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Analytical description of the Saturn-ring defect in nematic colloids
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We derive an analytical formula for the Saturn-ring configuration around a small colloidal particle suspended
in nematic liquid crystal. In particular we obtain an explicit expression for the ring radius and its dependence on
the anchoring energy. We work within Landau–de Gennes theory: Nematic alignment is described by a tensorial
order parameter. For nematic colloids this model had previously been used exclusively to perform numerical
computations. Our method demonstrates that the tensorial theory can also be used to obtain analytical results,
suggesting a different approach to the understanding of nematic colloidal interactions.
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I. INTRODUCTION

Nematic liquid crystals are characterized by their long-
range orientational order: Molecules tend to align in a
common direction. When colloidal particles are immersed in
nematic material, they induce elastic distortions of the nematic
alignment, thus creating topological defects and anisotropic
interactions. These effects yield a wide range of possible
applications and have attracted considerable attention over
the past years. The fascinating self-assembly phenomena
first described in [1] can generate an impressive variety of
structures, with promising optical applications [2–12]. The
sensitivity of nematic liquid crystals to inclusion of foreign
bodies can also be used to build new biological sensors
[13–16]. Other applications include topological memory de-
vices [11,17], particle sorting [18], or levitation [19]. Given
the universal nature of topological defects and their theoretical
importance in condensed matter physics, the possibility,
offered by nematic colloids, of experiments in topology[20,21]
is also of high interest.

It is of crucial importance to understand precisely the nature
of the interactions in nematic colloids. Many theoretical results
have been obtained, using either a director field (Oseen-Frank
theory) or a tensorial order parameter (Landau–de Gennes
theory) to describe nematic alignment. They all predict that
the interaction is very sensitive to the characteristics of the
single particles: size, surface anchoring, and shape. Within
the director field approach, an electrostatic analogy allows
for analytical calculations. Two types of particles can thus be
distinguished, depending on the symmetry of the distortions
they induce—dipolar or quadrupolar [22–24]—enforcing in
turn different kinds of anisotropic interactions [25–30]. Within
the more complex tensorial model, analytical results have
not seemed possible so far, but numerical computations
[4,6,31–34] lead to similar descriptions, which are also in
good agreement with experimental studies [4,6,30,33–35].

In this paper we focus on the distortion of nematic order
created by a spherical particle with homeotropic anchoring.
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This is a subject already well covered [22–25,32,36], but our
approach, based on the Landau–de Gennes tensorial theory, is
different and yields more accurate results. Previous studies
of the spherical colloid reach a qualitative agreement on
the nature of the nematic configuration: for large spheres, a
dipolar configuration with a single point defect, while small
particles produce a Saturn ring in a field with quadrupolar
symmetry. However, these previous works do not provide a
concrete analytical description of the ring itself and hence
disagree in their computation of the ring’s radius. While
all previous works employing the Landau–de Gennes model
relied exclusively on numerical computations, we are able to
obtain analytical expressions when the particle radius is small
(compared to the nematic coherence length), by explicitly
solving the limiting differential equation. Hence we provide
an alternative description of the Saturn-ring defect observed
in quadrupolar configurations [37–41]. There are several
advantages to our method. First, by using tensors rather than
director fields we do not need to renormalize the energy around
the ring defect, which is identified via an eigenvalue exchange
mechanism. Second, since we derive an exact solution of the
limiting equations we obtain explicit values for the ring radius
and its dependence on surface anchoring strength, assuming
small particle size. Moreover, our approach demonstrates the
possibility of using the tensorial model directly to obtain
analytical results, opening a promising way for the theoretical
description of colloidal interactions.

II. MODEL AND DISCUSSION

We consider a spherical particle of radius rp surrounded by
nematic material. The tensorial order parameter Q = Qij (r)
describing the nematic alignment is a symmetric traceless
3 × 3 matrix. The eigenvector associated with its largest eigen-
value can be interpreted as a director (the average direction of
local nematic alignment) while other eigenvectors account for
biaxiality. Within the one-elastic-constant approximation, the
Landau-de Gennes free energy reads

F[ Q] =
∫

r>rp

[
L

2
∂kQij ∂kQij + fb( Q)

]
d3r + Fs[ Q], (1)

2470-0045/2016/93(1)/012705(5) 012705-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.012705


STAN ALAMA, LIA BRONSARD, AND XAVIER LAMY PHYSICAL REVIEW E 93, 012705 (2016)

where L > 0 is an elastic constant. The bulk free energy
density fb( Q) is usually taken in the form

fb( Q) = a(T )

2
QijQij − b

3
QijQjkQki + c

4
(QijQij )2.

After a proper rescaling, the coefficients are of order one: The
effective elastic constant is then of the order of ξ 2

0 , where we
use the coherence length ξ0 =

√
27cL/b2 (see, e.g., [42] for

this nondimensionalization). The surface anchoring term Fs

in (1) enforces homeotropic anchoring at the particle surface

Fs[ Q] = W

∫
r=rp

(
Qij − Qh

ij

)(
Qij − Qh

ij

)
d2s, (2)

where homeotropic alignment is described by a radial uniaxial
tensor

Qh
ij = s∗

(
r̂i r̂j − 1

3
δij

)
, r̂ = r

r
.

(The scalar order parameter s∗ > 0 is chosen to minimize the
bulk density.) Far away from the particle, the alignment is
uniform:

Qij (r) ≈ Q∞
ij as r → ∞, (3)

where

Q∞
ij = s∗

(
ẑi ẑj − 1

3δij

)
, ẑ = (0,0,1).

The equilibrium equations corresponding to minimization of
the free energy functional (1) are

L∇2Qij = gij ( Q),

L r̂k∂kQij = W
(
Qij − Qh

ij

)
for r = rp.

Here the nonlinear term gij is the traceless part of the tensor
∂f/∂Qij .

Since we want to investigate the effect of a small-size
particle, we rewrite the equilibrium equations in terms of the
rescaled variable r̃ defined by r = rp r̃ , obtaining

∇̃2Qij = r2
p

L
gij ( Q),

r̂k∂̃kQij = rpW

L

(
Qij − Qh

ij

)
for r̃ = 1.

Introducing an effective anchoring coefficient w, we assume
that

r2
p � L,

rpW

L
= w (4)

and deduce that any equilibrium configuration Qij must satisfy

Qij ≈ Q0
ij ,

where Q0 is the unique solution of

∇̃2Q0
ij = 0, r̂k∂̃kQ

0
ij = w

(
Q0

ij − Qh
ij

)
for r̃ = 1,

satisfying the far-field condition (3). By the approximation
Qij ≈ Q0

ij , we mean that the maximum difference between
the two solutions collapses to zero as the ratio r2

p/L → 0; a
mathematical justification of this approximation is given in

FIG. 1. Direction field n0 (eigenvector associated with the largest
eigenvalue of Q0) as explicitly computed below (7) for different
values of the effective anchoring coefficient: (a) w = ∞, (b) w = 3,
(c) w = 1.732 ≈ √

3, and (d) w = 1.

[43]. It turns out that Q0 has a simple analytical expression
given by

Q0 = w

3 + w

1

r̃3
Qh +

(
1 − w

1 + w

1

r̃

)
Q∞, (5)

as can be checked by a direct calculation.
We observe immediately that the tensor field Q0 has no sin-

gularity, at least not in the sense of Oseen-Frank theory. In fact,
at nearly all points Q0 is biaxial, so an Oseen-Frank director
cannot even be defined. The Saturn ring defect appears instead
as an eigenvalue exchange [32], at points where eigenvalues of
Q0 cross and the principal eigenvector is discontinuous. Thus,
the Saturn ring singularity is only apparent when following
the direction field n0 represented by the normalized principal
eigenvector field of Q0. The eigenvector field n0 is illustrated
for several values of effective anchoring coefficient in Fig. 1
and clearly shows a singular Saturn ring.

Explicit expressions are easily derived for the eigenvalues
λ1(r̃) � λ2(r̃) � λ3(r̃) of Q0. To substitute for the nematic
director field (which is undefined), we consider a normalized
eigenvector n0(r̃) associated with principal eigenvalue λ1.
This is well defined, except at points where λ1 = λ2, across
which the principal eigenvector n0 jumps from the radial to the
vertical direction. Such singularity happens exactly at a circle
in the horizontal plane: This is the Saturn-ring defect (see [43]
for details). The radius of the ring (in units of rp) is the unique
positive solution ρw of

(ρw)3 − w

1 + w
(ρw)2 − w

3 + w
= 0. (6)

It has an explicit expression, represented in Fig. 2. As the
effective anchoring coefficient w decreases from +∞ to

√
3,
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FIG. 2. Ring radius dependence on the effective anchoring
coefficient (6). Strong anchoring yields ρ∞ ≈ 1.47. The surface ring
ρw = 1 corresponds to w = √

3 ≈ 1.73.

the defect ring shrinks from ρ∞ ≈ 1.47 to ρ√
3 = 1, where

it becomes an equatorial surface ring. When w <
√

3 the
anchoring is too weak to enforce a defect: In that case, ρw < 1
so that the defect ring is virtually inside the particle. Note
that in practice, quite strong anchoring would be needed to
actually observe the Saturn ring: Taking L = 10−11 N as in
[32] and a particle radius rp = 10 nm, we find w = 103W , so
that for W = 10−3 J m−2 our solution exhibits no Saturn ring,
while for W = 10−2 J m−2 the Saturn ring radius is 1.34rp.
Previous studies of the Saturn ring have produced a wide range
of candidates for the ring radius, using these specific values for
L,W ; the radii obtained were 1.15rp [32],1.10rp [24], 1.08rp

[25], 1.2rp [23], and 1.25rp [22]. These discrepancies might
be due to the different values of rp and w considered there, as
well as different means of approximating the actual solutions.
With our approach we obtain the explicit dependence on w,
for small particle radius rp.

Away from the defect ring, the director field n0(r̃) is
well defined, as the eigendirection associated with the largest
eigenvalue λ1, and has an explicit analytical expression. It
is obviously symmetric under reflection with respect to the
horizontal plane, so we only need to give its formula in
the upper half space: In spherical coordinates (r̃ ,θ,ϕ), for
0 < θ < π/2 it holds that

n0 =
√

1 − μ

2
ρ̂ +

√
1 + μ

2
ẑ, (7)

where ρ̂ = (cos ϕ, sin ϕ,0) and μ = μ(r̃ ,θ ) is given by

μ = α(1 − 2 sin2 θ ) + β√
α2 + β2 + 2αβ(1 − 2 sin2 θ )

,

with
α = w

3 + w

1

r̃3
, β = 1 − w

1 + w

1

r̃
.

The director field n0 is represented in Fig. 1 for different values
of w. It is worth noting that from (7) we deduce the expansion

n0 = ẑ + w

3 + w

1

r̃5
(x̃z̃,ỹz̃,0) + O

(
1

r̃4

)
as r̃ → ∞,

so that we recover explicitly the quadrupolar far-field behavior
predicted from the electrostatic analogy [44].

III. CONCLUSION

In conclusion, we have presented a method showing the
stability of the Saturn ring defect around a very small particle.
We obtain the explicit value of the ring radius (on which
previous works did not agree) as well as its dependence on
the anchoring energy. In particular, measuring the ring radius
gives an estimation of the anchoring coefficient. Note that, in
practice, our approximation is only valid if the particle is much
smaller than the coherence length ξ0, so it only holds for very
small particles; for larger particles, the r−1 far-field behavior
of our solution (5) might no longer be valid. Typical values of
ξ0 considered in theoretical studies are of the order of 100 nm,
which corresponds to 4-methoxybenzlidene-4′-n-butylaniline
[42] or 4-pentyl-4′-cyanobiphenyl [6] liquid crystals (in other
nematic systems ξ0 could be of a different order). Our results
are also restricted by the anchoring coefficient, which has to
be quite strong (W = 10−2 J m−2 as, e.g., in [32]) to observe
the Saturn ring. However, we believe that a similar analytical
approach could be of use in a wider range of situations. For
instance, larger particles could be studied by introducing a
virtual shell around the particle where nonlinear effects cannot
be neglected, as in [26]. More generally, while Landau–de
Gennes theory was previously used only numerically in the
study of nematic colloids, the present paper demonstrates that
explicit analytical calculations are also possible. Therefore,
we hope that similar techniques could be applied successfully
to improve the theoretical understanding of nematic colloidal
interactions.

ACKNOWLEDGMENTS

The authors would like to thank Maxime Ignacio for his
useful comments. Part of this work was done during X.L.’s
stay at McMaster University, supported by a “Programme
Avenir Lyon Saint-Etienne” doctoral mobility scholarship.
X.L. thanks the Mathematics and Statistics Department of
McMaster University for their hospitality and his doctoral
advisor Petru Mironescu for his support and advice. S.A.
and L.B. were supported by an NSERC (Canada) Discovery
Grant.

[1] P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, Novel
colloidal interactions in anisotropic fluids, Science 275, 1770
(1997).

[2] B. I. Lev and P. M. Tomchuk, Interaction of foreign macro-
droplets in a nematic liquid crystal and induced supermolecular
structures, Phys. Rev. E 59, 591 (1999).

012705-3

http://dx.doi.org/10.1126/science.275.5307.1770
http://dx.doi.org/10.1126/science.275.5307.1770
http://dx.doi.org/10.1126/science.275.5307.1770
http://dx.doi.org/10.1126/science.275.5307.1770
http://dx.doi.org/10.1103/PhysRevE.59.591
http://dx.doi.org/10.1103/PhysRevE.59.591
http://dx.doi.org/10.1103/PhysRevE.59.591
http://dx.doi.org/10.1103/PhysRevE.59.591


STAN ALAMA, LIA BRONSARD, AND XAVIER LAMY PHYSICAL REVIEW E 93, 012705 (2016)
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