A SYMMETRY BREAKING PHENOMENON FOR ANISOTROPIC
HARMONIC MAPS FROM A 2D ANNULUS INTO S!

ANDRES CONTRERAS AND XAVIER LAMY

ABSTRACT. In a two dimensional annulus A, = {z € R? : p < |z]| < 1}, p € (0,1),
we characterize 0-homogeneous minimizers, in H'(A4,;S') with respect to their
own boundary conditions, of the anisotropic energy

Es(u) = / [Vul> +6 (V-u)? = (Vxu)?) de, §€(-1,1).
P

Even for a small anisotropy 0 < |§] < 1, we exhibit qualitative properties very
different from the isotropic case 6 = 0. In particular, 0-homogeneous critical points
of degree d ¢ {0,1,2} are always local minimizers, but in thick annuli (p < 1)
they are not minimizers: the 0-homogeneous symmetry is broken. One corollary
is that entire solutions to the anisotropic Ginzburg-Landau system have a far-
field behavior very different from the isotropic case studied by Brezis, Merle and
Riviere. The tools we use include: ODE and variational arguments; asymptotic
expansions, interpolation inequalities and explicit computations involving near-
optimizers of these inequalities for proving that 0-homogeneous critical points are
not minimizers in thick annuli.

1. INTRODUCTION

For any open set 2 C R? and S'-valued map u € H'(2;S!), and given an
anisotropy parameter § € (—1, 1), we consider the anisotropic energy

Es(u; Q) = /Q (Vul? + 6 ((V-u)? = (V xu)?) du. (1)

The energy density admits the alternative form (1 + §)(V - u)? + (1 — §)(V x u)*:
this follows from the identity |Vu|*> = (V - u)? + (V x u)? + 2det(Vu), where the
last term is zero for u € H'(€;S'). This energy arises in liquid crystal models, see
e.g. [10,9, 2, 14]. The energy density is the most general positive definite quadratic
form of Vu which is compatible with frame invariance: for any angle o € R, the
transformation

u(z) — e "u(er) (2)
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leaves the energy invariant. Critical points of Es in H'(Q;S'), characterized by

Y B (2T a)=0  VoeCHQLRY,
0t ‘5<|§5+w| ¢ €O LR

satisfy the Euler-Lagrange equation

Lsu = \u, A =u- Lsu, (3)
where the linear operator Ls is given by

Lou=—Au—6(V(V-u)— V-V xu)),
and the function A in can be interpreted as a Lagrange multiplier for the con-
straint u(z) € S'.

The goal of this work is to exhibit nontrivial effects of the anisotropy on certain

critical points of the energy. This is made manifest in the form of a symmetry

breaking for minimizers within a given class, even when the anisotropy is small. To
be precise, we consider the case of an annulus

Q=A,={zeR* p<|z| <1}, p€(0,1),

and are interested in properties of O-homogeneous critical points: in polar coordi-
nates x = re’, they depend only on the 6 variable. The main question we ask is:
are 0-homogeneous critical points minimizers with respect to their own boundary
conditions?

Basic facts. In the isotropic case 6 = 0, the equation becomes Ay = 0 for
u = . All 0-homogeneous solutions are given by

u(re) = e e, aeR, deZ,
and they are minimizers within their own homotopy class, characterized by the

degree or winding number,

2w
d = deg(u) = QL/ u(re®)opu(re®) do € Z Vr € [p, 1. (4)
0

™

This is well-defined and does not depend on r because the trace of u € H'(A,;S")
on 0D, belongs to H%(f)Dr; St) for all 7 € [p, 1], see e.g. [5, Appendix]. Specifically,
the lower bound

/ |Vul?dr > 2rwd?|In p| Vu € H'(A,,S") with deg(u) = d, (5)
Ap

is attained exactly at the one-dimensional family of 0-homogeneous maps u(re?) =
e’ o ¢ R. In the anisotropic case § # 0, the lower bound

Es(u; Ay) > (1 — |5|)/ |Vu|2 dr > (1 — |6|)27Td2| In p,
Ap
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is sharp only when d = 1, and attained at the maps

ot {0 mod ©  if § € (—1,0),

i0 _
u(re”) = ete “= Zmod 7 if e (0,1).

Notice that we no longer have a one-dimensional family of minimizers. It can be
checked that these maps are the only 0-homogeneous solutions of in A, which
are critical with respect to perturbations of their boundary conditions. They are
also the only 0-homogeneous solutions of with degree d = 1, as shown in § .
Solutions of degree d # 1 seem largely unexplored.

Main result. The scaling invariance of the energy ensures the existence of at least
one 0-homogeneous critical point of any degree d. For d # 1, our main result asserts
that it is unique modulo frame invariance and linearly stable, but when the hole
(p < 1) and the anisotropy (0 < [0| < 1) are small, it is not a minimizer with
respect to its own boundary conditions, provided d ¢ {0, 1, 2}.

Theorem 1.1. Let § € (—1,1) and d € Z\ {1}.

e All 0-homogeneous solutions of degree d of the Euler-Lagrange system
are given by a single one-dimensional family

£(2) = e g(er),  acR
e The unique (modulo frame invariance) 0-homogeneous critical point &5 is

linearly stable in A, for all0 < p < 1: there exists a constant c > 0 depending
on 0 and p such that

d? £5+tg0
— E A Vol?d
dt?|, (|§6+t90| > /l ol de

for all ¢ € CI(A,,,RQ) such that ¢ - &5 = 0 a.e.

e For small enough |6| > 0 and d ¢ {0,1,2}, there exists a critical value
px = p«(0,d) € (0,1) such that the 0-homogeneous critical point &5 is a
minimizer in A, for p > p, but not a minimizer for p < py:

:Eé(gé;Ap) if 1> p > p.,
< E5(§5;Ap> if 0 < p < ps,

where the minimum is taken over all maps u € H'(A,;S') such that u = &;

on 0A,.

min  Es(u; A,)

U9a,=Es

Remark 1.2. We make here a few observations about the statements in Theorem [T.1}

e The case of degree d = —1 is the most important from the physical point of
view, since only defects of degree d € {£1} are experimentally stable (see
e.g. [3]).

e The third item requires small anisotropy 0 < |§| < 1, but the first two items
are valid for any 6 € (—1,1).
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e The existence of a one-dimensional family of 0-homogeneous critical points
of degree d # 1, as in the isotropic case d = 0, is in strong contrast with what
happens for d = 1, where that one-dimensional symmetry is broken for § # 0.
We show in § [4.1| that for 0 < |§] < 1, the trivial solutions u(re?) = e¢'@ei?,
a = 0 modulo 7/2, are the only 0-homogeneous solutions of degree d = 1.

e The uniqueness statement in the first item of Theorem implies that 0-
homogenous solutions of degree d # 1 enjoy discrete symmetry properties:
the map &; satisfies

&5(eTTz) = —e' T g5 (x), (6)
Indeed, this symmetry constraint is compatible with the energy as noted in
[21], and u(re®) = e satisfies (6) for any d € Z \ {1}, hence minimizing
among (-homogeneous maps of degree d with this symmetry constraint
produces one symmetric solution £;™. The symmetry @ is preserved under
frame invariance , so the one-dimensional family generated by & satis-
fies it, and by uniqueness it agrees with the one-dimensional family generated
by &s in Theorem

e The linear stability of &5 can be used to show that it is a local minimizer
among maps u € H'(A,;S') agreeing with & on A, but the neighborhood
in which it is a minimizer degenerates for small values of p, see Proposi-
tion [3.5l The critical value p, in the third item of Theorem satisfies

e~ ClI™ < p«(0) < e_(0|5|)_1’17 for a large constant C' > 0 depending on the
degree d, as can be inferred from and Proposition

e The degree 2 case is different: the unique family of 0-homogeneous solutions
is given by £¢(re?) = ee?® and it is a minimizer in A, for all 0 < p < 1,

see §[4.2

Comparison with minimizing maps in higher dimensions. In dimension n > 3, tan-
gent harmonic maps R" — N with values into a riemannian manifold N, that
is, blow-up limits of M -valued maps minimizing the isotropic energy [ |Vul|?, are
0-homogeneous [25]. This is the key reason why minimizing harmonic maps are
known to have a singular set of dimension at most n — 3, while optimal regularity
estimates for minimizers of anisotropic energies are open [15] 23] [17]. Homogeneity
of the isotropic tangent maps is due to the decoupling of the energy density into
radial and angular derivatives:

1
|Vul|? = |0,ul* + = |V.oul?.
2

In our two-dimensional setting, this is the same decoupling which provides the lower
bound in the isotropic case 6 = 0. In the absence of such decoupling, it seems
hard to determine whether tangent maps are O-homogeneous. Since tangent maps
are minimizers with respect to their own boundary conditions, one way to gain
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insight into that question is to investigate whether 0-homogeneous maps are mini-
mizers. Our results, by showing in a particular two-dimensional case that anisotropy
prevents many 0-homogeneous maps from being minimizers, therefore suggest that
tangent maps for minimizers of anisotropic energies in dimension n > 3 might fail
to be 0-homogeneous in some cases.

Consequences for the anisotropic Ginzburg-Landau energy. Energy-minimizing maps
from an annulus (and more generally a domain with small holes) into S! are strongly
relevant to the analysis of the anisotropic Ginzburg Landau energy

GLs(u; Q) = /Q %|Vu|2 + g (V-u)? = (Vxu)?)+ 4%2(1 — u®?dx, (7)

and the corresponding anisotropic Ginzburg-Landau equation
1
Lsu = 6—2(1 — |ul?)u,

for maps u: Q — R2. The very different nature of defects of degree d = —1 versus
d = 1 unveiled by Theorem will have repercussions on a negative degree coun-
terpart of the analysis performed in [L0] for minimizers of GLs(+; Q) with boundary
data g: 9Q — St of positive degree.

The symmetry breaking demonstrated by Theorem also has consequences on
the far-field asymptotics (r — 0o) of entire solutions u: R? — R? to the anisotropic
Ginzburg-Landau equation, via the scaling argument of [26]. More specifically, in
the entire plane R? the length-scale € can be set to € = 1, and we consider maps
u: R? — R? which solve the anisotropic Ginzburg-Landau equation

Lsu = (1—|ul*)u in R?, (8)
associated to the energy GLs = GL;; given by

GLi(wi®) = [ IVuP+ OOV P~ (Vx ) 4 10— P, (9)

with finite potential energy

/Rzu ~ Juf?)? dz < oo. (10)

Such u has a well-defined degree d = deg(u) = deg(u/|u|;0Dg) € Z for R> 1. In
the isotropic case = 0, solutions of any degree d can be constructed using a radial
ansatz u(re?®) = fy(r)ei?’ [8, [16], and all solutions satisfy a quantization property
for their potential energy [6]. This quantization is obtained as a consequence of
a Pohozaev identity and far field asymptotics u(re?) — €% as r — oo in an
appropriate sense, entailing for instance

/ 0,ul? dz < oo.
R2
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In the anisotropic case 0 < || < 1, and for degrees d ¢ {0, 1}, the mere existence of
solutions is unknown in full generality. For small anisotropy |6| < do(d) and negative
degree d < —1, solutions were constructed in [21] via a minimization procedure under
the discrete rotational symmetry constraint mentioned in Remark [1.2]

™

u(ei\dfl\x) = _eiﬁu(x) Vo € R (11)

Large radius asymptotics in the spirit of [6] seem unexplored, apart from formal
calculations for d = —1 and |§| < 1 in [9, § IV]. As a consequence of the third point
in Theorem [1.1] we obtain that these asymptotics behave very differently from the
isotropic case.

Corollary 1.3. For any d € Z \ {0,1,2} there exists dy € (0,1) with the following
property. Let w € H.} (R*R?) be a solution of the anisotropic Ginzburg-Landau

equation with finite potential energy and degree deg(u) = d. If 0 < |0] < dg
and w s esther locally minimizing:

G Ls(u; Dr) < GLs(v; D), Vv € H'(Dg;R?), vjap, = W oDs,

or symmetric (1)) and locally minimizing with respect to symmetric competitors,
then we have

|0,u|* do = +o0,
RQ
and the maps ug: S* — R? given by ur(0) = u(Re) do not converge as R — +00
(in the sense of distributions).

Remark 1.4. Using the methods in [21], § 4], one can show that a locally minimizing
solution must be of degree d € {—1,0,1}, but existence of a locally minimizing
solution of degree —1 is unknown. However, Corollary applies to the symmet-
ric solutions of degree d < —1 constructed in [2I]. More precisely, the solutions
constructed in [21] satisfy an additional mirror symmetry constraint u(z) = au(z)
for some a € {£1}, but the same proof provides existence of solutions which are
locally minimizing under the symmetry constraint only. (At the level of &, the
additional mirror symmetry only has the effect of selecting a value of £5(0) in {41}
or {£i}.) Moreover, it will be clear from the proof that Corollary also applies
to symmetric solutions which are locally minimizing under that additional mirror
symmetry constraint.

Sketch of proof of Theorem [I.1. To prove Theorem [I.I} we start by showing that
any 0-homogeneous solution ¢ is linearly stable. We achieve this using identities
satisfied by the Jacobi field w = (d/da)|a=o[¢?] generated by the symmetry (2),
£%(x) = e~ @¢(e"x). (The idea of proving stability via a Jacobi-field-based decom-
position is classical, see e.g. [24], 19, 22] 20l [I8].) When restricting the energy to
0-homogeneous maps, this linear stability implies local minimality of the solution &.
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Since this is valid for any 0-homogeneous solution &, uniqueness follows: in the pres-
ence of two distinct (modulo frame invariance) solutions, a non-locally-minimizing
solution could be obtained by a classical mountain pass argument and would provide
a contradiction (an earlier implementation of this kind of argument in the context
of Ginzburg-Landau can be found in [I]). In that way we obtain the first two items
of Theorem [L1l

For the third item, we wish to show that, for [0| < 1, the 0-homogeneous solution
&s is minimizing in A, if p is not too small, but not minimizing if p < 1. A formal
expansion of the energy for small perturbations around &5 gives quadratic terms that
are positive thanks to the linear stability, and remainder terms which are formally
of lower order. Estimating these remainder terms to absorb them into the positive
quadratic terms proves local minimality of &. This requires adequate interpolation
inequalities, but the constants involved in these inequalities behave badly as p — 0
and the neighborhood of local minimality becomes very small.

On the one hand, when p is not too small this is enough to deduce minimality,
using the fact that for |§| < 1 any minimizer must be close to the isotropic minimizer
€' and belong therefore to the neighborhood of local minimality of &s.

On the other hand, for very small p, identifying near-optimizers for the interpo-
lation inequalities provides a reasonable guess of a perturbation of & which would
produce negative remainder terms that cannot be compensated by the positive qua-
dratic terms. In order to check that this reasonable guess actually works, we deter-
mine an expansion & = € + §¢; + 62¢; + O(6®), and deduce an explicit expression
of the bad part of the remainder terms. Choosing appropriate values for p and the
amplitude of the perturbation then ensures that all non-explicit terms are controlled,
and eventually produces a lower energy.

Plan of the article. In Section [2| we study 0-homogenous critical points and prove
the first two items of Theorem [I.1] In Section [3|we prove the third item, namely that
& is minimizing for p ~ 1 but not minimizing for small p, when [§] < 1. In Section[4]
we treat the particular cases d € {1,2}. In Section [f] we prove Corollary [1.3|
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2. STABILITY AND UNIQUENESS OF 0-HOMOGENEOUS CRITICAL POINTS

In this section we study 0-homogeneous solutions of the Euler-Lagrange system
and prove the first two items of Theorem [1.1] With a slight abuse of notation,
we identify a O-homogeneous S'-valued map & with a map depending only on the
polar angle 6:

Ere”) =¢€(0), €€ H'(SLSY).
In that context, the equation can be rewritten as

Lig =X, A=¢-Lyt, (12)
where the reduced linear operator Eg is given by

255 = —056 — 00y [(895 -ie®)ie'® — (Op¢ - ew)ew}
Solutions of correspond exactly to critical points of the reduced energy

B©) = [ 6P +5((¢ i) = (¢ ")) ab. (13)

There exists at least one solution of degree d, obtained by minimizing among
maps of degree d, since the degree is continuous under weak convergence in H'(S!;St).

We start by proving that any solution & € H'(S';S') of with degree d # 1
generates, via frame invariance , a non-vanishing Jacobi field.

Lemma 2.1. Let |6] < 1 and & € H*(S';S') with degree d € Z \ {1} solve the
reduced equation (12)). Then & € C*°(SY;SY), and the Jacobi field w € C*(S'; R?)
given by

1 d

w(t) =-—7 o~ . €2 (@), €(0) =0 + ),

satisfies |w| > 0 in S.

Proof of Lemma[2.1] For any ¢ € H'(S';S') of degree d, there is a lifting ¢ €
H'(S';R) such that

£(0) = ' eie®) Vo € R.

In terms of this lifting the energy is of the form

F3(p) = Es(e'®e') = / (1+6cos(2(d —1)0 +2¢)) (d + ')* db,

St
and the Euler-Lagrange equation becomes
d
pr [(1+dcos(2(d—1)0 +2¢)) (d+ ¢')]

— —dsin(2(d — 1)8 + 20)(d + )2 (14)
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This implies that p € C*(S';R) (see e.g. [12, Theorem 4.36]) and therefore & €
C°(S';S') for any solution of (12)). For any a € R, we have

£2(0) = e Top(0) = (0 + a) + (d = e
In terms of ¢, the Jacobi field w can be explicitly computed and is given by

' +d—-1 ¢

w=-——-71&.

d—1

To prove that w does not vanish, we show that ¢’ cannot take the value (1 —d). To
that end, we first note that, for any ¢y € R, the functions

Y(0) = o — db, V(0) = Yo+ (2 —d)0,

are solutions of , as can be checked by a direct calculation. As a consequence,
¢' cannot take the values {—d, 2 — d}, unless it is constant: if ¢/(6y) € {—d,2 — d},
then ¢ and one of the above solutions ¢ have same value and derivative at 6y, and
are therefore equal by uniqueness of the Cauchy problem for the ODE ({14]). The
cases where ¢’ is constant equal to —d or 2 — d can only occur if d € {0,2} since
@ is periodic, and then w obviously does not vanish. Otherwise, we have on the
one hand ¢'(R) C R\ {—d,2 — d}, and on the other hand 0 € ¢/'(R) because ¢ is
periodic and smooth. If d < 0 we deduce ¢’ < —d < 1 —d, and if d > 2 we deduce
¢ >2—d>1-—d. In both cases, this implies that w does not vanish. 0

Remark 2.2. Since a — Top(0) is surjective onto R (because ¢ is bounded and
d # 1), we may always choose a € R such that T,,¢(0) = 0, or equivalently £*(0) = 1.

Next we use the fact that w does not vanish, and that it solves the linearized
equation

Low—w=jg,  ji=Lsw- ¢ (15)

to prove that the homogeneous critical point £ is linearly stable for the reduced
energy E(;. This will be enough to deduce uniqueness modulo frame invariance (the
first item of Theorem , and will serve as a warm-up to the proof of linear stability
for the full energy Ejs (the second item of Theorem |1.1J).

Lemma 2.3. Let |0] < 1 and & € H'(S';S') with degree d € Z \ {1} solve the
reduced equation (12)). Then for all o € H'(S';R?) we have

1 d? 5§+t A
5 aa Ej (W) = Qe — (€ 9)¢],
st

with A = Ls€ - € as in (12). For any tangent field v € H'(S';R?) with v-& =0
a.e., there is f € HY(SY;R) such that v = fw, where w is the smooth Jacobi field
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generated by & as in Lemma and @5 satisfies the coercivity inequality
Qcle] = Qelul = (1=18) [ 177 o ab.

Proof of Lemma[2.5 First we establish the expression of @5. We start with a pre-
liminary calculation which is also of independent interest. For any u € H'(S';S),
letting v = u — ¢ and integrating by parts we find

Es(u) — Es(€) = Es(€ +v) — Es(€)
= / (|v’|2 +5((-ie”)? = (v - €7)%) + 2L5¢ - v> db.
Sl
Using that & solves this becomes

E(;(U) _ E&(f) _ /Sl (|U/|2 +45 ((U, . ,L'eie)Q _ (UI . eiG)Q) + 25\5 . U) deo.

And recalling that 1 = |u]* = |v|*> + 2v - £ + 1, we rewrite the last term using
¢-v=—|v|?/2 and find

Ey(u) = Es(€) = Qelu— €], (16)
with @g defined as in Lemma . Noting that ||¢|le < C||¢||z and applying this
to

§+ty 2
= =&+t — : +t y 1 <O ) )
U g E+tle— (& )+ 0, el < CE, )

for t <1/(2+ ||¢|l), we deduce

ol e L - 3
B () =0l — (€ 0] + O)

which proves the claimed expression /f\or the second derivative at t = 0.

Next we prove the coercivity of Q¢. Let v € H(S';R?) such that v-& = 0
a.e. Since the smooth Jacobi-field also takes values orthogonal to £ and does not
vanish, this implies v(0) = f(0)w(0) for some real-valued f(f) and a.e. § € S, and
f=|w|?v-we HY(S";R). Integrating by parts we find

Qclful = [ [Estru) = A pu] - fuwds
To simplify that expression we compute
Eg(fw) = fLsw — f"w —2f W
d

6 [ (i€ )ie? — (w - )]

. 5f/ ((w/ . iei@)ieié _ (w/ . eie)ew) ’
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and deduce
Ls(fw) - fw = fLyw-w+ (') (Jw]” + 5w - ie?)* = 6(w - €)?)

- dilﬁ [ff’ (|w|2 + 6(w - ie”)? — §(w - ei9)2)}
Coming back to the expression of @5 we find
0 = 2(Low — Mw) -
Qe fw] /Sl [f < sW w) w
+(f)? (|w|2 +0(w - ieie)2 —o(w - eie)Q) } do.

Finally we use the facts that the Jacobi field w solves the linearized equation ([15)
and w - £ = 0 to simplify the above to

~

Qelsul = [ (7P (ol + 8w ie")? = 5w - ")) o,

Sl
The coercivity inequality of Lemma then follows from the pointwise inequality
|w|? + 6(w - ie??)? — §(w - )2 > (1 —|5])|w]?. O

The next step is to turn the linear stability proved in Lemma into a local
minimality statement.

Lemma 2.4. Let |6] < 1 and & € H'(S';S') with degree d € Z \ {1} solve the
reduced equation . There exist ¢, > 0 such that

Es(u) 2 E5(€) + ¢ inf u—€|l7,
for all uw € H'(S';SY) such that inf ,eg ||u — || g < 7.

Proof of Lemma[2.4). Let v € H'(S';S'). We assume without loss of generality
(since the statement is invariant under application of the change of frame transfor-
mation ([2) to &) that

o= €l = inf flu— €l <, (17)

with 7 to be chosen later. We define v = u — £ and write
v = fw+ g§, f:%,g:v-geHl(Sl;R).

We first gather some estimates on f and g. The identity
1= [u* =€+ 0] =1+2g9+ ¢ + flwf,

implies g = —1+ /1 — f2|w|?, where the sign + may depend on 6. But by Sobolev
embedding and the explicit expressions of f, g in terms of v we have

£z + llgllzee < clloflm < en,
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for some generic constant ¢ > 0 depending on . Hence choosing n small enough
ensures that ¢ = /1 — f2|w|? — 1 and |g| < ¢|f]?>. Combining this with Sobolev
embedding for f we deduce

lgllzee + (117 < cll Iz (18)
Further, minimality of & = 0 in implies

O:/(v-w+v'-w’)d9
St

= [ P+ WPy ds+ [ (el g€+ g ) o
St St
and combining this with the Poincaré inequality
tdo<c [ @2do it | ol + ) do =0,
Sl Sl Sl
we infer
G < e [ (P ao+ [ @0+ ol

Estimating the last term with yields

G < e [ P ao+e [ (@) a0+ 11l

Taking into account that ||f||z: < c||v||z < en and choosing 1 small enough, the
last term can be absorbed into the left-hand side and we are left with

1 < [ (Pdo e [ (a0,
st st
And combining this with leads to

0 . ") df ") df 19
lollo= + 11~ < [ (PP [ ) (19)

Now we let B¢ denote the symmetric bilinear form on H'(S'; R?) associated to the
quadratic form @)¢. Thanks to (16) we have

Es(u) — E5(&) = Qelv] = Qe[fw] + 2B¢[fuw, g€] + Qelge]. (20)

Using the same calculations as in Lemma [2.3| we find

Qelo) = [ [ (o6 = 36) - €+ @ (1 + 66 - ") = 5(¢ - <)) a

Sl

_ /S (¢)? (1 + 8(& - i) — 8(¢ - ¢)2) do.
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For the last equality we used 255 = 5\6’ and |¢] = 1. Plugging this and the expression
of Q¢[fw] obtained in Lemma 2.3 into we find

~

Ey(u) — Ey(6) = / ()2 (juof? + 8w - ie)? — 5w - €*)?) df

# [ (@) (g1 = b e)) o
+2B¢[fw, g¢]. (21)

The bilinear form Eg is given by

~

Bg[’l]l,'UQ] = / |:25'U1 Uy — ;\Ul * Vg do.
st

Applying it to v; = fw and vy = g€, the last term disappears because w - & = 0, and
since

Ls(fw) = fLyw — f"w — 2f w'

d 0y 0 i0y i
—5@ [f((w~ze Jie — (w-e”)e”)]

_ 5f (( )ze 0 (w' . eie)ez‘e) ’
we find, using that E(;w = \w + i€ and w - € =0,
Ls(fw) - gé = ﬂfg —2f'g(w' )
— 5— [gf { w - e’ )(E - Zew) — (w - ew)(f . ew)}]
+59f[(w'le )(& - ie) — ( '
+dgf" [(w- 2'6’9)(5 : Z'6"9) —(w- €i9)(€' )]
—ogf" [(w' - i) (€ - ie”) — (w' - ) (€ - )], (22)

and eventually

Belfw, gé] = / (i fg—2f'g(w - £)) db

St

5[ (8 [t ieye e ")~ o))
o [(we i) (€ ie”) = (w- )¢ - e?)]
=g [(w' - ie?) (€ ie) = (w' - )€ - )] ) db.
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Plugging this into we obtain

~

Es(u) — E5(€) = / [(F2lwl* + (') + 20 fg — 4f'g (W' - €)] db

Sl

iy (<f/>2 ((w Cie®)? — (w - ew)z)

st
+ (g7 (& ie”)? = (€ €)?)
20/ f [(w-ie?) (€ ie) = (w- e?)(g - )] ) db
25 [ g ((w-ie") (¢ ie") = (- )€ - )
— (i) (€ - ie®) + (w' - (€ - ei9)> df. (23)

The integrand in the second integral is of the form A(f'|w|,g) - (f'|w|,g), with a
symmetric matrix A given by

A= ai — a3 aiby — asby
o CL1b1 — a2b2 b% — bg ’

ap = — i€, ag = — - by =E-ie?, by =E- €.

The vectors a = (a1, as2), b = (b1, by) satisfy |a| = |b| = 1 and a - b = 0, so writing
a=¢e“ b=e® with 8 =a+7/2 mod 7, we find

B cos(2a)  cos(a+ ) cos(2a)  +sin(2a)
~ \ cos(ae+ ) cos(2p) — \ *sin(2a) —cos(2a) )7
hence det A = —1, trA = 0 and A has eigenvalues +1. This implies that the

integrand in the second integral of has absolute value < (f")?|w|*> + (¢')?, and
we deduce

~

Byfu) = B(©) > (1= 13) [ [Vl + ()] a9

—cl/ \fg]d&—cg/ |f'g| de.
st st
with ¢; = 2||/i]|oc and ca = 4(2||w']| 0 + [|w]|so]|€||o0)- Recalling we deduce

~

By(w) = Bs(6) = (1=18)) | (7Pl + (0] a9

e (/Sl<f'>2de)g e (/Sl<g'>2de>g
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We deduce from this that

min(1, inf |w|?)

s [ @) e,

if ||(f, 9)|lmr < ||v]|z is small enough (depending on £ and §). Finally we remark
that [|u — ¢[[m = [vl[m < ¢||(f; 9)l[m, and using again (18) we have [|(f, g)[m <
cllf' e + clld' ||z, so Es(u) — Es(§) > cfju — &||g and this concludes the proof of
Lemma 2.4 O

Remark 2.5. The constants ¢, in Lemma depend only on M, m > 0 such that
|€llcz < M and |w| > m, as can be checked directly from the proof. Since ¢
solves , its C? norm is controlled by its H' norm. Moreover, the lower bound
|w| > m > 0 is uniform among solutions £ of of degree d # 1 with bounded
H' norm: otherwise one could find a sequence of solutions &, bounded in H*, hence
in C?, such that inf |w,| — 0, and extracting a converging sequence in C' would
produce a solution ¢ with inf [w| = 0, in contradiction with Lemma [2.1 Therefore
the constants ¢,n in Lemma 2.4 depend only on M > 0 such that [|£]|z: < M.

Es(u) — E5(€) > (1 - [3])

Now we use all the preceding lemmas and a mountain pass argument to prove
the first item of Theorem (1.1, namely uniqueness of 0-homogeneous critical points,
modulo frame invariance .

Proposition 2.6. Let |§| < 1 and d € Z\{1}. If¢,¢ € HY(SY;S) are two solutions
of , then there exists a € R such that ¢ = £°.

Proof of Proposition|[2.6. First note that H'(S'; S') is a smooth Hilbert submanifold
of H'(S';R?). This can be checked e.g. by noting that for any ¢ € H'(S!;S!), re-
stricting the map H'(SY;R) 3 ¢ — &€ to a small neighborhood of 0 provides
a smooth parametrization of a neighborhood of ¢ in H!(S';S!). In particular,
H'(S';S") is a complete smooth Finsler manifold, see [27, § 11.3.7]. Moreover, it
can be checked rather directly that the energy Ej is C* on H'(S';S') and satisfies
the Palais-Smale condition [27, § I1.2.], so that the deformation Lemma [27, § I1.3,
Theorem 3.11] is valid.

Assume now by contradiction that there are two solutions &, &, of such that

. B o

a%lefR 167 — & [ > 0.
Thanks to Lemma [2.4] we know there are constants ¢,n > 0 such that, for j = 1,2,
By(u) > Es(&) + c inf Ju — €, (24)

for all uw € H'(S";S') such that infaep ||u — || < 7. Choosing 7 small enough we
may moreover assume that

inf &) — &5)lm > 21
Jnf N6 — &l > 2n
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Therefore, defining
P = {p € CO([O7 ]-]7 Hl(Slagl)) p(o) = SQap(l) = 62}7

any path p € P must intersect the sets of maps u such that inf,eg [|u — &g = 7,
for j = 1,2, and from we deduce

max Es(u) > ma

u€p Jj=1,
for € = c¢n? > 0 and all p € P. Then a standard application of the deformation
lemma gives that

B = inf max Fs(u),

peEP u€p

is a critical value. Assume indeed that 3 is not a critical value. Since g > E(;(éj) +e€
for j = 1,2, the deformation lemma [27, § I1.3, Theorem 3.11] then provides € €
(0,€) and a family {®(-,1)};>0 of continuous maps of H'(S';S') into itself, such
that ®(&;,1) = ¢ for j = 1,2, and ®(-,1) maps the level set {Es < B+ €} into
{Eg < B — €}. By definition of § there exists p € P such that Eg(u) < B+ € for all
u € p, but then p = ®(p, 1) € P satisfies Eg(ﬁ) < B — e for all u € p, contradicting
the definition of .

Finally we show that the fact that £ is a critical value contradicts the local
minimality of all critical points established in Lemma [2.4] Let Kz C H'(S';S')
denote the set of all critical points £ with Eg(f ) = . Since K is bounded, we infer
that there exist uniform constants ¢,n > 0 such that the conclusion of Lemma [2.4]
is valid for all £ € Kj, see Remark As a consequence, any path p € P such
that disty1(p, K3) < n must satisfy max,e, E(;(u) > B+ cn?, and we deduce that
the infimum defining 5 can be taken over paths p € P such that distyi(p, Kz) > n.

Applying the deformation lemma again provides ¢ > 0 and a family {®(-,#)}+>0
of continuous maps of H'(S';S') into itself, such that ®(§;,1) = & for j = 1,2,
and ®(-,1) maps the level set {Es < f + ¢} deprived of the neigborhood N =
{disty:1 (-, Kg) < n} of Kz, into {Es < B—¢€}. By the above, there exists p € P such
that distgi(p, K3) > n and max, Es < B + €, but then the path p = ®(p,1) € P
satisfies max; E(; < (. This contradicts the definition of 3, and concludes the proof
of Proposition [2.6] U

Finally we show that ¢ is linearly stable not only with respect to 0-homogeneous
perturbations (Lemma , but also with respect to all compactly supported per-
turbations in dA,, as claimed in the second item of Theorem
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Proposition 2.7. Let |§| <1, d € Z\ {1} and p € (0,1). Let & € H(S*;S') with
deg(€&) = d solve the reduced equation (12)). Then for all € CL(S',R?) we have

1 d

2 dt?

5, (%A) — Qe — (- 9)el
t=0

Qi) = | <|W|2 F5((V 0 = (T x0)?) - gw) d.

with 5\(9) = ng & as in (12). For any tangent field v € H}(A,;R?) with v-& =0
a.e., there is f € Hy(A,;R) such that v = fw, where w is the smooth Jacobi field
generated by & as in Lemma and Q¢ satisfies the coercivity inequality

Qelv] = Qelfu] > (1—|5|)/A V£ 12w da.

Proof of Proposition[2.7] The argument is very similar to the proof of Lemma [2.3]
we only need to deal with additional radial derivative terms in the energy. Identifying
as above £(0) = &(re) with a function on A,, we see that £ solves the full Euler-
Lagrange equation (3) with A = A/r2. For any u € H'(A,;S") such that u = £ on
0A,, letting v = u — & € H}(A,;R?) we find, integrating by parts as in the proof of
Lemma [2.3]

Es(u; A,) — Es(§; Ap)
_ / (V02 +8 (V- 0)2 — (V x 0)?) + 2 L5¢ - v) da,

p
and using L£5¢ = (A/r?)€ and € - v = —|v|?/2 we obtain

By(u; Ay) — By(€A,) = Qclu— €], (25)
with Q¢ as in Proposition 2.7, Applying this to

S+t e
U=ty = ST R+ P [l < CE9),

for t <1/(2+ ||¢]|e), we deduce

E+tp B e
B (54, ) = QLo - (€ 9+ 0,

which proves the claimed expression for the second derivative at ¢ = 0.
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Using polar coordinates, we rewrite ()¢ as

~

A
Qclol = [ [Ionol + fawol? = S1oP

Ap

+6(dv-e” + %890 : iew)z — (0w - ie” — %391) - ew)Q] dx
- / |:|aﬂ)|2 + 5(&«@ : €i0)2 — 5(87«1} . i€i0)2 + T%[E(;U — 5\1)} ‘v
AP

+ 2—5 (00 ) (Opv - i) + (00 ie”)(Dyv - )] | do

Hence, for a function f € C?(A,;R) we have the explicit expression

Qclsul = [ [0 (u + a9 = oG i)
+Ti2 [E(;(fw) - j\fw] fw
+ 4;89fﬁrf (w- ) (w - ie”)

+ ngﬁrf {(w-e?) (W' -ie”) + (w - ie”)(w' - ew)}} dx

To simplify the second line we compute, exactly as in the proof of Lemma [2.3]

E5(fw) - fw = fQE(;w Sw
+ 00 f)? (Jwl* +6(w - ie)* — d(w - €)?)
— 0 [fOof (|w]* + 0(w - ie”)* — §(w - €)?)] .

Using the equation satisfied by w to simplify the first term, and coming back
to the expression of Q¢[fw| we find

Qclful = [ [(0n02 (ol + 8w e = s ie”))
(9o.f)?

r2

+ (|w|2 + 6(w - ie”)? — §(w - eie)Z)

+ 4;89]‘&"]" (w - ) (w - ie?)

+ gar(fZ) {(w e (w' - ie?) + (w - ie®) (v’ - ew)}} dzx.
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Since dz = rdrdf and f € C?(A,;R), the last line can be integrated out with
respect to r, and we are left with

Qclful = [ (0.1 (1w +8(w- ) = 5w ic”P)

+ <89f) (Jwl* 4+ 6(w - ie”)? — §(w - €*)?)

+ 44 0, faef('w e (w - ieia)} dx.
If § > 0 we use the inequality

f 3ef)

46 0, fae (w - ) (w - ie'?) > —25(9, f)*(w - €)* — 25( (w - ie)?,

to deduce that the integrand is bounded below by (1 — §)|V f|? |w|2 and if § <0
f ( 9f) ( ‘ei9)2’

so the integrand is bounded below by (1 + §)|V f|?|w|?. In both cases we obtain

Qclful] = (1 - |3) / VP wf? d,

Ap

for all f € C?(A,;R), and by density for all f € H}(A,;R). O

As a consequence of Proposition 2.7, we obtain the second item of Theorem
by a contradiction argument: otherwise, there exists a sequence ¢ € CL(A,;R?)
such that

or-&=0ae,  Qpr] =0, / V> dae = 1.
AP

46 0 fag (w - ) (w - ie") > 25(9, f)*(w - ie??)* 4 26

We may extract a subsequence ¢ — ¢ strongly in L?. We have ¢ - £ = 0 a.e., and
using the estimate of Proposition together with Q¢[¢r] — 0 we see that ¢ = 0.
Considering that

Qelpr] > e1 [ Vol de —co | JpufPde=ci—co [ |pi|*da,
Ap Ap Aﬂ
for some ¢, c; > 0 depending on & and p, the fact that ¢, — 0 strongly in L? gives
the contradiction 0 = lim Q¢[pr] > ¢1 > 0.

3. SMALL ANISOTROPY: MINIMALITY IN THIN ANNULI AND SYMMETRY
BREAKING

In this section we prove the third item of Theorem [L.1] valid for 0 < |6] < 1 :
the unique (modulo frame invariance) 0-homogeneous critical point & of degree
d € Z\{0,1,2} is minimizing in a thin annulus, but it loses this minimality property
in a very thick annulus.
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3.1. Preliminaries. Two preliminary ingredients are common to the proofs of both
statements: an energy splitting formula and expansions of &5 and related quantities
in terms of powers of . We dedicate the next two subsections to these tasks.

3.1.1. Energy splitting. A first ingredient, common to the proofs of both (minimal-
ity and symmetry breaking) statements, is a general energy splitting formula with
respect to a 0-homogeneous critical point &;.

Lemma 3.1. Let d € Z\ {1}, 0 < |0| < 1 and & of degree d solve (12)). Denote
by ws the corresponding Jacobi field defined in Lemma . For anyu € H'(A,;S")
such that w = & on 0A,, writing

u= fws+ (1+9)&,  f,g€ Hy(A;R),

we have
Ex(u: A,) — Es(Esi A,) = (1+0(8)) / (s IV f2 + [VgP?) da
+25/A (O‘j(f)fﬁ 5ige>g@9f+@garf> dz,

where ag, Bs and s are given by

o = fis — 2d6(99[|w5]]’
—2(wj - &+ d) +2d(1 — |ws))

o

+ (ws - i€”) (& - ie™) — (w5 - €) (& - )
+ (wj - €)(& - €) — (wf - ie”) (& - ie”),

s = (ws - €)(&5 - ie”) + (ws - ie”) (& - ")

— (wj - ie”)(& - €) — (wf - €) (& - i),

and fis = Lsws - & as in (|19)).
Proof of Lemma[3.1. According to we have

Es(u; Ap) — Es(&53 Ap) = Q[ fws + 9&s),

where the quadratic form () = ), is defined in Proposition We expand this
expression as

Es(u; A,) — E5(&s53 Ay) = Qlfws) + Qlgés] + 2B fws, gs), (26)

where B is the symmetric bilinear form associated to ). We first deal with the first
two terms in the right-hand side of , using computations similar to the proof of
Proposition We will consider without loss of generality a map u € C*(A,;S")
such that u—&; has compact support in A,, and therefore functions f, g € C2(A,;R).

Bs =
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The general case follows by approximation: since ués = 1 on dA,, one can find a
lifting ¢ € H(A,;R) such that ués = € (this follows e.g. from [5, Appendix] or
[7, Proposition 14.1]), and approximate ¢ with functions in C2?(A,).

For any function h € C?(A,;R) and map ¢ = () € C*(S';R?), we have, using
polar coordinates as in the proof of Proposition [2.7]

Qlncl = [ [0 (ICP +3(¢ ") = b(c e

+ o5 [Es(h¢) — Ashc] -

+ 42@#1&«/1 (C-e”)(¢ - ie”)
* 2%2) {(C- )¢ ie") + (¢ -ie?) (¢ - )} | d,

where \s = 2555{5. As in the proof of Proposition , the last line can be integrated
with respect to r since dz = rdrdf and h € C?(A,;R), and the second line can be
simplified by computing
L5(h¢) - h¢ = h*LsC - ¢
+(9gh)? (|7 +8(¢ - ie”)* = 3(¢ - €)?)
— 0y [hOph (ICI* + 6(C - e™)* = 3(C - €)?)]

and we deduce

Qlncl = [ [0 (ICP + (¢ ") = b(c e
& O (64 s -2 — o(c - )
h? 14 .
+ 55 [EsC = A ¢
+ 4§aghaTh (C-e®)(C - iew)} d.

Applying this to (h,() = (f,ws) and (g,&s) and using the equations and
satisfied by ws and &5, we deduce

QlLfws) + Qlgcs] = (140 (6) / (lws2IV £ + [VgP) d. (27)

Ap
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Next we turn to the last term in . In polar coordinates, the bilinear form B has
the expression

Blu,v] = /A [&u -0 + %(zgu — ) - v
+ 8 ((Opu- ) (O - €”) — (Dyu-ie”) (Opv - ie™))
+ é((a,,u ) (Ogv - i) + (Ou - ie™)(Dpv - €7)
r

+ (@) Dy - ) + @y ) Do - i) .

Applying this to u = fws, v = g€ we obtain

Bl fws, 9&s5] = 0(5)/ (|ws* IV f1? + |Vg|*) dx

Ap

+/A [%Ea(fwa)‘gfa

+ 200, ((ws - €)(& - i6) + (s - i) & - )

+2 fong ((wh i) (&5 )+ (- )& ie)) ]

Integrating by parts with respect to r in the last line, we find

Blus,g@l =0 ®) [ (usPIVsP+ Vo) ar+5 [ 2Dy v

A, A,

+ [ Es(fus) gt de

Ap

with 75 as in the statement of Lemma . Using the equation satisfied by wy
and the fact that ws - &5 = 0, exactly as in in the proof of Lemma , we have

Ls(fws) - 9& = fisfg — 2900 f W) - € + O(8|ws||0s f1|Dpg])
+ 6 g0p f [(ws - ™) (&5 - ie”) — (ws - €7) (&5 - €)
— (wf - ie”)(& - ie”) + (w - €7) (& - )]
— 69y [Daf (w5 - ie”)ie” — (ws - €”)e) - g&s] .
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Plugging this into the above expression for B|fws, g&5] we deduce

Blfws. g = 0() [ (lus V1P + |VgP) ds

P

+5/ {%(6)1’% B50) our + 59 g0 5| da
Ap r

r2 r2

2d / o0 ] d. (28)

Ap
where as and 5 are defined in the statement of Lemma 3.1, To simplify the last
term in (28)) we use the fact that u is S'-valued and u&s has degree zero, so there
exists a lifting ¢ € C2(A4,; R) such that u = €"?&;. By definition of f, g, and possibly
multiplying ¢ by 41 (depending on the constant sign of i&s - ws), this implies
flws| =singp, 1+ g=cosy,
SO
290s[ flws|] = Op[f glws|] + g0 fws]] — fws|Oag
= 0p|fglws|] + (cosp — 1) cos Dy + sin® p pp
= Op[fglws| + ¢ — sin].
Therefore the last term in (28)) integrates to zero, and we deduce

Blfws. g6 = 0() [ (lus V1 + |VgP) ds

P

+5/ {&5(9)f9+66(9)989f+wg&,f dx,
A, '

r2 r2

which, combined with , proves Lemma . O

3.1.2. Small anisotropy expansions. In order to make efficient use of the energy
splitting with respect to &s provided by Lemma [3.1} we will need expansions of the
coefficients in powers of . We start by expanding &;.

Lemma 3.2. Letd € Z\{1}. There exists 69 > 0 such that for |0| < dy, the equation
has a unique solution &s of degree d such that £5(0) = 1, and it satisfies
o &2
&(0) = e e’ ), 5 = 01 + 3% +45°0(1),

where
o _ d(2—d)
77[)1(0) = a Sln(2(d — 1)0)7 a] = m
o (0) = agsin(4(d — 1)0), as = as(d) € R,
and O(1) is bounded in C*(SY;R) as § — 0 for all k > 0.
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Proof of Lemma[3.9 First recall that Remark ensures the existence of o5 such
that ©5(0) = 0 and & = e@e?s solves and minimizes E; among S!-valued
maps of degree d. The inequality Es(&5) < Es(e')

JRERE
Sl

for some absolute constant C' > 0, so ps — 0 in H'(S';R) as § — 0. This bound is
valid for any solution ¢s with ¢5(0) = 0, since they are all minimizing by Proposi-
tion 2.0

Next we show, by an implicit function argument, that ¢s is unique and depends
smoothly on ¢ for small §. Consider, for any £ > 0 and d # 1, the map

U: X xRx(=1,1) =Y,

X ={pe H" (S R): p(0) =0}, Y =H"'(S4R),
given by

U(p,t,0) = —Dgpl??g(eideew) +t

= die [(1+dcos(2(d—1)0+2¢)) (d+ ¢')]
+ 0sin(2(d — 1)0 + 2p)(d + ') + t.

This map V¥ is smooth and satisfies

¥(0,0,0) =0, Dyn¥(0,0,0)[n,s]=n"+s Y(n,p eX xR

The differential D, ¥ (0,0, 0) is an isomorphism from X xR to Y, so by the implicit
function theorem there exist (@s,ts) € X x R depending smoothly on § € (—dy, dp),
the unique solution of ¥ (g, t,) = 0 in a neighborhood of (0,0). By uniqueness this
solution does not depend on k, and because ¥(ps,0,d) = 0 and ps — 0 in H'(S'; R)
as 0 — 0, for small enough ¢ we must have t5 = 0, @5 = @5 is the unique solution of

implies

dilﬁ [(14+dcos(2(d—1)0 4 2ps)) (d + )] (29)
= —6sin(2(d — 1)8 + 2p5)(d + ©})?,

satisfying s(0) = 0, and § — @5 € H*1(S;R) is smooth for all £ > 0. We have
©5]s—o = 0, and considering

d d2
— % 5o 805, ¢2 — ﬁ 5o SO(S,

provides the expansion in Lemma([3.2] It remains to explicitly determine ¢, and 1)s.
Derivating the Euler-Lagrange equation (29) with respect to 6 we see that 1; solves

U

d ., 2
= (] + dcos(2(d — 1)0)] = —d*sin(2(d — 1)6),



ANISOTROPIC MAPS FROM AN ANNULUS TO S* 25

that is
1 =d(d—2)sin(2(d — 1)0).

Since 1)y is 2m-periodic with ¢1(0) = 0, this implies

d(2 —d)

4(d—1)2

Derivating twice the Euler-Lagrange equation with respect to 0 we see that 1y
solves

d% W — ddsin(2(d — 1)0); + 2 cos(2(d — 1)0))}]
= —4d* cos(2(d — 1)0)yp; — 4dsin(2(d — 1)0)y,

P1(0) = sin(2(d — 1)8).

that is
y = a(d)sin(4(d — 1)0)),

for some a(d) € R, and since 1, is 2m-periodic with ¢5(0) = 0 this gives

V2(0) = az(d) sin(4(d — 1)),
for some as(d) € R. O

As a consequence of Lemma |3.2| we obtain expansions of the coefficients ag, s

appearing in Lemma [3.1]
Lemma 3.3. As § — 0 we have

as = a” + dat +6%0(1),

Bs = 87+ 08" +820(1),
where O(1) is bounded in C*(SY;R) as § — 0 for any k > 0, and, denoting C,,(0) =
cos(nf), S,(0) = sin(nb), the coefficients o?, 37, satisfy
d(2 —d)

d—1

o' e span(Sy(d-1)), B' € span(1, Ci(d-1))-

Proof of Lemma[3.5 Recall from Lemma [3.1] that as and s are given by
_ f1s — 2d 9y Jws|]

Qs = 5 )

—2(wj - &+ d) +2d(1 — |ws))
J

+ (ws - ie”) (& - i€”) — (ws - ) (& - ")

+ (wh - €)(& - ) — (wf - i€”) (& - ie™).

oy = 2d(d — Q)Sg(dfl), 60 = CQ(dfl)

Bs =
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We first obtain expressions in terms of 5. Using

&5 = € 0Hws) gl — (d+ )ik,
& N\ . P Sk YR St
= (1 = —
. +d—1>255’ wh = —Fiy ( o (96 ) &

we find
2d — 1
W&+ d=———¢ (#5)

/

L= fusl = =527,

and
(w5 - i€)(&5 - i) — (ws - ) (& - €”)
(- ) (€ - ) — (wh - ie)(Es - ie”)
/!
=2 sin(2(d — 1)0 + 2¢s).
d—1
Using also
¥ 2 95 ©s
"_ _ 1 d e Ps e g1 ,
Ws ( +d—1>( + ©5) 1 €5 d—1(3 + 3¢%) &,
and recalling the definition (15]) of fi5, we obtain
fis = —wy - & — 0 [(w - ie®)ie?? — (wf - e?)e?] - &
5 :
=——(3d—-1
(p/
— 30§ (1 + g _6 1) cos(2(d — 1)0 + 2¢s)
—5 .
+to (<d +5)(d =1+ ¢5)(d -2+ ¢5) — soff’)) sin(2(d — 1)6 + 25)

Then we plug into these expressions the expansions
52
s = 01 + 5¢2 + 0(8%),

COS(Q(d — 1)9 + 2305) = Cg(dfl) - 2552((1,1)1&1 + 0(52)
Siﬂ(Z(d - 1)9 -+ 2@5) = SZ(d—l) + 2(502((1_1)1@1 + 0(52),
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where we recall the notation C, () = cos(nf), S, (0) = sin(nd). We find

, 20d—1 , & [(2d—-1, f
h g d= -85 = 20 (2 ) + o),
o, 52 , 3

(ws - ie) (€ - ie”) — (ws - ) (&5 - )

+ (ws - ) (& - ) — (w - ie”)(& - i)

Y
= —5d _1 1 Sg(d_l) + 0(52),

and
R 3d —1

3d—1 " 3 i "
. (m g Gy

3d2 — 6d + 2 ¥

Sog_ U — —1—Sor4_
T 2(d-1)¥1 g0

+ Qd(d — Q)Cg(dl)"gbl) + 0(53)

Gathering the above and recalling
P = CL152(d—1)7 Py = a254(d—1),

for some constants a; = a;(d), as = as(d), we obtain the desired expansions for oy
and [s. Explicitly, we have

wh - &5+ d = —20(2d — 1)a1Cya-1)
— 6% (2(2d — 1)asCuga—1) + 2(d — 1)ai(1 + Cyg_n))) + O(5%),
1 — Jws| = —28a1Cog—1) — 26°a2Caga—1) + O(6%),
(ws - ie") (& - ie™) — (w5 - ) (&5 - €)
+ (wy - e)(&s - e) — (wy - ie”) (& - ie™)

= 25(11(d — 1)(1 — C4(d_1)) + 0(52),
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and
fis = 6 (d(d — 2) = 4(3d — 1)(d — 1)ax) Sa(a-1
+ 52< —8(3d — 1)(d — )as — 12(d — 1)%a?
+ (142 — 28d + 12)(11) Sia—1) + O(5%),

and we infer that the coefficients o/, 37 are given by
o’ = (d(d —2) — 4(d — 1)%a1) So—1) = 2d(d — 2)Sa(a_1),
o' = (=8(d — 1)%ay — 12(d — 1)*a} + (14d* — 28d + 12)a1) Saa—1),
B =4(d — 1)a;Cy(q-1) = %Cb(dl)a
B =2(d—1)ai;(1+2a1) — 2 ((d — V)ay (1 — 2a1) + 2(d — 1)az) Cyg—1)-

O

3.2. Minimality in not-too-thick annuli. In this section we prove that if |§| <
1 and the annulus A, is not too thick, the unique (modulo frame invariance) 0-
homogeneous solution &s of degree d € Z \ {1} is minimizing.

Proposition 3.4. Let d € Z\ {1}. There exists a small constant ¢ > 0, depending

1
only on d, such that if |6| < ¢, & of degree d solves , and e=/%% < p < 1, then
&s 18 manimazing in A, with respect to its own boundary conditions.

We obtain Proposition |3.4] as a consequence of two observations on maps u €
H'(A,;S') agreeing with & on 0A, :

e on the one hand, the linear stability result of Proposition[2.7/can be enhanced
to a local minimality statement: any map w close enough to & has higher
energy than & unless u = &,

e on the other hand, as § — 0, a minimizing map u must converge to &y(0) =
¢? (modulo frame invariance), and is therefore close to &s.

In Proposition [3.5| and Lemma below we quantify these statements, which can
then directly be combined into a proof of Proposition [3.4]

Proposition 3.5. Let d € Z\ {1}. There exists a small constant ¢ > 0, depending
only on d, such that if |0 < ¢, & of degree d solves (12)), and u € H*(A,;S") is such
that uw = & on OA, for some 0 < p < 1, we have

/ |VU — V§5|2d1‘ S - E&(“; Ap) Z E&(S(S; Ap)7
Ap

c
62(1 4 1n® p)3

and the last inequality is strict unless u = &s.
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Proof of Proposition[3.5 We consider without loss of generality a solution &5 such
that &(0) = 1, as in Lemma [3.2, and write

u—& = fws + g&s.

It follows from the energy splitting in Lemma [3.1] and the expansions in Lemma [3.2
and Lemma [3.3| that, if |§] < ¢ for small enough ¢ > 0, we have

Exfui 4,) = Ex(@siA) 2 5 [ (VP +1VgP) do

Ap

| f9l 9]
— C&/Ap (? -+ IVf‘T) d&?

Here C' > 0 denotes a large constant depending only on the degree d, and may
change from line to line in the rest of this proof. Using |V f||g|/r < |V f|* + ¢?/r?,
we deduce
1 + ¢?
Es(u; A,) — Es(&3 A,) > 5/ (|Vf|2 + |Vg|2) dr — 05/ |fg|—zg dzx.
A, A

T
P

Next we use the fact that |u| = 1, ie. f*ws]* + (1 + g)* = 1, or equivalently
g = —(f?lws|* + g*)/2, to infer that |f], |g| < 2 and
[fgl+g* < C(If° +1g°) -
Plugging this inequality into the previous estimate we obtain
1 3_|_ 3
Es(u; A,) — Es(&5; A,) > 5/ (IVfI?+|Vgl*) dx — 05/ 17+ lgI” - 9 dx.
A, Y

The last term can be estimated using the interpolation inequality of Lemma 3.6
below, and we deduce

Es(u; A,) — Es(ési A,) > | £ — Co(1+1n%p) (/ f J; g° dx)
2 A

r

« / (V12 + [Vgl?) da.

P

Since f2 + g < 2|u — &|?, this implies Fj(u; A,) > Es(&5; A,) whenever u # & and

2
/ L
4, T 0%2(1+1n” p)

Combining this with the Hardy-type inequality (see below)

2
! / Ju f‘” d:cgc/ Vu — V&2 do,
A, Ay

In? p r

concludes the proof of Proposition [3.5 ([l
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Next we prove the interpolation inequality used in the proof of Proposition |3.5]
Lemma 3.6. For all0 < p <1 and ¢ € Hj(A,) we have

let? e\
/ —dz < C(1+ In? p) / — dx / |V|? dr,
A, T A, T A,

for some absolute constant C > 0.

Proof. First we show that, for all ¢ € C°(A,),
"

2
—dx<C(1+ln p)/ %d:v/ V| da. (30)
A, T A,

A, r?
For 1/4 < p <1 this is a consequence of the classical Ladyzhenskaya interpolation
inequality in the domain A, /4, which simply follows from applying to p* € C°(A;4)
the Poincaré-Sobolev inequality of the embedding W' (A;,4) C L*(A;/4):
HSDH%‘I(AML) = HSD2H%2(A1/4) < CHV(SOQ)H%(AM) < CHSOH%%AIM)HVQOH%%AW)-

To obtain for 0 < p < 1/2, we consider the rescaled annuli A; = 277 A, /4 and
decompose p = > @;, with ¢; € C°(A;) such that, for any p > 1,

/ pda;</ pdx</ dx—l—/ @5, dr,
]+1
/|ch]|2d:£</ |Vg0|2d$~|—(§’/ —da:

This decomposition can be obtained for instance by fixing a smooth cut-off function
1z<1/2 < x(7) < 1jg<1 and setting

pol(z) = x(@)p(x), @;(x) = (x(22) — x(272))p(2) for j > 1.
Rescaling Ladyzhenskaya’s inequality we have

4 2
/ ﬁd:lch/ \V(ijQd:c/ L
A r Aj A T2

J

Summing these estimates and using the properties of ¢; we obtain

2
—dx<(]/ —dx(/ |Vg0|2dx+/ %dx>.
A, T

This, together with the Hardy-type inequality
a s <_/ Veldr Ve H\(A,), (31)
A,

proves (30). (Inequality (31)) follows e.g. from [13, Theorem 1.5. 12] and the fact
that the functlon ¢, (z) = sin(w In |z| /| In p|) solves —Ap, = (7%/1n® p)p,/r? and is
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positive in A,.) To conclude the proof of Lemma we write |¢]? < Ap? + A 71p?
for any A > 0, apply and Hardy’s inequality (31)) to deduce

1 |¢|3 / 2 C © / 9
de < CA Vol|“dr + — —d Vol|“dx,
, 1 5 /p r < | | X h\ r2 i ’ | xT

and choose A = ([ @2/r? dx)?2. O

As explained above, the second ingredient to prove Proposition |[3.4] is the con-
vergence towards & () = €, as § — 0, of any minimizing map u € H'(A,;S")
agreeing with £ on 0A,. Since for |§| < 1 the 0-homogeneous solution &5 is also
close to & (see Lemma7 this implies that u must be close to . The next lemma
makes that statement quantitative.

Lemma 3.7. Let d € Z\ {1}, || < ¢ (¢ > 0 small depending on d) and &5 of degree
d solve ([12)) and &5(0) = 1. Assume 0 < p <1 and u € H'(A,;S') satisfies u = &
on 0A, and Es(u; Ay) < E5(&5;A,). Then

1
/ |Vu — V& |2 de < C5(1+1n? p) In =,
A, p

for some C' > 0 depending only on the degree d.
Proof of Lemma[3.7. From the expansion of & in Lemma [3.2] we infer

Es(é5 A) < (14 C)2xd®In .,
i

and the bound Ejs(u; A,) < E5(&5; A,) therefore implies, for |§] <,

/ [Vul> < (1 + C8)2rd* In % (32)
Ap

Since u = & on DA, it is of degree d, and we can write u = &€, with ¢ €
H}(A,;R). We further rewrite this as u = e@e?s@e where ||ps]lcn < C3 by
Lemma [3.21 Then we have

1
|Vu|? = (0,4)* + ﬁ(d + Optp + Opips)?
P+ 0(9)

r2

2d
+ ﬁaew + (1 + 0(6))| V|2

Integrating on A,, we deduce

/ (Vul*dr = (1 + O(0))2rd? In > + (1 + 0(5))/ |V|? d,
A, p Ap

and combining this with gives

1
/ (V| dr < Cdln —.
A, p
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Therefore we find
2
/A IV — V&2 da < O/A W e a

P

< C(1+In? p)/ V|2 de < C5(1 4 In® p) ln%.
AP

For the penultimate inequality we used Hardy’s inequality . O

Combining Proposition with Lemma provides a proof of Proposition (3.4}
Specifically, according to Lemma and Proposition [3.5] there exist constants
C, ¢ > 0 depending only on d such that, if |§| < ¢ and

1 c
Co(1 + In? ln e e e 33
( 2 - 62(1 +1n® p)3’ (33)
then any minimizer u Wlth ujpa, = & must be equal to &. If 1/2 < p < 1 then (33)
is satisfied for all small enough (5, so we may assume 0 < p < 1/2; in which case

|Inp| = ln(l/p) >1In2 > 0 and (33) is implied by

5ln— L & 1n1<— & In

1
- <
_52ln6; 03 p

(o)
w\>—'| o

for some generic small constant ¢ > 0 depending only on d. Therefore & is a
1

minimizer if p > e~°% and this proves Proposition .
3.3. Symmetry breaking. In this section we construct, for small § and p, a non-
0-homogeneous map that agrees with £ on 0A, and has strictly lower energy than
&s, proving in particular the third item of Theorem

The basic idea is to use a competitor that saturates (or almost saturates) the
interpolation inequality of Lemma [3.6] which we used in Proposition to control

the non-quadratic terms for p not too small. We use that Hardy’s inequality is
saturated by

. (7mn |x|)
@.(x) = sin ,
@)= (5
since ¢, € H}(A,) satisfies —Ago* = (7%/1n? p)¢p, /r? and therefore

/|Vg0*|2dx— /&dx
Ap

Regarding the interpolation inequality of Lemma we have
[y a2 /r da
1
([, ¢2/r2 da)} [, [V da

which is enough for our purposes, even though it does not completely saturate the
interpolation inequality.

3
= ¢|Inp|2  for some ¢, > 0,
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Using this function ¢, we construct a competitor u, ,s for £ in A,, for which we
can expand the energy in terms of the small parameters €, p, d, and eventually find
that it is lower than the energy of &5 for appropriate choices of € = ¢(d) and p = p(9).

Proposition 3.8. Let 0 < |[§| < 1, d € Z\ {0,1,2} and & € H'(S';SY) of degree d,
a solution of with &5(0) = 1 (see Remark[2.9). Denote by ws the corresponding
Jacobi field defined in Lemma(2.4l For any p € (0,1/e), let h, € H}(A,;R) be given

by
() — <1 | sin(2(d - 1)9)) w (7?1117“) |

| Inp| Inp

and, for 0 < |e| < 1/(2||lws|ls0), define u,s € H'(A,;Sh) by

Ueps = /1 — e2h12)|w5|2§5 + eh, ws.

Then there exist a large constant X\ > 0 and a small constant g > 0 depending only
on the degree d, and a value of € depending only on the degree d and the sign of ¢,

such that Es(uc,s; A,) < Es(&5;A,) for |8] < 6o and p = e T,

Proof of Proposition[3.8 The map u = u,,s is of the form u = & + fws + g&s, with

f=eh, g=+/1—e&hn w2 —1.

The function h € H}(A,; R) satisfies |h] < 2 and |9ph| < 2|d — 1]/|In p|, so we have

622 2644 4 6
g = =S Husl = Shiluslt + O()

2

€
Vg=—5VWWWWU+O@m

633 2655 4 7
fg = =Shhusl? = Shlusl! + O(T)

€ oapa € 49 (15 ¢
o00f = = GlusPulte] - Sglustalt] + 0 ()
h
9o, f = 0, {e/ (V1 — e2t?|ws|? — 1)dt} )
0

Moreover, using also that dy[|ws|?] = 269} /(d — 1) + O(6?) thanks to Lemma [3.2]
we see that

et pt

, det 1
|Vg|2 = mﬁ(iﬁly + O(€4>’v}l|2 + 0 (m + 5364 —+ 6266) 7“_2



34 ANDRES CONTRERAS AND XAVIER LAMY

Plugging all this into the expansion obtained in Lemma [3.1] we find

Es(u; Ap) — E5(&s; Ap)

52et h*

P

+(563/ MhSd:/l/:—l—(Se‘r’/ Mh‘r’dx
A A

7’2 7’2
+0@ﬂ/|wﬁm+owﬁ+ow¥+ﬁémmm (34)
Ap
where
w 2 w 4 w 4
ns = —as|ws|” + Op {55' ;' }7 Véz_a5| il + 0p [56|2%| }

From the expansion of & in Lemma [3.2] we have

2
/ 2 ,
|ws|* = (1 + d%ﬁsl) = 1+ 0= +0(5),

and using also the expansions of oz and 5 in Lemma [3.3] it can be checked that
the coefficients 75 and vs have expansions of the form

ns =1+ '+ O(6%),

1
n’ = —a’+ g@gﬁo € span(Sa(g-1))

2 1 2
nt = —a! — 1 1040% + 5(99 {51 + ﬁﬁowi} € span(Si-1)),
2 =104+ 0(9),
1 1
v = —10° + 55066° € span(Saa-v)).

Here we use again the notation S,,(0) = sin(nf). Next recall that

Soa—1)(0 1
h = (1 + QM—M)) ho(r), ho(r) =sin (ﬁnnpr) 1,<r<1,

[ In p|

P = — : cos(2(d —1)0).
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We can directly compute

/ S =otme. [ B - oquma)
o= (10 g ) i [ (5) &
)

\lnp| (hl p
2 4 1 1
/ |agg\ dz:M/ cos®(2(d — )9))d9/ sin2 (w nr)ﬁ
4, T In*p Jo Y o
_ 2md—1)?
| 1n p|

and

A%?”'l)zd””: (0 ()
.Of((;%fl))z/%cos?(z(d 1)6) d@/plsin (ﬁrllnpr)%
32 - d)?
T2 (d-12

|Inp| +O(1).

So, taking the expansions of ns and vs into account, implies

Es(u; Ap) — E5(&s; Ap)
€ 37T d*(2 — d)?
[Inp| = 32 (d—1)*

N N h®
+ 66 —dz+52 3 —dx+5e D= dx
A 7"2 A 7"2 A, 2

= (7 +27(d — 1)?)

6%¢!| In p|

P P

2
+0 <| f;m) +0 (6—) + O3 + 083 + 62| In ). (35)

DY
Moreover, we have

h?’:hsi: 3 L g h5:h525: o) L
0 r k an’k 2(d—1)> 0 p k |lnp]k 2(d—1)>
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and deduce, using that [*" Syq_1ydd = [7" Sya_ndd = [7" Saa—1)Saa_1ydd = 0,

h3 27 ) 1 1 ! dr
e do ho—
/A 3 92(d-1) (3 . S2(a-1) +O(an|>> |1np|/p tr

:47T+(’)( 1 >
[ In pl

h® h3 1
ESQ(d—l) =0(1), T_254(d—1) =0 (m) :

Recalling that n°, 2°

(35) we obtain

€ span(Syq-1)), n* € span(Syq_1)) and plugging these into

Es(u; A,) — Es(&s; A,)

€ 3md*(2 —d)?
= (7T3 + 27T(d - 1)2)m + B—Qﬁézeﬂ 1np| + 563Cl

de? €2
) 4 63 3 52 5 1
+0 <—|1np|) +0 <—|1np|2) + O(0€*) + O(0°€” + 6%€”)| In p,
where a = 4 f027r 1n°Saa—1) df. Using the expressions of o and ° in Lemma E we
find

1 4 16
7’ = —a+ 5(9@60 = —gd(d —2)So4-1), SO @= —Tﬂd(d —-2).
Letting p = e Pl with X\ > 1 and optimizing with respect to €, we choose
29 (d —1)* 1
= —sign(d)— —.
€= —sien() g =9

For this choice of €, the above expansion becomes

Es(ucps; Ay) — Es(&5:Ap)

B ‘(5‘62 12

\ (7r3+27r(d— 12— 22—77r(d— '+ 0 (% +5A)) :

Since |d — 1| > 2, we have

27 27 —\27
>0 4+ 21(d — 1)? + 7,

212 214 214
m(d—1)*> "—n(d—1)*> (— - 2) 47+ 27(d — 1)?

and may therefore fix a large enough A > 0 such that Ejs(uc,s; A,) < Es5(&s; A,) for
all small enough |d| > 0. O
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3.4. Proof of the third item of Theorem [1.1} Let d € Z\ {0,1,2} and |J|
small enough that Proposition [.4] and the conclusion of Proposition [3.8] are valid.
Define, for 0 < p < 1,

G(p) = inf Es(u;A,) — Es(&s;Ay).

U9, =Es
The function G is monotone nondecreasing, since for 0 < p < p’ < 1, any admissible
competitor v’ € H'(A,;S') with ' = & on 0A, can be extended by & in A, \ A,
to become an admissible competitor in A,, which implies
inf  Es(u;A,) < Es(u'; Ay) + Es(&53 Ay) — Es(&s3 Ay).

ulpa,=Es

Substracting E5(&s; A,) and taking the infimum over all admissible u’ gives G(p) <
G(p).

The function G is also continuous, since for 0 < p < p’ < 1, any admissible
competitor u € H'(A,;S") with u = & on A, can be dilated as follows,

. ) 1— -
u'(r'e?) = u(re?), r= - pp/r' i _pp/ for ' € (p', 1),
so that v’ is an admissible competitor in A,, which implies

/

inf . Es(u; Ay) < E(;(u';Ap/) < Es(u;A,) + 0O (T _pp,) Es(u; A,)
uloa =8 —

and we deduce

Plr—p, 1 r
0<G()—G(p SO( ln——i—ln—).
() -Gl <0 (F=Fm +m”
So G is continuous and monotone nondecreasing on (0,1). Combining this with

Propositions and implies the existence of p, € (0,1) such that G = 0 on
[p«, 1) and G < 0 on (0, p,), which proves the third item of Theorem [1.1] O

4. THE CASES OF DEGREE 1 AND 2

4.1. The degree 1 case. In this section we show that, for 0 < |§| < 1, the only
0-homogenous solutions of which have degree 1 are the trivial solutions £(6) =
ee? o = 0 modulo 7 /2.

To that end we write an arbitrary 0-homogeneous solution of of degree 1, in

the form £(6) = ¢?e*#® . Then we have the equation

d% (14 5 cos(20)) (14 )] = —dsin(20)(1 + )2, (36)

that is,
(14 dcos(2¢))” = dsin(2p) ((gp’)2 — 1) ,
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which we may also rewrite as the 1st order system
T=1y

J sin(2x)

2
= OPE) 2 1),
Y7 + d cos(2x) (y )

Our goal is to find all 27-periodic solutions of that ODE. Note that we have the
conserved quantity £ H (¢, ¢') = 0, where

H(z,y) = (14 dcos(2z)) (1 —¢°).

We assume from now on that § > 0 (the case § < 0 can be recovered using the
symmetries), so we have H <1+ 4.
For Hy < 1 — 6, the level set {H = Hy} is the union of two unbounded curves

Hy
=4/l - —
Y \/ 14 0cos(2x)’

hence Hy < 1 — § cannot correspond to a periodic solution .
For 1 —§ < Hy < 1+ 0, the level set {H = Hy}, intersected with {|z| < 7/2}, is
a closed curve, which crosses the z-axis at

1 Hy—1
T ::I:—arccos< 0 )

2 o

It corresponds to a periodic trajectory of the differential system, whose half-period
is the time needed to go from z_ to x, along the curve

. 1 H,
Tr = = _——
Y 1+ dcos(2z)’

so the corresponding period T = T5(Hy) is given by

oAl dx
T5(Ho) = 2 / -
= 1~ T
Hofl) dx

arccos ( 5
. /
0 1 Ho

T 1+ cos(x)

I VA Y _Ho-1_
_%/U \/(1_t2)<t_0)dt, 0=—s—¢€(-11)
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For any 0 € (—1,1) and 6 € (0, 1) we have

d d VIFot
as st +00) d_[f/ VA -2 t—a)dt]
dt

N _5_3/0 VAT - )t —o)

< 0,

so we infer

dt di
(1—=1t)(t—0)

2 1 !
= 2 |arcsin t— to
l1—0 1—0 o

=27

1
Ty(1+ 60) > Ty(1 + o) = 2/

Therefore, all periodic solutions of corresponding to values of Hy € (1—6,1+9)
have a period strictly larger than 27. Hence the only 27-periodic solutions of
must corresponds to values Hy € {1 + §}.

For Hy = 1 — 9, the level set {H = Hy}, intersected with {|z| < 7/2}, is also
a closed curve, but its intersections x = x4 with the z-axis correspond to the
constant solutions x = +7/2, so all other solutions corresponding to Hy = 1 — 0 are
monotone and cannot be periodic. Hence the only periodic solutions corresponding
to Hy =1 — 0 are constants ¢ = /2 modulo 7.

The only remaining value of Hy is Hy = 1 + ¢, which corresponds to constant
solutions ¢ = 0 modulo 7.

Gathering all cases, we conclude that the only 27-periodic solutions of are
¢ = 0 modulo 7/2.

4.2. The degree 2 case. In this Section we show that, for d = 2, the unique
solution (modulo frame invariance) provided by the first item in Theorem is
minimizing.

In fact it turns out that &5(6) = €% solves , so this is the unique solution
(modulo frame invariance). Taking a competitor u = e??e’? with ¢ € C?(A4,;R),
and using

(V-u)? = (V x u)? =Re((0,0)%), 0, =0, +id, =" (& + %6’9) ,
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we obtain

Vul? + 6 (V- u)? = (V x u)?)

4 4 , 24+ 90\ ..
= |V90|2 + 7’_2 + 7”_280%0 + 5 Re ((—Zar@ + Te@) e 21(9—“'9))

4 4
= |V<p\2 + T_2 + T—Qaetp

2+ Dpp)?
+ ) ((7”—2990) - (87"80)2) COS(Q@ + 2@)
- 25&9@2 O sin(26 + 2¢),

and therefore, substracting the energy density of & (which corresponds to ¢ = 0)
and integrating over A,, we have

Es(u; Ap) — Es(&s; Ap)

— [ [1veP 40 (W—(&w?) cos(26 + 2)

Ap
2+ 8990

44
+ = cos(20 + 2¢) — 200, ¢

sin(26 + 2¢) | dx.

Noting that

1+ Opp
,r2

cos(20 + 2¢p) — 187.@ sin(26 + 2¢p)
T

1 ) 1
= 2—7_289 [sin(20 + 2¢)] + g@r[cos(% +2)],

this simplifies to
Es(u; Ap) — Es(&s; Ap)

— / [(1 — 5¢08(20 + 20))(9,0)2 + (1 + 6 cos(20 + 2¢)) (835)2

— 258r<p(%7(p sin(260 + 2@)] dx
For any 6 € (—1,1) and C, S € [—1,1] such that C? 4+ S? = 1, the quadratic form
¢(X,Y)=(1-6C)X*+ (14 6C)Y* —265XY,

has determinant det(q) = 1 — §2C? — §25% = 1 — 6% > 0 and is therefore positive
definite, so &5(0) = €** is minimizing in A, for all § € (—1,1).
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5. ENTIRE SOLUTIONS OF THE ANISOTROPIC GINZBURG-LANDAU EQUATION

In this section we prove Corollary . So we consider an entire solution u: R? —
R? of the anisotropic Ginzburg-Landau equation (8)) with finite potential energy
and degree deg(u) = d € Z \ {0,1,2}. The anisotropy satisfies 0 < [§| < &g, for a
small enough dy € (0,1) to be adjusted in the course of the proof.

We assume that v is either locally minimizing, or symmetric and locally
minimizing with respect to symmetric competitors. Under these assumptions, the
methods in [21, Lemma 4.3 provide a logarithmic bound for the energy @ of u,

lim inf M <
R—+00 InR
The statement of [21, Lemma 4.3] considers symmetric solutions with an addi-
tional mirror symmetry constraint, but the same proof applies for non-symmetric or
less symmetric solutions, as long as they are locally minimizing in their admissible
class.
If 0y is small enough, the third point of Theorem ensures the existence of
p € (0,1/2) such that any map u, € H'(Ay,;S') which minimizes F5 among S'-
valued maps agreeing with u, on 0Aj,,, cannot be 0-homogeneous:

/ |0, |2 dz > 0. (38)
Asy

The same conclusion is valid if u, is symmetric and minimizing only among sym-
metric maps, because the competitor in Proposition is symmetric.

As a first step to prove Corollary , we claim that the logarithmic bound
implies

liminf GLs(u; Dag \ Dyr) < 0. (39)

R—+o00

(37)

Otherwise, for any M > 0 we have the existence of Ry > 0 such that

GLs(u; Dag \ Dor) = GLs(u; Do) — GLs(u; Dyg) > M VR > R,.
Applying this to R = (2/p)? Ry and summing over j = 1,...,k, we deduce
M (2/p)" Ry

In

5(”7 (2/p)kR0) ol ln(Q/p) R() )

which implies
lim inf GLs(u: Dr) > M ;
R—+00 InR In(2/p)

in contradiction with since p € (0,1/2) is fixed and M is arbitrary. So is
established, and there exists a sequence R — 400 such that

G Ls(u; Dag, \ Dpr,,) < C,
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for some constant C' > 0. Following [26] we define the rescaled map
u(z) = u(Ryx),

and e, = 1/Ry, so the above energy bound in Dsp, \ D,pg, translates into a bound
on the energy GLs,, of u, in Dy \ D,, namely

GLs, (ug; D2\ D,) < C.

Since uy is minimizing with respect to its own boundary conditions, with or without
the symmetry constraint, standard methods (see e.g. [4, § 3] combined with an
appropriate selection of traces as for instance in [I1, Appendix B]) imply that, up
to a non-relabeled subsequence, uy — wu, in H'(Ay,;R?), and u, € H'(Ay,;S')
minimizes £5 among S'-valued maps agreeing with u, on 0A,,. Therefore u, is not
0-homogeneous . This implies that d,u;, has a nontrivial limit in L? and, scaling
back to the originial variable,

lim inf/ |0,u|* dx > 0.
k—o0 DRk\DZPRk

Along a subsequence, the annuli Dg, \ Do, are all disjoint, and we deduce the first
conclusion of Corollary [I.3] that is,

/ 10,u|* do = +oc0.
R2

Further, by continuity of the trace embedding, for all r € [2p, 1] we have uy — u,
in L?(0D,;R?). Since u, is not 0-homogeneous we may find ry,ry € [2p,1] such
that u,(rie?) # wu.(rse?) for a non-negligible set of # € S'. As a consequence,
up(e?) = u(Re?) converges to different limits in L2(S*; R?) along the sequences
R = rRy — +o00 and R = ryR; — +o0o, which implies the last assertion of
Corollary [1.3] that up is not convergent as R — +oo (in L*(S'; R?), nor in the sense
of distributions). O
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