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In the present work, we study minimizers of the Landau–
de Gennes free energy in a bounded domain Ω ⊂ R3. We 
prove that at low temperature minimizers do not vanish, 
even for topologically non-trivial boundary conditions. This 
is in contrast with a simplified Ginzburg–Landau model for 
superconductivity studied by Bethuel, Brezis and Hélein. 
Merging this with an observation of Canevari we obtain, as a 
corollary, the occurrence of biaxial escape: the tensorial order 
parameter must become strongly biaxial at some point in Ω. 
In particular, while it is known that minimizers cannot be 
purely uniaxial, we prove the much stronger and physically 
relevant fact that they lie in a different homotopy class.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Nematic liquid crystals are composed of rigid rod-like molecules which tend to align 
in a preferred direction. As a result of this orientational order, nematics present elec-
tromagnetic properties similar to those of crystals. A striking feature of nematics is the 
appearance of particular optical textures called defects. From the mathematical point 
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of view, the study of these defects is carried out using a tensorial order parameter Q
(introduced by P.G. de Gennes [4]). The Q-tensor takes values in the five-dimensional 
space

S =
{
Q ∈ R

3×3 : Qij = Qji, tr Q = 0
}
, (1)

of symmetric traceless 3 × 3 matrices. Endowing S with the usual euclidean norm

|Q|2 = tr(Q2)

will allow us to identify S isometrically with R5. As a symmetric matrix, a Q-tensor 
has an orthonormal frame of eigenvectors: the eigendirections are the locally preferred 
mean directions of alignment of the molecules, and the eigenvalues measure the degrees 
of alignment along those directions. In this context, uniaxial states are described by 
Q-tensors with two equal eigenvalues, and biaxial states correspond to Q-tensors with 
three distinct eigenvalues.

The configuration of a nematic material contained in a domain Ω ⊂ R
3 is given by a 

map Q : Ω → S. At equilibrium, Q should minimize the Landau–de Gennes free energy 
given by

FT (Q) =
∫
Ω

(
L

2 |∇Q|2 + fT (Q)
)
dx. (2)

Here L is an elastic constant and fT (Q) is the bulk free energy density, usually considered 
to be of the form

fT (Q) = α(T − T∗)
2 |Q|2 − b

3tr(Q3) + c

4 |Q|4. (3)

Above α, b and c are material-dependent positive constants, T is the absolute temper-
ature and T∗ a critical temperature. For T < T∗, the bulk free energy density fT (Q)
attains its minimum exactly on the vacuum manifold NT ⊂ S composed of uniaxial 
Q-tensors with a certain fixed norm:

NT =
{
Q ∈ S : Q = s∗

(
n⊗ n− 1

3I
)
, n ∈ S

2
}
,

s∗ = s∗(T ) =
b +

√
b2 − 24α(T − T∗)c

4c .

(4)

Above, the notation n ⊗ n denotes the matrix (ninj). Note that NT is diffeomorphic 
to the projective plane RP2. In this work we consider minimizers of FT (Q) subject to 
Dirichlet boundary conditions Qb,T : ∂Ω → NT minimizing the potential fT (Q):

Qb,T (x) = s∗

(
nb(x) ⊗ nb(x) − 1

I

)
, nb : ∂Ω → S

2. (5)
3
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In the London limit L → 0, a minimizing Q-tensor must be close to an NT -valued 
harmonic map Q∗, that is a minimizer of the Dirichlet energy among maps with values 
in the manifold NT . This is analogous to the case of the simplified Ginzburg–Landau 
energy with prescribed topologically nontrivial boundary conditions studied in [2]; in this 
setting it is proved that minimizers of the corresponding energy converge to harmonic 
maps with values in S1, which are then forced to have singularities, known in that context 
as vortices.

The singularities of the director field n∗ associated to the limit of minimizers of FT (Q)
correspond to the optical defects observed in experiments. In the core of a defect, two 
possible behaviours are considered in the physics literature. The notion of isotropic melt-
ing refers to a Q-tensor vanishing in the core of the defect. This is comparable to the 
behaviour observed in the core of Ginzburg–Landau vortices, and can be achieved by 
remaining in a uniaxial state. Alternatively, Q-tensors may take advantage of the addi-
tional degrees of freedom offered by biaxiality: instead of vanishing in the core of the 
defect, the Q-tensor order parameter may become strongly biaxial. This last behaviour 
is referred to as biaxial escape [22].

Biaxial escape has been first proposed as a way to avoid singularities of the director 
field by Lyuksyutov [12]. The corresponding mechanism has been investigated in greater 
detail by Penzenstadler and Trebin [17], followed by a number of further studies (see e.g. 
[22,18,16,8]). These works indicate that biaxial escape should be energetically favourable
when the bulk free energy (3) degenerates to a Ginzburg–Landau-like potential, which 
occurs for instance at low temperature.

Our main result states that, at low temperatures, isotropic melting is indeed avoided: 
the minimizing configurations do not vanish.

Theorem 1.1. Let Ω ⊂ R
3 be a smooth bounded simply connected domain. Let nb : ∂Ω →

S
2 be a smooth director field and Qb,T : ∂Ω → NT the associated boundary datum (5). 

Let QT be a solution of the variational problem

min
{
FT (Q) : Q ∈ H1(Ω;S), Q = Qb,T on ∂Ω

}
,

where FT is the Landau–de Gennes free energy (2). Then, there exists T0 ∈ R (depending 
on Ω, L, α, b, c), such that if T < T0,

inf
Ω

|QT | > 0,

i.e. QT does not vanish in Ω.

To prove Theorem 1.1, we use the fact that any zero xT of QT must converge, as 
T → −∞, to a point x0 ∈ Ω; this follows from the analysis in [14]. After this, we take 
advantage of the degeneracy of the bulk potential to a Ginzburg–Landau potential in 
the low temperature limit. The Ginzburg–Landau potential fGL(Q) = (1 − |Q|2)2 being 
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minimized by S4-valued maps, we are able to relate QT to an S4-valued harmonic map. 
This is done through a blow-up analysis of QT at xT which in turn leads to a local 
minimization problem in R

3 for a limiting map Q∞. Next, thanks to the study in [15]
based on the work of Lin and Wang [10], a blow-down analysis of the limiting map using 
the minimality of Q∞ yields strong convergence to a harmonic map with values in S4. 
The conclusion follows with the help of a regularity result for minimizing harmonic maps 
by Schoen and Uhlenbeck [21].

Next we explain how Theorem 1.1 is related to the phenomenon of biaxial escape. Of 
course, Theorem 1.1 is more interesting when the boundary condition nb is topologically 
non-trivial. In that case, a recent remark of Canevari [3, Lemma 3.10] shows that the 
only way for QT to avoid vanishing is to be strongly biaxial. To give a precise meaning 
to this statement, we recall the definition of the biaxiality parameter for a Q-tensor,

β(Q) = 1 − 6(tr(Q3))2

|Q|6 , (6)

introduced in [7]. It holds that 0 ≤ β(Q) ≤ 1, and Q is uniaxial for β = 0, biaxial 
for β > 0 and is said to be maximally biaxial for β = 1. Canevari’s lemma implies the 
following corollary to our main result:

Corollary 1.2. If the boundary datum nb : ∂Ω → S
2 is topologically non-trivial, then for 

low enough temperatures T < T0, any minimizing configuration QT must be strongly 
biaxial:

β(QT (x0)) = 1

for some x0 ∈ Ω.

In fact, in [3] Canevari uses the aforementioned lemma to prove a theorem similar to 
Corollary 1.2, in the case of a two-dimensional domain. Our result is a three-dimensional 
analog of [3, Theorem 1.1], and could probably be adapted to provide a simpler proof of 
[3, Theorem 1.1].

Corollary 1.2 generalizes a recent result by Henao, Majumdar and Pisante [13]. In [13], 
the authors show that for low enough temperature, minimizers can not be purely uni-
axial (that is, can not satisfy β = 0 everywhere). Note that this result does not exclude 
the existence of approximately uniaxial minimizers, which would satisfy β ∼ 0 through-
out Ω. On the other hand, Canevari’s lemma shows that these configurations are not 
homotopically equivalent to those that satisfy the conclusion of Corollary 1.2 (see § 5 for 
more details). Thus, our main result settles the question of the essentially non-uniaxial 
nature of minimizers in the T → 0 limit.

To further clarify the biaxial vs uniaxial discussion we remark that results of the 
second author in [9] indicate that the uniaxiality constraint is very rigid: non-existence of 



A. Contreras, X. Lamy / Journal of Functional Analysis 272 (2017) 3987–3997 3991
purely uniaxial solutions may not be specific to low temperature or energy minimization. 
In contrast, Corollary 1.2 is really specific to the low temperature limit.

The article is organized as follows. In Section 2 we reformulate the problem and 
recall some basic convergence properties of minimizers of FT . In Section 3 we study the 
blown-up problem, obtain a limiting map and derive its minimal character. In Section 4
we conclude the proof of Theorem 1.1 with the aid of a blow-down analysis. Finally, in 
Section 5 we prove Corollary 1.2 and make some final remarks.

2. Properties of minimizing Q-tensors

2.1. Rescaling

Introducing the reduced temperature t and rescaled maps Q̃:

t := −α(T − T∗)c
b2

, Q̃ := 1
s∗

√
3
2Q,

we see that, for some constant K = K(α, b, c, T ) which plays no role in the sequel,

FT (Q) = s2
∗b

2

3c

∫
Ω

(
L̃

2 |∇Q̃|2 + t

2(|Q̃|2 − 1)2 + λ(t)h(Q̃)
)
dx + K,

where L̃ = 3cL/b2,

λ(t) =
√

24t + 1 + 1
12 ∼

t→+∞

√
t

6 , (7)

and

h(Q̃) = 1
6 − 2

√
2√
3

tr(Q̃3) + 1
2 |Q̃|4. (8)

It holds that h(Q) ≥ 0 for every Q ∈ S, and the potential h vanishes exactly at

Ñ =
{√

3
2

(
n⊗ n− 1

3I
)

: n ∈ S
2

}
. (9)

The limit T → −∞ corresponds to t → +∞. Therefore we may reformulate the 
problem: show that minimizers Qt of the energy functional

F̃t(Q) =
∫
Ω

(
L̃

2 |∇Q|2 + t

2(|Q|2 − 1)2 + λ(t)h(Q)
)

dx (10)

subject to the boundary condition
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Qt = Q̃b =
√

3
2

(
nb ⊗ nb −

1
3I

)
on ∂Ω, (11)

do not vanish for large enough t.
We prove Theorem 1.1 by contradiction: we assume the existence of sequences 

tj → +∞ and (xj) ⊂ Ω such that Qtj minimizes (10)–(11) and Qtj (xj) = 0. Note 
that any minimizer of F̃t is smooth thanks to standard elliptic estimates (see e.g. [14, 
Proposition 13]), so that evaluation at xj makes sense. Up to extracting a subsequence, 
we may assume in addition that xj → x∗ ∈ Ω.

In the sequel we study the behaviour of the sequence (Qtj ) and obtain a contradiction. 
To simplify the notations, we drop the subscript j: we write (Qt) and (xt) and it is always 
implied that a subsequence is considered.

2.2. Convergence

Since the set H1
nb

(Ω; S2) = {n ∈ H1(Ω; S2) : n|∂Ω = nb} is not empty (see e.g. 
[5, Lemma 1.1]), we may use an Ñ -valued comparison map and obtain the bound

F̃t(Qt) =
∫
Ω

(
L̃

2 |∇Qt|2 + t

2(|Qt|2 − 1)2 + λ(t)h(Qt)
)

dx ≤ C. (12)

In particular, we see that the sequence (Qt) is bounded in H1(Ω; S). Up to extracting 
a subsequence, we may therefore assume that Qt converges weakly to a limiting map 
Q∗ ∈ H1(Ω; S) with Q∗ = Qb on ∂Ω. Moreover, since the bound (12) implies

∫
Ω

h(Qt) ≤ Cλ(t)−1 ∼ C

√
6
t
,

we deduce that h(Q∗) = 0 a.e., so that Q∗ is Ñ -valued. From this point on, we can 
proceed as in [14, Lemma 3]. We conclude that Qt converges to Q∗ strongly in H1 and 
Q∗ is an Ñ -valued harmonic map.1 In particular, Q∗ is smooth in Ω \ Σ, where Σ ⊆ Ω
is a finite set of interior point singularities [19,20].

As in the Ginzburg–Landau case [1], the convergence of Qt towards Q∗ can be im-
proved away from the singularities Σ. The arguments in [1] have been adapted to the 
liquid crystal case in [14]. The asymptotic regime L → 0 in [14] corresponds to the limit 
t → +∞ in the present work. The arguments in [14, Proposition 4] and [14, Proposition 6]
are straightforward to adapt, and we obtain the convergence

1
2(|Qt|2 − 1)2 + λ(t)

t
h(Qt) −→ 0, locally uniformly in Ω \ Σ.

1 In fact, Q∗ =
√

3
2
(
n∗ ⊗ n∗ − 1

3 I
)

where n∗ ∈ H1(Ω; S2) is a minimizing harmonic map.
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Since we have in addition, thanks to the maximum principle, |Qt| ≤ 1 (cf. e.g. [14, 
Proposition 3]), we deduce – using also (7) – that

|Qt| −→ 1 locally uniformly in Ω \ Σ. (13)

Recall that by assumption, Qt(xt) = 0 for a sequence xt → x∗ ∈ Ω. The uniform 
convergence (13) away from Σ implies that x∗ ∈ Σ. In particular x∗ lies well inside Ω. 
Our next step will consist in “blowing up” around xt.

3. Blowing up

We fix δ > 0 such that B(xt, δ) ⊂ Ω for all j. We consider the blown-up maps

Qt(x) = Qt

(
xt + x√

t

)
, x ∈ Bδ

√
t.

The map Qt minimizes the energy functional

Et(Q;Bδ
√
t) =

∫
Bδ

√
t

(
L̃

2 |∇Q|2 + 1
2(|Q|2 − 1)2

)
dx + λ(t)

t

∫
Bδ

√
t

h(Q) dx, (14)

with respect to its own boundary conditions. Fix any R > 0. For large enough t, Qt is 
defined in BR and solves the Euler–Lagrange equation

L̃ΔQt = 2(|Qt|2 − 1)Qt + λ(t)
t

∇h(Qt).

The uniform bound |Qt| ≤ 1 and standard elliptic estimates thus imply

|∇Qt| ≤ CR in BR,

where CR is a constant that may depend on R but not on t. Therefore, up to extracting 
a subsequence, we may assume that Qt converges locally uniformly, and weakly in H1

loc, 
to a map Q∞ ∈ H1

loc(R3; S). Moreover, since the convergence is locally uniform, Q∞ is 
continuous and satisfies

Q∞(0) = 0. (15)

We claim that Q∞ locally minimizes a Ginzburg–Landau energy:

Lemma 3.1. For all R > 0, the limiting profile Q∞ minimizes the energy functional

E(Q;BR) =
∫
BR

(
L̃

2 |∇Q|2 + 1
2(|Q|2 − 1)2

)
dx, (16)

with respect to its own boundary condition.
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Proof. Let P ∈ H1
0 (BR; S). Since Qt is minimizing, it holds

0 ≤ Et(Qt + P ;BR) −Et(Qt;BR)

By elliptic regularity, Qt converges to Q∞ in C1
loc, which then implies that

0 ≤ E(Q∞ + P ;BR) −E(Q∞;BR),

as well by taking the limit t → +∞. Therefore Q∞ minimizes (16), as claimed. �
Moreover, proceeding exactly as in the proof of [13, Theorem 1.(v)], we obtain the 

energy bound:

Lemma 3.2. ([13]) There exists C > 0 such that

E(Q∞;BR) ≤ CR, (17)

for all R > 0.

The bound (17) follows from two main ingredients: an energy monotonicity inequality 
for minimizers of (14) [14, Lemma 2], and an energy bound for S2-valued minimizing 
harmonic maps near their singularities (following from the energy monotonicity for min-
imizing harmonic maps, see e.g. [11, Lemma 2.2.5]).

4. Blowing down, proof of Theorem 1.1 completed

Our last step consists in “blowing down” Q∞ around the origin, and eventually reach-
ing a contradiction with (15). Let B1 be the unit ball in R3. We consider the blown-down 
maps

Q
R
(x) = Q∞(Rx), x ∈ B1.

Note that (15) implies that

Q
R
(0) = 0, ∀R > 0. (18)

By definition, Q
R
∈ H1(B1) for all R > 0. We have:

Lemma 4.1. Up to a subsequence,

Q
R
−→ Q in H1(B1;S),

for some S4-valued harmonic map Q. Moreover, |Q | −→ 1 uniformly in B1.
R
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Proof. Since Q∞ minimizes (16), the map Q
R

minimizes the energy functional

GR(Q) =
∫
B1

(
L̃

2 |∇Q|2 + R2

2 (|Q|2 − 1)2
)

dx. (19)

Moreover, the energy bound (17) implies the bound

GR(Q
R
) ≤ C, (20)

so that we may extract a subsequence R → +∞ (indices are implicit), such that

Q
R
−→ Q weakly in H1(B1;S). (21)

The energy bound (20) also implies that Q is S4-valued. Now, thanks to Lemma 3.1, we 
can appeal to Proposition 4.2 in [15] to conclude that the convergence of Q

R
to Q can 

be improved to strong convergence in H1. In [15], the proof relies on [10, Theorem C] in 
the case of R3-valued maps converging to S2-valued maps. However, [10, Theorem C] is 
valid in greater generality and applies to our case. Moreover, the analysis in [15] does not 
make use of the dimension of the target space other than to provide an explicit constant 
in their computations.

Next, the minimizing character of Q follows from Step 1 in [15, Corollary 4.1], which 
also applies to our case without modifications. From this we conclude that Q is an 
S

4-valued minimizing harmonic map. As a consequence, Schoen and Uhlenbeck’s regu-
larity result [21, Theorem 2.7] ensures that Q is smooth in B1.

Since the proof of [15, Proposition 4.2] also shows that the convergence of Q
R

to-
wards Q is actually uniform away from the singularities of Q, we obtain in particular 
that

|Q
R
| −→ 1 uniformly in B1, (22)

which is the desired conclusion. �
We note that (22) contradicts (18) and thus the proof of Theorem 1.1 is complete. �

5. Proof of Corollary 1.2

In [3], Canevari makes the crucial observation that if Q is almost uniaxial, i.e.

max
Ω

β(Q) < 1, (23)

then the Q-tensor must vanish. More precisely, in our case the following result holds.
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Lemma 5.1. ([3, Lemma 3.11]) Let Q ∈ C1(Ω; S) with uniaxial boundary condition of 
the form (5). If nb : ∂Ω → S

2 is topologically non-trivial and (23) holds, then

min
Ω

|Q| = 0.

In [3] the proof is carried out in the two-dimensional case but a careful reading shows 
that the argument still holds in the three-dimensional setting, since the result relies 
only on topological considerations in the target space S. Indeed, the crucial observation 
leading to [3, Lemma 3.11] is the fact that, for any large C and small δ > 0, the set

{Q ∈ S : δ ≤ |Q| ≤ C, β(Q) ≤ 1 − δ} ⊂ S

has two connected components, both topologically equivalent to NT , and exactly one 
component intersects NT .

As a consequence of Theorem 1.1 we see that, in light of Lemma 5.1, QT must be max-
imally biaxial at some point for sufficiently low temperature. The proof of Corollary 1.2
is complete. �

We finish with a few remarks. Theorem 1.1 implies the existence of a point where 
maximal biaxiality is achieved, however it does not provide a characterization of the 
location of this (or these) point(s) in terms of the domain or the boundary datum. Also 
the number of these points of biaxial escape cannot be deduced from the topological 
conclusion in [3, Lemma 3.11]. To finish, a more detailed description of the defect core 
is also an interesting matter worthy of pursuit. In this last direction, we mention the 
stability study of the radial hedgehog defect performed in [6].

Acknowledgments

A.C. would like to thank his postdoctoral supervisors S. Alama and L. Bronsard for 
their support and encouragement. He was funded by McMaster’s postdoctoral fellowship. 
This work was carried out during X.L.’s visit at McMaster University. X.L. thanks the 
Department of Mathematics and Statistics, in particular S. Alama and L. Bronsard, 
for their hospitality, and the ‘Programme Avenir Lyon Saint-Etienne’ for its financial 
support. He also wishes to thank his Ph.D. advisor P. Mironescu for his constant support 
and helpful advice.

References

[1] F. Bethuel, H. Brezis, F. Hélein, Asymptotics for the minimization of a Ginzburg–Landau functional, 
Calc. Var. Partial Differential Equations 1 (2) (1993) 123–148.

[2] F. Bethuel, H. Brezis, F. Hélein, Ginzburg–Landau Vortices, Birkhäuser, 1994.
[3] G. Canevari, Biaxiality in the asymptotic analysis of a 2-D Landau–de Gennes model for liquid 

crystals, ESAIM Control Optim. Calc. Var. 21 (1) (2015) 101–137.
[4] P.G. De Gennes, J. Prost, The Physics of Liquid Crystals, second edition, Oxford University Press, 

1993.

http://refhub.elsevier.com/S0022-1236(17)30013-7/bib6262683933s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib6262683933s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib424248s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib63616E65766172693134s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib63616E65766172693134s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib646567656E6E6573s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib646567656E6E6573s1


A. Contreras, X. Lamy / Journal of Functional Analysis 272 (2017) 3987–3997 3997
[5] R. Hardt, D. Kinderlehrer, F. Lin, Existence and partial regularity of static liquid crystal configu-
rations, Comm. Math. Phys. 105 (4) (1986) 547–570.

[6] R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, Stability of the vortex defect in the Landau–de 
Gennes theory for nematic liquid crystals, C. R. Acad. Sci. Paris I (351) (2013) 533–537.

[7] R. Kaiser, W. Wiese, S. Hess, Stability and instability of an uniaxial alignment against biaxial 
distortions in the isotropic and nematic phases of liquid crystals, J. Non-Equilib. Thermodyn. 17 
(1992) 153–169.

[8] S. Kralj, E.G. Virga, Universal fine structure of nematic hedgehogs, J. Phys. A: Math. Gen. 34 (4) 
(2001) 829.

[9] X. Lamy, Uniaxial symmetry in nematic liquid crystals, Ann. Inst. H. Poincaré Anal. Non Linéaire 
32 (5) (2015) 1125–1144.

[10] F. Lin, C. Wang, Harmonic and quasi-harmonic spheres II, Comm. Anal. Geom. 10 (2002) 341–375.
[11] F. Lin, C. Wang, The Analysis of Harmonic Maps and Their Heat Flows, World Scientific Publishing, 

2008.
[12] I.F. Lyuksyutov, Topological instability of singularities at small distances in nematics, Sov. Phys. 

JETP 48 (1978) 178–179.
[13] A. Majumdar, A. Pisante, D. Henao, Uniaxial versus biaxial character of nematic equilibria in three 

dimensions, arXiv:1312.3358v1, 2013.
[14] A. Majumdar, A. Zarnescu, Landau–de Gennes theory of nematic liquid crystals: the Oseen–Frank 

limit and beyond, Arch. Ration. Mech. Anal. 196 (1) (2010) 227–280.
[15] V. Millot, A. Pisante, Symmetry of local minimizers for the three-dimensional Ginzburg–Landau 

functional, J. Eur. Math. Soc. 12 (2010) 1069–1096.
[16] S. Mkaddem, E.C. Gartland, Fine structure of defects in radial nematic droplets, Phys. Rev. E 62 

(2000) 6694–6705.
[17] E. Penzenstadler, H.-R. Trebin, Fine structure of point defects and soliton decay in nematic liquid 

crystals, J. Phys. France 50 (9) (1989) 1027–1040.
[18] R. Rosso, E.G. Virga, Metastable nematic hedgehogs, J. Phys. A: Math. Gen. 29 (14) (1996) 4247.
[19] R. Schoen, K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (2) (1982) 

307–335.
[20] R. Schoen, K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Dif-

ferential Geom. 18 (2) (1983) 253–268.
[21] R. Schoen, K. Uhlenbeck, Regularity of minimizing harmonic maps into the sphere, Invent. Math. 

78 (1984) 89–100.
[22] A. Sonnet, A. Kilian, S. Hess, Alignment tensor versus director: description of defects in nematic 

liquid crystals, Phys. Rev. E 52 (1995) 718–722.

http://refhub.elsevier.com/S0022-1236(17)30013-7/bib68617264746B696E6465726C65687265726C696E3836s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib68617264746B696E6465726C65687265726C696E3836s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib49676574616Cs1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib49676574616Cs1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib6B61697365727769657365686573733932s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib6B61697365727769657365686573733932s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib6B61697365727769657365686573733932s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib6B72616C6A76697267613031s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib6B72616C6A76697267613031s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib6C616D793134s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib6C616D793134s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib4C696E57616E67s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib77616E676C696E3038s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib77616E676C696E3038s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib6C79756B737975746F763738s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib6C79756B737975746F763738s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib68656E616F6D616A756D646172706973616E74653134s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib68656E616F6D616A756D646172706973616E74653134s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib6D616A756D6461727A61726E657363753130s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib6D616A756D6461727A61726E657363753130s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib4D696C6C506973s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib4D696C6C506973s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib676172746C616E646D6B616464656D3030s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib676172746C616E646D6B616464656D3030s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib70656E7A656E737461646C657274726562696E3839s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib70656E7A656E737461646C657274726562696E3839s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib726F73736F76697267613936s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib7363686F656E75686C656E6265636B3832s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib7363686F656E75686C656E6265636B3832s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib7363686F656E75686C656E6265636B3833s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib7363686F656E75686C656E6265636B3833s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib7363686F656E75686C656E6265636B3834s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib7363686F656E75686C656E6265636B3834s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib736F6E6E65746B696C69616E686573733935s1
http://refhub.elsevier.com/S0022-1236(17)30013-7/bib736F6E6E65746B696C69616E686573733935s1

	Biaxial escape in nematics at low temperature
	1 Introduction
	2 Properties of minimizing Q-tensors
	2.1 Rescaling
	2.2 Convergence

	3 Blowing up
	4 Blowing down, proof of Theorem 1.1 completed
	5 Proof of Corollary 1.2
	Acknowledgments
	References


