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In Ginzburg–Landau theory, a strong magnetic field is responsible for the breakdown
of superconductivity. This work is concerned with the identification of the region where
superconductivity persists, in a thin shell superconductor modeled by a compact surface
M ⊂ R

3, as the intensity h of the external magnetic field is raised above Hc1 . Using a
mean field reduction approach devised by Sandier and Serfaty as the Ginzburg–Landau
parameter κ goes to infinity, we are led to studying a two-sided obstacle problem. We
show that superconductivity survives in a neighborhood of size (Hc1/h)1/3 of the zero
locus of the normal component H of the field. We also describe intermediate regimes,
focusing first on a symmetric model problem. In the general case, we prove that a
striking phenomenon we call freezing of the boundary takes place: one component of the
superconductivity region is insensitive to small changes in the field.
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1. Introduction

Let M be a compact surface homeomorphic to S2, embedded in R3. For κ, h > 0
and A a vector field on M, we consider the Ginzburg–Landau functional GM,κ :
H1(M; C) → R+,

GM,κ(ψ) =
∫
M

(
|∇M − ihAψ|2 +

κ2

2
(|ψ|2 − 1)2

)
dH2

M(x). (1)

The functional GM,κ arises as the Γ-limit (see [6]) of the full three-dimensional
Ginzburg–Landau energy

Gε,κ(ψ,A) =
1
ε

[∫
Ωε

(
|(∇− iA)ψ|2 +

κ2

2
(|ψ|2 − 1)2

)
dx

+
∫

R3
|∇ ×A− Hext|2 dx

]
, (2)

where for all ε > 0 sufficiently small, Ωε corresponds to a uniform tubular neighbor-
hood of M. In (2) Hext is the external magnetic field. As ε→ 0, the field completely
penetrates the sample which then implies that in the Γ-limit A is prescribed to be
equal to A, the tangential component of a divergence free vector field Ae such that
∇× hAe = Hext.

A central question in Ginzburg–Landau theory is the determination of the so-
called critical fields. The first critical field corresponds to the appearance of zeros
of ψ carrying nontrivial degree — called vortices in this context — in minimizers
of the energy.

The analysis in [6] includes the computation of the first critical field of a thin
shell of a surface of revolution subject to a constant vertical field which turns out to
be surprisingly simple and depending only on an intrinsic quantity, in the κ → ∞
limit:

Hc1 ∼
(

4π
Area of M

)
lnκ.

This result is extended in [5], to general surfaces and magnetic fields. For a fixed
field He, an external magnetic field of the form Hext = h(κ)He = h(κ)∇ × Ae is
considered. Then the first critical field is

Hc1 ∼ 1
maxM ∗F − minM ∗F lnκ,

where d∗F = ∗d ∗F = A and ∗ denotes the Hodge star-operator. In fact, the study
shows also that, somewhat remarkably, not all fields He give rise to a first critical
field. This phenomenon is related to the geometry and relative location of M with
respect to He. For He that yield a finite Hc1 , the topological obstruction imposed
by M implying that the total degree of ψ

|ψ| is zero is used in [5] to show that there
is an even number of vortices in minimizers of GM,κ, half with positive degree,
half with negative degree concentrating respectively on the set where ∗F achieves
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its minimum and maximum. The optimal number 2n and location of vortices and
anti-vortices in M is established in [5] for values of h(k) slightly above Hc1 and
in addition it is shown that if the minimum and maximum of ∗F are attained
at finitely many points then the two sets of vortices minimize, independently, a
renormalized energy.

The results in [5, 6] cover only a moderate regime; in these works the intensity
of the applied field is Hc1 + O(ln lnκ) and thus the number of vortices remains
bounded as κ goes to infinity.

Once the value of h becomes much larger than Hc1 , that is there is a constant
C > 0 such that h − Hc1 ≥ C lnκ, then the number of vortices in minimizers
diverges as κ → ∞. For even larger h, superconductivity persists only in a narrow
region in the sample.

In the case of an infinite cylinder whose cross section is a domain Ω ⊆ R
2

and for constant applied fields parallel to the axis of the cylinder a reduction to a
two-dimensional problem is possible. In this case it is known that as the intensity
increases superconductivity is lost in the bulk and only a thin superconductivity
region near ∂Ω persists (see [16, Chap. 7]). For much higher values still, supercon-
ductivity is completely lost: this value is known asHc3 and is estimated by a delicate
spectral analysis of the magnetic Laplacian operator as in the monograph [9].

In our setting, corresponding to the above functional GM,κ (1) on the compact
surface M, there is no boundary, so what happens to the superconductivity region
is not obvious. Another crucial difference lies in the behavior of the (normalized)
magnetic field H induced on M, which is the normal component of He, or equiva-
lently H dH2

M = dA (viewing A as a 1-form). Namely, in our case, H vanishes and
changes sign. The spectral analysis in [11] therefore suggests that superconductivity
should persist near the set {H = 0}, where the external magnetic field is tangent
to the surface M. In [12] the authors study the case of a vanishing magnetic field
in the infinite cylinder model, and observe indeed nucleation of superconductivity
near the zero locus of the magnetic field, for very high values of the applied field
(near the putative Hc3) under the condition that the gradient of the magnetic field
does not vanish on its zero locus. The problem of the determination of the upper
critical field for vanishing fields remains largely open otherwise. Here, we are con-
cerned with much lower values of the applied field: a main motivation of this work
is to understand the transition from the vortexless to normal state regimes.

Another interesting difference is the fact that in the infinite cylinder model only
positive vortices exist and so the location and growth of the vortex region is always
ruled by the competing effects of mutual repulsion, and confinement provided by the
external field. In the present setting, this is no longer the case. Vortices of positive
and negative degree must coexist and so repulsion and attraction are common
features of the relative placement of vortices in M, this without taking into account
the external field.

In this way, the shrinking of the superconductivity region is a multifaceted
phenomenon. Moreover, the problems mentioned in the characterization of this
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region are present even in the most emblematic case of a constant external field He:
the region of persistence of superconductivity does not only depend on the field and
on the topology of M, but also on extrinsic geometric properties of the surface; the
relative position of M with respect to He affects H and therefore the zero locus of
the induced field.

In the present work we address the question of identifying the region where
superconductivity persists in the κ→ ∞ limit, when

Hc1

h

is small; we show that as this quantity gets small superconductivity persists in
a small neighborhood of the place where the applied field is tangential to the
sample, provided the field satisfies a generic nondegeneracy condition (see (14)
below). Another thrust of this work is aimed at uncovering some new intermediate
regimes only present in this setting, when the normal component of the external
field changes sign multiples times. In the model problem of a surface of revolution
and constant vertical field, we identify several structural transitions undergone by
the superconductivity region. Furthermore, we observe a new phenomenon which
we refer to as freezing of the boundary, where a component of the vortex region stops
growing even after increasing the intensity of the external field. This phenomenon
holds in great generality (not only in the surface of revolution case), as is shown at
the end of Sec. 4.

To carry out our analysis we start by using a reduction to a mean field model,
first derived rigorously in [15]. More precisely, if we write a critical point ψ of GM,κ

in polar form ψ = ρeiφ, variations of the phase yield d(ρ2(dφ − hd∗F )) = 0, and
because H1

dr(M) = 0 this implies there is a V such that ∗dV = ρ2(dφ − hd∗F ).
Taking V = hW , the function W is expected to minimize∫

M
|∇MW |2dH2

M +
lnκ
h

∫
M

|−∆MW + ∆M ∗ F |dH2
M. (3)

The details of this mean field reduction can be found in [15] in the case of a
positive external field applied in a bounded planar domain. However, the analysis
in [15] does not handle the additional restriction of total zero mass which affects
the construction of an upper bound in this setting. The steps needed to extend the
proof to the present case are included in the appendix.

The measure −∆MV + ∆M ∗ F can be interpreted as the normalized measure
generated by the vortices. On the other hand, we observe that

∆M ∗ FdH2
M = d ∗ d ∗ F = dA = HdH2

M,

where the function H is the normal component of the external magnetic field He

relative to M. In what follows we refer to H simply as the magnetic field, and
we assume that H ∈ C1(M). Moreover, we drop the explicit dependence on M in
expressions like ∆M, ∇M.
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Before we state our main result we make the following assumption: there exists
β > 0 such that

lim
κ→∞

lnκ
h

= β. (4)

Once the connection to the mean field problem (3) is established we proceed to
locate very precisely the region of persistence of superconductivity, that is, the
region SCβ where the vorticity measure −∆V + H vanishes. We find that this
region corresponds to a β

1
3 neighborhood of the set where H vanishes, in the β → 0

limit. More precisely, we have the following theorem.

Theorem 1.1. Under the nondegeneracy assumption that ∇H is nowhere vanish-
ing on {H = 0}, there exists C > 0 independent of β such that the superconduc-
tivity region SCβ is contained in {x ∈ M : d(x, {H = 0}) < Cβ

1
3 }, and contains

{x ∈ M : d(x, {H = 0}) < C−1β
1
3 }, for β sufficiently small.

The nondegeneracy assumption on H implies that the set {H = 0} is a finite
union of smooth closed curves. It is the same assumption as the one made in [11, 12]
for the study of the third critical field Hc3 .

To prove Theorem 1.1 we reformulate the mean field approximation as an obsta-
cle problem, and construct comparison functions. We note that a construction in
the same spirit was carried out in [17, Appendix A] for the planar Ginzburg–Landau
model in a different context. In our case however the construction is not immedi-
ate, because our obstacle problem is two-sided and our magnetic field H changes
sign. Indeed, our proof makes use of a comparison principle for two-sided obstacle
problems proved in [7] which allows to compare solutions to obstacle problems cor-
responding to different data H . Hence the comparison functions will not be merely
“super- or sub-solutions” of our problem, but actual solutions of modified prob-
lems. In particular they have to be quite regular. As a consequence, we cannot use
functions of the distance to {H = 0} as comparison functions. We have to use a
particular coordinate system near each component of {H = 0} and explicitly build
local functions satisfying local obstacle problems with appropriate modifications of
H . Pasting these constructions we are able to appeal to [7] to obtain the desired
estimates. In so doing we note a key feature of the proof, related to the fact that the
obstacle problem is two-sided: the barriers thus obtained cannot be used indepen-
dently to get neither the inner nor the outer bound separately, but together they
yield the conclusion of the theorem. This is explained in more detail in Sec. 3.

Thanks to Theorem 1.1, we have a clear picture of the superconductivity region
for β → 0: it is a union of tubular neighborhoods of the connected components
of {H = 0}. In particular, the superconductivity region has at least as many con-
nected components as {H = 0}. On the other hand, we also have a clear picture
of the superconductivity region as β → βc, where positive (respectively, negative)
vortices are concentrated near the points where ∗F achieves its maximum (respec-
tively, minimum). In particular, the superconductivity region has, generically, one
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connected component. In the last part of this work, we investigate the intermediate
regimes. If {H = 0} has more than one connected component, transitions have to
occur: when β crosses some critical value, the number of connected components of
SCβ changes.

Studying such transitions, and determining the values of β at which they occur,
seems out of our reach in all generality. That is why we concentrate first on a simple
model problem. We consider a surface of revolution around the vertical axis ez, and
assume that the external magnetic field He = ez is vertical and constant. (In fact
in Sec. 4.1, more general magnetic fields are considered.) In that case, the induced
field H on M is just H = ez ·ν, where ν is an outward normal vector on M. The set
{H = 0} consists exactly of the points where ez is tangent to M, and it is a union
of circles. Note that H has to change sign an odd number of times, since H = −1
at the “south pole” and +1 at the “north pole”, thus there are an odd number of
those circles. As explained above, interesting transitions happen when {H = 0} has
more than one connected component. Therefore we focus on the simplest nontrivial
situation, which corresponds to {H = 0} consisting of three circles. We state loosely
here the result that we obtain for that simple model problem in Sec. 4.1 (see Fig. 1).

Proposition 1.2. Let M be a surface of revolution of the form (39) with con-
straints specified in Sec. 4.1 below. Assume the induced magnetic potential is rota-
tionally symmetric. Then there exist βc > β∗

1 ≥ β∗
2 > 0 such that

• for β ∈ (β∗
1 , βc), SCβ has one connected component,

• for β ∈ (β∗
2 , β

∗
1 ), SCβ has two connected components,

• for β ∈ (0, β∗
2), SCβ has three connected components.

Moreover, for β ∈ (β∗
2 , β

∗
1), one connected component of SCβ remains constant.

H > 0

H < 0

H > 0

H < 0

frozen

(a) β ∈ (β∗
1 , βc) (b) β ∈ (β∗

2 , β∗
1 ) (c) β ∈ (0, β∗

2 )

Fig. 1. The region SCβ in the three regimes of Proposition 1.2.
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The most striking part of Proposition 1.2 is the appearance of an intermediate
regime in which one connected component of SCβ remains constant: one part of
the free boundary is frozen. In [1] a similar occurrence is observed in an explicit
solution to a two-sided obstacle problem arising in the study of almost planar thin
films in the presence of strong parallel fields. In Sec. 4.2 we identify the features
responsible for such “freezing of the boundary” phenomenon depicted in Proposi-
tion 1.2 and prove a similar “freezing property” in a general (nonsymmetric) setting
(see Proposition 4.3). We note that since our proof relies on a general comparison
principle, it is likely that it could be adapted to include the setting in [1].

An other interesting outcome of the precise version of Proposition 1.2 (Proposi-
tion 4.2 in Sec. 4.1) are the expressions of the critical values β∗

1 and β∗
2 , in terms of

integral quantities involving A and the parametrization of M. Transferring these
conditions to a general nonsymmetric setting seems far from obvious and constitutes
an interesting challenge.

The plan of the paper is as follows. In the next section we collect some basic
properties of solutions to an obstacle problem that serves as the starting point in
our analysis. In Sec. 3 we identify the thin region of superconductivity when β is
small. In Sec. 4 we turn to the symmetric situation and identify in Proposition 4.2
the further transitions as β decreases to zero from βc = max(∗F ) − min(∗F ). We
also prove the “freezing of the boundary” property at the end of Sec. 4.

2. The Obstacle Problem

This preamble is devoted to the derivation of the obstacle problem dual to the
mean field approximation. We also prove some basic results we will need later on.
We think it is worthwhile recording these properties because in our setting, there
is a degeneracy that is not present in other classical results in the literature.

In the first part of this section we show that — as in [16, Chap. 7] — the
minimizer of

Eβ(V ) =
∫
M

|∇V |2 + β

∫
M

|−∆V +H | (5)

is the solution of an obstacle problem, and then we study general properties of the
contact set. There are two main differences with the obstacle problem arising in
[16, Chap. 7].

• In our case there are no boundary conditions and the minimizer is well defined
only up to a constant. We need to deal with this degeneracy.

• While in [16, Chap. 7] the obstacle problem is one-sided, we have to consider a
two-sided obstacle problem. This is due to the fact that, in our case, the magnetic
field H changes sign.
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The functional Eβ is, under assumption (4), the limit of the sequence of energies
considered in (3). The link between Eβ and the superconductivity region is, as
mentioned in the introduction, proved in the appendix.

2.1. Derivation of the obstacle problem

Proposition 2.1. Let β > 0. A function V0 ∈ H1(M) minimizes Eβ (5) if and
only if V0 minimizes

F(V ) =
∫
M

(|∇V |2 + 2HV ) (6)

among all V ∈ H1(M) such that (ess supV − ess inf V ) ≤ β.

Remark 2.1. Since the functional F(V ) is translation invariant, V0 coincides, up
to a constant, with any minimizer of the two-sided obstacle problem

min
{∫

M
(|∇V |2 + 2HV ) : V ∈ H1(M), |V | ≤ β/2

}
.

Moreover, recalling that H = ∆∗F , this obstacle problem can also be rephrased as

min
{∫

M
|∇(V − ∗F )|2 : V ∈ H1(M), |V | ≤ β/2

}
. (7)

The fact that minimizers coincide only up to a constant does not matter, since the
physically relevant object is the vorticity measure −∆V +H . Moreover, it is easy
to check that, if the obstacle problem (7) admits a solution V that “touches” the
obstacles, i.e. satisfies maxV − minV = β, then this solution is unique because
any other solution differs from it by a constant, which has to be zero. On the other
hand, a solution satisfying maxV − minV < β would have to be V = ∗F + α for
some constant α. Therefore, for β ≤ max ∗F − min ∗F the solution is unique.

The proof of Proposition 2.1 relies on the following classical result of convex
analysis (easily deduced from [13] or [4, Theorem 1.12]).

Lemma 2.2. Let H be a Hilbert space and ϕ : H → R ∪ {+∞} be a convex lower
semi-continuous function. Then the minimizers of the problems

min
x∈H

(
1
2
‖x‖2

H + ϕ(x)
)

and min
y∈H

(
1
2
‖y‖2

H + ϕ∗(−y)
)

coincide, where ϕ∗ denotes the Fenchel conjugate of ϕ,

ϕ∗(y) := sup
z∈H

〈y, z〉H − ϕ(z).
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Proof of Proposition 2.1. We apply Lemma 2.2 in the Hilbert space

H := Ḣ1(M) =
{
V ∈ H1(M) :

∫
M
V = 0

}
,

endowed with the norm ‖V ‖2 =
∫ |∇V |2, to the function

ϕ(V ) = ϕβ(V ) =
β

2

∫
M

|−∆V +H | . (8)

In formula (8), it is implicit that ϕ(V ) = +∞ if µ = −∆V + H is not a Radon
measure. Note that, when µ is a Radon measure, it must have zero average

∫
µ = 0,

since µ = ∆(∗F − V ).
We compute the Fenchel conjugate of ϕ. It holds

ϕ∗(V ) = sup
U∈H

{∫
M

∇V · ∇U − β

2

∫
M

|−∆U +H|
}

= −
∫
M
HV + sup

U∈H

{∫
M

(−∆U +H)V − β

2

∫
M

|−∆U +H |
}

= −
∫
M
HV + supR

P=0

{∫
M

(
PV − β

2
|P |

)}
.

In the last equality, the supremum may — by a density argument — be taken over
all L2 functions P with zero average.

If (ess supV − ess inf V ) ≤ β, then |V + α| ≤ β/2 for some α ∈ R, so that∫
M

(
PV − β

2
|P |

)
=

∫
M

(
(V + α)P − β

2
|P |

)
≤ 0,

and in that case

ϕ∗(V ) = −
∫
M
HV.

On the other hand, if (ess supV − ess inf V ) > β, then up to translating V we may
assume that {V > β/2} and {V < −β/2} have positive measures. It is then easy
to construct a function P supported in those sets, such that

∫
P = 0,

∫ |P | = 1,
and

∫
PV > β/2. Using λP as a test function for arbitrary λ > 0, we deduce that

ϕ∗(V ) = +∞.
From Lemma 2.2 it follows that V0 ∈ Ḣ1(M) minimizes Eβ if and only if V0

minimizes

1
2

∫
M

|∇V |2 +
∫
M
HV

among V ∈ Ḣ1(M) such that ess supV − ess inf V ≤ β. Since both problems are
invariant under addition of a constant, the restriction to the space Ḣ1(M) can be
relaxed to obtain Proposition 2.1.
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2.2. Basic properties

In this section we concentrate on the obstacle problem

min
{∫

M
(|∇V |2 + 2HV ) : V ∈ H1(M), |V | ≤ β/2

}
. (9)

We recall the classical interpretation of (9) as a free boundary problem, and estab-
lish a monotonicity property of the free boundary.

The first step to these basic properties is the reformulation of the obstacle
problem (9) as a variational inequality: a function V ∈ H1(M) solves (9) if and
only if |V | ≤ β/2 and∫

M
∇V · ∇(W − V ) ≥ −

∫
M
H(W − V ), ∀W ∈ H1(M), |W | ≤ β/2. (10)

The proof of this weak formulation is elementary and can be found in many text-
books on convex analysis. See for instance [14].

Next we recall the standard reformulation of (10) as a free boundary problem.

Lemma 2.3. A function V ∈ H1(M) with |V | ≤ β/2 solves (9) or equiva-
lently (10) if and only if

V ∈ W 2,p(M), 1 < p <∞,

∆V = H in {|V | < β/2},
0 ≥ H in {V = β/2},
0 ≤ H in {V = −β/2}.

(11)

In particular V ∈ C1,α(M), so that at every regular point of the free boundaries
∂{V = ±β/2}, the function V satisfies the overdetermining boundary conditions
V = ±β/2 and ∂V/∂ν = 0.

The only nonelementary part of Lemma 2.3 is theW 2,p regularity of the solution.
For the one-sided obstacle problem, it is proven for instance in [10, Theorem 3.2].
The proof adapts easily to our two-sided obstacle problem: see, e.g., [10, Problem 2,
p. 29].

Recall that in our case, µ = −∆V +H represents the vorticity measure. In light
of Lemma 2.3, this measure is supported in {V = ±β/2}. In that region, vortices
are distributed with density H .

For β > βc, where

βc := max(∗F ) − min(∗F ), (12)

the function ∗F + α solves the obstacle problem (9), as long as the constant α
satisfies max(∗F )−β/2 ≤ α ≤ min(∗F )+β/2, and the vorticity measure −∆V +H
is identically zero.
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For β ≤ βc, the solution V = Vβ of the obstacle problem (9) must satisfy

maxVβ − minVβ = β,

and therefore is unique (see Remark 2.1). Recall that the superconductivity region
SCβ is defined as the set where the vorticity measure −∆V +H vanishes. According
to Lemma 2.3, that region is exactly

SCβ = {|Vβ | < β/2}. (13)

A first basic property of the superconductivity region SCβ is its monotonicity.

Proposition 2.4. For any 0 < β1 < β2 ≤ βc, it holds

SCβ1 ⊂ SCβ2 .

In other words, increasing the intensity of the applied magnetic field shrinks
the region of persisting superconductivity, which consistent with physical intuition.
Since we have to deal with a two-sided obstacle problem, this monotonicity property
is not as obvious as in [16, Chap. 7]. To prove it, we use a comparison principle for
two-sided obstacle problems [7, Lemma 2.1]. We state and prove here a particular
form that will also be useful later on.

Lemma 2.5. Let H1 ≥ H2 be bounded, real-valued functions on M. Let also α1 ≤
α2 and β1 ≤ β2 be real numbers. For j = 1, 2, let Vj ∈ H1(M) solve respectively
the obstacle problems

min
{∫

M
(|∇V |2 + 2HjV ) : αj ≤ V ≤ βj

}
.

Then either V1 − V2 is constant, or V1 ≤ V2.

Proof. For the convenience of the reader, we provide here the elementary proof,
which consists in remarking that

W1 = min(V1, V2) and W2 = max(V1, V2)

are admissible test functions in the variational inequalities∫
M

∇Vj · ∇(Wj − Vj) ≥ −
∫
M
Hj(Wj − Vj), ∀Wj ∈ H1, αj ≤Wj ≤ βj .

Subtracting the resulting inequalities, we obtain∫
M

|∇(V1 − V2)+|2 ≤
∫
M

(H2 −H1)(V1 − V2)+ ≤ 0,

where (V1 − V2)+ = max(V1 − V2, 0). We conclude that (V1 − V2)+ is a constant
function.

With Lemma 2.5 at hand, we may prove the monotonicity of the superconduc-
tivity region.
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Proof of Proposition 2.4. Let V1 and V2 denote the solution of the obstacle
problem (9) corresponding respectively to β = β1 and β = β2. Let

Ṽ1 = V1 + β1/2, and Ṽ2 = V2 + β2/2,

so that for j = 1, 2, Ṽj solves the obstacle problem

min
{∫

M
(|∇V |2 + 2HV ) : 0 ≤ V ≤ βj

}
.

Therefore, applying Lemma 2.5 with H1 = H2 = H , α1 = α2 = 0 and β1 ≤ β2, we
deduce that

V1 + β1/2 ≤ V2 + β2/2.

(If Ṽ1 − Ṽ2 is constant, then β2 = maxV1 − minV1 = β1.) In particular, we obtain
that

{V1 > −β1/2} ⊂ {V2 > −β2/2}.
By a similar argument, we show that

{V1 < β1/2} ⊂ {V2 < β2/2},
and conclude that SCβ1 ⊂ SCβ2 .

Remark 2.2. It follows from the above proof that

|V1 − V2| ≤ (β2 − β1)/2,

thus proving the continuity of β �→ Vβ for 0 ≤ β ≤ βc.

3. The Small β Limit

In this section we study what happens to the superconductivity set when the inten-
sity of the field is high enough to confine it in a narrow region. We make the
(generic) nondegeneracy assumption that

|H | + |∇H | > 0 in M. (14)

In other words, ∇H �= 0 in {H = 0}. This implies in particular that the set
Σ := {H = 0} where the magnetic field vanishes is a finite disjoint union of smooth
closed curves. We also note that condition (14) also implies that we are not in the
situation where not even the first critical field is defined (see [5, Theorem 3.1]).

Let us say a few words here about the nondegeneracy assumption (14). This
is the same nondegeneracy assumption that has been considered in works on the
spectral analysis of the magnetic Laplacian [11] and on higher applied magnetic
fields in Ginzburg–Landau [12, 2]. Moreover, we emphasize that (14) is a generic
assumption, in the following sense.

Lemma 3.1. Let X = {H ∈ C1(M) :
∫
MH = 0}. The functions satisfying (14)

form and open and dense subset of X.
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Proof. The fact that (14) is an open condition is clear. For the density, it suffices
to show that any H ∈ X ∩C∞(M) can be approached by functions satisfying (14).
This follows from a simple transversality argument: recall (see, e.g., [8, 3.7]) that a
smooth function Φ is transverse to {0} if and only if Φ is a submersion on {Φ = 0}. In
particular (14) is equivalent toH being transverse to {0}. FixH1, H2 ∈ X∩C∞(M)
such that {H1 = H2 = 0} is void. Then the smooth function

Φ : R
2 ×M → R, (λ, x) �→ H(x) + λ1H1(x) + λ2H2(x),

is transverse to {0}, and therefore Φ(λ, ·) = H + λ1H1 + λ2H2 is transverse to {0}
for λ arbitrarily small [8, Theorem 3.7.4].

We are interested in the behavior, as β → 0, of the superconductivity region
SCβ (13).

We let d : M → R+ denote the distance function to the set Σ = {H = 0},
that is

d(x) = dist(x, {H = 0}). (15)

In this context we characterize the behavior of SCβ in terms of the function d, as
follows (this is a more explicit version of Theorem 1.1).

Theorem 3.2. Under the nondegeneracy assumption (14) on the magnetic field,
there exists β0 > 0 and C > 0 such that, for β ∈ (0, β0),{

d ≤ 1
C
β1/3

}
⊂ SCβ ⊂ {d ≤ Cβ1/3}, (16)

where SCβ is the superconductivity region (13), and d denotes the distance to the
zero locus of the magnetic field (15).

In the proof we construct explicit solutions to modified obstacle problems, in
order to apply the comparison principle Lemma 2.5. The comparison functions
are constructed locally near each component Γ of {H = 0}, and then we need
to extend and paste these functions and the associated modified obstacle problem
data. Although the construction looks local, it is worth noting that we really need
to make it near every component Γ of {H = 0}. Otherwise the pasting would
not provide us with obstacle problems comparable to the original one, because a
solution has to change sign near every curve Γ.

Remark 3.1. Another natural approach to proving Theorem 3.2 would be to con-
struct separate comparison functions in {H > 0} and {H < 0}. In those regions,
the obstacle problem becomes one-sided, so that more standard constructions with
a classical comparison principle can be made. On the other hand, there is no bound-
ary condition in those regions, so that such a construction would only provide us
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with the outer bound

SCβ ⊂ {d ≤ Cβ1/3}. (17)

To obtain the bounds (16) which show that the superconductivity set extends to
both sides of the zero locus of H by a β

1
3 margin, it seems that we really have

to appeal to the comparison principle for two-sided obstacle problems. However, if
we would just content ourselves with showing that the superconductivity set had
“thickness” proportional to β

1
3 , namely

dist({V = β/2}, {V = −β/2}) ≥ cβ1/3, (18)

there would be a simpler and elegant way. In fact (18) can be directly inferred
from (17). This is a simple consequence of the interpolated elliptic estimate (see
[3, Appendix A])

‖∇V ‖2
∞ ≤ C ‖∆V ‖∞ ‖V ‖∞ , (19)

which implies, since |V | ≤ β and |∆V | = |H�SCβ
| ≤ Cβ1/3, that

|∇V | ≤ Cβ2/3 in M. (20)

Hence, for any x± ∈ {V = ±β/2} and any arc-length parametrized curve γ(s),
(0 ≤ s ≤ �) going from x− to x+, it holds

β = V (x+) − V (x−) =
∫ �

0

∇V (γ(s)) · γ′(s)ds ≤ Cβ2/3�,

so that the length of γ satisfies � ≥ cβ1/3, which proves (18). Let us emphasize
again that (17)–(18) really is weaker than (16), since (18) does not prevent vortices
from coming arbitrarily close to one side of {H = 0}.

Next we turn to the proof of Theorem 3.2.

Proof of Theorem 3.2. We will construct, for small enough β, bounded functions
H1 ≤ H ≤ H2, and comparison functions V1 and V2 of regularity W 2,∞, satisfying
for j = 1, 2,

∆Vj = Hj�|Vj |<β/2,

|Vj | ≤ β/2, Hj ≥ 0 in {Vj = −β/2}, Hj ≤ 0 in {Vj = β/2},
(21)

and the bounds {
d ≤ 1

C
β1/3

}
⊂ {|Vj | < β/2} ⊂ {d ≤ Cβ1/3}. (22)

By Lemma 2.3, (21) implies that Vj solves the obstacle problem (9) with H = Hj .
Therefore we may apply the comparison principle for two-sided obstacle problems
(Lemma 2.5) to conclude that V1 ≥ V ≥ V2. In view of the bounds (22) satisfied
by V1 and V2, this obviously implies that the superconductivity region satisfies the
bounds (16).
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The rest of the proof is devoted to constructing V1 and V2. To this end we
introduce good local coordinates in a neighborhood of Σ = {H = 0}. Recall that,
thanks to the nondegeneracy assumption (14), Σ is a finite union of closed smooth
curves. Let us fix one of them, Γ, together with an arc-length parametrization of it:

Γ = {γ(x) : x ∈ R/�Z}, |γ′(x)| = 1.

Let us also fix a smooth normal vector ν(x) to Γ on M, that is

ν(x) ∈ Tγ(x)M, |ν| = 1, ν · γ′ = 0,

and impose that ν(x) points in the direction of {H > 0} (since H < 0 on one side
of Γ and H < 0 on the other side). We introduce Fermi coordinates along Γ: for
small enough δ, the map

R/�Z × (−δ, δ) → M, (x, y) �→ expγ(x)(yν(x)),

is a diffeomorphism. It defines local coordinates (x, y) on M in a neighborhood of
Γ, in which the Laplace operator has the form

∆ =
1
f

(∂yf∂y + ∂xf
−1∂x), (23)

where f(x, y) = 1 − yκ(x, y) for some smooth function κ. Note that y is nothing
else than the signed distance to Γ, and in particular |y| = d in a neighborhood
of Γ. At first glance, this may seem like a good coordinate system. However, we
need a parametrization that is better adapted to the Laplacian (i.e. it allows for a
separation of variables). To that end let (x, z) be the local coordinates where

z = y +
1
2
y2κ(x, y). (24)

Clearly the map (x, y) �→ (x, z) is a diffeomorphism for small enough y, so that
(x, z) define indeed local coordinates on M. The reason for using the coordinates
(x, z) is that the Laplace operator is then approximately

∆ ≈ ∂2
x + ∂2

z ,

which will allow us to obtain nice bounds for functions depending only on z.
Note that, since we choose the normal vector ν to point in the direction of {H >

0}, and since |∇H | ≥ c > 0 in a neighborhood of Γ thanks to the nondegeneracy
assumption (14), it holds

∂zH ≥ c > 0, |z| < δ.

On the other hand, ∇H is bounded, so that there exist C ≥ c > 0 such that

Cz�z<0 + cz�z>0 ≤ H ≤ cz�z<0 + Cz�z>0, |z| < δ. (25)

Next we concentrate on the construction of V1 (H1 will be defined accordingly).
Away from the set Σ, we simply define

V1 = −sign(H)β/2 in {d > δ/2}. (26)
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The interesting part is of course what happens near Σ. Near each of the smooth
curves Γ ⊂ Σ, we will look for V1 in the form V1 = v(z), where v is a W 2,∞ function
satisfying

v(z) =

{
β/2 for z < −η−,
−β/2 for z > η+,

(27)

for some parameters η± > 0 that will depend on β. A straightforward computation
using (23) and (24) shows that

∆V1 = v′′(z) + z(g1(x, z)v′′(z) + g2(x, z)v′(z)), (28)

where g1 and g2 are bounded functions. We are going to define in (−η−, η+) the
function v so that

v′′ ≤ 2Cz�z<0 +
c

2
z�z>0, |v′| = o(β), |v′′| = o(β). (29)

We then define H1 in (−η−, η+) simply as ∆V1. Thus, recalling (25), we will have,
for small enough β > 0,

∆V1 = H1�|V1|<β/2 with H1 ≤ H in {−η− < z < η+}. (30)

It is then straightforward to extend H1 to a function defined on M, such that
H1 ≤ H , and having the same sign as H outside of {−η− < z < η+}. The resulting
H1 and V1 satisfy (21).

Thus it remains to show that we can indeed define v(z) in {−η− < z < η+},
satisfying the bounds (29). We look for v in the form

v(z) =

{
v−(z) for − η− < z < 0,

v+(z) for 0 < z < η+,
with v±(z) polynomial. (31)

First of all, for v to be of class W 2,∞ around the points ±η±, we should impose

v−(−η−) = β/2, v+(η+) = −β/2, v′−(−η−) = v′+(η+) = 0. (32)

Thus we take v± to be of the form

v−(z) = (z + η−)2(A−z +B−) +
β

2

= A−z3 + (B− + 2η−A−)z2 + (2η−B− + η2
−A−)z + η2

−B− +
β

2
,

v+(z) = (z − η+)2(A+z +B+) − β

2

= A+z
3 + (B+ − 2η+A+)z2 + (−2η+B+ + η2

+A+)z + η2
+B+ − β

2
.

(33)

For v to be of class W 2,∞ around z = 0, we have to impose

η2
−B− +

β

2
= η2

+B+ − β

2
, 2η−B− + η2

−A− = −2η+B+ + η2
+A+. (34)
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We also need to ensure that

v′′ ≤ 2Cz�z<0 +
c

2
z�z>0, (35)

so we impose

6A− = 2C, 6A+ =
c

2
, B− + 2η−A− = B+ − 2η+A+ = 0, (36)

so that we even have an equality in (35). Plugging (36) into (34), we find
c

6
η3
+ +

2C
3
η3
− = β, 4Cη2

− = cη2
+, (37)

which leads us to choose

η± = α±β1/3, (38)

where α± > 0 are the solutions of

4Cα2
− = cα2

+,
c

6
α3

+ +
2C
3
α3
− = 1.

With A±, B± and η± chosen as in (36)–(38), the function v is of class W 2,∞ and
satisfies (35). Moreover, it is straightforward to check that

|v′| + |v′′| ≤ Cβ1/3 in (−η−, η+),

so that (29) is satisfied, which concludes the construction of V1 satisfying (21). On
the other hand V1 obviously satisfies (22) since

{|V1| < β/2} = {−η− < z < η+}.
We omit the construction of V2, which is completely similar to the one just

performed.

4. Intermediate Regimes

As discussed in Sec. 1, in the present section we want to understand the transitions
occurring as β decreases from βc to 0, when the set {H = 0} has more than one
connected component.

In Sec. 4.1 we study in detail a special case with rotational symmetry along a
vertical axis, to provide some insight into the transition from the vortexless state to
the zero solution. The reason to restrict to this setting is that it encapsules, what
we believe are, the most interesting changes in the superconducting set that can
occur.

On the one hand, once we drop the assumption of rotational symmetry, changes
in H inside the sample could lead to arbitrarily intricate solutions to the obstacle
problem for different values of β, so a general theorem is not available. On the other
hand the symmetries we consider highlight many model situations with remarkable
properties. One of these is the striking phenomenon that some parts of the free
boundary may freeze: that is, remain constant with respect to β, for β in some
interval. In Sec. 4.2 we generalize this observation to the general, nonsymmetric
case.
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As mentioned earlier, a generalization of the other properties is precluded due to
the wide variety of solutions one could construct, having the freedom to choose both
H and M. Nevertheless, we believe that under some more restrictive assumptions,
in particular fixing the topology of the level sets of H, one could extend the result
on existence of the transitions observed in Proposition 4.2, however the role of
the integral conditions on I±, J is not so easily transferable or even identifiable
anymore.

4.1. Detailed study of a symmetric case

Here we consider a surface of revolution of the form

M = {(ρ(φ) cos θ, ρ(φ) sin θ, z(φ)) : φ ∈ [0, π], θ ∈ [0, 2π]}, (39)

where ρ and z are smooth functions linked by the relation

z(φ) tanφ = ρ(φ),

and satisfying ρ(0) = ρ(π) = 0, ρ > 0 in (0, π), z′(0) = z′(π) = 0, and

γ :=
√

(ρ′)2 + (z′)2 ≥ c > 0.

The volume form on such M is dH2
M = ργdθdφ.

The induced magnetic potential A on M is also assumed to be symmetric, of
the form

A = a(φ)dθ =
a(φ)
ρ(φ)

êθ,

and we make the following assumptions on the functions a:

(a1): a(0) = a(π) = 0, and a > 0 in (0, π).
(a2): a′ > 0 in (0, φ1) and (φ2, φ3) and a′ < 0 in (φ1, φ2) and (φ3, π), for some

0 < φ1 < φ2 < φ3 < π.

The function a(φ) has two local maxima a1 = a(φ1) and a3 = a(φ3), and one local
minimum a2 = a(φ2). To simplify notations to come, we assume in addition that
a1 < a3. See Fig. 2.

Remark 4.1. The case, presented in Sec. 1, of a uniform external magnetic field
He = ez corresponds to a = ρ2/2.

In that setting, the functions H and ∗F are also axially symmetric: they depend
only on φ , and are given by

H =
a′

ργ
, (∗F )′ = a

γ

ρ
.

By uniqueness (up to a possible additive constant), the solution of the obstacle
problem (9) is also rotationally symmetric: it holds V = v(φ). Since V ∈ C1(M),
the function v should satisfy

v ∈ C1([0, π]), v′(0) = v′(π) = 0.

1550047-18
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0 πφ1 φ2 φ3

a′ > 0
a′ < 0 a′ > 0 a′ < 0

a1

a2

a3

Fig. 2. The shape of a(φ).

Moreover, the free boundary problem (11) becomes
|v| ≤ β/2 in [0, π],

(ργ−1v′ − a)′ = 0 in {|u| < β/2},
a′ ≥ 0 in {v = −β/2},
a′ ≤ 0 in {v = β/2}.

(40)

We investigate, for β < βc, the changes in the shape of the superconducting set
SCβ = {|v| < β/2}. The critical values at which that shape changes depend on the
values of integrals

∫
a γρ−1dφ on some intervals related to the level sets of a(φ).

That is why we start by fixing some notations concerning the level sets of a(φ).
There are three different cases, depicted in Fig. 3:

• For α ∈ (0, a2), {a = α} = {φ− < φ+}.
• For α ∈ (a2, a1), {a = α} = {φ− < ψ+ < ψ− < φ+}.
• For α ∈ (a1, a3), {a = α} = {ψ− < φ+}.
The functions φ±(α), ψ±(α) are continuous on their intervals of definition.

For α ∈ (a2, a1), we define

I−(α) =
∫ ψ+

φ−
(a− α)

γ

ρ
dφ, I+(α) =

∫ φ+

ψ−
(a− α)

γ

ρ
dφ,

J(α) = −
∫ ψ−

ψ+

(a− α)
γ

ρ
dφ.

(41)

Those integrals correspond to “weighted” areas of the regions depicted in Fig. 4,
with respect to the measure γρ−1dφ. Note that both the integrands and the intervals
of integration depend on α.

We identify a critical value of α with respect to these integrals.

Lemma 4.1. There exists α∗ ∈ (a2, a1) such that:

• for a2 < α < α∗, J < min(I±);
• for α∗ < α < a1, min(I±) < J .
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φ− φ+ φ− ψ+ ψ− φ+

(a) α ∈ (0, a2) (b) α ∈ (a2, a1)

ψ− φ+

(c) α ∈ (a1, a3)

Fig. 3. Level sets {a = α}.

φ− ψ+ ψ− φ+

I−
J

I+
α

Fig. 4. The integrals I± and J .

Proof. It follows from the obvious facts that J is increasing, I± are decreasing,
J(a2) = 0, I−(a1) = 0, and the functions are continuous.

Now we may give the precise version of Proposition 1.2.

Proposition 4.2. Let βc > β∗
1 ≥ β∗

2 > 0 be defined by

β∗
1 := max(I±(α∗)), β∗

2 := min(I±(α∗)).

Then the conclusion of Proposition 1.2 holds:

• For βc > β > β∗
1 , SCβ is an interval.
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• For β∗
1 > β > β∗

2 , SCβ is the union of two disjoint intervals, one of them inde-
pendent of β.

• For β∗
2 > β > 0, SCβ is the union of three disjoint intervals.

Remark 4.2. It may happen that I−(α∗) = I+(α∗). In that case, β∗
1 = β∗

2 and the
second regime predicted by Proposition 4.2 never happens.

Proof of Proposition 4.2. By uniqueness (see Remark 2.1), it suffices to exhibit,
for each regime listed in Proposition 4.2, a solution of (40) satisfying the desired
properties.

Case 1: β ∈ (β∗
1 , βc). The function

I(α) :=
∫ φ+

φ−
(a− α)

γ

ρ
dφ, α ∈ (0, a1),

is continuous, decreasing and satisfies I(0) = βc and I(α∗) = β∗
1 . Therefore there

exists a unique α ∈ (0, α∗) such that I(α) = β. We define

v(φ) =


−β/2 for φ ∈ (0, φ−),

−β/2 +
∫ φ

φ−
(a− α)

γ

ρ
dφ̃ for φ ∈ (φ−, φ+),

β/2 for φ ∈ (φ+, π).

The shape of the function v is sketched in Fig. 5.
The function v is clearly continuous since β has been chosen accordingly. More-

over, it holds

v′(φ+) = (a(φ+) − α)
γ

ρ
= v′(φ−) = 0,

α∗
a

−β/2

β/2

u

φ− φ+
ψ+ ψ−

Fig. 5. The shape of v for β ∈ (β∗
1 , βc).
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since by definition a(φ+) = a(φ−) = α. Hence v is in fact C1 in [0, π]. Also by
definition, a′ ≥ 0 in (0, φ−) and a′ ≤ 0 in (φ+, π). In addition, we clearly have
(ργ−1v′ − a)′ = 0 in (φ−, φ+). To prove that v solves (40), it only remains to show
that |v| < β/2 in (φ+, φ−). We consider two different cases, depending on whether
α ∈ (0, a2] or α ∈ (a2, α

∗).
If α ∈ (0, a2), then (see Fig. 3(a))

v′ = (a− α)
γ

ρ
> 0 in (φ−, φ+),

so that v is increasing on (φ−, φ+) and it clearly holds |v| < β/2. For α = a2 the
derivative v′ only vanishes at one point and the same conclusion is valid.

If, on the other hand α ∈ (a2, α
∗), then (see Fig. 5)

v′ = (a− α)
γ

ρ


> 0 in (φ−, ψ+),

< 0 in (ψ+, ψ−),

> 0 in (ψ−, φ+).

Therefore it suffices to check that v(ψ+) < β/2 and v(ψ−) > −β/2. We have, since
I(α) = β and by definition of I± and J (see Fig. 4),

v(ψ+) − β/2 = I−(α) − β = I−(α) − I(α) = J(α) − I+(α),

v(ψ−) + β/2 = I−(α) − J(α).

Since α < α∗ we find indeed (by definition of α∗) that v(ψ+) < β/2 and
v(ψ−) > −β/2, and in that case also we conclude that v solves the free bound-
ary problem (40).

Case 2: β ∈ (β∗
2 , β

∗
1 ). We treat the case where min(I±(α∗)) = I−(α∗). Thus β∗

1 =
I+(α∗) and β∗

2 = I−(α∗). The other case can be dealt with similarly.
The function I+(α) is continuous and decreasing on (a2, a3) and satisfies

I+(α∗) = β∗
1 and I+(a3) = 0 < β∗

2 (see Fig. 4). Therefore there exists α > α∗

such that I+(β) = α. We denote by ψ− and φ+ the two points of {a = α}∩ (φ2, π),
and by φ∗− < ψ∗

+ < ψ∗
− the three points of {a = α∗} ∩ (0, φ3) (as in Fig. 6). Note

that, since α > α∗, ψ∗
− < ψ−. Next we define

v(φ) =



−β/2 for φ ∈ (0, φ∗−),

−β/2 +
∫ φ

φ∗
−

(a− α∗)
γ

ρ
dφ̃ for φ ∈ (φ∗−, ψ∗−),

−β/2 for φ ∈ (ψ∗−, ψ−),

−β/2 +
∫ φ

ψ−
(a− α)

γ

ρ
dφ̃ for φ ∈ (ψ−, φ+),

β/2 for φ ∈ (φ+, π).

The shape of the function v is sketched in Fig. 6.
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α∗

β/2

−β/2

φ∗
− ψ∗

− ψ− φ+

a

u

ψ∗
+

α

Fig. 6. The shape of v for β ∈ (β∗
2 , β∗

1 ).

Continuity of v at ψ∗− is ensured by the fact that I−(α∗) = J(α∗). Continuity at
φ+ by I+(α) = β. The function v is C1 because the facts that a(φ∗−) = a(ψ∗

−) = α∗

and a(ψ−) = a(φ+) = α guarantee that v′(φ∗−) = v′(ψ∗
−) = v′(ψ−) = v′(φ+) = 0.

The sign of a′ is positive in (0, φ∗−) and (ψ∗
−, ψ−) and negative in (φ+, π). In the

two intervals (φ∗−, ψ
∗
−) and (ψ−, φ+), the equation (ργ−1v′ − a)′ = 0 is obviously

satisfied, and it remains to check that |v| < β/2 in those intervals.
Since v′ = (a− α)γρ−1 > 0 in (ψ−, φ+), it clearly holds |v| < β/2 in (ψ−, φ+).
In the interval (φ∗−, ψ

∗
−), the sign of v′ shows that v attains its minimum at the

boundary and its maximum at ψ∗
+, and it holds

v(ψ∗
+) − β/2 = −β + I−(α∗) = −β + β∗

2 < 0.

We conclude that v solves the free boundary problem (40). Moreover, the interval
(φ∗−, ψ

∗
−) clearly does not depend on β.

Case 3: β ∈ (0, β∗
2). Since I− is continuous and decreasing, I−(α∗) > β∗

2 and
I−(a1) = 0, there exists α1 > α∗ such that I−(α1) = β. Similarly, there exist
α2 < α∗ and α3 > α∗ such that J(α2) = I+(α3) = β. We denote by

0 < φ1
− < ψ1

+ < ψ2
+ < ψ2

− < ψ3
− < φ3

+ < π

the points such that (see Fig. 7)

{a = α1} ∩ (0, φ2) = {φ1
−, ψ

1
+},

{a = α2} ∩ (φ1, φ3) = {ψ2
+, ψ

2
−},

{a = α3} ∩ (φ2, π) = {ψ3
−, φ

3
+}.
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α∗

β/2

−β/2

a

φ1
− ψ1

+ ψ2
+ ψ2

− ψ3
− φ3

+

u

Fig. 7. The shape of v for β ∈ (0, β∗
2 ).

Then we define

v(φ) =



−β/2 for φ ∈ (0, φ1
−) or φ ∈ (ψ2

−, ψ
3
−),

−β/2 +
∫ φ

φ1
−

(a− α1)
γ

ρ
dφ̃ for φ ∈ (φ1

−, ψ
1
+),

β/2 for φ ∈ (ψ1
+, ψ

2
+) or φ ∈ (φ3

+, π),

β/2 +
∫ φ

ψ2
+

(a− α2)
γ

ρ
dφ̃ for φ ∈ (ψ2

+, ψ
2
−),

−β/2 +
∫ φ

ψ3
−

(a− α3)
γ

ρ
dφ̃ for φ ∈ (ψ3

−, φ
3
+).

The shape of the function v is sketched in Fig. 7.
As above the C1 regularity of v follows from the definitions of α1, α2 and α3. The

sign of a′ is positive in (0, φ1
−) ∪ (ψ2

−, ψ
3
−) and negative in (ψ1

+, ψ
2
+) ∪ (φ3

+, π). The
equation (ργ−1v′−a)′ = 0 is satisfied in the three intervals (φ1

−, ψ
1
+), (ψ2

+, ψ
2
−) and

(ψ3
−, φ

3
+). Moreover in those intervals, the function v is monotone, hence |v| < β/2.

Therefore v solves the free boundary problem (40).

4.2. “Freezing” of the free boundary

Proposition 4.3. Assume that, for some β0 ∈ (0, βc), one connected component
ω of the superconductivity set SCβ0 is such that Vβ0 takes the same value on each
connected component of ∂ω. Then there exists δ > 0 such that

SCβ ∩ ω = SCβ0 ∩ ω = ω, (42)

for all β ∈ (β0 − δ, β0].
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H < 0

H > 0

H < 0

H > 0

ω

−β/2

−β/2

+β/2

Fig. 8. An example of the situation of Proposition 4.3.

In Fig. 8 we show a situation corresponding to Proposition 4.3, with V = −β/2
on every connected component of ∂ω.

Remark 4.3. The assumption on β0 in Proposition 4.3 corresponds exactly to
what happens in the symmetric case (Proposition 4.2) in the regime β∗

1 > β > β∗
2 ,

where v(φ∗−) = v(ψ∗−) = −β/2 (Fig. 6).

Proof of Proposition 4.3. We present the proof in the case where V = −β0/2
on every connected component of ∂ω. The case V = β0/2 on ∂ω can be dealt with
similarly.

Since V < β0/2 in ω and V = −β0/2 on ∂ω, it holds

m := max
ω

V < β0/2,

and we define

δ :=
1
2
β0 −m > 0.

Let β ∈ (β0 − δ, β0], and define

Ṽ0 := Vβ0 +
1
2
(β0 − β). (43)

The definitions of m and δ ensure that it holds

−β/2 ≤ Ṽ0 ≤ 1
2
β0 − δ +

1
2
(β0 − β) < β/2 in ω. (44)

We claim that

Vβ = Ṽ0 in ω, (45)

which obviously implies (42).
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Note that the proof of Proposition 2.4 implies that it always holds

Vβ ≤ Ṽ0 in M. (46)

Let ωβ = SCβ ∩ ω, and

U := Ṽ0 − Vβ ≥ 0. (47)

Note that U ∈ C1,α(ω), and U = 0 on ∂ω (since, by definition of ω, Ṽ0 = 0 on ∂ω).
Let ω′ := ω ∩ SCβ . It holds

∆U = H�ω\ω′ in ω. (48)

From (44) and (46) it follows that

Vβ < β/2 in ω.

Therefore, recalling the free boundary formulation (11), we have H ≥ 0 in ω\ω′. In
particular (48) implies that

∆U ≥ 0 in ω.

Let ε > 0 and consider

ϕ := max(U − ε, 0) ∈ H1(ω).

Recalling that U ∈ C(ω) and U = 0 on ∂ω, we know that ϕ has compact support
inside ω. Thus we may integrate by part (without knowing anything about the
regularity of ∂ω) to obtain∫

ω

|∇ϕ|2 =
∫
ω

∇ϕ · ∇U = −
∫
ω

ϕ∆U ≤ 0,

and we deduce that ϕ ≡ 0 in ω, which implies that U ≤ ε in ω. Letting ε → 0, we
conclude that U ≤ 0 in ω, which, together with (47), shows that (45) holds.
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Appendix. The Mean Field Approximation

Recall we assume M ⊂ R3 is a closed compact surface homeomorphic to a sphere,
A a 1-form on M such that A = d∗F = ∗d ∗ F for some smooth nonconstant
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2-form F , and GM,κ the Ginzburg–Landau energy

GM,κ(ψ) =
∫
M

|(∇− ihA)ψ|2 +
κ2

2

∫
M

(|ψ|2 − 1)2.

The parameter κ > 0 is going to tend to +∞, as is the strength of the applied field
h(κ) > 0.

If ψ is a critical point of GM,κ, written locally as ψ = ρeiϕ, then it holds

d(ρ2(dϕ− hd∗F )) = 0.

We deduce that there exists a function V such that

∗dV = ρ2(hd∗F − dϕ).

The function V is uniquely defined up to an additive constant, which we may fix
by imposing

∫
M V = 0. The function

µ = −∆(V − h ∗ F ) = −∆V +H

is the vortex density.
In this paper we appeal to a mean field approximation result proved by Sandier

and Serfaty in [15]. In our case we also have to handle positive and negative measures
µ+, µ− with total zero mass µ+(M) − µ−(M) = 0. In this appendix we verify
that under the additional constraints present in our context, we still have such a
reduction. For an intensity h(κ) comparable to lnκ, the mean field approximation
consists in approximating the problem of minimizing GM,κ by a limiting problem
on the vorticity measure. The result also relates the following proposition.

Proposition A.1. Assume that β := limκ→∞ lnκ
h(κ) ≥ 0 and h(κ) = o(κ2). Let ψκ

be a minimizer of GM,κ, and the corresponding Vκ be defined as above. Then, up to
a subsequence, as κ→ ∞,

Vκ
h(κ)

converges to W∗,

weakly in H1 (and strongly in W 1,q for q < 2) where W∗ minimizes the energy

Eβ(W ) =
1
2

∫
M

|∇W |2dH2 +
β

2
‖−∆W +H‖TV ,

over the set of all W ∈ H1(M) such that (−∆W +H) is a Radon measure. Here
‖µ‖TV = |µ|(M) denotes the total variation norm of the Radon measure µ.

Moreover, it holds GM,κ(ψκ) = h(κ)2Eβ(W∗) + o(h(κ)2).

We impose the normalization conditions
∫
MWdH2 =

∫
M ∗FdH2 = 0. Then

with some slight abuse of notation Eβ(W ) can be expressed in terms of µ = −∆W+
H , as

Eβ(W ) = Eβ(µ) =
β

2
‖µ‖TV +

1
2

∫
M
G(x, y)d(µ −H)(x)d(µ −H)(y),

1550047-27

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 2
01

6.
18

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
E

W
 Y

O
R

K
 U

N
IV

E
R

SI
T

Y
 o

n 
06

/2
8/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 20, 2016 12:28 WSPC/S0219-1997 152-CCM 1550047

A. Contreras & X. Lamy

where G(x, y) is the Green’s function satisfying

−∆MG(·, y) = δy − 1
H2(M)

.

Here µ has to be a Radon measure of zero average since it comes from µ = −∆(W−
∗F ), hence

∫
M dµ = 0.

Note that Eβ(µ) may not be well defined for every measure µ, but at the end we
will only need it to be well defined for the particular µ∗ associated to W∗ solving the
obstacle problem (9), and this follows from the regularity theory for the obstacle
problem (see Lemma 2.3).

Sketch of the proof of the upper bound in Proposition A.1. The proof of the
lower bound and compactness for minimizers follows directly from [15, Theorems 7.1
and 7.2]. We note that a by-product of the analysis in [15] is that 2π

P
i∈I diδai

h

converges to −∆
(
Vκ

h − ∗F )
in the sense of measures and in W 1,p, for p < 2.

The upper bound on the other hand is a little more delicate to adapt. Next we
provide the details. The main tool to derive the upper bound in [15] is a construction
of measures µκ which approximate the measure µ∗ minimizing Iβ , and which are
concentrated in balls of size κ−1 each carrying a weight 2π. Before stating the
precise result, we introduce the functional J = Jβ

J(µ) := β‖µ‖TV +
∫
M×M

G(x, y)dµ(x)dµ(y). (A.1)

The following result then corresponds to [15, Proposition 2.2].

Proposition A.2. Let µ = µ+ − µ− be the minimizer of Iβ . Then, for κ large
enough, there exist points aκj,±, 1 ≤ j ≤ n±(κ), such that

n±(κ) ∼ h(κ)µ±(M)
2π

, d(aκj,±, a
κ
�,±) > 4κ−1,

and, letting µj,±κ be the uniform measure on ∂B(aj,±, κ−1) of mass 2π, the measure

µκ :=
1

h(κ)

n+(κ)∑
j=1

µj,+κ − 1
h(κ)

n−(κ)∑
j=1

µj,−κ converges to µ,

in the sense of measures as κ→ +∞. Moreover it holds
∫
M dµκ = 0, and

lim sup
κ→∞

∫
M×M

G(x, y)dµκ(x)dµκ(y) ≤ J(µ), (A.2)

where J = Jβ is defined in (A.1).

Above, d denotes geodesic distance and ∂B denotes a geodesic circle accordingly.
The zero average property

∫
dµκ = 0 is needed later to solve −∆(V − ∗F ) = µκ.

It actually amounts to asking n+(κ) = n−(κ). The upper bound (A.2) is crucial
to estimate the energy of the testing configuration constructed with help of the
measures µκ, and requires great care in the way the points aκj are distributed.
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Persistence of superconductivity in thin shells beyond Hc1

In [15], the authors consider non-negative measures defined on a domain in
the plane, with no average constraint. Here we are dealing with measures on a
surface having positive and negative parts, and, more importantly, satisfying the
zero average constraint.

Next we state a lemma that can be directly adapted from [15, Proposition 2.2],
which deals only with positive measures with support inside a coordinate neigh-
borhood. Then we will explain how to use this lemma to obtain Proposition A.2
above.

Lemma A.3 ([15, Proposition 2.2]). Assume that µ is a non-negative Radon
measure on M, absolutely continuous with respect to the two-dimensional measure
on M, and with support contained inside a coordinate neighborhood. Then, there
exist points aκj , 1 ≤ j ≤ n(κ), with

n(κ) ∼ h(κ)µ(M)
2π

and d(aκj , a
κ
� ) > 4κ−1,

such that, with µjκ the uniform measure of mass 2π on ∂B(aκj , κ
−1), it holds

µκ =
1

h(κ)

n(κ)∑
j=1

µjκ converges to µ,

and the upper bound (A.2) is satisfied.

The proof of Lemma A.3 is just a straightforward adaptation of [15, Proposi-
tion 2.2], using the coordinate chart to transport their construction from the plane
to our surface and general properties of the Green’s function of the Laplacian on a
compact surface.

Next we explain how to deal with non-negative measures whose support does
not lie inside a coordinate neighborhood.

Lemma A.4. Assume that µ is a non-negative Radon measure on M, absolutely
continuous with respect to the two-dimensional measure on M. Then the conclusion
of Lemma A.3 holds.

Proof. Step 1: We reduce to the case where the support of µ is a finite disjoint
union of compact coordinate neighborhoods. Assume indeed that the conclusion of
Lemma A.4 holds for such measures. It is possible to construct a sequence µn of
such measures, such that 0 ≤ µn ≤ µ and µn converges to µ. Indeed, just define
µn = �Knµ, where Kn is a finite disjoint union of compact subsets of coordinate
neighborhoods, and µ(M\Kn) → 0. Such a sequence Kn exists because M is
compact and the measure µ is inner regular. For each µn we obtain a sequence
µκn tending to µn with the good properties. After a diagonal process, we obtain a
sequence µκ converging to µ, such that

lim sup
κ→∞

∫
M×M

G(x, y)dµκ(x)dµκ(y) ≤ lim inf J(µn).
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A. Contreras & X. Lamy

It remains to show that the right-hand side is less than J(µ), which follows from
0 ≤ µn ≤ µ and G ≥ 0.

Step 2: We prove Lemma A.4 for µ that can be decomposed in the form

µ = µ1 + · · · + µN ,

where the supports of the µj are inside disjoint compact coordinate neighborhoods,
and each µj is non-negative and absolutely continuous with respect to H2

M. Then
one can apply Lemma A.3 to each µj to obtain sequences µj,κ with the good
properties. Then, defining µκ = µ1,κ + · · · + µN,κ, one obtains

lim sup
∫
G(x, y)dµκ(x)dµκ(y)

≤
∑
j

J(µj) + lim sup
∑
j �=�

∫
G(x, y)dµj,κ(x)dµ�,κ(y).

Since the supports of distinct µj are disjoint and G(x, y) is continuous outside the
diagonal {x = y}, it holds∫

G(x, y)dµj,κ(x)dµ�,κ(y) →
∫
G(x, y)dµj(x)dµ�(y) for j �= �,

and we conclude that

lim sup
∫
G(x, y)dµκ(x)dµκ(y) ≤

∑
j

J(µj) +
∑
j �=�

∫
G(x, y)dµj(x)dµ�(y) = J(µ).

The proof is complete.

Finally we deal with measures having positive and negative parts, and satisfying
the zero average constraint.

Lemma A.5. Let µ be a zero-average Radon measure on M, absolutely continuous
with respect to H2

M. Then the conclusions of Proposition A.2 hold.

Proof. Step 1: It suffices to construct measures µκ satisfying all the conclusions
of Proposition A.2, except for the zero average constraint. Assume indeed that
we have such a sequence. Since µ satisfies the zero average constraint, it holds
µ+(M) = µ−(M) and we deduce that n+(κ)−n−(κ) = o(h(κ)). Up to considering a
subsequence, we may assume that either n+(κ) ≥ n−(κ) for every κ (or the opposite,
but this is completely symmetric). We fix a compact K such that µ+(K) > 0 and
K is disjoint from the support of µ−. Since µ+

κ (K) converges to µ+(K), the number
of points aκj,+ that are contained in K for large κ is larger than c ·h(κ) for c > 0. In
particular it is larger than n+−n−, and we may define a measure µ̃+

κ obtained from
µ+
κ by removing (n+−n−) points aκj,+ that lie inside K. The measure µ̃κ = µ̃+

κ −µ−
κ

now satisfies the zero average condition, and since n+ −n− = o(h) the convergence

1550047-30

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 2
01

6.
18

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
E

W
 Y

O
R

K
 U

N
IV

E
R

SI
T

Y
 o

n 
06

/2
8/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 20, 2016 12:28 WSPC/S0219-1997 152-CCM 1550047

Persistence of superconductivity in thin shells beyond Hc1

µ̃κ → µ still holds. It remains to prove that the upper bound (A.2) is satisfied also
by µ̃κ. Since G ≥ 0 and 0 ≤ µ̃+

κ ≤ µ+
κ , it holds∫

G(x, y)dµ̃κ(x)dµ̃κ(y) ≤
∫
G(x, y)dµκ(x)dµκ(y)

+ 2
∫
G(x, y)d(µ+

κ − µ̃+
κ )(x)dµ−

κ (y).

The last term converges to zero since G is continuous outside the diagonal and
µ+
κ − µ̃+

κ converges to zero and has support inside K which is disjoint from the
support of µ−. Hence we conclude that (A.2) holds.

Step 2: As in Step 1 of Lemma A.4, we reduce to the case of a measure µ such
that µ+ and µ− have disjoint compact supports. Assume indeed that Lemma A.5
holds for such measures, and consider, by truncating, monotone approximations µ±

n

of µ±, with disjoints compact supports and such that 0 ≤ µ±
n ≤ µ±. For each n

there exist measures µnκ with the good properties, converging to µn := µ+
n − µ−

n .
After a diagonal process, one obtains a sequence µκ such that

lim sup
κ→∞

∫
M×M

G(x, y)dµκ(x)dµκ(y) ≤ lim inf J(µn).

Since G ≥ 0, by monotone convergence (or dominated convergence) terms of the
form

∫
Gdµ±

n dµ
±
n converge to

∫
Gdµ±dµ±, so that∫

G(x, y)dµn(x)dµn(y) →
∫
G(x, y)dµ(x)dµ(y),

and we also have ‖µn‖ → ‖µ‖, so that J(µn) → J(µ) and we conclude that (A.2)
holds.

Step 3: We assume now that µ+ and µ− have disjoint compact supports. Apply-
ing Lemma A.4 to each of these non-negative measures, we can proceed exactly as
in Step 2 of Lemma A.4 to obtain the conclusion.

With Lemma A.5 at hand, the proof of Proposition A.2 simply follows from
the regularity theory for the obstacle problem (see Lemma 2.3), which ensures in
particular that the minimizing measure µ∗ is absolutely continuous with respect to
H2

M.
Then the upper bound is obtained by constructing test configurations with

vortices at the aκj,± as in the proof of [15, Proposition 2.1]. Those test configurations
are obtained by solving −∆(Vκ− h ∗F ) = hµκ and constructing the corresponding
ψκ which has modulus 1 outside the balls B(aκj,±, 2κ

−1)’s, and phase given by
dϕκ = hd∗F − ∗dVκ.
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