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Abstract. We establish small energy Hölder bounds, uniform with respect to ε ∈ (0, 1), for
minimizers uε of

Eε(u) :=

ˆ
Ω

W (∇u) +
1

ε2

ˆ
Ω

f(u),

where W is a positive definite quadratic form and the potential f constrains u to be close to
a given manifold N . This implies that, up to subsequence, uε converges locally uniformly to
an N -valued W -harmonic map, away from its singular set. This is the first result of its kind
for general anisotropic energies covering in particular the previously open case of 3D Landau-
de Gennes model for liquid crystals, with three distinct elastic constants. Similar results in
the isotropic case W (∇u) = |∇u|2 rely on three ingredients: a monotonicity formula for the
scale-invariant energy on small balls, a uniform pointwise bound, and a Bochner equation
for the energy density; all of these ingredients are absent for general anisotropic W ’s. In
particular, the lack of monotonicity formula is an important reason why optimal estimates
on the singular set of W -harmonic maps constitute an open problem. To circumvent these
difficulties we devise an argument that relies on showing appropriate decay for the energy on
small balls, separately at scales smaller and larger than ε: the former is obtained from the
regularity of solutions to elliptic systems while the latter is inherited from the regularity of
W -harmonic maps. This also allows us to handle physically relevant boundary conditions for
which, even in the isotropic case, uniform convergence up to the boundary was open.

1. Introduction

Let Ω ⊂ Rn (n ≥ 3) be a smooth domain and u : Ω→ Rk. For ε > 0 define:

Eε(u; Ω) :=

ˆ
Ω

W (x,∇u) +
1

ε2
f(u).

Here f : Rk → [0,∞) is a smooth potential such that N = {f = 0} is a smooth submanifold of
Rk, with f vanishing nondegenerately on N , and W : Ω× Rk×n → [0,∞) is an elastic energy
density such that W (x, ·) is a positive definite quadratic form on Rk×n, uniformly in x.

We are interested in the behavior, as ε → 0, of minimizers of Eε with respect to general
boundary conditions: strong or weak anchoring in the terminology of liquid crystals. Strong
anchoring corresponds to Dirichlet boundary conditions

uε = ub on ∂Ω,

where we assume ub to be regular and to take values into N . Weak anchoring corresponds to
minimizing the modifed functional

(1.1) Fε(u; Ω) := Eε(u; Ω) +

ˆ
∂Ω

g(x, u),

1
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where g : ∂Ω× Rk → [0,∞) is a C2 function. (This translates into Neumann-type boundary
conditions but we will only use the variational formulation.) It can be checked (see e.g. [35])
that minimizers of Eε converge, up to subsequence, strongly in H1, to a map u? : Ω → N
which minimizes the energy

E?(u; Ω) =

ˆ
Ω

W (x,∇u), u : Ω→ N

subject to the same Dirichlet boundary conditions, in the strong anchoring case. Similarly, in
the weak anchoring situation, minimizers of Fε converge to minimizers of

F?(u; Ω) =

ˆ
Ω

W (x,∇u) +

ˆ
∂Ω

g(x, u), u : Ω→ N ,

again, strongly in H1 and up to subsequence. (In fact strong H1 compactness of bounded
energy sequences holds locally, without fixing boundary conditions, see Appendix B.) All
difficulties arising in this article are already present in the case of W with constant coefficients.
We are not concerned with the critical dimension n = 2, where the energy monotonicity
formula (whose absence in dimension n ≥ 3 constitutes, as explained below, one of the main
difficulties) is automatically satisfied.

A strong motivation for the study of the class of energy functionals Eε, comes from their
connection to physical problems in material sciences. An important ocurrence is the Landau-
de Gennes energy for nematic liquid crystals [37], where the unknown is a map Q : Ω→ S0 :=
{Q ∈ R3×3

sym, trQ = 0} ' R5, and

WLdG(∇Q) = L1 |∇Q|2 + L2 ∂jQik∂kQij + L3 ∂jQij∂kQik,(1.2)

fLdG(Q) = a2 |Q|2 − b2 tr(Q3) + c2 |Q|4 .(1.3)

(In (1.2) and in the rest of the article, summation over repeated indices is implicitly assumed.)
The vacuum manifold is N = {s?(n⊗ n− I/3) : n ∈ S2} for some s?(a, b, c) > 0. In order for
WLdG to be positive definite, the elastic constants satisfy (see e.g. [31])

(1.4) L1 + L2 > 0, 2L1 − L2 > 0 and 6L1 + L2 + 10L3 > 0.

This theory has motivated a wealth of new mathematical results in the past few years,
regarding e.g. the London limit ε → 0 [35, 13, 14, 9, 20, 18], the fine structure of defects
[29, 30, 19, 27, 28, 13, 16, 24], colloidal suspensions [3, 2, 4] or lifting issues [5, 8, 6, 11, 26].
The isotropic case corresponds to L2 = L3 = 0, a restriction which was assumed in most of
the above works. The general anisotropic case of three distinct elastic constants has remained
largely unexplored, due to the many mathematical challenges involved (see e.g. [31]). In
particular, our results extend the conclusions of [35, 38, 18] to any L1, L2 and L3 such that
W remains positive definite. Note that another, physically motivated potential f(Q) was
introduced in [7], to which it would be interesting to extend our analysis.

In the isotropic case

Wiso(∇u) = |∇u|2 (or |∇gu|2 for some Riemannian metric g),

minimizers of E? are N -valued harmonic maps. They are smooth outside a rectifiable singular
set of dimension at most (n−3), and the convergence of uε towards u? is locally uniform away
from this singular set and from the boundary [15, 35, 18]. Moreover, for fixed N -valued
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Dirichlet boundary conditions, the convergence is also uniform up to the boundary [38, 18].
For the Ginzburg-Landau potential k = 2, f(u) = (1− |u|2)2, uniform convergence up to the
boundary is also obtained for weak anchoring in the special case g(x, u) = |u− ub(x)|2 in [10].

For more general anisotropic elastic energies, the regularity of minimizers of E? is not fully
understood. It is known that the singular set has dimension strictly less than n− 2 [23, 25],
but due to the failure of the energy monotonicity formula, Federer’s dimension reduction
argument can not be applied to show that the singular set has dimension at most n − 3.
It is an open problem to find the optimal estimate on the dimension of the singular set for
these anisotropic harmonic maps, but not only that, the uniform convergence away from the
singular set has also proved to be an elusive question due to the technical limitations of the
classical approaches, mainly derived from the theory of harmonic maps. Here we address this
open question and extend the results in [18] to include, for the first time, anisotropic elastic
energies.

Comparison with the isotropic case. To shed some light on the underlying difficulties, we
mention that the available proofs of uniform convergence for the isotropic energy [35, 38, 18]
follow the strategy of [15], inspired by [39] (related results can be found in [12] for n = 2, and
[10] for higher dimensions, in the case of the Ginzburg-Landau potential). The main tool is a
small energy estimate, which relies on 3 crucial ingredients:

• a uniform L∞ bound ‖uε‖L∞ ≤M ,

• a “Bochner type” inequality −∆eε . e2
ε satisfied by eε = 1

2
|∇uε|2 + ε−2f(uε),

• and a monotonicity formula for the renormalized energy d
dr

[r2−nEε(uε;Br)] ≥ 0.

All three of these ingredients do not seem to be available in the anisotropic case. We circum-
vent these difficulties by adopting a more fundamental, but flexible variational approach (in
contrast with the PDE ones used in the isotropic case). Moreover, our novel strategy allows
us to obtain uniform estimates at the boundary for strong and weak anchoring, while the
previous methods could only deal with strong anchoring (see [18]).

Locally uniform convergence for general anisotropic energies. As pointed out before,
we already know that a subsequence of minimizers uε of the functionals Eε (resp. Fε) converges
in H1 to a generalized harmonic map u?, i.e. a minimizer of E? (resp. F?). In order to improve
this to uniform convergence away from the singular set S of u?, we establish uniform Hölder
bounds for uε on compact subsets of Ω\S. Classically, this is done by means of a small energy
estimate:

r2α|uε|2Cα(B(x0,r))
≤ C(W, f)r2−nEε(uε;B(x0, 2r)),

for a constant C(W, f) depending on the specified parameters (but not on ε), provided the
renormalized energy r2−nEε(uε;B(x0, 2r)) is small enough. Granted such estimate, H1 conver-
gence automatically improves to uniform convergence away from S, since there the renormal-
ized energy of u? is small. Therefore we will concentrate on proving small energy estimates,
in the interior and at the boundary.

For u?, an equivalent of this small energy estimate is indeed valid, and at the core of the
regularity theory in [22, 34]. However its proof relies strongly on the scaling invariance of the
energy E?. It is at this level that a big difference arises: our perturbed energy Eε contains two
terms which scale differently. This is reflected in the presence of a characteristic length scale
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ε. At scales larger than ε we expect minimizers to behave like generalized harmonic maps (i.e.
minimizers of u?). As we move to finer scales, the particular shape of the potential f plays a
more prominent role, and thus our minimizer resembles less and less a harmonic map. Note
that in the isotropic case this effect can be somewhat controlled, as the monotonicity formula
ensures that if the energy is small at one scale, then it is automatically small at all smaller
scales.

Of the three crucial ingredients for the small energy estimate, which are present in the
isotropic case but not here – namely, the uniform pointwise bound, the Bochner equation
satisfied by the energy density, and the energy monotonicity formula – the uniform pointwise
bound ‖uε‖∞ ≤ M turns out to be the most problematic. We manage in fact to develop a
general method that needs neither Bochner equation nor energy monotonicity, but, in order
to avoid assuming an a priori L∞ bound, we need to restrict ourselves to dimension n = 3
and potentials f satisfying some additional technical assumption. We use these restrictions
in our proof of Lemma 2.5 which deals with the scales below ε (see also Remarks 1.1 and 1.3
for more insight into why we need them). These restrictions are satisfied in the physically
relevant case of the Landau-de Gennes functional. To the best of our knowledge, this work is
the first to treat this more general model.

The key elements that allow us to overcome the lack of Bochner equation and monotonicity
formula can be explained as follows. Establishing a Hölder estimate amounts to proving a
suitable energy decay on small balls, and we do this in two steps.

• In the first step we obtain energy decay on balls of radii much larger than ε. We
rely on variational arguments inspired from the harmonic map literature: carefully
constructed comparison maps lead to an energy improvement estimate showing energy
decay from one fixed scale to another fixed smaller scale. For anisotropic harmonic
maps (minimizers of E?) scale invariance then allows to iterate this estimate and prove
energy decay and Hölder regularity. Here in contrast we can only iterate this as
long as the scale remains much larger that ε. In fact the absence of scale invariance
constitutes an obstacle not only to iterating the energy improvement estimate, but also
to obtaining it in the first place. For anisotropic harmonic maps, the contradiction
argument leading to energy improvement relies indeed on blowing up the image of
N -valued maps at scale given by the square root of their energy [22, 34]. In our case
the potential term behaves very badly with respect to such blow-up. That is why we
first need to perform, with controlled energy cost, a homotopy between the boundary
values of our minimizers and N -valued boundary values. The associated N -valued
minimizer could then have strictly larger energy and we blow up the original map
at this possibly larger scale, while for anisotropic harmonic maps there was only one
relevant blow-up scale.
• In the second step we deal with scales of order ε and below. There, the energy decay

is obtained from elliptic estimates for a fixed ε0. We exploit the shape of the potential
in a decisive manner to be able to connect these estimates to the ones in the first step.
This is where the uniform L∞ bound (A3a) plays a crucial role, and in its absence
we have to resort to the technical assumption (A3b) which leads to a non-standard
bootstrapping argument (whence the two growth conditions on f and ∇f).
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In what follows, we always make the following two generic assumptions:

• W (x,∇u) is a positive definite quadratic form on Rk×n with coefficients depending

smoothly on x, i.e. W (x,∇u) = aαβij (x)∂iu
α∂ju

β with

(A1) λ |ξ|2 ≤ aαβij ξ
α
i ξ

β
j ≤ Λ |ξ|2 ∀ξ ∈ Rk×n, and

∥∥∥aαβij ∥∥∥
C1
≤ Λ,

for some Λ > λ > 0,
• f vanishes nondegenerately on N , i.e. ∇2f(z) restricted to (TzN )⊥ is positive definite

for all z ∈ N , and f does not vanish at infinity. This implies (see e.g. [18]) that

(A2) f(z) . dist2(z,N ) . f(z) for z close enough to N , and lim inf
|z|→∞

f(z) > 0.

Here and throughout the article, the symbol . will denote inequality up to a multiplicative
constant that depends only on the fixed parameters (f , W , g), unless otherwise specified.

But, in addition to these natural requirements, we will assume either that there exists
M > 0 such that

(A3a) ‖uε‖∞ ≤M ∀ε > 0,

or that

(A3b)
n = 3, and there exist p >

3

2
and

1

2
≤ a ≤ min

(
4

5
,
4

3
− 1

p

)
,

such that |∇f(z)| . |z|
6
p and |∇f(z)| . f(z)a as |z| → ∞.

Remark 1.1. We actually expect the pointwise bound (A3a) to hold true for minimizers of
Eε under rather mild conditions on f . In the isotropic case, one only needs to assume that
u · ∇f(u) ≥ 0 for |u| ≥ M (in fact this is valid for all critical points that satisfy the Euler-
Lagrange equations [33]), but establishing this estimate in the anisotropic case turns out to
be surprisingly difficult. To shed more light on this issue, note that one obvious difference
between isotropic and general anisotropic W ’s is that, in the isotropic case, the linear second
order elliptic operator L associated to critical points of

´
W (∇u) comes in the form of a scalar

operator acting separately on each component, while in the anisotropic case it really couples
all components. It is known that, even for minimizers of

´
W (∇u) without any constraint,

i.e. solutions of Lu = 0, the maximum principle ‖u‖L∞(Ω) ≤ ‖u‖L∞(∂Ω) holds in this sharp

form if and only if L is (up to a linear change of variables) isotropic [32, Theorem 2.4]. In
general one only has ‖u‖L∞(Ω) ≤ C ‖u‖L∞(∂Ω) for some C > 1. In other words the elastic term

W (∇u) does somehow penalize large pointwise values of u, but not as sharply as it does in
the isotropic case: therefore one can not hope to directly generalize the isotropic arguments
for (A3a) to the anisotropic case.

The following theorem is a corollary of our main results Theorems 2.1, 3.1 and 3.4.

Theorem 1.2. Let (uεk) be a sequence of minimizers of Eεk in Ω (with respect to their own
boundary conditions) and assume that uεk converges strongly in H1 to u? ∈ Cα(Ω\S). Assume
(A1)-(A2), and moreover that either (A3a) or (A3b) holds. Then we have:
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• Interior convergence:

uεk −→ u? locally uniformly in Ω \ S,
• Convergence up to the boundary for strong anchoring: if uεk = ub on ∂Ω for some

fixed ub ∈ C2(∂Ω;N ), then

uεk −→ u? locally uniformly in Ω \ S,
• Convergence up to the boundary for weak anchoring: if uεk minimizes Fεk (1.1), and

(A3a) holds, then

uεk −→ u? locally uniformly in Ω \ S.

Remark 1.3. A few observations about this technical assumption are in order.

• Note that under assumption (A3b), we are able to obtain the uniform convergence
away from S, but we still do not know if the uniform bound (A3a) holds.
• Note also that in the weak anchoring case we cannot avoid assuming (A3a). We will

comment more about this in § 3.2.
• Finally, we point out that (A3b) consists of two growth requirements on ∇f in dimen-

sion n = 3. The first growth requirement |∇f(z)| . |z|6/p is fairly natural; it allows
to obtain Hölder continuity of any solution u of the Euler-Lagrange equations for a
fixed ε0 > 0, via classical arguments relying on Calderon-Zygmund estimates. On the
other hand, the second hypothesis |∇f | . fa is, admittedly, less natural but it is what
ultimately allows us to make the connection with the estimates at large scales obtained
in the first step. Concerning the first growth requirement, alternate hypotheses – that
also apply to the Landau-de Gennes energy – are available, but we choose the current
presentation due to its transparency.

Remark 1.4. The convergence statements in Theorem 1.2 are consequences of local Cβ

bounds proved in Theorems 2.1, 3.1 and 3.4, so we actually have convergence in Cγ
loc(Ω \ S)

for all 0 < γ < β. In fact our methods provide Cγ convergence for any 0 < γ < 1, let us
quickly explain why:

• Our estimates at large scales (Lemmas 2.2, 3.2 and 3.6) provide energy decay corre-
sponding to Cβ regularity for any 0 < β < 1.
• Regarding small scales (Lemmas 2.5, 3.3 and 3.7), under assumption (A3a) we ob-

tain a Lipschitz bound. The combination of the large and small scale estimates (see
Section 2.3) then provides a Cβ bound, and β can be arbitrarily close to 1. Under as-
sumption (A3b) the small scale estimate only provides a fixed Hölder exponent β0 < 1.
But the local Cβ0 bound implies a uniform L∞ bound in any compact K ⊂ Ω \ S,
which allows to a posteriori apply the estimates obtained under assumption (A3a),
and conclude that we have local Cγ convergence for any 0 < γ < 1 in all cases.

Landau-de Gennes with three distinct elastic constants. In the physically relevant case
of the Landau-de Gennes potential, assumption (A3b) is satisfied with p = 2 and a = 3/4,
since fLdG(Q) & |Q|4 and |∇fLdG(Q)| . |Q|3 as |Q| → ∞. Thus Theorem 1.2 is the first to
provide an unconditional result in this context. More explicitly, specializing to the Landau-de
Gennes model, Theorem 1.2 says:
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Theorem 1.5. Let Ω ⊆ R3 a smooth bounded domain, (Qε)ε>0 ⊆ H1(Ω;S0) be a family of
minimizers with respect to their own boundary conditions of the Landau-de Gennes energy

ELdG
ε (Q) :=

ˆ
Ω

(
WLdG(∇Q) +

1

ε2
fLdG(Q)

)
dx,

where WLdG and fLdG are defined in (1.2) and (1.3) respectively. Assume the elastic constants
L1, L2, and L3 satisfy (1.4). Then

a) There exists a subsequence εk → 0, such that the maps Qεk converge to an N -valued,
WLdG-harmonic map Q? strongly in H1 and locally uniformly in Ω \ S, where S is the
singular set of Q?.

b) If in addition we assume that there exists a C2 map Qb : ∂Ω→ N such that Qε = Qb

on ∂Ω, then the convergence is locally uniform up to the boundary, that is, in Ω \ S.
c) Given any C2 function g : ∂Ω × S0 → [0,∞), and under the additional assumption

that

sup
ε>0
‖Qε‖∞ <∞,

the same conclusion holds for minimizers of the weak anchoring energy FLdG
ε (Q) :=

ELdG
ε (Q) +

´
∂Ω
g(x,Q), that is, the convergence is locally uniform in Ω \ S.

Remark 1.6. A natural and interesting direction for future investigations is to extend our
results to elastic energy densities of the form W (x, u,∇u) instead of W (x,∇u); recently, in
an attempt to address some of the analytical shortcomings of the classical Landau-de Gennes
model, a modification with a more general quadratic form WLdG with coefficients depending
on the order parameter Q has been proposed [21].

The paper is organized as follows: in the next section we prove the fundamental lemmas
that imply energy decay at the different scales, and use these to prove the interior small energy
estimate. In Section 3 we outline the adaptations needed to handle the boundary estimates,
which follow the same general strategy as for the interior, but where technical differences make
the proofs more delicate. The paper finishes with two appendices where we prove a technical
boundary modification lemma, and the strong H1

loc compactness of bounded energy sequences.

Acknowledgments. The work of A.C. was partially supported by a grant from the Simons
Foundation # 426318. The work of X.L. was partially supported by the ANR project ANR-
18-CE40-0023. We wish to thank Rémy Rodiac for many useful discussions, and Changyou
Wang for pointing out a gap in the initial proof of Lemma 2.2. A.C. would like to thank the
Institut de Mathématiques de Toulouse and Université Paul Sabatier for hosting him as an
invited professor which allowed for the conclusion of this work.

2. Interior estimates

In this section we prove the interior small energy estimate.

Theorem 2.1. Assume that f satisfies (A2), that W satisfies (A1), and moreover that either
(A3a) or (A3b) holds. There exist δ, ε0 > 0 and α ∈ (0, 1) (depending on λ, Λ and f , and
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under (A3a) also on M) such that for any r0 ∈ (0, 1), ε ∈ (0, r0ε0), and any uε minimizing
Eε(·;B2r0) with respect to its own boundary conditions,

(2r0)2−nEε(uε;B2r0) ≤ δ2 =⇒ r2α
0 |uε`|

2
Cα(Br0 ) . (2r0)2−nEε(uε;B2r0),

where the constant in the last inequality depends on λ, Λ and f , and under (A3a) also on M .

We prove Theorem 2.1 by obtaining uniform bounds for the decay of the energy on small
balls. Our proof reflects the fact that different scales are at stake in this problem, due to
the different homogeneities of the two terms in Eε. At scales larger than ε the decay of
the Dirichlet energy is inherited from the small energy regularity of (anisotropic) “harmonic”
maps (Lemma 2.2). At scales smaller than ε it is inherited from regularity estimates for elliptic
systems (Lemma 2.5). This is where the absence of a uniform L∞ bound (that was easy to
obtain in the isotropic case) is an issue and we have to either assume it (A3a) or to require f
to satisfy the technical assumption (A3b).

2.1. Energy decay at larges scales. We begin by an energy improvement lemma which
implies that uε has the energy decay of minimizing W -harmonic maps at scales larger than ε.
This is the only part of our argument where the minimality of uε is crucial; at smaller scales
the decay comes from the regularity of solutions to a PDE. It is worth mentioning that energy
decay of stationary W -harmonic maps is not known and that mere criticality is not sufficient
for this property to hold even in the isotropic case. Thus, to obtain similar Hölder estimates
for critical points of Eε one would need to avoid the contradiction argument which relies on
the regularity of W -harmonic maps.

Lemma 2.2. Assume (A1) and (A2). Let 0 < β < 1. There exist δ0, ε0 > 0 and θ0 ∈ (0, 1/2)
(depending on β, λ, Λ and f) such that any minimizer uε of Eε(·;B1) with ε ∈ (0, ε0) satisfies

Eε(uε;B1) ≤ δ2
0 =⇒ θ2−n

0 Eε(uε;Bθ0) ≤ θ2β
0 Eε(uε;B1).

The proof of Lemma 2.2 is modelled on the proof of the corresponding energy decay result
for minimizingN -valued maps in [22, 34]. There, it relies on the observation that a sequence of
minimizers with arbitrarily small energy converges, after translating and rescaling its image,
to a map minimizing energy under the linear constraint v ∈ TzN a.e., for some z ∈ N .
For such a map, classical elliptic regularity applies and this allows to conclude. Here we are
faced with the additional difficulty that the potential term in the energy does not behave
well with respect to such rescaling. To circumvent this difficulty we first need to be able to
modify boundary values with the help of the following lemma, whose proof we postpone to
the appendix.

Lemma 2.3. There exists δ1 = δ1(N , f) > 0 such that for all 0 < ε ≤ λ < 1 and any
u ∈ H1(∂B1;Rk) with Eε(u; ∂B1) ≤ δ2

1λ
n−1, there exist

w ∈ H1(∂B1;N ), ϕ ∈ H1(B1 \B1−λ;Rk),

with ϕ = u on ∂B1, ϕ = w((1− λ)·) on ∂B1−λ,

satisfying the bounds

Eε(ϕ;B1 \B1−λ) . λEε(u; ∂B1) and

ˆ
∂B1

|∇w|2 . Eε(u; ∂B1).
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Remark 2.4. In the Landau-de Gennes setting (k = 5, N ≈ RP2), results similar to
Lemma 2.3 are proved in [14]. There the energy Eε(u) is allowed to be of order o(| log ε|),
and λ ∼ ε1/2 |log ε|. These results would enable us to perform the proof of Lemma 2.2 in the
Landau-de Gennes case, but in our case we need only to consider small energies, which makes
the proof of Lemma 2.3 much simpler, and independent of the topology of N .

Granted this boundary modification lemma, we turn to the proof of Lemma 2.2.

Proof of Lemma 2.2. Thanks to the ellipticity assumption (A1), minimizers v of
´
B1
W (∇v)

under the linear constraint v ∈ TzN a.e. enjoy elliptic regularity estimates, uniformly in
z ∈ N (see for example [1, § 10]). In particular, there exists θ0 ∈ (0, 1/4) such that for any
z ∈ N and any v ∈ H1(B1;TzN ) minimizing

´
B1
W (∇ṽ) among all maps ṽ ∈ H1(B1;TzN )

with ṽ = v on ∂B1, it holds

(2.1) (2θ0)2−n
ˆ
B2θ0

W (∇v) ≤ θ2β
0

2n−1

ˆ
B1

W (∇v).

In order to prove the validity of Lemma 2.2 for this value of θ0, we assume by contradiction
that there exist sequences δ`, ε` → 0 and u` minimizing Eε`(·;B1) such that Eε`(u`;B1) = δ2

` ,
and

θ2−n
0 Eε`(u`;Bθ0) > θ2β

0 Eε`(u`;B1).

By Fubini’s theorem we may choose ρ ∈ [1/2, 1] such that Eε`(u`; ∂Bρ) . δ2
` . Setting û`(x̂) =

u`(ρx̂), ε̂` = ε`/ρ and δ̂2
` = Eε̂`(û`;B1) we then have

(2θ0)2−nEε̂`(û`;B2θ0) >
θ2β

0

2n−2
Eε̂`(û`;B1), and Eε̂`(û`; ∂B1) . δ̂2

` .

Dropping the hats to simplify notations, we thus have sequences ε`, δ`, u` satisfying

(2.2)

Eε`(u`; ∂B1) . δ2
` = Eε`(u`;B1)→ 0,

and (2θ0)2−nEε`(u`;B2θ0) >
θ2β

0

2n−2
Eε`(u`;B1).

The assumptions (A2) on f imply that dist(u`,N )→ 0 a.e., and we deduce that u` converges
strongly in H1(B1;Rk) to a constant z ∈ N . From Lemma 2.3 we obtain λ` → 0, w` : ∂B1 →
N , ϕ` : B1 \B1−λ` → Rk such that

ϕ` = u` on ∂B1, ϕ` = w`((1− λ`)·) on ∂B1−λ` ,

Eε`(ϕ`;B1 \B1−λ`) . λ`δ
2
` ,

ˆ
∂B1

|∇w`|2 . δ2
` .(2.3)

Note that, as argued in [14, Corollary 34], this implies that

(2.4)

ˆ
∂B1

|w` − u`|2 . λ`δ
2
` .
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Since n ≥ 3, the set of maps w ∈ H1(B1;N ) which agree with w` on ∂B1 is not void (see e.g.
[22, Lemma 1.1]), and we can choose w` ∈ H1(B1;N ) such that w` = w` on ∂B1, and

α2
` :=

ˆ
B1

W (∇w`) = min

{ˆ
B1

W (∇w) : w ∈ H1(B1;N ), wb∂B1 = w`

}
.(2.5)

The map

w̃` =

{
ϕ` in B1 \B1−λ` ,

w`((1− λ`)·) in B1−λ` ,

agrees with u` on ∂B1, an we infer, recalling (2.3), that

δ2
` = Eε`(u`;B1) ≤ Eε`(w̃`;B1) ≤ (1 + o(1))α2

` + o(1)δ2
` ,

hence

(2.6) δ2
` ≤ (1 + o(1))α2

` .

On the other hand, the minimality property (2.5) of w` ensures, comparing its energy with
the energy of the 0-homogeneous map w`(x/ |x|), that

(2.7) α2
` .

ˆ
∂B1

|∇w`|2 . δ2
` .

This, together with (2.4) and the fact that u` converges to z ∈ N , implies that w` → z in
H1(B1;Rk). Next we argue as in [34] and translate and rescale w` in order to obtain a limiting
map with values into TzN . Since y` :=

ffl
w` converges to z ∈ N , for large enough ` we may

define z` := πN (y`), and Poincaré’s inequality then ensures that

(2.8)

ˆ
B1

dist(w` − z`, Tz`N ) .
ˆ
B1

|w` − z`|2 . α2
` .

Hence the map

v` :=
1

α`
(w` − z`),

is bounded in H1(B1;Rk) and up to a subsequence (that we do not relabel) it converges weakly
to a map v ∈ H1(B1;Rk) which, thanks to (2.8), takes a.e. values into TzN . In particular
v` converges strongly to v in L2(∂B1;Rk). Moreover v` is bounded in H1(∂B1;Rk) thanks
to (2.3) and (2.6). Thus we may argue exactly as in [34, Proposition 1] and construct good
comparison maps to deduce that v minimizes

´
B1
W (∇ṽ) among TzN -valued maps ṽ that

agree with v on ∂B1, and that the convergence v` → v is in fact strong in H1(B1;Rk). In
particular, v enjoys the energy decay property (2.1). Thanks to the strong convergence v` → v
in H1, after rescaling it holds

(2.9) (2θ0)2−n
ˆ
B2θ0

W (∇w`) ≤
θ2β

0 + o(1)

2n−1

ˆ
B1

W (∇w`).
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The last part of the proof consists in obtaining, from this energy decay for w`, similar energy
decay for u`, thus contradicting (2.2). To that end we define

ṽ` :=
1

α`
(u` − z`).

Note that here we do not divide by δ` but rather by the (possibly) larger α` corresponding
to a minimizer among N -valued maps of a closely related problem. The reason is that even
though we already know that δ` and α` are of the same order, we need exact bounds in (2.10)
below for the corresponding cancellations to take place.

Thanks to (2.6) it holds
´
B1
|∇ṽ`|2 . 1, and therefore ṽ` −

ffl
ṽ` converges (up to a subse-

quence) weakly in H1(B1;Rk), and strongly in L2(∂B1;Rk). From (2.4) and (2.6) we infer
that ˆ

∂B1

|ṽ` − v`|2 . λ` → 0.

In particular ṽ` is bounded in L2(∂B1;Rk), so that
ffl
ṽ` must be bounded. We may assume

that it converges in Rk, and hence deduce that

ṽ` −→ ṽ weakly in H1(B1;Rk) and a.e.,

for some map ṽ ∈ H1(B1;Rk) such that ṽ = v on ∂B1. We claim that ṽ ∈ TzN a.e. This
follows from the energy bound Eε(u`;B1) = δ2

` . α2
` , which thanks to assumption (A2) on f

implies in particular that

1

α`
dist(u`,N ) −→ 0 a.e.

Fixing x ∈ B1 at which this convergence and ṽ`(x)→ ṽ(x) hold, we have

dist(u`(x),N ) = dist(z` + α`ṽ(x) + α`(ṽ`(x)− ṽ(x)),N )

≥ dist(z` + α`ṽ(x),N )− o(α`)
≥ α` |P`ṽ(x)| −O(α2

`)− o(α`),

where P` denotes the orthogonal projection onto (Tz`N )⊥. This shows that |P`ṽ(x)| → 0 and
therefore ṽ(x) ∈ TzN since z` → z.

We denote by B(·, ·) the symmetric bilinear form on Rk×n corresponding to W , so that it
holdsˆ

B1

W (∇w` −∇u`) +
1

ε2
`

ˆ
B1

f(u`) =

ˆ
B1

W (∇w`) + Eε(u`;B1)− 2

ˆ
B1

B(∇w`,∇u`)

≤ α2
` + (1 + o(1))α2

` − 2α2
`

ˆ
B1

B(∇v`,∇ṽ`).(2.10)

Because v` → v strongly and ṽ` → ṽ weakly we haveˆ
B1

B(∇v`,∇ṽ`)→
ˆ
B1

B(∇v,∇ṽ) =

ˆ
B1

B(∇v,∇(ṽ − v)) +

ˆ
B1

W (∇v).
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Since v is a minimizer of
´
B1
W (∇v) among TzN -valued maps and (ṽ− v) is TzN -valued and

vanishes on ∂B1, it holds ˆ
B1

B(∇v,∇(ṽ − v)) = 0.

Moreover, since
´
B1
W (∇v`) = 1 and v` converges strongly to v it holds

´
B1
W (∇v) = 1, and

therefore ˆ
B1

B(∇v`,∇ṽ`) = 1 + o(1).

Plugging this into (2.10) we findˆ
B1

W (∇w` −∇u`) +
1

ε2
`

ˆ
B1

f(u`) ≤ o(1)α2
` .

Using this estimate and (2.9) we obtain

(2θ0)2−nEε`(u`;B2θ0) ≤ 4

3
(2θ0)2−n

ˆ
B2θ0

W (∇w`) + o(1)α2
`

≤ 2

3

θ2β
0 + o(1)

2n−2

ˆ
B1

W (∇w`) + o(1)α2
`

≤ 2

3

θ2β
0 + o(1)

2n−2

ˆ
B1

W (∇u`) + o(1)α2
` .

Since α2
` . δ2

` = Eε`(u`;B1), this contradicts (2.2) and concludes the proof of Lemma 2.2.
�

2.2. Regularity at small scales. Iterating Lemma 2.2 will enable us to obtain energy decay
up to scales r ≥ ε/ε0 (see § 2.3 below). In the present subsection we prove an estimate for
the energy decay of uε at a fixed value of ε (that we will later take to be ε = ε0). What is
crucial here (and not completely straightforward), is that the estimate is only in terms of the
energy: we will need this in order to transfer the energy decay from large to small scales. As
a consequence of this particular constraint imposed by our strategy, the constants we obtain
behave very poorly with ε. One would morally expect that the constants should become
better (or at least be uniform) for large values of ε – the constants we obtain here do become
uniform under the L∞ bound assumption (A3a), but not when (A3a) is replaced by (A3b).

Lemma 2.5. Assume (A1)-(A2), and either (A3a) or (A3b). For all ε > 0 there exists
δ, α, C > 0 (depending on n, λ, Λ, f and M , but also on ε) such that any minimizer uε of
Eε(·;B2) satisfies

Eε(uε;B2) ≤ δ2 =⇒ r2−n
ˆ
Br

|∇uε|2 ≤ CrαEε(uε;B2) ∀r ∈ (0, 1).

Remark 2.6. We prove in fact Lemma 2.5 with δ = 1. We state it in this way to empha-
size that this statement is strong enough to prove Theorem 2.1. We expect Lemma 2.5 to
hold under much less restrictive assumptions: in any dimension n ≥ 3, for an elastic energy
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W (x, u,∇u) which may be a positive definite quadratic form in∇u with coefficients depending
smoothly on x and u, and for a potential f with some radial growth at infinity.

We will prove Lemma 2.5 separately under the assumptions (A3a) and (A3b). In both cases
we use elliptic estimates for the equation

Lu =
1

ε2
∇f(u)

where L is the second order elliptic operator such that
´
W (∇ϕ) =

´
Lϕ · ϕ for all test

functions ϕ. This operator satisfies elliptic estimates∥∥∇2v
∥∥
Lp
. ‖Lv‖Lp + ‖v‖Lp ,

for 1 < p < ∞ and all maps v with compact support in the unit ball B1. The inequality
is up to a constant depending on λ, Λ, n and p (see e.g. [1, § 10] or [36, § 6.4]). For any
0 < R1 < R2 ≤ 1, one may apply this to v = (u− ξ)ϕ for any ξ ∈ Rk and ϕ a cut-off function
such that ϕ ≡ 1 in BR1 , ϕ ≡ 0 outside of BR2 , and

∣∣∇`ϕ
∣∣ . (R2 − R1)−`, and conclude with

Poincaré’s inequality that

(2.11)
∥∥∇2u

∥∥
Lp(BR1

)
. ‖Lu‖Lp(BR2

) +
1

(R2 −R1)2
‖∇u‖Lp(BR2

) .

Under the uniform L∞ bound assumption (A3a), Lemma 2.5 will follow from using (A2) to
bound Luε in terms of the energy Eε, and bootstrapping the elliptic estimate (2.11). Without
the uniform L∞ bound however, both estimating Luε in terms of Eε, and bootstrapping, do
not work directly and this is why we need assumption (A3b).

Proof of Lemma 2.5 under (A3a). In this proof we drop the subscripts ε to simplify notation.
We fix a sequence of radii Rk ∈ (1/2, 1] by letting R0 = 1 and Rk = Rk−1 − 2−(k+1) for k ≥ 1.

The map u solves

Lu =
1

ε2
∇f(u).

We start by applying (2.11) with p = p0 = 2, hence∥∥∇2u
∥∥
L2(BR1

)
. (1 + ε−2) ‖∇f(u)‖L2(BR0

) + ‖∇u‖L2(BR0
) .

Thanks to (A2) and (A3a) we have |∇f(u)| . f(u)1/2, so that we deduce that∥∥∇2u
∥∥
L2(BR1

)
. ε−2E(u;B1)

1
2 .

Next we set p1 = 2∗ = 2n/(n− 2). By Sobolev embedding and the above we obtain

‖∇u‖Lp1 (BR1
) .

∥∥∇2u
∥∥
L2(BR1

)
+ ‖∇u‖L2(BR1

) . (1 + ε−2)E(u;B1)
1
2 ,

‖∇f(u)‖Lp1 (BR1
) .

∥∥∇2f(u)
∥∥
L∞
‖∇u‖L2(BR1

) + ‖∇f(u)‖L2(BR1
) . (1 + ε−2)E(u;B1)

1
2 .

Applying (2.11) again we have therefore∥∥∇2u
∥∥
Lp1 (BR2

)
. (1 + ε−4)E(u;B1)

1
2 .
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If p1 < n, we iterate the above, and obtain a sequence of exponents pk < n such that
pk+1 = p∗k = pkn/(n− pk), and

‖∇u‖Lpk (BRk ) + ‖∇f(u)‖Lpk (BRk ) . (1 + ε−2k)E(u;B1)
1
2 ,∥∥∇2u

∥∥
Lpk+1 (BRk+1

)
. (1 + ε−2k−2)E(u;B1)

1
2 .

The sequence (pk) is strictly increasing and pk+1−pk = pk(n/(n−pk)−1) > p0(n/(n−p0)−1),
so that after a finite number of iterations we have pk+1 ≥ n. If pk+1 > n, by Sobolev embedding
this implies ‖∇u‖L∞(BRk+1

) . E(u;B1)1/2. If pk+1 = n we may replace it by p̃k+1 < n but

arbitrarily close to n and iterate one more time. In any case we infer

‖∇u‖L∞(B1/2) . (1 + ε−2κ)E(u;B1)1/2,

for some κ = κ(n) ∈ N, and this implies the conclusion of Lemma 2.5 with α = 1. �

Proof of Lemma 2.5 under (A3b). In this proof we drop the subscripts ε to simplify notation.
For the convenience of the reader we recall here assumption (A3b):

n = 3, and there exist p >
3

2
and

1

2
≤ a ≤ min

(
4

5
,
4

3
− 1

p

)
,

such that |∇f(z)| . |z|
6
p and |∇f(z)| . f(z)a as |z| → ∞.

There is no loss of generality in assuming that

(2.12)
3

2
< p ≤ 15

8
,

since for p ≥ 15/8 we have 4/3− 1/p ≥ 4/5.
We let δ = 1, and consider a map u minimizing E(·;B2) and satisfying E(u;B2) ≤ 1. The

map u solves

Lu =
1

ε2
∇f(u).

Since, by Sobolev embedding u ∈ L6(B2), we deduce from the first growth assumption

|∇f(z)| . |z|6/p in (A3b) that ∇f(u) ∈ Lp(B2). Hence applying the elliptic estimates (2.11)
yields that ∇2u ∈ Lploc(B2). Again by Sobolev embedding, we deduce that ∇u ∈ Lp∗loc(B2),
where p∗ = 3p/(3− p). Note that the condition p > 3/2 implies that p∗ > 3. This is enough
to deduce that

1

r

ˆ
Br

|∇u|2 . rα for some α ∈ (0, 1).

However Lemma 2.5 claims a bound in terms of the energy E(u;B2), which is not provided
by the above argument. This is why we need the second growth assumption in (A3b), namely
|∇f | . fa.

Note that since f ≥ 0, and since the nondegeneracy assumption (A2) implies |∇f(z)| .
f(z)1/2 for |z| . 1, using (A3b) we deduce

|∇f(z)| . f(z)1/2 + f(z)a ∀z ∈ Rk.
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Because 1/2 ≤ a ≤ 4/3− 1/p, this implies

|∇f(z)| . f(z)1/2 + f(z)A ∀z ∈ Rk, A :=
4

3
− 1

p
.

Applying (2.11) we obtain, for any 1 ≤ R1 < R2 ≤ 2,

ˆ
BR1

∣∣∇2u
∣∣p . 1

(R2 −R1)2p

ˆ
BR2

|∇u|p + ε−2p

ˆ
BR2

|∇f(u)|p .

On the other hand, by Sobolev embedding W 1,p ⊂ Lp∗ , it holds

(ˆ
BR1

|∇u|p∗ dx

) 2
p∗

.

(ˆ
BR1

|∇u|p dx

) 2
p

+

(ˆ
BR1

∣∣∇2u
∣∣p dx) 2

p

.

Gathering the above, we have

(ˆ
BR1

|∇u|p∗ dx

) 2
p∗

.
1

(R2 −R1)4

(ˆ
BR2

|∇u|p dx

) 2
p

+ ε−4

(ˆ
BR2

|∇f(u)|p dx

) 2
p

.
1

(R2 −R1)4

(ˆ
BR2

|∇u|p dx

) 2
p

+ ε−4

(ˆ
BR2

f(u)p/2 dx

) 2
p

+ ε−4

(ˆ
BR2

f(u)Ap dx

) 2
p

,

and by Jensen’s inequality, since 2/p ≥ 1,

(ˆ
BR1

|∇u|p∗ dx

) 2
p∗

.
1

(R2 −R1)4

ˆ
BR2

|∇u|2 dx+ ε−4

ˆ
BR2

f(u) dx(2.13)

+ ε−4

(ˆ
BR2

f(u)Ap dx

) 2
p

.
1 + ε−2

(R2 −R1)4
E(u;BR2) + ε−4

(ˆ
BR2

f(u)Ap dx

) 2
p

(2.14)

Then we use the fact that

Ap =
4

3
p− 1 ∈

[
1,

3

2

]
,
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so that by Sobolev embedding W 1,1 ⊂ LAp. Hence we find(ˆ
BR2

f(u)Ap dx

) 2
p

.

(ˆ
BR2

f(u) dx

)2A

+

(ˆ
BR2

|∇u| |∇f(u)| dx

)2A

. ε4AE(u;BR2)2A

+

(ˆ
BR2

|∇u| f(u)1/2 dx

)2A

+

(ˆ
BR2

|∇u| f(u)A dx

)2A

.

The second term in the above right-hand side is . ε2AE(u;BR2)2A. To estimate the third
term we apply Hölder’s inequality to see that

ˆ
BR2

|∇u| f(u)A dx .

(ˆ
BR2

|∇u|p∗ dx

) 1
p∗
(ˆ

BR2

f(u)Ap∗/(p∗−1)

) p∗−1
p∗

.

Finally, since E(u;BR2) ≤ 1 (and 2A ≥ 1), we conclude(ˆ
BR2

f(u)Ap dx

) 2
p

. (ε2A + ε4A)E(u;BR2)

+

(ˆ
BR2

|∇u|p∗ dx

) 2A
p∗
(ˆ

BR2

f(u)Ap∗/(p∗−1)

)2A p∗−1
p∗

.

Recall that

A =
4

3
− 1

p
=
p∗ − 1

p∗
,

so that the above implies(ˆ
BR2

f(u)Ap dx

) 2
p

. (ε2A + ε4A)E(u;BR2)

+ ε4A2

(ˆ
BR2

|∇u|p∗ dx

) 2A
p∗

E(u;BR2)2A2

.

Since A < 1 we may invoke Young’s inequality xy . x1/A + y1/(1−A) for all x, y ≥ 0, and
deduce (ˆ

BR2

f(u)Ap dx

) 2
p

. (ε2A + ε4A)E(u;BR2)

+ η1/A

(ˆ
BR2

|∇u|p∗ dx

) 2
p∗

+
ε

4A2

1−1

η1/(1−A)
E(u;BR2)

2A2

1−A ,
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for any η > 0. Since 2A2/(1− A) ≥ 1 (because A ≥ 1/2) and E(u;BR2) ≤ 1 this implies(ˆ
BR2

f(u)Ap dx

) 2
p

.
ε2A + ε

4A2

1−A

η1/(1−A)
E(u;BR2) + η1/A

(ˆ
BR2

|∇u|p∗ dx

) 2
p∗

,

and plugging this into (2.14) we get(ˆ
BR1

|∇u|p∗ dx

) 2
p∗

.

 1 + ε−2

(R2 −R1)4
+
ε2A−4 + ε4A

2+A−1
1−A

η1/(1−A)

E(u;BR2)

+ η1/A

(ˆ
BR2

|∇u|p∗ dx

) 2
p∗

.

Choosing η small enough, we infer(ˆ
BR1

|∇u|p∗ dx

) 2
p∗

≤ 1

2

(ˆ
BR2

|∇u|p∗ dx

) 2
p∗

+
ε2A−4 + ε4A

2+A−1
1−A

(R2 −R1)4
E(u;BR2),

for some constant C > 0. Setting ρj = 3/2− 1/(2Kj) for some K ∈ (1, 21/4) and iterating the
above estimate applied to R1 = ρj and R2 = ρj+1 we obtain(ˆ

Bρ0

|∇u|p∗ dx

) 2
p∗

≤ 1

2j

(ˆ
Bρj

|∇u|p∗ dx

) 2
p∗

+ C (ε2A−4 + ε4A
2+A−1
1−A )

(
K − 1

2K

)2p
(
j−1∑
`=0

(
K2p

2

)`)
E(u;Bρj)

≤ 1

2j

(ˆ
B3/2

|∇u|p∗ dx

) 2
p∗

+ C ′ (ε2A−4 + ε4A
2+A−1
1−A )E(u;B3/2).

Letting j →∞ and recalling that we already know that ∇u ∈ Lp∗(B3/2), we deduce that(ˆ
B1

|∇u|p∗ dx
) 2

p∗
. (ε2A−4 + ε4A

2+A−1
1−A )E(u;B3/2).

It is directly checked that p∗ > 3, Hence Hölder’s inequality implies

r−1

ˆ
Br

|∇u|2 ≤ r2(1−3/p∗)

(ˆ
Br

|∇u|p∗
) 2

p∗

. (ε2A−4 + ε4A
2+A−1
1−A ) r2(1−3/p∗)E(u;B2),

for all r ∈ (0, 1). �
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2.3. Interior regularity. We are ready to prove our main result.

Proof of Theorem 2.1. In this proof we are going to rescale repeatedly in the x variable, and
should accordingly define a new quadratic form W at each step, unless W has constant
coefficients. The quadratic form W with rescaled coefficients will still satisfy (A1), hence it
will not affect the implicit constants in the conclusions of Lemmas 2.2 and 2.5, which are
uniform with respect to quadratic forms satisfying (A1). Therefore we will, for the sake of
clarity, assume that W has constant coefficients: this does not change the strategy of the
proof, but it does simplify a lot the notations (since it avoids redefining W at each step).

Let uε minimize Eε(·;B2r0) and satisfy

(2r0)2−nEε(uε;B2r0) ≤ δ2,

for some δ ∈ (0, 1] to be fixed later. Fix 0 < β < 1 and let θ0 and δ0 be as in Lemma 2.2.
Fixing x0 ∈ Br0 and setting ū(x̄) = uε(x0 + r0x̄) we have that ū minimizes Eε̄(·;B1) for

ε̄ = ε/r0 < ε0, and
Eε̄(ū;B1) ≤ δ2.

Hence we are in a situation to apply Lemma 2.2 which implies that ũ(x̃) = ū(θ0x̃) satisfies,
with ε̃ = θ−1

0 ε̄,

Eε̃(ũ;B1) = (θ0)2−nEε̄(ū;Bθ0) ≤ θ2β
0 Eε̄(ū;B1) ≤ δ2

0.

By induction we may in fact apply Lemma 2.2 to ũ(x̃) = ū(θj+1
0 x̃) and ε̃ = θ−j−1

0 ε̄ for all
j ∈ N such that θj0 > ε̄/ε0 and infer

(θj+1
0 )2−nEε̄(ū;B(θ0)j+1) ≤ (θj+1

0 )2βEε̄(ū;B1).

This implies

(2.15) r̄2−nEε̄(ū;Br̄) . r̄2βEε̄(ū;B1) ∀r̄ ∈ [ε̄/ε0, 1).

Next we set

(2.16) r1 = ε̄/ε0 and û(x̂) = ū(r1x̂),

so that û minimizes Eε̂(·;B2) for ε̂ = ε̄/r1 = ε0, and

Eε̂(û;B2) = r2−n
1 Eε̄(ū;B2r1) . r2β

1 Eε̄(ū;B1) . δ2.

Lemma 2.5 ensures that if δ is small enough (depending on n, λ, Λ, f – and ε0 which depends
itself only on n, λ, Λ and f) there exists α̂ > 0 such that

r̂2−n
ˆ
Br̂

|∇û|2 . r̂2α̂Eε̂(û;B2) ∀r̂ ∈ (0, 1).

Set α = min(α̂, β). Recalling (2.16), we can apply the previous inequality, with r̂ = r̄/r1, to
obtain

r̄2−n
ˆ
Br̄

|∇ū|2 .
(
r̄

r1

)2α

Eε̂(û;B2) . r̄2αEε̄(ū;B1) ∀r̄ ∈ (0, r1).

By the Campanato-Morrey characterization of Hölder spaces this implies

r2α
0 |uε|

2
Cα(Br0 ) . (2r0)2−nEε(uε;B2r0).

�
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3. Boundary estimates

In this section, we extend our previous results in the interior to both strong and weak
anchoring settings. As it will become apparent, there are technical differences between the
two cases; while the proof for strong anchoring works basically along the same lines as the
interior case, under either assumption (A3a) or (A3b), a proof not relying on (A3a) is, at the
moment, out of reach for weak anchoring. The reason for this is that we are unable to modify
Luckhaus’ construction in a way that allows us to control the boundary term. We elaborate
more on this in § 3.2.

3.1. The strong anchoring case. If the boundary ∂Ω is of class C2, we can cover it with
small balls where it can be flattened, and after rescaling we are led to defining modified energy
functionals of the form

Fε(u;B+
2 ) =

ˆ
B+

2

(
W (x, u) +

1

ε2
f(u)

)
a(x) dx,

where B+
2 denotes the half ball B2∩{xn > 0} ⊂ Rn, the quadratic form W satisfies (A1), and

the weight a(x) satisfies

(B1) ‖1− a‖C1 ≤
1

2
.

We will denote by F? the corresponding limiting energy functional for N -valued maps.
To obtain boundary estimates for the original energy on Ω it suffices to consider maps uε

which minimize Fε in B+
2 among maps u such that u = uε on (∂B2)+ := ∂B2 ∩ {xn > 0} and

satisfying fixed Dirichlet conditions

u = ub on B′2 := B2 ∩ {xn = 0},
for some N -valued map ub of C2 regularity.

Theorem 3.1. Assume that W satisfies (A1) and a satisfies (B1). Also, assume that f
satisfies (A2), and that either (A3a) or (A3b) holds. Then, there exist δ, ε0 > 0 and α ∈ (0, 1)
(depending on n, λ, Λ, f and M) such that for any r0 ∈ (0, 1), ε ∈ (0, r0ε0), and any uε
minimizing Fε(·;B+

2r0
) with respect to its own boundary conditions and with uε = ub on B′2r0,

(2r0)2−nFε(uε;B
+
2r0

) +N(ub;B
′
2r0

) ≤ δ2

=⇒ r2α
0 |uε` |

2
Cα(B+

r0
) . (2r0)2−nFε(uε;B

+
2r0

) +N(ub;B
′
2r0

),

where
N(ub;B

′
r) = r2 ‖∇ub‖2

L∞(B′r)
+ r4

∥∥∇2ub
∥∥
L∞(B′r)

,

and the constant in the above inequality depends on λ, Λ, f and M .

Lemma 3.2. Assume (A1), (B1) and (A2). Let 0 < β < 1. There exist δ0, ε0, η0 > 0 and
θ0 ∈ (0, 1/2) (depending on n, β, λ, Λ and f) such that any minimizer uε of Fε(·;B+

1 ) with
ε ∈ (0, ε0), uε = ub on B′1 satisfies

Fε(uε;B
+
1 ) ≤ δ2

0

=⇒ θ2−n
0 Fε(uε, B

+
θ0

) ≤ θ2β
0 max

(
Fε(uε;B

+
1 ), η0 ‖∇ub‖2

L∞(B′1)

)
.
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Proof. As for Lemma 2.2, the proof is by contradiction, assuming the existence of sequences
ε`, u`, W`, a`, u

`
b with Fε`(u`;B

+
1 )→ 0 and

∥∥∇u`b∥∥∞ � Fε`(u`;B
+
1 ), but such that the energy

decay fails. Then one needs three ingredients:

• the boundary modification Lemma 2.3 to construct a sequence of N -valued minimizing
maps w`,
• the H1-compactness of v` = α−1

` (w` − z`), where α2
` =

´
B+

1
W (w`) and z` ∈ N is

appropriately chosen,
• and the equivalent energy decay estimate for minimizers of

´
B+

1
W (∇v) under the linear

constraint v ∈ TzN a.e., with constant boundary data on B′1,

Lemma 2.3 can be applied here without modification, since B+
1 is bilipschitz equivalent to B1

and uε = ub is already N -valued on B′1. The compactness of v` follows as in Lemma 2.2 from
the argument in [34, Proposition 1], where the extension lemma [34, Lemma 1] can also be
applied without modification thanks to the bilipshitz homeomorphism between B1 and B+

1 .
The energy decay for TzN minimizers comes from standard elliptic estimates. The rest of the
proof is as in Lemma 2.2. �

The following lemma gives the decay estimate at finer scales; the difference between this
and the corresponding estimate for the interior is a boundary term that, as it will be seen,
behaves well under rescaling because it only involves derivatives of the boundary data ub.

Lemma 3.3. Assume (A1),(B1),(A2), and (A3a) or (A3b). There exists α > 0 (depending
on n, λ, Λ, f , but also on ε), such that the following holds. For all ε > 0, any minimizer uε
of Fε(·;B+

2 ) with uε = ub on B′2 and Fε(uε;B
+
2 ) ≤ 1 satisfies

1

r2α

1

rn−2

ˆ
B+
r

|∇uε|2 . Eε(uε;B
+
2 ) + ‖∇ub‖2

L∞(B′2) +
∥∥∇2ub

∥∥2

L∞(B′2)
∀r ∈ (0, 1),

where the inequality is up to a constant depending on n, λ, Λ, f , but also on ε.

Proof. The proof can be carried out as the proof of Lemma 2.5, replacing the interior elliptic
estimates (2.11) with boundary elliptic estimates. More precisely, still denoting by L the
elliptic operator such that

´
W (∇ϕ)a(x)dx =

´
Lϕ·ϕa(x)dx for all test functions ϕ, solutions

of the Dirichlet problem

Lu = f in B1, u = g on B′1,

satisfy, for all 0 < R1 < R2 ≤ 1,∥∥∇2u
∥∥
Lp(BR1

)
. ‖f‖Lp(BR2

) +
1

(R2 −R1)2

(
‖∇u‖Lp(BR2

) + ‖∇g‖L∞(B′R2
) +
∥∥∇2g

∥∥
L∞(B′R2

)

)
,

where the inequality is up to a constant depending on n, λ, Λ, p, R1 and R2 (this follows from
the estimates in [1, § 10]). This is enough to reproduce the proof of Lemma 2.5, under either
(A3a) or (A3b). �

Proof of Theorem 3.1. For x′0 ∈ B′r0 we set ū(x̄) = uε(x
′
0 + r0x̄), ūb(x̄

′) = ub(x
′
0 + r0x̄

′) and
ε̄ = ε/ε0. For any 0 < β < 1, provided δ is small enough we can argue as in the proof of
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Theorem 2.1 and iterate Lemma 3.2 to obtain

r̄2−nFε̄(ū;B+
r̄ ) . r̄2β

(ˆ
B+

1

W (∇ū)a(x)dx+ ‖∇ūb‖L∞(B′1)

)
∀r̄ ∈ [ε̄/ε0, 1).

Then we set r1 = ε̄/ε0 and û(x̂) = ū(r1x̂), ûb(x̂
′) = ūb(r1x̂

′), ε̂ = ē/r1 = ε0 and apply
Lemma 3.3 to deduce for all r̂ ∈ (0, 1),

1

r̂2α̂

1

r̂n−2

ˆ
B+
r̂

|∇û|2 . Fε̂(û;B+
2 ) + ‖∇û‖2

L∞(B′2) +
∥∥∇2û

∥∥2

L∞(B′2)

= r2−n
1 Fε̄(ū;B+

2r1
) + r2

1 ‖∇ūb‖L∞(B′2r1
) + r4

1

∥∥∇2ūb
∥∥
L∞(B′2r1

)

. r2β
1

(ˆ
B+

1

W (∇ū)a(x)dx+N(ūb;B
′
1)

)
.

Rescaling and setting α = min(α̂, β) we infer

1

r̄n−2

ˆ
B+
r̄

|∇ū|2 . r2α

(ˆ
B+

1

W (∇ū)a(x)dx+N(ūb;B
′
1)

)
.

Coming back to the original map u, the estimate above implies that

1

rn−2

ˆ
Br(x′0)∩B+

2r0

|∇u|2 .
(
r

r0

)2α
(ˆ

B+
2r0

W (∇ū)a(x)dx+N(ūb;B
′
2r0

)

)
∀r ∈ (0, r0),

provided x′0 ∈ B′r0 .
Next we consider x0 ∈ B+

r0
and write x0 = (x′0, ρ) for some ρ ∈ (0, r0) and x′0 = (x′0, 0) ∈ B′r0 .

For all r ∈ [ρ, r0], we have Br(x0) ∩B+
2r0
⊂ B2r(x

′
0) and therefore by the above,

1

rn−2

ˆ
Br(x0)∩B+

2r0

|∇u|2 . 1

(2r)n−2

ˆ
B2r(x′0)∩B+

2r0

|∇u|2

. r2α

(ˆ
B+

2r0

W (∇ū)a(x)dx+N(ūb;B
′
2r0

)

)
,

whence in particular

1

(ρ/2)n−2

ˆ
Bρ/2(x0)∩B+

2r0

|∇u|2 . δ2.

Since Bρ(x0) ⊂ B+
2r0

, provided δ is small enough we may therefore apply the interior estimates
(Theorem 2.1) in Bρ(x0), and conclude that

1

rn−2

ˆ
Br(x0)∩B+

2r0

|∇u|2 . r2α

(ˆ
B+

2r0

W (∇ū)a(x)dx+N(ūb;B
′
2r0

)

)
holds for all r ∈ (0, r0] and all x0 ∈ B+

r0
. This implies the desired Cα Hölder estimate. �
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3.2. Weak anchoring. We will denote by Fwa
ε the energy

Fwa
ε (u;B+

2 ) = Fε(u;B+
2 ) +

ˆ
B′2

g(x′, u) dx′,

where g : B′2 × Rk → [0,∞) is a smooth anchoring energy density. Here we will always work
under the assumption of a uniform L∞ bound (A3a), and may therefore assume

(G) ‖g‖C2(B′2×BM ) ≤ G,

for some G > 0. We will consider minimizers uε of Fwa
ε with respect to their own boundary

conditions on (∂B2)+. We will denote by Fwa
? the corresponding limiting energy, i.e. the same

energy restricted to N -valued maps.

Theorem 3.4. Assume that f satisfies (A2), that W satisfies (A1) and a satisfies (B1), and
moreover that (A3a) and (G) hold. There exist δ, ε0 > 0 and α ∈ (0, 1) (depending on n, λ, Λ,
f , M and G) such that for any r0 ∈ (0, 1), ε ∈ (0, r0ε0), and any uε minimizing Fwa

ε (·;B+
2r0

)
with respect to its own boundary conditions on (∂B2r0)+,

(2r0)2−nFε(uε;B
+
2r0

) + r0 ‖g‖L∞(B′2r0
) ≤ δ2

=⇒ r2α
0 |uε` |

2
Cα(B+

r0
) . (2r0)2−nFwa

ε (uε;B
+
2r0

),

where the constant in the above inequality depends on n, λ, Λ, f , M and G.

Proof. As above, this small energy estimate is a consequence of an energy improvement result
ensuring regularity at large scales (Lemma 3.6 below), and one establishing a corresponding
property at small scales (Lemma 3.7 below). The proof is a straightforward adaptation of
Theorem 3.1, given the following crucial scaling property: if u minimizes Fwa

ε in Br, then

ũ(x̃) := u(rx̃) minimizes F̃wa
ε̃ in B1 where ε̃ = ε/r and F̃wa

ε̃ corresponds to W̃ (x̃, ξ) = W (rx̃, ξ),
ã(x̃) = a(rx̃) and, most importantly, g̃(x̃, u) = rg(rx̃, u). Hence as we rescale ‖g‖L∞ keeps
getting smaller and this is what makes the iteration work. �

Remark 3.5. In the special case of Ginzburg-Landau functionals where W = |∇u|2, f(u) =
(1− |u|2)2 and g(x′, u) = |u− ub(x′)|2, uniform convergence up to the boundary is proved for
critical points in the recent work [10]. For more general anchoring energies however, and even
in the isotropic case W = |∇u|2, this was not known before the present work. To prove this
result, we need to assume (A3a), a property that holds in the isotropic case under rather mild
assumptions, e.g. u ·f(u) ≥ 0 and u ·∇ug(u) ≥ 0 for |u| ≥M (in fact in that case (A3a) holds
for all critical points provided the Euler-Lagrange equations are satisfied, see e.g. [33]). Here,
the main reason for not being able to drop (A3a) is that otherwise we are unable to construct
an extension ϕ as in Lemma 2.3, that satisfies in addition a bound on

´
g(x′, ϕ(x′)). This

impedes obtaining an equivalent of Lemma 2.5 or 3.3, which is essential to deal with “large”
scales r ≥ ε. On the other hand, regarding small scales (i.e. an equivalent of Lemma 2.2
or 3.3), requiring (A3b) together with some physically motivated restrictions on g(x′, u), is
enough to ensure the desired estimate, even in the absence of (A3a).

Lemma 3.6. Assume (A1), (B1), (A2) and (A3a). Let 0 < β < 1. There exist δ0, ε0, η0 > 0
and θ0 ∈ (0, 1/2) (depending on n, β, λ, Λ and f) such that any minimizer uε of Fwa

ε (·;B+
1 )
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with ε ∈ (0, ε0), satisfies

Fwa
ε (uε;B

+
1 ) ≤ δ2

0

=⇒ θ2−n
0 Fε(uε, B

+
θ0

) ≤ θ2β
0 max

(
Fε(uε;B

+
1 ), η0 ‖g‖L∞(B′1×BM )

)
.

Proof. As for Lemmas 2.2 and 3.2, the proof is by contradiction, assuming the existence
of sequences ε`, u`, W`, a`, g` with Fε`(u`;B

+
1 ) → 0 and ‖g`‖∞ � Fε`(u`;B

+
1 ), but such

that the energy decay fails. Extending u` by symmetry to B1, one may apply the bound-
ary modification Lemma 2.3, the weak anchoring energy of ϕ simply being controlled by´
B′1\B′1−λ

g(ϕ) . λ ‖g`‖L∞ . Thus one obtains a sequence of minimizing N -valued maps w` with

weak anchoring. The strong H1 compactness of v` = α−1
` (w` − z`) is then obtained as in [34,

Proposition 1], adapting the extension lemma [34, Lemma 1] by first extending the maps by
symmetry, as also explained in [17]. The limit v is then a minimizer of

´
B+

1
W (v) with free

boundary conditions on B′1, and under the linear constraint v ∈ TzN a.e., and enjoys good
energy decay thanks to classical elliptic estimates. �

Lemma 3.7. Assume (A1),(B1),(A2), (A3b) and (G). For all ε > 0, any minimizer uε of
Fwa
ε (·;B+

2 ) satisfies

‖∇uε‖2
L∞(B+

1 ) . Fε(uε;B
+
2 ) + ‖g‖2

C2(B′2×BM ) ∀r ∈ (0, 1),

where the inequality is up to a constant depending on n, λ, Λ, f , M , G but also on ε.

Proof. As in Lemmas 2.5 and 3.3, the proof relies on elliptic estimates for the equation satisfied
by u = uε, namely Lu =

1

ε2
∇f(u) in B+

2 ,

Bu = ∇ug(x′, u) on B′2,

where

(Lu)β = a−1∂j(a · aαβij ∂iuα), (Bu)β = −a · aαβin ∂iuα.
We appeal to classical Lp estimates for elliptic systems [1, § 10], which ensure∥∥∇2v

∥∥
Lp(B+

1 )
. ‖∇v‖Lp(B+

2 ) + ‖Lv‖Lp(B+
2 ) + ‖∇Φ‖Lp(B+

2 ) ∀Φ such that Bv = tr Φ,

where the inequality is up to a constant depending on λ, Λ, n and p ∈ (1,∞). To apply
this to our map u we consider an extension G of g given by G(x, u) = χ(xn)g(x′, u) where
x = (x′, xn) and χ is a fixed smooth function with χ(0) = 1 and χ ≡ 0 on (1,∞). That way
we can use Φ = ∇uG(x, u) in the above and estimate

‖∇[∇uG(x, u)]‖Lp(B+
2 ) . ‖g‖C2(B′2×BM ) + ‖∇u‖Lp(B+

2 ) .

We deduce that u satisfies∥∥∇2u
∥∥
Lp(B+

1 )
. ‖∇u‖Lp(B+

2 ) + ‖∇f(u)‖Lp(B+
2 ) + ‖g‖C2(B′2×BM ) ,

and this estimate can be bootstrapped exactly as in the proof of Lemma 2.5. �
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Appendix A. Proof of the boundary modification lemma

In this section we prove Lemma 2.3. For the reader’s convenience we recall here its state-
ment:

Lemma 2.3. There exists δ1 = δ1(N , f) > 0 such that for all 0 < ε ≤ λ < 1 and any
u ∈ H1(∂B1;Rk) with Eε(u; ∂B1) ≤ δ2

1λ
n−3, there exist

w ∈ H1(∂B1;N ), ϕ ∈ H1(B1 \B1−λ;Rk),

with ϕ = u on ∂B1, ϕ = w((1− λ)·) on ∂B1−λ,

satisfying the bounds

Eε(ϕ;B1 \B1−λ) . λEε(u; ∂B1) and

ˆ
∂B1

|∇w|2 . Eε(u; ∂B1).

Proof of Lemma 2.3. The strategy is very similar to Luckhaus’ extension lemma [34, Lemma 1].
For the reader’s convenience we sketch the full argument, and will go into details only at points
where we need to depart from [34]. We assume λ = 2−ν for some ν ∈ N and, using the bilips-
chitz equivalence of B1 with the open unit cube, obtain a partition of ∂B1 as

∂B1 =
n−1⊔
j=0

Qj, Qj =

kj⊔
i=1

eji ,

where each j-cell eji is bilipschitz equivalent to Bj
λ, the j-dimensional open ball of radius λ.

This decomposition of ∂B1 induces a partition of B1 \B1−λ as

B1 \B1−λ =
n−1⊔
j=0

Q̂j, Q̂j =

kj⊔
i=1

êji , êji =

{
x ∈ B1 \B1−λ :

x

|x|
∈ eji

}
.

Moreover by Fubini’s theorem we may assume thatˆ
Qj

|∇u|2 dHj . λj+1−n
ˆ
∂B1

|∇u|2 dHn−1,

ˆ
Qj

f(u) dHj . λj+1−n
ˆ
∂B1

f(u) dHn−1.

On the boundary of each two-dimensional cell e2
i (which is composed of 4 one-dimensional

cells) there holds

(osc
∂e2i

u)2 ≤ λ

ˆ
∂e2i

|∇u|2 . λ3−nEε(u; ∂B1) . δ2
1,

 
∂e2i

f(u) . ε2λ1−nEε(u; ∂B1) . λ3−nEε(u;B1) . δ2
1.

If δ1 is small enough, this implies thanks to (A2) that

sup
∂e2i

∣∣u−  
∂e2i

u
∣∣2 + dist2(

 
∂e2i

u,N ) . λ3−nEε(u; ∂B1) . δ2
1.
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Therefore, the harmonic extension ū of ub∂e2i to e2
i , i.e. ∆ū = 0 in e2

i and ū = u on ∂e2
i ,

satisfies

sup
e2i

dist2(ū,N ) . λ3−nEε(u; ∂B1) . δ2
1.

In particular, provided δ1 is small enough, w := πN (ū) is well defined in e2
i . Note for later use

that ū = u on Q1, and thus

w = πN (u) on Q1.

The harmonic extension ū satisfiesˆ
e2i

|∇ū|2 dH2 . λ

ˆ
∂e2i

|∇u|2 dH1,

and thereforeˆ
Q2

|∇w|2 dH2 .
ˆ
Q2

|∇ū|2 dH2 . λ

ˆ
Q1

|∇u|2 dH1 . λ3−nEε(uε; ∂B1).

On the higher dimensional skeletons Qj (j ≥ 3) we define the N -valued map w by induction,

via 0-homogeneous extensions: identifying eji with Bj
λ (through a bilipschitz homeomorphism

that we omit to write here), one may set

w(x) = w

(
λ
x

|x|

)
thus defining w on eji through its boundary values on ∂eji , which correspond to previously
defined values of w on Qj−1. Since j ≥ 3, such 0-homogenous extension has finite energy, and
we obtain by induction the estimatesˆ

Qj

|∇w|2 dHj . λj+1−nEε(uε; ∂B1).

For j = n− 1 this shows thatˆ
∂B1

|∇w|2 dHn−1 . Eε(uε; ∂B1).

It remains to define the map ϕ on B1 \ B1−λ. We do it on each skeleton Q̂j by induction,
similarly to what is done in [34, Lemma 1]. On each cell ê1

i we set

ϕ(x) = u

(
x

|x|

)
+

1− |x|
λ

(
w

(
x

|x|

)
− u

(
x

|x|

))
.

Since dist(u,N ) . δ1 and w = πN (u) on Q1, we have

f(ϕ) . dist2(ϕ,N ) = |u− πN (u)|2

. f(u) a.e. on ê1
i ,

and therefore ˆ
Q̂1

f(ϕ) dH2 . λ

ˆ
Q1

f(u) dH1 . λ3−n
ˆ
∂B1

f(u) dHn−1.
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We also have, recalling that w = πN (u) on Q1 and ε ≤ λ,

ˆ
Q̂1

|∇ϕ|2 dH2 . λ

(ˆ
Q1

|∇u|2 dH1 +

ˆ
Q1

|∇w|2 dH1 +
1

λ2

ˆ
Q1

|u− w|2 dH1

)
. λ

ˆ
Q1

|∇u|2 dH1 +
1

λ

ˆ
Q1

f(u) dH1

. λEε(u;Q1) . λ3−nEε(u; ∂B1).

On the higher dimensional skeletons Q̂j (j ≥ 2) we extend ϕ by induction, via 0-homogenous

extensions: identifying êji with Bj+1
λ (through a bilipschitz homeomorphism that we omit to

write here), one may set

ϕ(x) = ϕ

(
λ
x

|x|

)
,

thus defining ϕ on êji through its boundary values on ∂êji , which either correspond to values of

u and w on Qj or to previously defined values of ϕ on Q̂j−1. Since j ≥ 2, such 0-homogenous
extension has finite energy, and we obtain by induction the estimates

Eε(ϕ; Q̂j) . λj+2−nEε(u; ∂B1).

For j = n− 1 this concludes the proof. �

Appendix B. Local compactness

In this section we prove the following local compactness property of sequences of minimizers
with bounded energy.

Proposition B.1. Assume that f satisfies (A2) and W satisfies (A1). For ε > 0, let uε min-
imize Eε(·;B1) with respect to its own boundary conditions, such that lim infε→0Eε(uε;B1) <
∞. Then there is a subsequence ε` → 0 such that uε` converges strongly in H1

loc(B1;Rk) to a
map u? ∈ H1

loc(B1;N ) which minimizes E?(·;Bρ) for any ρ ∈ (0, 1) (among N -valued maps,
and with respect to its own boundary conditions).

The crucial ingredient is the following variant of Luckhaus’ extension lemma (see also [14]
for related results in the Landau-de Gennes setting).

Lemma B.2. There exists η ∈ (0, 1) such that for all λ ∈ (0, 1) and any u ∈ H1(∂B1;Rk),
v? ∈ H1(∂B1;N ) with

ˆ
∂B1

|∇u|2 dHn−1 +

ˆ
∂B1

|∇v?|2 dHn−1 ≤ 1 and

ˆ
∂B1

|u− v?|2 dHn−1 ≤ η2λ2n−4,
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there exists ϕ ∈ H1(B1 \B1−λ) such that

ϕ =

{
u on ∂B1,

v?
( ·

1−λ

)
on ∂B1−λ,ˆ

B1\B1−λ

|∇ϕ|2 dx . λ

(ˆ
∂B1

|∇u|2 dHn−1 +

ˆ
∂B1

|∇v?|2 dHn−1 +
1

λ2

ˆ
∂B1

|u− v?|2 dHn−1

)
,

ˆ
B1\B1−λ

f(ϕ) dx . λ

ˆ
∂B1

f(u) dHn−1.

Proof of Lemma B.2. The proof is very similar to [34, Lemma 1]. For the reader’s convenience
we sketch the full argument, and will go into details only at points where we need to depart
from [34]. We assume λ = 2−ν for some ν ∈ N and, using the bilipschitz equivalence of B1

with the open unit cube, obtain a partition of ∂B1 as

∂B1 =
n−1⊔
j=0

Qj, Qj =

kj⊔
i=1

eji ,

where each j-cell eji is bilipschitz equivalent to Bj
λ, the j-dimensional open ball of radius λ.

This decomposition of ∂B1 induces a partition of B1 \B1−λ as

B1 \B1−λ =
n−1⊔
j=0

Q̂j, Q̂j =

kj⊔
i=1

êji , êji =

{
x ∈ B1 \B1−λ :

x

|x|
∈ eji

}
.

Moreover by Fubini’s theorem we may assume that

ˆ
Qj

|∇u|2 dHj +

ˆ
Qj

|∇v?|2 dHj . λj+1−n
(ˆ

∂B1

|∇u|2 dHn−1 +

ˆ
B1

|∇v?|2 dHn−1

)
,

ˆ
Qj

|u− v?|2 dHj . λj+1−n
ˆ
∂B1

|u− v?|2 dHn−1,

ˆ
Qj

f(u) dHj . λj+1−n
ˆ
∂B1

f(u) dHn−1.

In [34], the extension ϕ is defined on the 2-dimensional cells ê1
i by interpolating linearly

between u on e1
i and v? on (1− λ)e1

i . However in our case we would like to control
´
Q̂1
f(ϕ).

A simple linear interpolation may not be sufficient: consider e.g. the situation where u(x)
would happen to be on N , hence f(u(x)) = 0, but the segment between v?(x) and u(x) might
contain points which are not on N , and there f(ϕ) would not be controlled by f(u). A way
around this is to first interpolate linearly between u and its projection π(u) ∈ N , and then
geodesically between π(u) and v? on N .



28 ANDRES CONTRERAS AND XAVIER LAMY

On each one dimensional cell e1
i , we have

sup
e1i

|u− v?|2 ≤
ˆ
e1i

|∇ |u− v?||+
1

λ

ˆ
e1i

|u− v?|2

≤

(ˆ
e1i

(|∇u|2 + |∇v?|2)

) 1
2
(ˆ

e1i

|u− v?|2
) 1

2

+
1

λ

ˆ
e1i

|u− v?|2

. λ2−nηλn−2 + λ1−nη2λ4n−2 . η.

Provided η is chosen small enough, this implies that on e1
i the projection πN (u) is well defined,

and satisfies
|u− πN (u)|+ |πN (u)− v?| . |u− v?| . η

1
2 on e1

i .

Then we define ϕ on ê1
i by setting

ϕ(x) =


u

(
x

|x|

)
+ 2

1− |x|
λ

(
πN (u)

(
x

|x|

)
− u

(
x

|x|

))
if 1− λ

2
≤ |x| ≤ 1,

γ

(
2

1− |x|
λ

− 1, πN (u)

(
x

|x|

)
, v?

(
x

|x|

))
if 1− λ ≤ |x| ≤ 1− λ

2
,

Where γ(·, z1, z2) : [0, 1]→ N denotes the constant speed geodesic from z1 to z2. The map γ
is Lipschitz on a neighborhood of [0, 1]×∆, where ∆ = {(z, z)} ⊂ N ×N , and its derivatives
satisfy

|∂tγ(t, z1, z2)| . |z1 − z2| , |∇zγ| . 1.

Using this, we infer thatˆ
Q̂1

|∇ϕ|2 dH2 . λ

(ˆ
Q1

|∇u|2 dH1 +

ˆ
Q1

|∇v?|2 dH1 +
1

λ2

ˆ
Q1

|u− v?|2 dH1

)
. λ · λ2−n

(ˆ
∂B1

|∇u|2 dHn−1 +

ˆ
∂B1

|∇v?|2 dHn−1 +
1

λ2

ˆ
∂B1

|u− v?|2 dHn−1

)
.

Moreover for 1− λ ≤ |x| ≤ 1− λ
2

it holds f(ϕ(x)) = 0, and for 1− λ
2
≤ |x| ≤ 1 it holds

f(ϕ(x)) . dist2(ϕ(x),N ) . |u− πN (u)|2
(
x

|x|

)
. dist2(u,N )

(
x

|x|

)
. f(u)

(
x

|x|

)
,

and this implies ˆ
Q̂1

f(ϕ) dH2 . λ

ˆ
Q1

f(u) dH1 . λ · λ2−n
ˆ
∂B1

f(u) dHn−1.

On the higher dimensional skeletons Q̂j (j ≥ 2) we extend ϕ by induction, via 0-homogenous

extensions: identifying êji with Bj+1
λ (through a bilipschitz homeomorphism that we omit to

write here), one may set

ϕ(x) = ϕ

(
λ
x

|x|

)
,
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thus defining ϕ on êji through its boundary values on ∂êji , which either correspond to values of

u and v? on Qj or to previously defined values of ϕ on Q̂j−1. Since j ≥ 2, such 0-homogenous
extension has finite energy, and we obtain by induction the estimatesˆ
Q̂j

|∇ϕ|2 dHj+1 . λ · λj+1−n
(ˆ

∂B1

|∇u|2 dHn−1 +

ˆ
∂B1

|∇v?|2 dHn−1 +
1

λ2

ˆ
∂B1

|u− v?|2 dHn−1

)
,

ˆ
Q̂j

f(ϕ) dHj+1 . λ · λj+1−n
ˆ
∂B1

f(u) dHn−1.

For j = n− 1 this concludes the proof. �

Now we turn to the proof of the compactness result.

Proof of Proposition B.1. Along a subsequence ε` → 0 we have Eε`(u`;B1) . 1, where we
denote u` = uε` . Therefore, up to taking a subsequence there is u? ∈ H1(B1;N ) such that
uε` ⇀ u? weakly in H1 and strongly in L2. Let ρ ∈ (0, 1) be fixed. By Fubini’s theorem we
may find r ∈ [ρ, 1] such that Eε`(u`; ∂Br) ≤ 1 and we infer that u` converges strongly towards
u? in L2(∂Br), and moreover E?(u?; ∂Br) ≤ 1.

Let v? minimize E?(·;Br) with v? = u? on ∂Br. Using Lemma B.2 we construct v` ∈
H1(Br;Rk) such that v` = u` on ∂Br, and Eε`(v`;Br) → E?(v?;Br). Explicitly, since µ` :=´
∂Br
|u` − v?|2 → 0, we may for large enough ` apply Lemma B.2 to find λ` → 0 and ϕ` ∈

H1(Br \B(1−λ`)r) satisfying ϕ` = u` on ∂Br, ϕ` = v?(·/(1− λ`)) on ∂B(1−λ`)r and Eε`(ϕ`;Br \
B(1−λ`)r) . λ` → 0. Then we set v` = ϕ` in Br \ B(1−λ`)r and v` = v?(·/(1 − λ`)) in B(1−λ`)r
and obtain indeed Eε`(v`;Br)→ E?(v?;Br).

By the minimizing property of u` we infer that lim supEε`(u`;Br) ≤ lim supEε`(v`;Br) ≤
E?(v?;Br), and since by weak lower semicontinuity lim inf Eε`(u`;Br) ≥ E?(u?;Br) we con-
clude that u? minimizes E?(·;Br) and u` converges in fact strongly to u? in H1(Br). �
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