξ(k)

))
for 0 < r < ρk ,

where Π(X) = X/|X| is the projection onto S2 and χ1, χ2 are smooth
cut-off functions satisfying

1r≤1 ≤ χ1(r) ≤ 1r≤2, 1r≥1 ≤ χ2(r) ≤ 1r≥1/2 ,

and it can be checked that these maps satisfy (6.7).
The properties (6.7) of m(k,1),m(k,2) imply that their integer-valued topo-

logical degrees satisfy

Q(m(k,1)) +Q(m(k,2)) = Q(m(k)) = −1 ,

and their energies satisfy

Eσ(m
(k)) = Eσ(m

(k,1)) + Eσ(m
(k,2)) + o(1) . (6.8)

Since m(k) is a minimizing sequence for Eσ in W−1, and Eσ ≥ 0, this
together with the inequality (6.3) implies, along a subsequence and for large
enough k,

Q(m(k,1)) = q1 ∈ {0,±1} , Q(m(k,2)) = q2 ∈ {0,±1} .

Since q1 + q2 = −1, we have either q1 = −1 or q2 = −1. Moreover, the
first line in (6.6), the first inequality in (5.13), and the properties (6.7) of
m(k,1),m(k,2) imply, along a subsequence,

E(m(k,1)) → µ1 > 0, E(m(k,2)) → µ2 > 0.

If q1 = −1, we also have µ1 ≥ infW−1 Eσ = limEσ(m
(k)), thus contra-

dicting (6.8). And if q2 = −1 we have µ2 ≥ limEσ(m
(k)) and again a

contradiction. This shows that the dichotomy case (6.6) cannot occur and
concludes the proof of the tightness property (6.4). □

APPENDIX A. CRITICAL SOBOLEV SPACES ON THE PLANE AND ON
THE SPHERE

In this appendix we recall, for the readers’ convenience, the identifica-
tion between functions with finite Dirichlet energy on the plane and on the
sphere, via stereographic projection. And, more generally, functions on Rn
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and Sn with finite n-energy for any n ≥ 2. That is, we compare the homo-
geneous Sobolev space

H(Rn) =
{
v ∈ W 1,1

loc (R
n) :

ˆ
Rn

|∇v|n dx < ∞
}
, (A.1)

and the Sobolev space W 1,n(Sn). As in (1.2) we define

Φ: Rn ∪ {∞} → Sn ⊂ Rn+1 ,

x 7→
(

2x

1 + |x|2
,
|x|2 − 1

1 + |x|2

)
if x ∈ Rn ,

∞ 7→ en+1 = (0, . . . , 0, 1) ,

whose inverse is the stereographic projection

Φ−1 : Sn → Rn ,

ξ 7→ 1

1− ξn+1

(ξ1, . . . , ξn) if ξ ̸= en+1 ,

en+1 7→ ∞ .

A crucial property of Φ is its conformality:

⟨∂iΦ, ∂jΦ⟩ =
4

(1 + |x|2)2
δij for i, j ∈ {1, . . . , n} .

(In general, a diffeomorphism between riemannian manifold is conformal
if it induces a conformal change of metric, see e.g. [20, Chapter 7].) Given
any w ∈ C1(Sn), we have v = w ◦ Φ ∈ C1(Rn), and the n-energy has the
conformal invariance propertyˆ

Sn
|∇Tw|n dHn =

ˆ
Rn

|∇v|n dx , (A.2)

where ∇T denotes the tangential gradient on Sn. Note that, given a mea-
surable function v : Rn → R, the function w = v ◦ Φ−1 is defined almost
everywhere and measurable on Sn. The following result is folklore, but we
could not find a precise reference so we include a proof below.

Proposition A.1. For any measurable v : Rn → R, we have v ∈ H(Rn) if
and only if w = v ◦ Φ−1 ∈ W 1,n(Sn), and the identity (A.2) is satisfied.

Before proving proving Proposition A.1 we gather some consequences
that are relevant to the setting of this article. First, if v ∈ H(Rn;Sn), then
w = v ◦Φ−1 ∈ W 1,n(Sn, Sn) has a well-defined topological degree Q ∈ Z,
see e.g. [5]. Using the classical expression of that degree for C1 maps and
arguing by approximation gives the formula

Q = −
ˆ
Sn

det(w, ∂τ1w, . . . , ∂τnw) dHn ,
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where (τ1, . . . , τn) is any choice of direct orthonormal frame of the tangent
space to Sn. Coming back to v and using again the conformality of Φ we
obtain

Corollary A.2. For a sphere-valued map v ∈ H(Rn;Sn), the quantity

Q(v) =
1

Hn(Sn)

ˆ
Rn

det(v, ∂1v, · · · , ∂nv) dx ,

is a well-defined integer, which corresponds to the topological degree of
w = v ◦ Φ−1 ∈ W 1,n(Sn;Sn).

Another consequence of Proposition A.1 concerns the vanishing mean
oscillation property: functions in W 1,n(Sn) have vanishing mean oscillation
at every point [5, § I.2]. Applying this to the function w at en+1 translates,
after a change of variable, into vanishing mean oscillation “at ∞” for any
function v ∈ H(Rn), namely

−
ˆ
|x|≥R

|v − vR|
dx

(1 + |x|2)n
→ 0 as R → ∞ ,

where the average is taken with respect to the measure dx/(1 + |x|2)n, and
vR is the mean value

vR = −
ˆ
|x|≥R

v
dx

(1 + |x|2)n
.

In general, that mean value need not have a limit as R → ∞. In fact, we
have vR → v∞ as R → ∞ if and only if en+1 is a Lebesgue point of w,
with value w(en+1) = v∞. Note that the function R 7→ vR is continuous, so
the set of possible limits of vRk

along subsequence Rk → ∞ is connected.
Moreover, if we happen to have the additional information thatˆ

Rn

f(v)
dx

(1 + |x|2)n
2

< ∞ ,

for some L-Lipschitz function f , then we deduce that f(vR) → 0 as R →
∞, thanks to the inequalities

|f(vR)| = −
ˆ
|x|≥R

|f(vR)|
dx

(1 + |x|2)n

≤ L−
ˆ
|x|≥R

|v − vR|
dx

(1 + |x|2)n
+−
ˆ
|x|≥R

|f(v)| dx

(1 + |x|2)n

≤ L−
ˆ
|x|≥R

|v − vR|
dx

(1 + |x|2)n
+ C

ˆ
|x|≥R

|f(v)| dx

(1 + |x|2)n
2

,
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where we used that

1

(1 +R2)
n
2

≤ C

ˆ
|x|≥R

dx

(1 + |x|2)n
,

for some constant C > 0 depending on n. If v takes values into a closed
set X ⊂ Rk, applying this to f = dist(·, X) shows that dist(vR, X) → 0
as R → ∞. And if we know in addition that g(v) is integrable on Rn

for some Lipschitz function g, then all possible limits of subsequences vRk

must belong to a single connected component of X ∩ g−1({0}). If all such
connected components are points, then vR converges and en+1 is a Lebesgue
point of w. Applying this to n = 2, X = S2 ⊂ R3 and g(x) = 1 − x3 or
1− x2

3 for x ∈ S2, we deduce the following.

Corollary A.3. For a map m ∈ H(R2;S2), if either 1−m2
3 or 1−m3 is in-

tegrable on R2, then e3 is a Lebesgue point of w = m◦Φ−1 ∈ W 1,2(S2;S2).

We finally turn to the proof of Proposition A.1.

Proof of Proposition A.1. First we show that, if w ∈ W 1,n(Sn), then v =
w ◦ Φ belongs to H(Rn) and (A.2) is satisfied. This follows by approxi-
mating w with smooth functions wϵ ∈ C1(Sn) to which we apply (A.2) and
pass to the limit. To make sure that vϵ = wϵ ◦ Φ converges in L1

loc(Rn) to
v = w ◦ Φ we use for instance the identityˆ

Sn
u(y) dHn(y) =

ˆ
Rn

u ◦ Φ(x) 2ndx

(1 + |x|2)n
, (A.3)

valid for any measurable u : Sn → [0,∞], applied to u = |w − wϵ|.
Reciprocally, let us assume that v ∈ H(Rn), and prove that w = v ◦ Φ−1

belongs to W 1,n(Sn). From localized versions of the identities (A.2)-(A.3)
we see that

w ∈ W 1,n
loc (S

n \ {en+1}) and ∇Tw ∈ Ln(Sn \ {en+1}),

where ∇Tw is the distributional gradient of w in Sn \ {en+1}. In order to
conclude that w ∈ W 1,n(Sn), it suffices to show that w ∈ Ln(Sn). This im-
plies indeed that w ∈ W 1,n(Sn \ {en+1}) and therefore w ∈ W 1,n(Sn)
since, using the terminology of [13], points are removable for Sobolev
spaces in dimension n ≥ 2. We recall here the proof of that fact: work-
ing in a local chart, this amounts to showing that, if Ω = (−1, 1)n and
u ∈ W 1,p(Ω \ {0}) for some p ≥ 1, then the distributional gradient of
u on Ω is equal to its distributional gradient on Ω \ {0}. To check this,
note that for almost every x′ = (x2, . . . , xn) ∈ Ω′ = (−1, 1)n−1 \ {0}
we have u(·, x′) ∈ W 1,p((−1, 1)) with distributional derivative given by
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∂1u(·, x′) ∈ Lp((−1, 1)), so for any φ ∈ C∞
c (Ω) we can compute

⟨∂1u, φ⟩ = −
ˆ
Ω′

ˆ 1

−1

u ∂1φdx1dx
′ =

ˆ
Ω′

ˆ 1

−1

φ∂1u dx1dx
′

=

ˆ
Ω\{0}

φ∂1u dx ,

and similarly for the other derivatives. In view of (A.3), the fact that w ∈
Ln(Sn) is ensured by Lemma A.5 below. □

Remark A.4. It would have been tempting to prove the second implication
(v ∈ H ⇒ w ∈ W 1,n) by approximation with smooth functions, as for the
first implication. But there is an additional difficulty: while w ∈ C1(Sn)
implies v = w ◦Φ ∈ C1 ∩H(Rn), the converse implication it not true. For
instance, the function v(x) = ln(1 + ln(1 + |x|2)) belongs to C1 ∩H(Rn),
but w = v ◦ Φ−1 is not continuous at en+1 ∈ Sn. (In fact en+1 is not even a
Lebesgue point of w.) That is why we argued differently.

Lemma A.5. For all v ∈ H(Rn) we haveˆ
Rn

|v|n dx

(1 + |x|2)n
≤ c

ˆ
Rn

|∇v|n dx+ c

ˆ
B1

|v|n dx ,

for some constant c > 0 depending on n.

Proof of Lemma A.5. We introduce the notation

A(v) =

ˆ
Rn

|∇v|n dx+ c

ˆ
B1

|v|n dx ,

and denote by c > 0 a generic constant depending on n, which may change
from line to line. By Sobolev inequality in B1 ⊂ Rn we haveˆ

B1

|v|n dx ≤ cA(v) ,

so it suffices to show thatˆ
|x|≥1

|v|n dx

|x|2n
≤ cA(v) .

To that end we consider the function

f(r) = −
ˆ
Sn−1

v(rω) dHn−1(ω) ∀r ≥ 1 .

We fix r0 ∈ (1/2, 1) such that

|f(r0)| ≤ c

ˆ
B1

|v| dx .
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For all R ≥ 1 we have

|f(R)− f(r0)| ≤
ˆ R

r0

−
ˆ
Sn−1

|∂rv|(rω) dHn−1(ω) dr

≤
ˆ
BR\Br0

|∇v| dx

|x|n−1

≤
( ˆ

Rn

|∇v|n dx
) 1

n
( ˆ

BR\Br0

dx

|x|n

)1− 1
n

≤ cA(v)
1
n ln(2R/r0) ,

and therefore

|f(R)|n ≤ cA(v) lnn(4R) , ∀R ≥ 1 .

By Sobolev embedding W 1,n(Sn−1) ⊂ L∞(Sn−1) and definition of f(r),
for all r ≥ 1 and ω ∈ Sn−1 we have

|v(rω)|n ≤ c|f(r)|n + crn
ˆ
Sn−1

|∇v|n(rω̃) dHn−1(ω̃) .

Using the two last inequalities we deduceˆ
|x|≥1

|v|n dx

|x|2n
=

ˆ
Sn−1

ˆ ∞

1

|v(rω)|n dr

rn+1
dHn−1(ω)

≤ c

ˆ ∞

1

|f(r)|n dr

rn+1
+ c

ˆ
|x|≥1

|∇v|n dx

|x|n

≤ cA(v) ,

and this concludes the proof. □
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[8] GÖBEL, B., MOOK, A., HENK, J., MERTIG, I., AND TRETIAKOV,
O. A. Magnetic bimerons as skyrmion analogues in in-plane magnets.
Phys. Rev. B 99, 6 (2019), 060407.

[9] HANG, F. B., AND LIN, F. H. Static theory for planar ferromagnets
and antiferromagnets. Acta Math. Sin. (Engl. Ser.) 17, 4 (2001), 541–
580.

[10] HIRSCH, J., AND ZEMAS, K. A note on a rigidity estimate for degree
±1 conformal maps on S2. Bull. Lond. Math. Soc. 54, 1 (2022), 256–
263.

[11] IGNAT, R. Singularities of divergence-free vector fields with values
into S1 or S2. Applications to micromagnetics. Confluentes Math. 4,
3 (2012), 1230001, 80.

[12] IGNAT, R., AND L’OFFICIAL, F. Renormalised energy between
boundary vortices in thin-film micromagnetics with Dzyaloshinskii-
Moriya interaction. Nonlinear Anal. 250 (2025), Paper No. 113622,
26.

[13] KOSKELA, P. Removable sets for Sobolev spaces. Ark. Mat. 37, 2
(1999), 291–304.

[14] LEMAIRE, L. Applications harmoniques de surfaces riemanniennes.
J. Differ. Geom. 13 (1978), 51–78.

[15] LI, X., AND MELCHER, C. Stability of axisymmetric chiral
skyrmions. J. Funct. Anal. 275, 10 (2018), 2817–2844.

[16] LIN, F., AND YANG, Y. Existence of two-dimensional Skyrmions via
the concentration-compactness method. Commun. Pure Appl. Math.
57, 10 (2004), 1332–1351.

[17] LIONS, P.-L. The concentration-compactness principle in the calculus
of variations. The locally compact case. I. Ann. Inst. Henri Poincaré,
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INSTITUT DE MATHÉMATIQUES DE TOULOUSE, UMR 5219, CNRS, UPS IMT,
UNIVERSITÉ DE TOULOUSE, 31062 TOULOUSE CEDEX 9, FRANCE

Email address: xavier.lamy@math.univ-toulouse.fr


	1. Introduction
	1.1. Energy functional and topological degree
	1.2. Symmetries
	1.3. The conformal limit: heuristic description
	1.4. Functional framework and precise statement
	1.5. Comparison with skyrmions
	1.6. Proof ideas
	1.7. Plan of the article
	Acknowledgments

	2. A parametrization of the Möbius group
	3. DMI energy of Möbius maps
	4. Energy upper bound
	5. Energy lower bound
	5.1. Lower bounds for the anisotropy term
	5.2. Lower bound for the DMI term
	5.3. Lower bound for the full energy

	6. Existence of minimizers and proof of Theorem 1.3
	Appendix A. Critical Sobolev spaces on the plane and on the sphere
	References

