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Abstract. For a smooth bounded domain G ⊂ R3 we consider maps n : R3 \ G → S2 minimizing

the energy E(n) =
´
R3\G |∇n|2 + Fs(n⌊∂G) among S2-valued map such that n(x) ≈ n0 as |x| → ∞.

This is a model for a particle G immersed in nematic liquid crystal. The surface energy Fs describes
the anchoring properties of the particle, and can be quite general. We prove that such minimizing

map n has an asymptotic expansion in powers of 1/r. Further, we show that the leading order

1/r term is uniquely determined by the far-field condition n0 for almost all n0 ∈ S2, by relating it
to the gradient of the minimal energy with respect to n0. We derive various consequences of this

relation in physically motivated situations: when the orientation of the particle G is stable relative

to a prescribed far-field alignment n0; and when the particle G has some rotational symmetries. In
particular, these corollaries justify some approximations that can be found in the physics literature

to describe nematic suspensions via a so-called electrostatics analogy.

1. Introduction

The goal of this work is to investigate the so-called electrostatics analogy in the analysis of nematic
suspensions or colloids: these consist of small particles immersed in a nematic liquid crystal matrix. The
presence of these particles and their alignment induces elastic strains in nematic medium; what results
is a complex strain-alignment coupling yielding novel high-functional composite materials. Examples
include dilute ferronematics, where the suspended particles are ferromagnetic inclusions; organizing
carbon nanotubes using liquid crystals; ferroelectrics; and living liquid crystals, where the suspended
particles are swimming bodies (e.g. flagellated bacteria). Further details on the numerous applications
of such systems may be found in the review articles [21, 24].

Mathematical studies of colloid inclusions in nematics have tended to follow two different directions.
Several papers have addressed homogenization of nematics with a dense array of colloids (see, e.g.,
[8, 9, 12, 14, 13]), while others consider the presence of point or ring singularities induced by a single
colloid particle (see, e.g., [3, 4, 6, 2, 5]). In this paper we adopt the setting of the second set of papers,
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but concentrate on the effect of the colloid geometry on the far-field behavior of the nematic rather
than the local structure of singularities near the colloid surface.

The electrostatics analogy is commonly used to describe colloidal suspensions in the case of a dilute
concentration of particles. It originates in the work [11] by Brochard and de Gennes, and has been
developed further by several authors in the physics literature [20, 26, 22]. It relies on considering each
single particle separately and postulating that:

• far away from the particle the distortion in nematic alignment can be viewed as a perturbation
of uniform alignment and taken to solve the corresponding linearized equation – the repre-
sentation formula for solutions of that linearized equation then provides a specific asymptotic
expansion,

• the first few coefficients of that asymptotic expansion are characterized by the properties (size,
symmetries, etc.) of the particle.

Then one formally replaces the nonlinear effect of each colloid particle by some singular source terms
(derivatives of Dirac masses) in the linearized equation, according to the terms in the asymptotic
expansion, which are derivatives of the fundamental solution (see Remark 1.7). In the one-constant
approximation for the elastic energy of the nematic, this amounts to the equation satisfied by an
electric potential in the presence of charged multipoles, hence the name “electrostatics analogy”. This
simplification, intuitively valid for dilute enough suspensions, allows for an explicit calculation of the
energy of a given configuration in terms of the respective positions and properties of each particle,
leading to the ultimate goal: computation of interparticle interactions.

In this article we provide a few elements towards mathematically quantifying the electrostatics
analogy, rigorously obtaining an asymptotic expansion for solutions of the original non-linear and non-
convex minimization problem, and comparing it with a multipole expansion of a harmonic function.
What seems to us the most challenging part is the second bullet-point above: relating the coefficients
of the asymptotic expansion to the particle’s properties. Indeed, various mathematical obstacles defy a
straightforward calculation of an expansion of minimizers: for instance, minimizers may not be unique,
and it is unknown whether the symmetry of the particle system imposes a corresponding symmetry
on the minimizing nematic configuration. Nevertheless we do obtain some results in that direction for
the leading-order term of the expansion.

Specifically, we consider a single particle G ⊂ R3 (smooth and bounded) surrounded by nematic
liquid crystal. A configuration of nematic alignment is represented by a director field n : R3 \G→ S2,
and its energy (within the one-constant approximation) is given by

E(n) =

ˆ
R3\G

|∇n|2 + Fs(n⌊∂G),

where Fs : H
1/2(∂G;S2) → [0,∞] can be a very general surface energy reflecting the particle’s anchoring

properties. Uniform alignment at far field, loosely expressed as n(x) ≈ n0 ∈ S2 for r = |x| → ∞, is
imposed through the condition ˆ

R3\G

|n− n0|2

1 + r2
≲
ˆ
R3\G

|∇n|2 <∞.

In other words, we are imposing that n− n0 belongs to the completion of smooth maps with bounded
support, with respect to the distance induced by the H1 semi-norm; the weight 1/(1 + r2) is given
by Hardy’s inequality. Here and in the rest of the article, A ≲ B means A ≤ CB for some absolute
constant C > 0. Equilibrium configurations satisfy the harmonic map equation

−∆n = |∇n|2n in R3 \G.
Loosely speaking, we prove that:

• minimizing configurations have an asymptotic expansion determined by the linearized equation
∆n = 0, however one cannot discard non-harmonic corrections – see Theorem 1.1;

• generically, the leading-order O(1/r) term in that expansion is uniquely determined by the
particle G and the far-field uniform alignment n0 – see Theorem 1.4.
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The first point is a result about minimizing harmonic maps in an exterior domain, independent of the
presence of a particle (since we do not explicitly relate the expansion’s coefficients to the particle).
The second point is obtained by connecting the leading-order term to the variation of minimal energy
induced by keeping the particle G fixed and rotating the far-field alignment n0. This is related to
formal calculations in [11] for the torque exerted by the particle on the nematic (see Remark 1.5). We
have not been able yet to obtain similar characterizations for the next-order terms in the expansion.

In terms of the electrostatics analogy developed in the physics literature, the main input of our
results is to clarify the first postulate (that the far field distortions generated by a particle are purely
harmonic to large order) by sheding new light on the second postulate (that these distortions are
uniquely characterized by the particle). More precisely, in [11, 20, 26, 22], the possible presence of
nonharmonic corrections is either not considered, or implicitly deduced from a hypothetical uniqueness
principle which would ensure that symmetry properties of the particle directly translate into symmetry
properties of the full configuration (such uniqueness/symmetry principle seems however difficult to
prove). Here instead we deduce that nonharmonic corrections are negligible from our characterization
of the leading-order term, bypassing any uniqueness or symmetry properties of the full configuration.
This is valid for instance in the case of a spherical particle (see Corollary 1.8), but also when the
orientation of the particle is at equilibrium (locally minimizing relative to variations in the prescribed
far-field alignment, see Remark 1.7), independently of its symmetry properties. Moreover we stress
that, for an axisymmetric particle, it is not evident that the equilibrium orientation should be the
most symmetric one (see Remark 1.9).

Below we state our results in more detail.

1.1. Far-field expansion for harmonic maps. Our first main result is a far-field expansion for
harmonic maps in an exterior domain, which (by rescaling) we may without loss of generality assume
to contain R3 \B1. Our first main result is a far-field expansion for such minimizing maps.

Theorem 1.1. Let n0 ∈ S2. Assume that n ∈ H1
loc(R3 \B1;S2) satisfiesˆ

R3\B1

|n− n0|2

r2
≲
ˆ
R3\B1

|∇n|2 <∞, (1.1)

and n is locally energy-minimizing, that is,ˆ
R3\B1

|∇n|2 ≤
ˆ
R3\B1

|∇ñ|2,

for any S2-valued map ñ which agrees with n outside of a compact subset of R3 \B1. Then there exist
v0, pj , ckℓ ∈ R3 (1 ≤ j, k, ℓ ≤ 3) such that, as r = |x| → ∞,

n = n0 + nharm + ncorr +O
(

1

r4

)
, (1.2)

nharm =
1

r
v0 +

3∑
j=1

pj∂j

(
1

r

)
+

3∑
k,ℓ=1

ckℓ∂k∂ℓ

(
1

r

)
, v0, pj , ckℓ ∈ R3,

ncorr = −|v0|2

2r2
n0 −

|v0|2

6r3
v0 −

1

3r

3∑
j=1

v0 · pj ∂j
(
1

r

)
n0.

Moreover the vectors v0, pj (j = 1, 2, 3) are orthogonal to n0.

The far-field expansion (1.2) consists of a harmonic part nharm solving the linearized equation
∆nharm = 0, and of a non-harmonic correction ncorr. Interestingly, if the coefficient v0 of the leading-
order term in nharm vanishes, then the non-harmonic correction vanishes and n admits a harmonic
expansion up to O(1/r4). Higher-order non-harmonic corrections would not have that property. This
is why we stop the expansion at this order, even though it will be clear from the proof that one can
obtain an expansion at any arbitrary order. The relations v0 · n0 = pj · n0 = 0 simply come from the
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constraint |n|2 = 1, which also imposes similar relations about the higher order coefficients ckℓ, but we
do not write them explicitly because they do not have such a precise geometric interpretation.

Remark 1.2. The proof of Theorem 1.1 can be generalized to obtain far-field expansions for any
manifold-valued map u : Rd \ B1 → N ⊂ Rk (d ≥ 3) with given far-field value u0 ∈ N in the sense´
r−2|u − u0|2 < ∞, minimizing the Dirichlet energy. In the context of nematic liquid crystals with

unequal elastic constants, it is interesting to consider more general energies of the form
´
A(u)[∇u,∇u],

where A(u) is a positive definite bilinear form on Rk×n depending smoothly on u. Far field asymptotics
should then be dictated by the linearized system ∇ · A(u0)∇v = 0, for which multipole expansions in
terms of derivatives of the fundamental solution are described e.g. in [7]. We expect that the tools
developed in the present work will apply to that generalized setting, but do not provide the technical
details here.

We will obtain below various sufficient conditions ensuring that v0 = 0, and so ncorr = 0. For now,
it is worth noting that v0 vanishes for axisymmetric configurations. The map n : R3 \ B1 → S2 is
axisymmetric about n0 if for any rotation R of axis n0 one has

n(Rx) = Rn(x) ∀x ∈ Ω.

Using the far-field expansion (1.2) in this identity implies Rv0 = v0 for all rotations R of axis n0, and
therefore v0 = 0 since v0 · n0 = 0.

Corollary 1.3. If the minimizing map n is axisymmetric about n0, then n = n0 + nharm +O(1/r4)
as r = |x| → ∞, with ∆nharm = 0.

Corollary 1.3 is stated here for minimizing maps that are axisymmetric, but it is hard in general to
prove that a minimizing map is symmetric. However, the proof of Theorem 1.1 can be reproduced for an
axisymmetric map which is minimizing merely among axisymmetric configurations (see Remark 2.3),
and Corollary 1.3 is valid also in that case.

1.2. Characterization of the leading-order term. Next we take into account the presence of the
particle, a smooth bounded open subset G ⊂ R3, and consider the energy

E(n) =

ˆ
R3\G

|∇n|2 + Fs(n⌊∂G),

where

Fs : H
1/2(∂G;S2) → [0,∞] is weakly lower semicontinuous and {Fs <∞} ≠ ∅. (1.3)

This ensures that, for any n0 ∈ S2, the energy E admits a minimizer among maps n : R3 \ G → S2
such that ˆ

R3\G

|n− n0|2

1 + r2
+

ˆ
R3\G

|∇n|2 <∞.

To check this, note first that a boundary map nb ∈ H1/2(∂G;S2) with finite surface energy Fs(nb) <∞
can be extended to a map n ∈ H1

loc(R3\G;S2) such that n ≡ n0 outside of a compact set using e.g. [18,
Lemma A.1], so the infimum is finite. Moreover the energy is coercive thanks to Hardy’s inequality,
and weakly lower semicontinuous as a sum of two weakly lower semicontinuous functions. Therefore
we may define

Ê(n0) = min
{
E(n) : n ∈ H1

loc(R3 \G;S2),
ˆ
R3\G

|n− n0|2

1 + r2
+

ˆ
R3\G

|∇n|2 <∞
}
. (1.4)

Examples of admissible surface energies Fs include

Fs(n) =

{
0 if n = nD,

+∞ otherwise,
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for some fixed map nD ∈ H1/2(∂G;S2), which corresponds to imposing Dirichlet boundary conditions
n = nD on ∂G; or

Fs(n) =

ˆ
∂G

g(n, x) dH2(x),

for some measurable function g : S2 × ∂G → [0,∞) which is continuous with respect to n; for in-
stance g(n, x) = |n− nD(x)|2 which relaxes Dirichlet boundary conditions (strong anchoring) to weak
anchoring.

Our second main result relates the vector v0 appearing in the leading-order term of the expansion
(1.2) to the gradient of the function Ê at n0.

Theorem 1.4. Let Fs : H
1/2(∂G;S2) → [0,∞] satisfy (1.3). Then the function Ê defined by (1.4) is

Lipschitz, and for a.e. n0 ∈ S2 we have

∇Ê(n0) = −8πv0, (1.5)

where v0 = limr→∞ r(n−n0) for any minimizing n such that Ê(n0) = E(n). Moreover Ê is semicon-

cave: for all n0,m0 ∈ S2 and v0 = limr→∞ r(n− n0) for any minimizer n achieving Ê(n0), we have
the one-sided inequality

Ê(m0) ≤ Ê(n0)− 8πv0 · (m0 − n0) + C|m0 − n0|2,
for some constant C = C(G,Fs) ≥ 0.

Remark 1.5. Formula (1.5) relates v0 to the torque applied by the particle G on the nematic, in
agreement with formal calculations in [11] for an axisymmetric particle. These formal calculations

can be made rigorous (and then they show that Ê is differentiable everywhere) if one knows that the
minimization problem (1.4) admits a unique minimizer n which moreover depends smoothly on n0.
Such uniqueness and smoothness results seem very hard to obtain in general, and we use a somewhat
different method to prove (1.5) and Theorem 1.4.

Different minimizers n in (1.4) may a priori have different asymptotic expansions (1.2). However,

a crucial nontrivial consequence of Theorem 1.4 is that at any differentiability point n0 of Ê, the
coefficient v0 of the leading-order term is uniquely determined by n0, even though (1.4) may have

several minimizers. We do not know whether Ê can have non-differentiable points, and whether v0 can
be multivalued at such points. The semiconcavity inequality in Theorem 1.4 implies that all possible
values of v0 are included in the subdifferential of − 1

8π Ê. It would be interesting to characterize values
of v0 in terms of this subdifferential.

One may pose an analogous question for S1-valued minimizers in exterior domains R2 \ G in the
plane which approach a constant n0 = eiϕ0 at infinity. However the situation is completely different,
because finite-energy configurations don’t exist in general. One way around that issue is to relax the
S1-valued constraint via a Ginzburg-Landau approximation. This approach is implemented in [1], with
the asymptotic value n0 = eiϕ0 left free.

An interesting consequence of the semiconcavity of Ê is that it must be differentiable, of zero
gradient, at any local minimum point.

Corollary 1.6. If n0 ∈ S2 is locally minimizing for Ê, then v0 = 0 and n = nharm + O(1/r4) as

r = |x| → ∞ with ∆nharm = 0, for any minimizing n such that E(n) = Ê(n0).

Remark 1.7. In the physical system it is formally equivalent to rotate the far-field alignment n0 or
the particle G. Hence Corollary 1.6 tells us that, when the particle is in a stable equilibrium position,
all minimizing configurations n have a far-field expansion which is harmonic up to O(1/r4), and whose
leading order is given by the harmonic term

∑
j pj∂j(1/r) for some vectors pj ∈ n⊥0 . Such leading-order

term corresponds to solutions of the equation

∆n =
1

4π

3∑
j=1

pj∂jδ in R3,
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where the singular source term can be interpreted as a dipole-moment, as described e.g. in [22].

Another remarkable consequence of Theorem 1.4 concerns the important case where the particle
G, together with its anchoring properties described by the surface energy Fs, possess some rotational
symmetry. As mentioned earlier, we may not necessarily infer the same symmetry for all minimizers,
but we can make some strong geometrical conclusions concerning the vector v0 in the expansion (1.2)
of minimizers. To make this precise, we define the symmetry group of the particle (and its anchoring
properties) (G,Fs) as a subgroup of the orthogonal transformations O(3) given by

Sym(G,Fs) =
{
R ∈ O(3) : RG = G, and

Fs(Rn ◦R−1) = Fs(n) ∀n ∈ H1/2(∂G;S2)
}
.

For any symmetry-preserving transformation R ∈ Sym(G,Fs), the energy E is conserved under the

transformation n 7→ Rn ◦R−1, and therefore Ê(n0) = Ê(Rn0).

Corollary 1.8. If the particle has an axis of symmetry u ∈ S2, i.e. Sym(G,Fs) contains all rotations
R ∈ SO(3)u about axis u, then for almost all n0 ∈ S2 we have

v0(n0) · (u× n0) = 0, (1.6)

where v0(n0) = limr→∞ r(n−n0) for any minimizing map n achieving Ê(n0). If Ê is differentiable at
u then v0(u) = 0.

If the particle is spherically symmetric, i.e. Sym(G,Fs) contains all rotations SO(3), then v0(n0) =
0 for all n0 ∈ S2.

Note that since v0 is orthogonal to n0, if u and n0 are not parallel, then the identity v0 ·(u×n0) = 0
forces v0 to belong to a fixed line determined by n0 and u. This link between symmetry properties of
G and of v0 gives a rigorous justification to assertions in [11, § II.1.a] where this is deduced from the
assumption, false in general, that minimizers n in (1.4) are unique.

Remark 1.9. In the axisymmetric setting, Corollary 1.8 leaves open the case when Ê is not differen-
tiable at n0 = u, the axis of symmetry: the 1/r asymptotic might be nonzero. If that situation occurs,
that is, there is a minimizer n with far-field alignment u but with v0 ̸= 0, then all its axial rotations
Rn ◦ R−1 are minimizers for Ê(u) too, with 1/r asymptotic term equal to Rv0. The semiconcavity
inequality

Ê(n0) ≤ Ê(u)− 8πRv0 · (n0 − u) + C|n0 − u|2,
is then valid for all rotations R of axis u, and we deduce

Ê(n0) ≤ Ê(u)− 8π|n0 − u|+ C|n0 − u|2.

Hence Ê has a local maximum at u, and its graph near u looks locally like a cone. While none of the
results above preclude this scenario in the axisymmetric setting, it is natural to ask the open question:
can this situation really occur?

1.3. Plan of the article. In section 2 we prove Theorem 1.1 and in section 3 we prove Theorem 1.4.
In Appendix A we provide proofs of some familiar (but not easily found) decay estimates for Poisson’s
equation for the reader’s convenience.

2. Far-field expansion

In this section we prove Theorem 1.1. The minimizing map n solves, in the weak sense, the harmonic
map equation

−∆n = |∇n|2n in R3 \B1. (2.1)

If the right-hand side decays like O(1/|x|γ) for some γ > 3, decay estimates for the Poisson equation
(see Lemma A.1) enable one to start a harmonic expansion for n, and this process can then be
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iterated including relevant non-harmonic corrections. Hence the main new ingredient in the proof of
Theorem 1.1 is to obtain an initial strong enough decay estimate on |∇n|.

Note that, since
´
|x|≥R

|∇n|2 → 0 as R → ∞, small energy estimates for harmonic maps [27, 28]

ensure that n is smooth outside of a finite ball of large enough radius. Specifically, given x0 ∈ R3,
|x0| = R, the small energy regularity estimate for harmonic maps [27, Theorem 2.2] applied to n̂(x̂) =
n(x0 + (R/2)x̂) implies the existence of R0 ≥ 1 (depending on n) such that

|x0| = R ≥ R0 =⇒ |∇n|2(x0) ≲ R−3

ˆ
R
2 ≤|x|≤ 3R

2

|∇n|2. (2.2)

In particular we have the decay estimate |∇n(x)|2 = o(1/|x|3). At this point we would like to use
decay estimates of Poisson’s equation from Lemma A.1 in an iterative process to generate the far-field
expansion, but the decay given in (2.2) is just not enough to start applying the Lemma. Consequently,
we require an algebraic decay O(1/Rδ), for some δ > 0, of the integral

´
|x|≥R

|∇n|2. This we obtain in

Lemma 2.2 and Step 1 of Theorem 1.1’s proof, using the minimizing property of n in order to compare
the decay of that integral with the decay of the same integral for minimizers of the Dirichlet energy
with values into the plane Tn0S2, that is, solutions of the linearized equation ∆n = 0.

First recall that for harmonic functions we have the following decay estimates.

Lemma 2.1. Let u : R3 \ B1 → R satisfy
´
R3\B1

|∇u|2 < ∞ and ∆u = 0 in R3 \ B1. Then for all

R ≥ 1, û(x̂) = u(Rx̂) satisfiesˆ
|x̂|≥1

|∇û|2 =
1

R

ˆ
|x|≥R

|∇u|2 ≤ 1

R2

ˆ
|x|≥1

|∇u|2.

Proof. Since u is harmonic and
´
R3\B1

|∇u|2 <∞, its spherical harmonics expansion is of the form

u(x) = u(rω) = u0 +
∑
k

ak
rγk

ϕk(ω),

where we decompose x ̸= 0 in polar coordinates as x = rω, r = |x|, and ω = x
|x| ∈ S2, and {ϕk}k is an

L2(S2)-orthonormal system of spherical harmonics and γk > 0. Then we computeˆ
|x|≥R

|∇u|2 =

ˆ
|x|≥R

∇ · (u∇u) = −
ˆ
|x|=R

u∂ru

=
∑
k

γka
2
k

R2γk+1
≤ 1

R

∑
k

γka
2
k =

1

R

ˆ
|x|≥1

|∇u|2.

□

We obtain almost the same decay for our minimizing map n, via the following decay improvement
result. The estimate obtained in Lemma 2.2 will be needed in Step 1 of the proof of Theorem 1.1. After
the proof of the theorem we present a second proof of that step, replacing the estimate of Lemma 2.2
by a different approach inspired by asymptotic expansions of minimal surfaces in [29]. Note that, as
pointed out by the anonymous referee, this second proof makes use of minimality of n only for the
small energy estimate, and therefore it applies also to nonminimizing stationary harmonic maps [10].
We find it worth including both proofs here, as their ranges of applicability to the anisotropic energies
mentioned in Remark 1.2 may differ.

Lemma 2.2. For any α < 2, there exist δ > 0 and R1 > 1 such that for any n0 ∈ S2 and any map
n : R3 \B1 → S2 with

ˆ
R3\B1

|n− n0|2

r2
≲
ˆ
R3\B1

|∇n|2 <∞,
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which is energy minimizing, i.e. ˆ
R3\B1

|∇n|2 ≤
ˆ
R3\B1

|∇ñ|2,

for all S2-valued maps ñ that agree with n outside of a compact subset of R3 \B1, we haveˆ
|x|≥1

|∇n|2 ≤ δ2 ⇒ 1

R1

ˆ
|x|≥R1

|∇n|2 ≤ 1

Rα
1

ˆ
|x|≥1

|∇n|2.

Proof of Lemma 2.2. The proof follows quite closely the strategy in [23, Proposition 1] (see also [17,
Theorem 2.4]). By rotational symmetry we may assume n0 = (0, 0, 1). We fix α < 2. Since Tn0

S2 =
n⊥0 = R2 × {0}, thanks to Lemma 2.1 we may choose any R⋆ > 1 such that for any Tn0

S2-valued
energy minimizing map v in R3 \B1 with

´
|v|2|x|−2 ≲

´
|∇v|2 <∞,

1

R⋆

ˆ
|x|≥R⋆

|∇v|2 ≤ 1

4

1

Rα
⋆

ˆ
|x|≥1

|∇v|2. (2.3)

Then we fix R1 = 2R⋆ and argue by contradiction, assuming Lemma 2.2 to be false for this value of
R1. Hence there exist δj → 0 and minimizing S2-valued maps nj such that

ˆ
|x|≥1

|nj − n0|2

|x|2
≲
ˆ
|x|≥1

|∇nj |2 = δ2j

and
1

R1

ˆ
|x|≥R1

|∇nj |2 >
1

Rα
1

ˆ
|x|≥1

|∇nj |2.

We set

vj :=
nj − n0
δj

,

so that ˆ
|x|≥1

|vj |2

|x|2
≲
ˆ
|x|≥1

|∇vj |2 = 1 and
1

R1

ˆ
|x|≥R1

|∇vj |2 >
1

Rα
1

ˆ
|x|≥1

|∇vj |2. (2.4)

Up to a subsequence (that we do not relabel), there exists v⋆ ∈ H1
loc(R3 \ B1;R3) such that vj ⇀ v⋆

weakly in H1
loc, strongly in L2

loc, and almost everywhere. Note that v⋆(x) ∈ Tn0
S2 for a.e. x ∈ R3 \B1.

Indeed, considering a subsequence of vj converging a.e., we see that v⋆(x) is the limit of vectors of
the form (zj − n0)/δj for some zj ∈ S2 and δj → 0, which implies first that zj → n0, and then that
v⋆(x) ∈ Tn0S2. Furthermore, by lower semi-continuity,ˆ

|x|≥1

|v⋆|2

|x|2
≲
ˆ
|x|≥1

|∇v⋆|2 ≤ 1.

By Fubini’s theorem we may moreover pick r ∈ [1, 2] such thatˆ
|x|=r

|∇v⋆|2 ≲ 1 and

ˆ
|x|=r

|∇vj |2 ≲ 1.

By continuity of the trace operator and compactness of the embedding H
1
2 (∂Br) ⊂ L2(∂Br) we have´

|x|=r
|vj − v⋆|2 → 0. We claim that v⋆ is a Tn0

S2-valued minimizing map in Ωr = {|x| > r}. Let

v ∈ H1
loc(Ωr;Tn0

S2) agree with v⋆ outside of a compact subset of Ωr. We will show that
´
|∇v⋆|2 ≤´

|∇v|2, thus proving the claim. Let

ṽj =
δ
− 1

2
j v

max(δ
− 1

2
j , |v|)

, ñj = πS2(n0 + δj ṽj),

where πS2 is the orthogonal projection onto S2 (well-defined in a neighborhood of it), so that

|∇ñj |2 ≤ δ2j

(
1 +O(δ

1
2
j )
)
|∇v|2, ṽj → v in H1

loc(Ωr;Tn0S2).
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Since v = v⋆ on ∂Br and
´
|x|=r

|vj − v⋆|2 → 0, we also have

γ2j :=

ˆ
∂Br

|vj − ṽj |2 → 0.

Moreover, using that πS2 is smooth in a small neighborhood of n0 and ṽj · n0 = 0, we obtain

ñj − nj = πS2(n0 + δj ṽj)− n0 − δjvj = δj(ṽj − vj) +O(δ2j |v|2),

so ˆ
∂Br

|nj − ñj |2 ≤ δ2j (γ
2
j + c2δ2j ),

where c > 0 is a constant depending on v. Luckhaus’ extension lemma [23, Lemma 1] ensures, for any
λ ∈ (0, 1), the existence of φj : B(1+λ)r \Br → R3 such that

φj =nj on ∂Br, φj = ñj((1 + λ)·) on ∂B(1+λ)r,ˆ
B(1+λ)r\Br

|∇φj |2 ≲ λ

ˆ
∂Br

(
|∇nj |2 + |∇ñj |2

)
+ λ−1

ˆ
∂Br

|nj − ñj |2

≲ δ2j
(
λ+ λ−1(γ2j + c2δ2j )

)
,

sup
B(1+λ)r\Br

dist2(φj ,S2) ≲ λ−1

(ˆ
∂Br

(
|∇nj |2 + |∇ñj |2

)) 1
2
(ˆ

∂Br

|nj − ñj |2
) 1

2

+ λ−2

ˆ
∂Br

|nj − ñj |2

≲ δ2j
(
λ−1γj + λ−2γ2j

)
Choosing λ = λj = γj + cδj → 0, we may thus define ψj = πS2(φj) : B(1+λj)r \Br → S2 satisfying

ψj = nj on ∂Br, ψj = ñj((1 + λj)·) on ∂B(1+λj)r,

and δ−2
j

ˆ
B(1+λj)r

\Br

|∇ψj |2 → 0.

Then we set

n̂j(x) =

{
ψj(x) for r ≤ |x| ≤ (1 + λj)r,

ñj((1 + λj)x) for |x| ≥ (1 + λj)r.

Note that n̂j agrees with nj on ∂Br and satisfies
ˆ
|x|≥2

|n̂j − n0|2

|x|2
≲
ˆ
|x|≥r

|ñj − n0|2

|x|2
≲ δ2j

ˆ
|x|≥r

|ṽj |2

|x|2
≲ δ2j

ˆ
|x|≥r

|v|2

|x|2
<∞,

since v = v⋆ outside of a compact set and
´
|x|≥1

|v⋆|2|x|−2
< ∞. Therefore the n̂j must have greater

energy than nj , hence ˆ
|x|≥r

|∇vj |2 = δ−2
j

ˆ
|x|≥r

|∇nj |2 ≤ δ−2
j

ˆ
|x|≥r

|∇n̂j |2

≤ (1 + o(1))δ−2
j

ˆ
|x|≥r

|∇ñj |2 + o(1)

≤ (1 + o(1))

ˆ
|x|≥r

|∇v|2 + o(1)

By weak lower semi-continuity of the Dirichlet energy with respect to H1
loc convergence we inferˆ

|x|≥r

|∇v⋆|2 ≤ lim inf

ˆ
|x|≥r

|∇vj |2 ≤
ˆ
|x|≥r

|∇v|2,
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so that v⋆ is a Tn0
S2-valued energy minimizing map in Ωr, and moreover applying the above to v = v⋆

we deduce that ˆ
|x|≥r

|∇vj −∇v⋆|2 → 0.

In particular, since
´
|x|≥1

|∇vj |2 = 1, (2.4) implies that
´
|x|≥R1

|∇v⋆|2 > 0. Moreover, recalling that

r ∈ [1, 2] and taking j → ∞ in (2.4) we obtain

1

R1

ˆ
|x|≥R1

|∇v⋆|2 ≥ 1

Rα
1

ˆ
|x|≥2

|∇v⋆|2,

hence, for v̂⋆(x̂) = v⋆(2x̂), recalling that R1 = 2R⋆ and α < 2, we have

1

R⋆

ˆ
|x|≥R⋆

|∇v̂⋆|2 ≥ 21−α

Rα
⋆

ˆ
|x|≥1

|∇v̂⋆|2 ≥ 1

2

1

Rα
⋆

ˆ
|x|≥1

|∇v̂⋆|2.

Since v̂⋆ is a Tn0
S2-valued energy minimizing map in R3 \ B1 and

´
|x|≥1

|∇v̂⋆|2 > 0, this contradicts

(2.3). □

We will plug the initial decay provided by Lemma 2.2 into the equilibrium equation (2.1) in order
to deduce the expansion (1.2) (implying in particular a posteriori that Lemma 2.2 is also valid for
α = 2). The main tool to obtain the expansion will be decay estimates for Poisson equation. These
estimates are familiar but not easily found in the form we require here, and so we have provided a
proof in the Appendix A. With these preliminary lemmas, we are now ready to present the proof of
Theorem 1.1.

Proof of Theorem 1.1. Let R1 and δ be as in Lemma 2.2.
Step 1. Picking R0 > 1 (depending on n) such that 1

R0

´
|x|≥R0

|∇n|2 ≤ δ2 we may apply Lemma 2.2

iteratively to x 7→ n(Rk
1R0x) for k ≥ 0 and obtain

1

Rk
1R0

ˆ
|x|≥Rk

1R0

|∇n|2 ≤ δ2

(Rk
1)

α
,

and therefore
1

R

ˆ
|x|≥R

|∇n|2 ≤ C(n, α)

Rα
∀R ≥ R0(n), α < 2.

Thanks to (2.2) this implies

|∇n| ≤ C(n, σ)

r2−σ
for r ≥ R0(n), σ > 0.

Here we are interested in small values of σ > 0, and C(n, σ) > 0 denotes a generic constant depending
on n and σ, whose precise value may change from line to line in the rest of the proof. Integrating this
along radial rays yields |n− n0| ≤ C(n, σ)/r1−σ. Moreover, since −∆n = |∇n|2n we have (redefining
σ appropriately)

|∆n| ≤ C(n, σ)

r4−σ
for r ≥ R0(n), σ > 0.

Step 2. Applying Lemma A.1 to f1 = ∆n = ∆(n−n0) we obtain the existence of u1 : R3 \BR0
→ R3

such that ∆u1 = ∆(n− n0) and

|u1|
r

+ |∇u1| ≤
C(n, σ)

r3−σ
for r ≥ R0(n). (2.5)

The map n − n0 − u1 is harmonic in R3 \ BR0 . Writing down its spherical harmonics expansion, we
modify u1 to include the part of the expansion that decays faster than 1/r. Specifically, we have

n− n0 − u1 =
1

r
v0 + ũ1,
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for some v0 ∈ R3 and a remainder ũ1 satisfying |ũ1|/r + |∇ũ1| = O(1/r3). Therefore, replacing u1 by
u1 + ũ1 (without renaming it), we obtain

n = n0 +
1

r
v0 + u1, (2.6)

with u1 still satisfying (2.5). The vector v0 is, a posteriori, uniquely determined by the map n, since
v0 = limr→∞ r(n− n0). Moreover, this implies

1 = |n|2 = 1 +
2

r
v0 · n0 +O

(
1

r2−σ

)
,

so we must have

v0 · n0 = 0.

Step 3. With an eye toward obtaining the next term in the far-field expansion, we plug in (2.6) into
the harmonic maps PDE (2.1), and isolate terms that are higher order than O( 1

r5 ) on the right hand
side. Specifically, we have

0 = ∆n+ |∇n|2n = ∆u1 +
1

r4
|v0|2n0 +O

(
1

r5−σ

)
= ∆

(
u1 +

1

r2
|v0|2

2
n0

)
+O

(
1

r5−σ

)
,

that is,

∆

(
u1 +

1

r2
|v0|2

2
n0

)
= f2,

where f2 has decay rate given by |f2| ≤ C(n, σ)/r5−σ for r ≥ R0(n). By Lemma A.1, we obtain
u2 : R3 \BR0

→ R3 such that ∆u2 = f2 and

|u2|
r

+ |∇u2| ≤
C(n, σ)

r4−σ
for r ≥ R0(n).

The map u1 + r−2|v0|2n0/2− u2 is harmonic in R3 \BR0
, hence including the higher decay part of its

spherical harmonics expansion into u2 we deduce the existence of P1 ∈ R[X]3, a vector of homogeneous
harmonic polynomials of degree 1 (i.e. linear forms) such that

u1 = − 1

r2
|v0|2

2
n0 +

1

r3
P1(x) + u2,

i.e.

n =

(
1− |v0|2

2r2

)
n0 +

1

r
v0 +

1

r3
P1(x) + u2. (2.7)

Note that the unit norm constraint on n implies n0 · P1(x) = 0 for all x. Indeed, taking the norm
square of (2.7), we find

1 = |n|2 = 1 +
2n0 · P1(x/r)

r2
+O

(
1

r3−σ

)
,

which implies n0 ·P1(x) ≡ 0. Writing P1(x)/r
3 =

∑
pj∂j(1/r), we must have pj ·n0 = 0 for j = 1, 2, 3.

Step 4. As before, we plug (2.7) back again into the equation (2.1) and isolate terms that are O( 1
r6 )

on the right hand side. We find

0 = ∆n+ |∇n|2n = ∆u2 +
1

r5
|v0|2v0 +

4

r6
(v0 · P1(x))n0 +O

(
1

r6−σ

)
= ∆

(
u2 +

1

6r3
|v0|2v0 +

1

3r4
(v0 · P1(x))n0

)
+O

(
1

r6−σ

)
.
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Applying Lemma A.1 and arguing as in Steps 2 and 3, we deduce the existence of P2 ∈ R[X]3 a vector
of homogeneous harmonic polynomials of degree 2 (i.e. harmonic quadratic forms) such that we have
the expansion

n =

(
1− |v0|2

2r2

)
n0 +

1

r
v0 +

1

r3
P1(x)−

|v0|2

6r3
v0 −

1

3r4
(v0 · P1)n0 +

1

r5
P2(x) + u3,

|u3|
r

+ |∇u3| ≤
C(n, σ)

r5−σ
for r ≥ R0.

With one more iteration we realize that the decay u3 = O(1/r4−σ) improves to u3 = O(1/r4). Writing
P1(x)/r

3 =
∑
pj∂j(1/r) and P2(x)/r

5 =
∑
ckℓ∂k∂ℓ(1/r), the proof of Theorem 1.1 is complete. □

Alternative proof of Step 1. We present here another proof of Step 1, inspired by [29, Proposition 3].
The map w = ∂kn solves, for r = |x| ≥ R0, the system

−∆w = 2∇n : ∇wn+ |∇n|2w, (2.8)

where for matrices A,B we use the notation A : B := tr(ATB), for their Frobenius inner product.
Testing (2.8) with η2w for some smooth cut-off function η we obtainˆ

η2|∇w|2 ≲
ˆ

|η| |∇η| |w| |∇w|+
ˆ
η2|w||∇n||∇w|+

ˆ
η2|∇n|2|w|2

≤ 1

2

ˆ
η2|∇w|2 + C

ˆ
|∇η|2|w|2 + η2|∇n|2|w|2.

Absorbing the first term of the last line in the left-hand side, choosing 1R≤|x|≤2R ≤ η ≤ 1R/2≤|x|≤3R

with |∇η| ≲ 1/R, and using |w|2 ≤ |∇n|2 ≲ 1/r3 thanks to (2.2), we deduceˆ
R≤|x|≤2R

|∇w|2 ≲
1

R2
,

hence ˆ
|x|≥R

|∇w|2 ≤
∑
k≥0

ˆ
2kR≤|x|≤2k+1R

|∇w|2 ≲
∑
k≥0

1

22kR2
≲

1

R2
(2.9)

Therefore, plugging in (2.2) and (2.9) in (2.8), we find that the right-hand side of (2.8) has O(R−4)
decay in an appropriate L2 sense. To be precise,

−∆w = f,

(
1

R3

ˆ
|x|≥R

|x|2|f |2
) 1

2

≲
1

R3
.

Applying Lemma A.2 with the choice γ = 3 − σ/2 for any small σ > 0, we deduce the existence of a
map u such that −∆u = f and (

1

R3

ˆ
|x|≥R

|u|2

|x|2

) 1
2

≲
1

R3−σ/2
,

which impliesˆ
|x|≥R

|u|2 ≤
∑
k≥0

22k+2R2

ˆ
2kR≤|x|≤2k+1R

|u|2

|x|2
≲
∑
k≥0

1

2(1−σ)k

1

R1−σ
≲

1

R1−σ
,

for any σ > 0.
Since w − u is harmonic and square integrable at ∞, we have w − u = O(1/r2) as r → ∞, and

deduce from this and the above that ˆ
|x|≥R

|w|2 ≲
1

R1−σ
.
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Recalling w = ∂kn this implies, together with (2.2), |∇n|2 ≲ 1/r4−σ and the iteration starting in
Step 2 of Theorem 1.1’s proof can now be applied. □

Remark 2.3. We sketch here how to modify the proof of Theorem 1.1 for maps n which are minimizing
only among axisymmetric configurations, so Corollary 1.3 applies also in that case. First of all, n is
smooth outside of a large finite ball thanks to small energy estimates which are valid also in that
setting: see e.g. [19, Lemma 4.1] where the symmetry condition is slightly more restrictive but the
proof can be adapted, or note that n is stationary harmonic thanks to the methods in [15, § 2.1] and
apply [10, Theorem I.4]. Then the alternative proof of Step 1 applies without modification, as do the
rest of the steps. The first proof of Step 1 can also be applied, with the constraint that the constructed
comparison map needs to be axisymmetric.

3. The leading-order term

In this section we prove Theorem 1.4 and Corollary 1.8.

Proof of Theorem 1.4. Without loss of generality assume G ⊂ B1 and fix a C1 function χ : R3 → [0, 1]
such that χ ≡ 0 on B1 and

´
|x|≥1

|x|−2(χ − 1)2 dx ≲
´
|x|≥1

|∇χ|2 dx < ∞. Here, as stated in the

introduction, ≲ denotes inequality up to an absolute constant, the cut-off function χ being fixed. In
what follows, for any m0 ∈ S2, we denote by

H(m0) =

{
m ∈ H1

loc(R3 \G;S2) :
ˆ
R3\G

|m−m0|2

1 + r2
+

ˆ
R3\G

|∇m|2 + Fs(m⌊∂G) <∞

}
,

the class of admissible competitors in the minimization problem (1.4) defining Ê(m0). This class
depends also on ∂G and Fs, which remain fixed throughout the proof.

Step 1: The map Ê is Lipschitz.

Let n1, n2 be minimizers with far-field alignments n∞1 , n
∞
2 . For any angle ϑ ∈ R, we denote by

R(ϑ) ∈ SO(3) the rotation of axis e1 and angle ϑ. We choose the frame such that n∞1 = e3 and
n∞2 = R(θ)e3, where θ is an angle satisfying |n∞1 − n∞2 | ≤ θ ≤ 2|n∞1 − n∞2 |. Consider now the map
ñ1 ∈ H(n∞1 ) given by

ñ1(x) = R(−χ(x)θ)n2(x).
We have

|∇ñ1|2 ≤ θ2|∇χ|2 + |∇n2|2 + 2θ |∇χ| |∇n2|
≤ (1 + λ−1)θ2|∇χ|2 + (1 + λ)|∇n2|2,

for any λ > 0, hence

Ê(n∞1 ) ≤ C(1 + λ−1)|n∞1 − n∞2 |2 + (1 + λ)Ê(n∞2 ).

Applying this to λ = 1 and a fixed n∞2 we deduce in particular that Ê is bounded on S2. Moreover,
choosing λ = |n∞1 − n∞2 | we obtain

Ê(n∞1 )− Ê(n∞2 ) ≤ |n∞1 − n∞2 |
(
Ê(n∞2 ) + C + C|n∞1 − n∞2 |

)
.

Reversing the roles of n1, n2 and recalling that Ê(n∞) is bounded on S2, we conclude that Ê is
Lipschitz.

Step 2: At every differentiability point n0 ∈ S2 of Ê we have ∇Ê(n0) = −8πv0, where v0 =

limr→∞ r(n− n0) ∈ Tn0
S2 for any minimizer n such that E(n) = Ê(n0). Here recall that r = |x| and

the limit v0 is well-defined for any such map n, thanks to Theorem 1.1.

Let n0 ∈ S2 be a differentiability point of Ê. For any axis e ∈ S2 let R(θ) be the rotation of axis e
and angle θ, and set n∞θ = R(θ)n0, so that

Ê(n∞θ )− Ê(n0) = ∇Ê(n0) · (R′(0)n0) + o(θ) as θ → 0.
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Define ñ ∈ H(n∞θ ) by ñ = R(χθ)n, where n is a minimizer such that E(n) = Ê(n0). Using the
equation satisfied by n and the fact that ñ = n in ∂G, for all R > 1 we haveˆ

BR\G
|∇ñ|2 −

ˆ
BR\G

|∇n|2

=

ˆ
BR\G

(
2∇n · ∇(ñ− n) + |∇(ñ− n)|2

)
= 2

ˆ
∂BR

∂rn · (ñ− n) +

ˆ
BR\G

(
−2∆n · (ñ− n) + |∇(ñ− n)|2

)
= 2

ˆ
∂BR

∂rn · (ñ− n) +

ˆ
BR\G

2|∇n|2n · (ñ− n) +

ˆ
BR\G

|∇(ñ− n)|2

= 2

ˆ
∂BR

∂rn · (ñ− n)−
ˆ
BR\G

|∇n|2|ñ− n|2 +
ˆ
BR\G

|∇(ñ− n)|2

Using the asymptotic expansion of the minimizing map n (n = n0 + v0/r+u1, see (2.6), with |u1|/r+
|∇u1| = O(1/r3) thanks to (2.7)) we haveˆ

BR

∂rn · (ñ− n) = −8πv0 · (n∞θ − n0) +O(1/R) as R→ ∞,

where v0 = limr→∞ r(n− n0) ∈ Tn0
S2. We deduce that

Ê(n∞θ )− Ê(n0)

≤ E(ñ)− E(n) = lim
R→∞

(ˆ
BR\G

|∇ñ|2 −
ˆ
BR\G

|∇n|2
)

= −8πv0 · (n∞θ − n0)−
ˆ
R3\G

|∇n|2|ñ− n|2 +
ˆ
R3\G

|∇(ñ− n)|2

≤ −8πv0 · (n∞θ − n0) + C

(
1 +

ˆ
R3\G

|∇n|2
)
θ2. (3.1)

The last estimate follows from the explicit form of ñ = R(χθ)n, and the constant C depends only on
the fixed cut-off function χ. In particular we have

Ê(n∞θ )− Ê(n0) ≤ −8πv0 · (R′(0)n0) +O(θ2),

which implies

(∇Ê(n0) + 8πv0) · (R′(0)n0) ≤ 0.

Since R′(0)n0 can be any tangent vector in Tn0S2 we infer that ∇Ê(n0) + 8πv0 = 0.

Step 3. It remains to prove that Ê is semiconcave. This follows directly from the inequality (3.1)
obtained in Step 2, as any m0 ∈ S2 can be written as m0 = n∞θ for some 0 ≤ θ ≤ 2|m0 − n0|. This
completes the proof of Theorem 1.4. □

Proof of Corollary 1.8. Consider first the axisymmetric case Sym(G) ⊃ SO(3)u. Then we have

Ê(Rn0) = Ê(n0) for any rotation R of axis u and n0 ∈ S2. At a differentiable point n0, differen-

tiating this identity with respect to R implies ∇Ê(n0) ·An0 = 0 for any antisymmetric matrix A with

Au = 0, i.e. ∇Ê(n0) · (u × n0) = 0. Recalling from Theorem 1.4 that ∇Ê(n0) = −8πv0, we deduce
v0 · (u× n0) = 0.

Moreover, if u is a differentiability point, then differentiating that same identity with respect to
n0 at n0 = u gives R−1∇Ê(u) = ∇Ê(u) for any rotation R of axis u, hence ∇Ê(u) = 0 since

∇Ê(u) ∈ TuS2 = u⊥. So v0(u) = 0.

In the spherically symmetric case Sym(G) ⊃ SO(3) we have Ê(Rn0) = Ê(n0) for all R ∈ SO(3),

hence Ê is constant, and ∇Ê = 0 on S2. So v0(n0) = 0 for all n0 ∈ S2. □
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Appendix A. Decay estimates for Poisson’s equation

We collect here some folklore decay estimates for Poisson’s equation. For the reader’s convenience
we include a self-contained proof (similar arguments can be found e.g. in [25, § 2.2.3] for Hölder decay
at the origin). The elementary arguments we present here don’t seem to apply directly for general
systems as in Remark 1.2, in that case one should refer to [7, § 5-6].

Lemma A.1. Let d ≥ 3, γ > d− 2, γ /∈ N, and f a function in Rd \B1 satisfying

|f(x)| ≤ 1

rγ+2
for r = |x| ≥ 1.

Then there exists a function u such that ∆u = f in Rd \B1 and

|u(x)|
r

+ |∇u(x)| ≲ 1

rγ+1
, (A.1)

where the constant depends only on d and γ.

Note that (A.1) doesn’t determine u uniquely, as we may add any faster-decaying harmonic terms
to u without changing the equation ∆u = f , but the proof does determine an explicit right inverse
f 7→ u to the Laplacian in that decay range.

We will obtain Lemma A.1 as a consequence of an L2 version of it, that we state now.

Lemma A.2. Let d ≥ 3, γ > d− 2, γ /∈ N, and f a function in Rd \B1 satisfying(
1

Rd

ˆ
|x|>R

|x|2f2 dx

) 1
2

≤ 1

Rγ+1
∀R ≥ 1, (A.2)

Then there exists a function u such that ∆u = f in Rd \B1 and(
1

Rd

ˆ
|x|≥R

|u|2

|x|2
dx

) 1
2

≲
1

Rγ+1
∀R ≥ 1, (A.3)

where the implicit constant depends only on d and γ.

Before proving Lemma A.2, we explain why, together with rescaled elliptic estimates, it implies
Lemma A.1.

Proof of Lemma A.1. The assumption on f implies that it satisfies the L2 decay in the assumption of
Lemma A.2, so we obtain u such that ∆u = f in Rd \B1 and(

1

Rd

ˆ
|x|≥R

|u|2

|x|2
dx

) 1
2

≲
1

Rγ+1
∀R ≥ 1,

and the pointwise bound (A.1) in the conclusion of Lemma A.1 follows from rescaled elliptic estimates.

Explicitly, consider û(x̂) = u(Rx̂) which solves ∆û = f̂ , where f̂(x̂) := R2f(Rx̂), then from interior
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elliptic estimates (see e.g. [16]) we have

sup
B3\B2

(|û|+ |∇û|) ≲

(ˆ
B4\B1

|û|2
) 1

2

+ sup
B4\B1

|f̂ |

≲ R

(
1

Rd

ˆ
|x|≥R

|u|2

|x|2

) 1
2

+
1

Rγ
,

from which, scaling back, we infer (A.1). □

Next we prove Lemma A.2. Before doing so, we recall some facts concerning spherical harmonics
(that is, homogeneous harmonic polynomials), referring the reader to [30] for details. The Laplace-
Beltrami operator on Sd−1 diagonalizes as

−∆Sd−1Φj = λjΦj , 0 = λ0 ≤ λ1 ≤ · · ·

The set {λj}j∈N coincides with {k2 + k(d− 2)}k∈N. The eigenfunctions corresponding to k2 + k(d− 2)
span the homogeneous harmonic polynomials of degree k. We choose them normalized in L2(Sd−1) so

they form an orthonormal Hilbert basis of this space. For a W 2,2
loc function w : (0,∞) → R we have

∆(w(r)Φj(ω)) = (Ljw)(r)Φj(ω), Lj = ∂rr +
d− 1

r
∂r −

λj
r2
. (A.4)

The solutions of Ljw = 0 are linear combinations of rγ
+
j and r−γ−

j , where γ±j ≥ 0 are given by

γ+j =

√(
d− 2

2

)2

+ λj −
d− 2

2
= k for λj = k2 + k(d− 2),

γ−j =

√(
d− 2

2

)2

+ λj +
d− 2

2
= k + d− 2 for λj = k2 + k(d− 2).

The decay rate γ > d− 2, γ /∈ N, is fixed and we denote by j0 = j0(γ) the integer j0 ≥ 0 such that{
j ∈ N : γ−j < γ

}
= {0, . . . , j0},{

j ∈ N : γ−j > γ
}
= {j0 + 1, j0 + 2, . . .}.

Proof of Lemma A.2. We extend f to be defined in Rd, with the property that(ˆ
|x|≤1

|x|2f2 dx

) 1
2

≤ 1,

and will construct a function u such that ∆u = f in Rd \ {0}. The function f ∈ L2(Rd) admits a
spherical harmonics expansion

f =
∑
j≥0

fj(r)Φj(ω),

and the decay assumption (A.2) on f amounts to∑
j≥0

ˆ ∞

R

fj(r)
2rd+1 dr ≤ Rd−2γ−2. (A.5)

We define u as

u :=
∑
j≥0

uj(r)Φj(ω),

where uj ∈W 2,2
loc (0,∞) satisfy

Ljuj = fj .
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To write down an explicit formula for uj we rewrite Lj , defined in (A.4), as

Lju = r−d+1+γ−
j ∂r[r

d−1−2γ−
j ∂r(r

γ−
j u)],

and define

uj(r) =


r−γ−

j

ˆ ∞

r

t2γ
−
j +1−d

ˆ ∞

t

sd−1−γ−
j fj(s) ds dt if j ∈ {0, . . . , j0},

r−γ−
j

ˆ r

0

t2γ
−
j +1−d

ˆ ∞

t

sd−1−γ−
j fj(s) ds dt if j ≥ j0 + 1.

(A.6)

This is well defined because for any t > 0 using Cauchy-Schwarz, (A.5) with the choice R = t, and the
fact that γ−j ≥ d− 2 > 0, we can estimate the inner integral by

ˆ ∞

t

sd−1−γ−
j |fj(s)| ds ≤

(ˆ ∞

t

s−2−2γ−
j sd−1ds

) 1
2
(ˆ ∞

t

s2fj(s)
2sd−1ds

) 1
2

(A.7)

⩽
1√

2γ−j + 2− d
t
d
2−γ−

j −1t
d
2−γ−1 =

1√
2γ−j + 2− d

td−γ−γ−
j −2.

Furthermore, as t 7→ t2γ
−
j +1−dtd−2−γ−γ−

j = tγ
−
j −γ−1 is integrable near ∞ if γ−j < γ, i.e., if j ≤ j0; and

is integrable near 0 if γ−j > γ, i.e., if j ≥ j0 + 1, the functions uj in (A.6) are well-defined.
Let j ≤ j0 and set

α := γ + γ−j0 + 1− d,

so that 2γ + 1− d > α > 2γ−j + 1− d. By (A.7) and Cauchy-Schwarz we have

|uj(r)|2 ≤ r−2γ−
j

2 + 2γ−j − d

(ˆ ∞

r

tγ
−
j − d

2

(ˆ ∞

t

s2fj(s)
2sd−1ds

) 1
2

dt

)2

=
r−2γ−

j

2 + 2γ−j − d

(ˆ ∞

r

tγ
−
j − d

2−
α
2 t

α
2

(ˆ ∞

t

s2fj(s)
2sd−1ds

) 1
2

dt

)2

≤ r−2γ−
j

2 + 2γ−j − d

ˆ ∞

r

t2γ
−
j −d−α dt

ˆ ∞

r

tα
(ˆ ∞

t

s2fj(s)
2sd−1ds

)
dt

=
r−d+1−α

(2 + 2γ−j − d)(α− 2γ−j + d− 1)

ˆ ∞

r

tα
(ˆ ∞

t

s2fj(s)
2sd−1ds

)
dt

≤ r−d+1−α

(d− 2)(γ − γ−j0)

ˆ ∞

r

tα
(ˆ ∞

t

s2fj(s)
2sd−1ds

)
dt,

where in the last line, we used that γ−j ⩾ d−2 so that 2+2γ−j −d ⩾ d−2, and that γ+γ−j0−2γ−j ⩾ γ−γ−j0 ,
when j ⩽ j0. Summing and using (A.5), we deduce

j0∑
j=0

|uj(r)|2

r2
≤ r−d−1−α

(d− 2)(γ − γ−j0)

ˆ ∞

r

tα

 j0∑
j=0

ˆ ∞

t

s2fj(s)
2sd−1ds

 dt

≤ r−d−1−α

(d− 2)(γ − γ−j0)

ˆ ∞

r

tα+d−2γ−2 dt

=
r−2γ−2

(d− 2)(γ − γ−j0)(2γ + 1− d− α)

≤ r−2γ−2

(d− 2)(γ − γ−j0)
2
.
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Similarly, for j ≥ j0 + 1 we set

β = γ + γ−j0+1 + 1− d,

which satisfies 2γ + 1− d < β < 2γ−j + 1− d. Using (A.7) and Cauchy-Schwarz we find

|uj(r)|2 ≤ r−d+1−β

(d− 2)(γ−j0+1 − γ)

ˆ r

0

tαj

(ˆ ∞

t

s2fj(s)
2sd−1ds

)
dt,

so that, we similarly obtain from (A.5) that

∞∑
j=j0+1

|uj(r)|2

r2
≤ r−2γ−2

(d− 2)(γ−j0+1 − γ)2
.

We conclude that
∞∑
j=0

|uj(r)|2

r2
≤ 1

d− 2

(
1

(γ − γ−j0)
2
+

1

(γ−j0+1 − γ)2

)
r−2γ−2.

Therefore, since γ > d− 2,

1

Rd

ˆ
|x|≥R

|u|2

|x|2
dx =

1

Rd

ˆ ∞

R

 ∞∑
j=0

|uj(r)|2

r2

 rd−1 dr

≤ 1

d− 2

(
1

(γ − γ−j0)
2
+

1

(γ−j0+1 − γ)2

)
R−2γ−2

2γ + 2− d

≤ 1

(d− 2)2

(
1

(γ − γ−j0)
2
+

1

(γ−j0+1 − γ)2

)
R−2γ−2,

which proves (A.3). □
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