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ABSTRACT. The study of singular perturbations of the Dirichlet
energy is at the core of the phenomenological-description para-
digm in soft condensed matter. Being able to pass to the limit
plays a crucial role in the understanding of the geometric-driven
profile of ground states. In this work, we study, under very gen-
eral assumptions, the convergence of minimizers towards har-
monic maps. We show that the convergence is locally uniform
up to the boundary, away from the lower-dimensional singular
set. Our results generalize related findings, most notably in the
theory of liquid-crystals, to all dimensions 1 > 3, and to general
nonlinearities. Our proof follows a well-known scheme, relying
on a small energy estimate and a monotonicity formula. It de-
parts substantially from previous studies in the treatment of the
small energy estimate at the boundary, since we do not rely on
the specific form of the potential. In particular, this extends ex-
isting results in three-dimensional settings. In higher dimensions,
we also deal with additional difficulties concerning the boundary
monotonicity formula.

1. INTRODUCTION

In this article, our main interest is the asymptotic behavior of minimizers (u¢) of
the Ginzburg-Landau type energy functionals

_ 1 1 1. mk
(1.1) E.(u) = 2L2|Vu| + 2 sz(u), u € H (Q;RY),

1665
Indiana University Mathematics Journal (©), Vol. 67, No. 4 (2018)



1666 ANDRES CONTRERAS, XAVIER LAMY ¢» REMY RODIAC

subject to fixed boundary conditions
(1.2) Ujpq = Up € C2(ON),

where Q € R", n = 3, and f : R¥ — [0, ) is a smooth potential such that its
vacuum

(1.3) N :={f =0} isasmooth compact submanifold of RK.

The functional (1.1) can be seen as a relaxation of the Dirichlet energy J |Vul?

for N"-valued maps. Energy functionals of the form (1.1) are very common in the
theory of phase transitions, and instances of it are the Allen-Cahn functional, the
Ginzburg-Landau energy, and the Landau-de Gennes model, to name a few.

Our goal is to establish a stronger compactness of (1) than the one readily
available by classical soft arguments (see (1.8) below); we show the existence of
a subsequential H!-limit, a harmonic map satisfying (1.2), such that the conver-
gence is actually uniform away from the singular set of the limiting N '-valued
map. Our main theorem proves that this is a robust phenomenon that does not
depend strongly on the particular potential f; in fact, the only assumptions we
make are the following:

(f1) There exists R > 0 satisfying
(1.4) |z| >R = Vf(z)-z=0.

(f2) Minimizers u = U, of E; solve' the semilinear elliptic system
(1.5) Au = éVf(u) in D' (Q).
(f3) Generic assumption: f vanishes non-degenerately on N, that is,

(1.6) V2F(x)v-v>0 forx e Nandv e (TN)*'\ {0}.

Here, TxN" denotes the tangent space to N at x, and (TxN)* its orthogonal
complement in RX.

Remark 1.1. The assumption (1.4) on f ensures that distributional solutions
of (1.5) that belong to H! satisfy a uniform bound [10, Lemma 8.3]

(1.7) lulle < R+ [[upllre.
Therefore, by elliptic regularity, such u is smooth.

1Under rather natural growth conditions on the potential f, hypothesis (f2) is satisfied, and it is
therefore not a restrictive requirement (see, e.g., [9]).
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Remark 1.2. Relevant examples of potentials satisfying (f'1)—(f3) include the
Ginzburg-Landau potentials f : R¥ — R, z — (1—|2z|2)? with ' = Sk71, and the
Landau-de Gennes potential (see discussion after the statement of Theorem 1.3).

As € — 0, any minimizing family (1) admits a subsequence converging
strongly in H! to a map

(1.8) u, € H(QN),

which minimizes the Dirichlet energy J |Vu|? among N -valued maps, subject to

the boundary conditions (1.2). This can be checked as in [12, Lemma 3]. It is well
known that u, is not smooth in general, so we cannot expect the convergence of
Ue towards U, to be uniform in Q. On the other hand, such uniform convergence
might be expected away from the singular set Sing(u . ), which is a compact subset
of Q of Hausdorff dimension at most (1 — 3) [15, 16]. Our main result states that
this is indeed the case.

Theorem 1.3. Assume (f1)—(f3) hold. If a subsequence of minimizers (u¢) of
E¢ subject to (1.2) converges strongly in H', then it holds in fact that

U — U, locally uniformly in Q\ Sing(u.).

One of the main motivations for studying this problem comes from questions
arising in the Landau-de Gennes theory of liquid crystals, where n = 3 and f is a
particular potential defined on the space of symmetric and traceless 3 X 3 matrices.
The simplified Landau-de Gennes functional is given by

FialQ] = j@ §|VQ|2(x> T £3(Q(x)) dx,

where L is the so-called elastic constant and the transition term is
3
2
IVQI> = > QijxQijk-
i,j,k=1
The potential takes the explicit form

2 _ 2 2
£5(Q) = # w(Q?) - % w(Q) + S,

and is the simplest example of a multi-well potential. In this way, we see that the
Landau-de Gennes energy corresponds to E; for the particular choice of potential
fB, in the vanishing elastic constant regime L ~ 0. It can be checked that for
T < T*, the potential f satisfies (f'1)—(f3) for

N = {s* (n@n—%]) |ne§2}

and some sy > 0.
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In the case of the Landau-de Gennes energy, Theorem 1.3 has been proved by
Majumdar and Zarnescu for the interior convergence [12], and by Nguyen and
Zarnescu for the convergence up to the boundary [13] (see also [5] for sequences
of unbounded energy). These works were building on methods developed for
the Ginzburg-Landau energy [3,4]. However, the Ginzburg-Landau and Landau-
de Gennes models are only two in a family of increasingly refined and complex
physical theories. It is then natural to ask to what extent this uniform convergence
depends on the particular model and how sensitive it is to the potential at hand.
In this respect, our objective is to develop an approach that could potentially
encompass all such models.

Our contribution generalizes the results in [12, 13] to general potentials and
arbitrary dimension n > 3. For the interior convergence the techniques adapt
without great difficulties. Regarding the boundary convergence however, the ar-
guments in [13] are really specific to n = 3 and the particular form of f. Let us be
more specific and describe the general strategy of the proof. It relies on two main
ingredients:

e a small energy estimate which states that, in a ball where the (appropri-
ately rescaled) energy is small enough at all small scales, Vu, is uniformly
bounded;

e and a monotonicity formula which allows us to show that the energy is
small at all small scales, provided it is small at one fixed scale.

The boundary monotonicity formula in [12] is derived under the assumption that
n = 3, and it is not clear whether such a formula holds for general n > 3. Here, we
obtain a weaker version of it, which turns out to be enough for our purposes. On
the other hand, the proof of the small energy estimate in [13] relies quite strongly
on the particular structure of the potential. We provide a simpler proof that uses
only the assumption of nondegeneracy (1.6). As in [13], the main ingredient is a
Bochner-type identity, an elliptic equation satisfied by |Vu|?. To make use of it,
one first needs some estimates on Vu at the boundary, and we remark here that
they can be obtained quite directly by computations similar to those in [6].

In connection with the physical motivation of the problem, it would be inter-
esting to replace the Dirichlet boundary conditions by the so-called weak anchor-
ing conditions, which are enforced by adding an anchoring term to the energy
functional. Such boundary conditions are more physically relevant, for instance
in the study of nematic colloids [1,2]. In the case of weak anchoring, the limit u .
also enjoys some partial regularity [8]. However, the strategy detailed above for
obtaining uniform convergence near the boundary seems much harder to imple-
ment, since it is not clear whether an equivalent of Lemma 3.3 below would hold.
In [7], we use different methods to tackle this problem.

The article is organized as follows. In Section 2, we prove the boundary mono-
tonicity formula; in Section 3, we prove the small energy estimate; and we con-
clude in Section 4 with the proof of Theorem 1.3.
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2. MONOTONICITY FORMULA

In this section and in the rest of the article, we denote by es (1) the energy density

1 1
es(u) = EIVMI2 + (W),

and prove the following boundary monotonicity formula.
Proposition 2.1. There exists a constant K = 0 depending only on Q and up,
such that for all xo € Q and any € € (0,1), the function

wip) = 2Kp+p2-"j ee(ue),
QNB, (xp)

satisfies
2.1) %wm > K(1=w(2p)), forallp e (0,1).

Proof. To simplify notation, we drop the explicit dependence on € and write u
for a minimizer of (1.1) under the boundary condition (1.2). We use coordinates
in which x¢ = 0 and let @ (p) denote the renormalized energy

pp) =p*™m L} es(u),

NB,

so that @ (p) = 2Kp + @ (p).

Before proceeding with the proof, let us recall that smooth solutions to the
Euler-Lagrange equations (1.5) satisfy that their associated stress-energy tensor is
divergence free; that is,

1 1
(2.2) 9Ty =0, Tyje=dpu-dju - <E|w|2 + gf(u)> 550

As usual, the monotonicity formula follows from (2.2).
The beginning of the proof (until (2.4) below) is similar to [12, Lemma 9].
Multiplying (2.2) by x; and integrating by parts in Q N B, yields

d(p 2 lfnj -n 2

— == u) + x-V)u

ap 2P ans, fu) +p . I( Jul

+p1‘"J (X-V)u-a—u—pl‘”J (x - v)es(u)
30NB, ov 30NB,
1-n ou 1-n
zp (x-Vu-=—-p (x - v)es(u)
30NB, ov 30NB,

:plfnj (x-v)u-———pI*"j (x - v)|Vul®.
0QNB, 0QNB,
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Here, v = v(x) denotes the exterior unit normal to 0Q at x, and for the last
equality we have used the fact that u|3q takes values into N'. We introduce the
(non-unit) tangential vector T(x) := x — (x - v)Vv and note that it holds that

2

(x-V)u-a—uz(‘r-V)u-a—qu(x-v)'a—u
ov ov ov
We rewrite the above as
L de ou 1 ou |?
n—-1-% > .V L 4 = . ‘_
dp anBp(T u ov 2 Jaans, (- v) ov
1 ,  |ou|?
-3 amBP(X-v)(IVuI ~ 13y )

Because T is tangent to 0Q and |T| < p, we have

ou |?

v

2

ou ou 1 5 1
(r V) S < pisup Vaaunl) | 34| < 3 sup [Vaous? +

’

and by using also that |[Vu|? — [0u/0v|? = |[Vaoul? we deduce

23) pr 1922 1 (x-v-p?

2
> —H"™" Y BQNB,)sup |Vaaupl?.
a0 = 2 Jaon, " ( p)sup | Vaqupl

)
0

Since Q is a smooth bounded domain, there exists a constant C = C(€Q) > 0 such
that for all xy € Q it holds that

H"1OQ N B,y(xp)) < Cp™7 Y,

and
(x — x0) - v(x) = —=C|x — xo|*> for x € Q.

For the proof of these two facts see, for example, [11, Lemma II.5 ] and [12,
Lemma 8]. By using this in (2.3), we obtain
)

for some constant C(Q,up) > 0. For n = 3, one may conclude by using
Lemma 10 in [12]. But we want to deal with general n > 3, and from this point
on our proof departs from [12]. Consider a smooth function x (v) satisfying

ou

ov

(2.4) dp > —C(Q,ub)(l + p3‘"J
dp 0QNB,

IxI<1, IX'1<2, x=1in[0,1], x=0in[2,0),
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and let x,,(x) := x(Ix[/p). Fix also a smooth vector field X such that X = v on

0Q. By multiplying (2.2) by x,X and integrating in Q, we have

=2 )%
1

=3 | ol Voounl? + | X, @eX))Tus + | 20, X,Tes

<CQup)(p" 1+ p" 2@ (2p) + P PP (2p)).

1
2 0QNB,

ou
ov

ou
ov

By plugging this estimate into (2.4), we find

d
£ > —C(Q,up)(1+ @((2p)),

which, recalling @ (p) = 2Kp + @(p), gives (2.1) for K = C. O

The relevance of the monotonicity formula provided by Proposition 2.1 is
that it allows us to deduce smallness of the energy at all scales from smallness of
the energy at one fixed scale, in the following sense.

Lemma 2.2. There exist pyx > 0 and oo > 0 depending on Q and wy such that
for any xo € Q and any py € (0, p), if

pz‘"J es(Ue) < x < oo vV p € [po,2p0],
QNBy,(x)
then

pz‘"J es(Ue) <+ 2Kpy YV p € (0,p0).
QNBy(x)

Proof. 1f &g and ps are small enough (depending on K), then ¢(p) < % for
all p € [po,2po]. Let

) 1
p1 = mf{ﬂ € [0,p0] 1 (1) < 2 Vre (p,Po]},

and assume that p; > 0. Then, it holds that ¢ (2p;) < %, and by (2.1) this implies
Y (p1) > 0,s0that w(r) < Y(py) < % forall v € (p1 — 8, p1), contradicting the

definition of p;. We deduce that ¢ < % and dy/dp > 0in (0, pg]l. Therefore, it
holds that ¢ < @(py) and this concludes the proof. O

3. SMALL ENERGY ESTIMATE

In this section, we derive the small energy estimate that provides a uniform Lips-
chitz bound provided the energy is small at all scales.
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Proposition 3.1. There exist &g > 0, no > 0 and C > 0 (depending on f, Q,
and wp) such that for all € € (0,&y), v € (0,1), and xo € Q, any smooth solution
u of (1.5)—(1.2) with

E:= sup pz‘"J e:(u) <no
By (x) CBayr (x0) QNB, (x)
satisfies
rsup es(u) < C (E + rz) )

By )2

The strategy of the proof is the same as in [13, Lemma 12]. One crucial in-
gredient is a Bochner-type inequality which provides an elliptic equation satisfied
by the energy density es(u).

Lemma 3.2. There exists 6 > 0 and C > 0 depending only on the potential f
such that for any smooth solution w of (1.5), it holds that

(3.1 —Ales(u)] < Ces(u)? atx €Q,
provided dist(u(x), N') < 6.

In [12], the proofis provided in the special case of the liquid-crystal potential.
In the general case there is no additional difficulty. We present the proof here in
order to make transparent how the only crucial assumption is the nondegener-

acy (1.6). First, we set a bit of notation and reformulate (1.6) into the form that

we are actually going to use.
For 6 > 0 we denote by N the tubular §-neighborhood of N,

N := {z € R* | dist(z, N') < 61.
There exists 0 > 0 such that the canonical projection
7T=7Tg\f:.7\f5—'.7\fC|Rk,

is well defined and smooth. Note that the differential of 77 at z € N is simply
the orthogonal projection on Tr ()N

DTT(2) = Tun(2) := Proj;, 5 € L(RY).
We denote by 1Ty, (2) the projection on (Tr(z) N)+,

Thor (Z) := 1 — TTn(2) = Proj(Tmz)N)L € L(R¥).
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Next, we write the potential in a form that adapts well to our purposes in that
it really emphasizes how it all boils down to nondegeneracy. To that end, let us
observe that a Taylor expansion, for z € N, yields

(3.2) f(z)=zt-A2)z+, zt:=z-1(2),

for some smooth map A: N5 — RE<K. More precisely, the representation (3.2)

follows from Taylor’s formula for the function t — f(tz + (1 — t)7(2)) between
t =0and t = 1, using the facts that f(11(z)) = 0 and V f(11(2)) = 0, and the
map A can be explicitly expressed as

1
A(z) = Jo (1-t)Vif(tz+ (1 —t)m(z))dt.

Let us also notice that (1.3) and the nondegeneracy assumption (1.6) ensure that,
provided ¢ is small enough, A(z) is uniformly positive definite in the direction
normal to N, that is

(3.3) E'A(Z)§ZO(0|§|2 VELTrN,

for some g > 0. We may now proceed to the proof of the Bochner inequality.

Proof of Lemma 3.2. We write e = e¢(u) and compute
(3.4) Ae = |Viul? + |Au|2+%aku- (V2 f(u) opu).

From (3.2), we see that

(3.5) Vf(z) =210 (2)A(2) 24 + 2+ - VA(2)z*4,
V2f(2) = 2Tor(2) A(2) Thaor (2) + 24 - V2A(2) 2t
+ 4T00: (Z2)VA(Z) 2+ + 2V T (2)A(2) 2.

Since the first term in the expression of V2 f(z) is a nonnegative symmetric ma-
trix, because of (3.3), this implies that, for any & € R¥ and z € N, we have

E-Vf(2)E = -CIEI? 1z,
from which we infer
n &
(3.6) ou - (V2f(u)ogu) = —C (;Iuﬂz + FIVu|4> ,
for an arbitrary n > 0, to be chosen later. By plugging (3.6) into (3.4), we deduce

that c
~Ae < —|Vult+ (C%mﬂ2 - |Au|2> :
n &



1674 ANDRES CONTRERAS, XAVIER LAMY ¢» REMY RODIAC

Finally, we remark that, provided & is chosen small enough, (3.3)—(3.5) ensure

|Au|? = —|Vf(u)|2 0 lut|? if dist(u, N) < 6.

Choose n < (X%/ZC to finish the proof. O

As explained in the Introduction, the main point at which our proof of Propo-
sition 3.1 differs from [13] is the treatment of the estimates for |[Vu| on 0Q that
are needed to make good use of the Bochner inequality at the boundary. While
in [13] the authors relied heavily on the particular structure of their potential, our
argument, closer to [6], uses only the nondegeneracy assumption (1.6).

Lemma 3.3. Let p > n. There exist 6,C > 0 (depending on p, f, and Q) such
that for any x € Q, v, € € (0,11, and u smooth solution of (1.5) with boundary
conditions (1.2), if

dist(u, N) <6 inBy(x)nQ,
then it holds that

sup  |Vul < C( P leg (W) l1r 8, ) + 7 M2V Ul 28,00
By /2(x)ndQ

+ sup | Vupl +sup1’|V2uh| + 5)
o) Q

Proof- First note that if x¢ € Q, the conclusion of the lemma is vacuously true
for sufficiently small radii 7. Thus, the proof requires care for v > % dist(xg, 0Q).
As usual, it suffices to prove the estimate for ¥ = 1, the general case following
by rescaling. Provided & is small enough, we may write u = u™ + u* where
u™N = 1 (u) is smooth. Using the fact that for a smooth map v with values
into N C RK, the normal component of its Laplacian is given by

Thor (V)AV = I (V)[VV, VY],

where II» denotes the second fundamental form of N, we compute the equation
satisfied by u?v:

(3.7) AuN = 1m0, (W) AUN + T () AUN

= Ix ™M) [VuN,vuN ] + ma (u?N) Au — e (u™)Aut

= Iy @)V, U T4 S5V () = Tan ()0

For the last equality, we used (1.5). To compute the last term, we remark that
taking the Laplacian of the identity T (u™N)u* = 0 yields
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~Tlan (UN) AU = 2V TG0 (u™N) - VUt + Al (u?) Jut
=2V T (uN) - Vut + Vg, (u™M)ut - Au?N
+ V21T (™M) [VuN, vuN Jut.

By plugging this into (3.7) and recalling (3.5), we obtain

AuN = [Ty ™M) [VvuN, vuN] + érrmn(tﬁ‘f)(uL - VA)ut)

+ VT (uM)ut - Au?N + V2, (u™M) [Vu?N, vuN Jut

+ 2V [T (™) ] - Vu'.
Since |[ut|? < Cf(u) and |ut| < &, we deduce that
[Au™N| < C(S|AUN | + e (u)),

for a constant C > 0 depending on N and f. By choosing ¢ small enough we
find that

(3.8) [AuN| < Cee(u).
Then, elliptic estimates as in [13, Lemma 11] yield

3.9) sup [VuN| < Clllee(w)llrr 00 + IVUllL28,n0) + 1ubllc2@))-
By/2nQ

Note that it remains to bound Vu'. Since u, takes values into N, we have
u[laQ = 0, and it suffices to estimate the normal derivative. First, we note that
lut|Alu*| = ut - Aut, as can be seen, for instance, from the identities

2ut - Aut + [Vut? = A(ut ) = 2ut|Alut + | Viut ]
together with the inequality
|VIut|? < |[Vut|?

which follows from 9;|u*|
calculate

ut - 0;ut/|ut|. Then, we use (1.5) and (3.5) to

lut|Alut| = ut - Aut = ut - Au—ut - AuN

1
gul V) —ut - Au™N

é(ul CA(w)ut) + éul C(ut - VA ut) —ut - AuN

—Clut|es(u).

%
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For the last inequality, we used (3.8) as well as the facts, implied by (1.6), that
lut|? < Cf(u) and ut - A(w)ut = 0. Therefore, we have

(3.10) —Alut| < Ces(u),
and by the maximum principle it holds that [u*| < w, where

—Aw =Ces(u) inB1NQ,
w = |ut on 0(B1 N Q).

Since [u*| = 0 on By N 0Q, elliptic estimates as in [13, Lemma 11] imply

sup |[Vw| < C(lles (W) llzr s sn0) + I VWIIL2(B5400))-
Bl/zﬁQ

To estimate the last term, one may proceed as in [13, Lemma 9]. We only sketch

the argument here: by splitting w as w = w; + ws, where Aw, = 0 and w;
vanishes on the full boundary 0(B; N Q), we have the estimates

lwillz2B;4n0) < Clles (W) ll12,n0) < Clles (W) ll1r3,n0),

lwallz2B;4n0) < Cllwzllz=@®,nq) < CO.
We deduce that

sup |[Vw| < C(lles(u)llrr 3,n) + 6).
Bl/zﬂQ

In particular, we have the inequalities

lutl < w < C(lles (W) v 8,n0) + 6) dist(+,0Q),

which imply
ou*t
(3.11) sup 'a—' < C (lles(u)llrB,n) + 6) .
Bl/zﬁaQ v
The conclusion follows from (3.9)—(3.11). O

Remark 3.4. With respect to [13], our treatment of the estimate for |[Vu| on
the boundary 0Q is simplified and works for general nonlinearities because we are
able to derive the differential inequality (3.10) satisfied by |u*| = dist(u, N').

Equipped with Lemma 3.2 and Lemma 3.3, we may now proceed to the proof

of the small energy estimate, following [13, Lemma 12] quite closely. We provide
the details of the argument in our setting in the lines below.
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Proof of Proposition 3.1.
Step 1. Rescaling. We use coordinates in which x¢ =0. We show that

(3.12) M:= sup (r — p)?* sup (ec(u) — L) < CE,
O<p<r B,nQ

for some C,L > 0 to be chosen, which implies the conclusion. This allows us to
make use of a rescaling trick introduced in [14] in the context of harmonic maps.
There exist pg € [0,7] and x1 € By, N Q such that

M = (r — po)? sup (es(u) — L) = (r — po)*[es(u)(x1) — L].
BpyNQ

With py := (¥ — pg) /2, it holds that M = 4p?[e(u)(x;) — L] and

M
sup  e:(u) < sup es(u) < — +L
B, (x1)NQ BpypyNQ2 (r = p1—po)
M
= — +L=4e:(u)(xy).
P

Therefore, by setting V := e (u) (x1), p2 := p1/V, Q:= VV(Q - x1), and
v(x) = %eg(u)(xl +V712x) forx € By, nQ, x; + V 12x € By, (x1),

we find it holds that

(3.13) 1=v(0) < sup v <4,
By, NQ

(3.14) pHJ v<E=<ny forallp < p.
B

, NQ
Note that we may assume
(3.15) V=1L,

because otherwise M = 4p3(V — L) < 0 and (3.12) is trivial.

Step 2. It holds that py < 1, provided no and 1/L are small enough. Assume that

p2 > 1. Let

1/2

(x) :==ulx; +V12x) forx € By, n Q.

It holds that

1

(3.16) 2V

f) <v <4 inBy,nQ.
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We would like to deduce that f(it) is small, which will imply that dist(u, N') is
small, thanks to the nondegeneracy assumption (1.6), and therefore allow us to
use the Bochner-type inequality (3.1).

Since At = (1/(€?V))V.f(ii), rescaled elliptic estimates [13, Lemma 11]
yield

; 1 _ : _
(3.17)  sup Vil sC(WIIVf(u)HmBmQ)JrV ”2+IIVuIILz<Bm@>)-
Bl/zﬁQ

Recall that, thanks to the nondegeneracy assumption (1.6), we have
xolzt > <zt - A(2)zt = f(2),

for all z close enough to N'. By using this and the expression (3.5) for Vf,
together with the uniform bound [i| < R + sup |up| (1.7) we find that

IVf(@)] < Clat| < Cyf ().
Thus, it holds that
IVF£(@)|P < Cf@P? < Cf(w),

for some constant C > 0, depending on N, f, and p > 2. Thus, by using (3.10)
and (3.14), we find

IV @)y 5,0y < C(2VN0) 7.

By plugging this and (3.15) into (3.17) we have

_ ne'" 1 1/2
sup‘IVulsC W+§ , §:=m+r]0 .
B1/2nQ

From the mean value theorem, the smoothness of f, and the uniform bound (1.7),
we have

f@)(x) < f@)(y) +Csup |Viil Vx,y €BijpnQ.
B2

By integrating this inequality over v € By/» N Q and using again (3.14), one finds
that, for x € By, N Q, it holds that

1/p

1 _ Mo g
Wﬂ“)f”“"(m+ﬁ)’
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and therefore

N 1 _
sup v = sup —|Vu|2 + == f()
= -2 v
Bl/zﬂQ Bl/zﬂQ

1/p 2 1/p
Mo Mo g
SC[<W+§> +”°*m*ﬁ]'
Recalling (3.13), we deduce that

2 1
( no/p no/” g )

o g2 T .S
1< supv=C (V) 2p +& +no+ V) + v

Bl/zﬁQ
Since & is arbitrarily small for small enough ng and 1/L, we infer that, given any
8o > 0, it must hold that €2V < &y, provided ng and 1/L are small enough.

Recalling (3.16), we may therefore choose ng and L so that dist(it, N') < 6 and
the Bochner-type inequality (3.1) holds for 7. This implies that

~AV <Cv?<4Cv inB nQ.

Then, since on 9Q it holds that v = |Vu|?/2, we deduce from Lemma 3.3 the
estimate

— 2 — 1/2
sup v = C((L+ VOl + V1[0l 6 + )
Bl/zﬁaf)

sC(né/”+%+5>.

For the last inequality we used (3.14) and (3.15). We choose ng and 1/L small
enough to ensure that § is small and that v < é onBj N 9Q. Then, the function

_ max(v—l,0> inBl/zﬁQ,
V= 2 _
0 in Byjp \ Q,

satisfies —~AD < C¥ in By, and Harnack’s inequality yields

which implies a contradiction, provided ng is small enough. This proves p, < 1.
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Step 3. We conclude, provided & is small enough. Since p, < 1, it holds that
M = 4p?[V — L] < 4p3? <4, and in particular e 2 f(u) < es(u) < Cin By2. In
fact, the same argument applies in any ball B, (Xo) with [Xo — x0| < 7, so that we
have e-2f(u) < C in By. Therefore, the Bochner inequality (3.1) holds in By,
provided & is small enough, and we deduce (using (3.13) as above) that

~Av < Cv? <4Cv  in By, nQ.
As in Step 2., Lemma 3.3 ensures

sup vsC(né/p+%+52>S%,

sz/zﬁaf)

and we consider the function

1 . ~
b= max(v—§,0> lan2/2 ﬂf),
0 in Bp2/2 \ Q,
which satisfies —~AD < C¥ in By, >. Now, by letting
w(x) :=V(p2x) Ix| <1,

it holds that —Aw < 4CpJw < 4Cw, and Harnack’s inequality yields

lsw(O)sc[ w=cp2*"[ 7 < Cp52E.
2 B P2
Hence, 8CE = 4p% = 4p%V > M, which concludes the proof. O

4. PROOF OF THEOREM 1.3

Consider a compact X C Q\ Sing(u,). Let px, &g and K be as in Lemma 2.2,
and 1o be as in the small energy estimate Proposition 3.1. Since u . is smooth in
a compact neighborhood of X, we may choose py € (0, p4) with 4Kpy < ng such
that for all xy € X we have

1 .
| V1. < 7 min(no,00) ¥ p € [po, 200
QNBy(x)
Then, for p € [po,2po] we find that

prn f ex(ue)
QNB, (xo)

1 . 1
< me(no,(xo)+p8*"“ IVus—Vu*ler—zj f(ug)>.
Q &~ JO
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Because s — U, in H! and the minimality of u, implies E’zj Sfug) — 0 (by
0

comparing with 1. ), we may choose &; € (0, &) (with & as in Proposition 3.1)
such that for all € € (0, £;) it holds that

1.
pz‘"[ e:(Ue) < —min(no, &) VYV p € [po,2po].
QNBy(x) 2
By Lemma 2.2, we deduce that
| ec(iie) <m0, VX0 €X, ¥ p € (0, po).
QﬁBp(X())

This allows us to apply Proposition 3.1 to conclude that

sup [Vuel < C(X),
X

so that by Arzela-Ascoli’s theorem, u¢ converges in fact uniformly in X.
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