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Abstract

We consider energy minimizing configurations of a nematic liquid crystal
around a spherical colloid particle, in the context of the Landau–de Gennes model.
The nematic is assumed to occupy the exterior of a ball Br0 , and satisfy homeotropic
weak anchoring at the surface of the colloid and approach a uniform uniaxial state
as |x | → ∞. We study the minimizers in two different limiting regimes: for balls

which are small r0 � L
1
2 compared to the characteristic length scale L

1
2 , and

for large balls, r0 � L
1
2 . The relationship between the radius and the anchoring

strength W is also relevant. For small balls we obtain a limiting quadrupolar config-
uration, with a “Saturn ring” defect for relatively strong anchoring, corresponding
to an exchange of eigenvalues of the Q-tensor. In the limit of very large balls
we obtain an axisymmetric minimizer of the Oseen–Frank energy, and a dipole
configuration with exactly one point defect is obtained.

1. Introduction

Liquid crystals are well-known for their many applications in optical devices.
The rod-like molecules in a nematic liquid crystal tend to align in a common
direction: the resulting orientational order produces an anisotropic fluid with re-
markable optical features. This anisotropy also makes it highly interesting to use
nematic liquid crystals in colloidal suspensions. Immersion of colloid particles into
a nematic system disturbs the orientational order and creates topological defects,
which enforce fascinating self-assembly phenomena [26,30], with many poten-
tial applications [29,33]. This sensitivity to inclusion of small foreign bodies also
has promising biomedical applications [40]: for instance, new biological sensors
could detect very quickly the presence of microbes, based on the induced change
in nematic order [14,15,35].
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In the present paper we investigate the structure of the nematic order around
one spherical particle, with homeotropic (that is normal) anchoring at the particle
surface, anduniformalignment far away from it. Thehomeotropic anchoring creates
a topological charge. This charge must be balanced in order to match the uniform
alignment at infinity,which is topologically trivial. Therefore one expects to observe
singularities.

This particular problem is a crucial step in understanding more complex situa-
tions, and it has received a lot of attention in the past two decades [21,23,31,36,38].
These works rely on heuristically supported approximations, and numerical com-
putations. They point out two possible types of configurations, with “dipolar” or
“quadrupolar” symmetry (related to their far-field behavior [37, § 4.1]). In a dipolar
configuration the topological charge created by the particle is balanced by a point
defect, while in a quadrupolar configuration it is balanced by a “Saturn ring” defect
around the particle.

The aforementioned works use either Oseen–Frank theory [21,23,36,38] or
Landau–de Gennes theory [31] to describe nematic alignment. In Oseen–Frank
theory, the order parameter is a director field n(x) ∈ S

2, which minimizes an
elastic energy. One drawback of that model is that line defects have infinite energy.
In particular, the energy of a quadrupolar configuration with Saturn ring defect
has to be renormalized. Moreover, Oseen–Frank theory only accounts for uniaxial
nematic states: it assumes local axial symmetry of the alignment around the average
director. On the other hand Landau–de Gennes theory involves a tensorial order
parameter that can also describe biaxial states, in which the local axial symmetry
is broken. This is the model that we will be using here.

The order parameter in Landau–de Gennes theory is the so-called Q-tensor,
which belongs to the space

S0 := {
Q ∈ M3(R) : Qi j = Q ji , tr(Q) = 0

}
, (1)

of symmetric traceless 3 × 3 matrices. The Q-tensor is related to second-order
moments of the microscopic distribution of molecule orientations. Its eigenvectors
provide information about the directions of alignment, and its eigenvalues about the
degrees of order along those directions. Uniaxial states are described by Q-tensors
with two equal eigenvalues, which can be put in the form

Q = s

(
n ⊗ n − 1

3
I

)
, s ∈ R, n ∈ S

2.

Biaxial states correspond to the generic case of a Q-tensor with three distinct
eigenvalues.

The configuration of a nematic material contained in a domain � ⊂ R
3 is

described by a map Q : � → S0. At equilibrium it should minimize the free
energy functional

F(Q) =
∫

�

[
L

2
|∇Q|2 + f (Q)

]
dx + Fs(Q). (2)
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Here Fs(Q) is a surface energy term which depends on the type of anchoring (see
(6) below), and the bulk potential f (Q) � 0 is given by

f (Q) = −a

2
tr(Q2) − b

3
tr(Q3) + c

4
tr(Q2)2 + C0, (3)

for some material-dependent constants a � 0, b, c > 0. For a meaningful physical
interpretationof scaling limits, the coefficients L , a, b, c shouldbenon-dimensional;
we will discuss this in terms of the colloid particle size below. The constant C0 is
chosen to ensure that min f = 0. The set of Q ∈ S0 minimizing the potential
(3) obviously plays a crucial role. It consists exactly of those Q-tensors which are
uniaxial, with fixed eigenvalues:

U∗ := { f = 0} =
{

s∗
(

n ⊗ n − 1

3
I

)
: n ∈ S

2
}

, (4)

where s∗ = (b + √
b2 + 24ac)/4c > 0.

We are interested here in the nematic configuration around a spherical particle:

� = �r0 := R
3\Br0 ,

where r0 > 0 is the particle radius. We impose uniform U∗-valued conditions at
infinity

lim|x |→∞ Q(x) = Q∞ := s∗
(

ez ⊗ ez − 1

3
I

)
, ez = (0, 0, 1). (5)

At the particle surface, weak radial anchoring is enforced through the surface term
Fs in the free energy functional (2). This surface contribution is given by

Fs(Q) = W

2

∫

∂ Br0

|Qs − Q|2 dA, (6)

where W > 0 is the anchoring strength, and Qs is the U∗-valued radial map

Qs := s∗
(

er ⊗ er − 1

3
I

)
, er = x

|x | . (7)

Denoting by ν the exterior normal to �r0 , the corresponding boundary conditions
are

L

W

∂ Q

∂ν
= Qs − Q for |x | = r0. (8)

We also include in this description the case of strong anchoring, corresponding to
W = +∞ and Dirichlet boundary conditions

Q = Qs for |x | = r0. (9)

In every case, the Euler–Lagrange equations

L�Q = ∇ f (Q) = −aQ − b

(
Q2 − 1

3
|Q|2 I

)
+ c |Q|2 Q, (10)
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are satisfied inD′(�r0;S0) by any equilibrium configuration. (Here the gradient of
f is taken on the space S0 of traceless matrices, hence the term −b |Q|2 I/3.)

The existence of minimizers of the free energy functional (2) with the uniform
far-field condition (5) can be obtained if we replace the pointwise condition (5)
with the integrability condition

∫

�r0

|Q∞ − Q|2
|x |2 dx < ∞. (11)

The Euler–Lagrange equations (10) can then be used to see that the strong condition
(5) is in fact also satisfied. After establishing this existence result in Section 2, we
turn to studying the two asymptotics regimes of “small” or “large” colloid particle.

According to the numerical computations in [31,36], small particles favor
quadrupolar configurations with a defect ring, while large particles favor dipo-
lar configurations with a point defect. In the present paper we obtain rigorous
justifications of these observations. In the small particle regime we also provide
exact information on the radius of the defect ring, for which the values computed
in [21,23,31,36,38] did not agree.

Dimensions. When we speak of large and small colloid particles, it must be rel-
ative to the other scales in the problem. For clarity, we introduce nondimensional
variables following [25,27].

The coefficients a, b, c, C0 carry the units of energy per volume; a = a(T ) is
temperature dependent, and the others are assumed independent of temperature.We
choose ANI = a(TNI), where TNI is the critical temperature at the nematic-isotropic
transition point, as the basic unit of energy per volume. The elastic constant L is in
energy per length, and the anchoring strength W is in units of energy per area. The
natural length scale in our problem is the diameter of the colloid particle itself, r0,
and so we define x̂ = x

r0
and Q̂(x̂) = Q(x), with x̂ ∈ �1 when x ∈ �r0 . After

rescaling x , each term in the energy will have units of energy per volume,

1

r30
F(Q) =

∫

�1

[
L

2r20
|∇ Q̂|2 + f (Q̂)

]

dx + W

2r0

∫

∂ B1

|Q̂s − Q̂|2 dA.

Dividing by the reference energy ANI, we arrive at the nondimensional form

F̂(Q) =
∫

�1

[
L̂

2
|∇ Q̂|2 + f̂ (Q̂)

]

dx + Ŵ

2

∫

∂ B1

|Q̂s − Q̂|2 dA,

with L̂ = L
r20 ANI

, Ŵ = Wr0 ANI
L , and f̂ of the same form as f in (3) above but with

each coefficient a, b, c, C0 normalized by ANI.
In the following we always consider the above nondimensional energy, and

drop the hats on each variable, so from now on L is taken to be the nondimensional
coefficient which incorporates the size r0 in the original units. We also denote
� := �1 = R

3\B1(0). We then consider two limits based on relative colloid
particle size:
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• the “small particle” limit L → ∞;
• the “large particle” limit L → 0.

In each limiting regime we will also assume that the nondimensional anchoring
strength W → w, including the possibility w = +∞, corresponding to strong
(Dirichlet) anchoring on the colloid surface ∂� = ∂ B1.

The small particle limit. In Section 3 we investigate the small particle regime, and
prove:

Theorem 1. Consider (for any W or L) a map Q = QL ,W minimizing (2) subject
to (11). Let w ∈ (0,+∞] be an effective “limiting anchoring strength”. Then, as

(L , W ) −→ (∞, w),

the maps Q = QL ,W converge to

Q0 = s∗
w

3 + w

1

r3

(
er ⊗ er − 1

3
I

)
+ s∗(1 − w

1 + w

1

r
)

(
ez ⊗ ez − 1

3
I

)
,

locally uniformly in �.

An interesting feature of Theorem 1 is the explicit form of the limit: it provides a
very precise description of the quadrupolar configurations. The Saturn ring defect
appears as a discontinuity in the principal eigenvector of Q(x), the Q-tensor passing
through a uniaxial state as eigenvalue branches cross via an “eigenvalue exchange”
mechanism [31]. The ratio of the ring radius to the particle size is thus found to be,
for w >

√
3, the solution r > 1 of

r3 − w

1 + w
r2 − w

3 + w
= 0.

For the strong anchoring w = ∞, its value is r ≈ 1.47. As the anchoring strength
decreases, the ring shrinks until it becomes a surface ring for w = √

3. At very
weak anchoring w <

√
3 there is no defect ring anymore. (See Fig. 1 in Section 3

for the ring location at various values of w.) This description is consistent with
[21,23,31,36,38], with the significant improvement of providing exact values for
the relevant quantities.

Away from the ring defect, the limiting map Q0(x) is everywhere biaxial in �:
the small particle limit L → ∞ does not correspond to the unit director Oseen–
Frank model. Indeed, it is well known (see [9,32] for more general energy func-
tionals) that minimizing S

2-valued maps cannot have line defects.

The large particle limit. The large particle regime is more delicate to analyse. We
restrict ourselves to minimizers of the free energy, and to strong anchoring—that
is, W = ∞. The regime L � 1 corresponds to the vanishing elastic constant limit
studied in [24,27]. There, the authors prove convergence to a U∗-valued map whose
director is an S

2-valued minimizing harmonic map. It is well-known that such a
map has a discrete set of singularities [32], and that these defects carry topological
degrees±1 [4]. In particular, the results of [8,32] ensure that a “Saturn ring” defect
cannot be observed in the large particle limit, regardless of the anchoring condition
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Fig. 1. The director field n0 (integral curves). a w = ∞. b w = 3. c w = 1.732 ≈ √
3. d

w = 1

on the particle surface, and thus very different behavior may be expected in the
large particle regime than was observed for small particles.

Since the strong radial anchoring imposes a degree +1 near the particle, while
the uniform far-field condition imposes a zero degree at infinity, there must be at
least one point defect of degree−1. However the number of defects of aminimizing
map does not necessarily correspond to the minimal number of defects required by
the topology [11]. In our case we expect that there is exactly one defect, as predicted
by [23,31,36]. Since determining the exact number of defects is a very difficult
question in general, we restrict ourselves to axially symmetric configurations: we
impose invariance under any rotation of vertical axis, and that eθ (horizontal unit
vector orthogonal to the radial direction) be everywhere an eigenvector of the Q-
tensor. This natural symmetry assumption seems to be supported by the numerical
pictures in [31].

In the limit we will therefore obtain an axially symmetric S2-valued harmonic
map. Such maps have been studied in [10,13]. They are analytic away from a
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discrete set of defects on the z-axis. For very particular symmetric boundary data, it
can be deduced from rearrangement inequalities that the number of defects matches
the topological degree [10, Theorem 5.1]. This result does not apply to our case,
but—using different arguments—we nevertheless manage to show that there is
exactly one defect, thus justifying the dipole configuration predicted by [23,31,36].
More precisely, in Section 4 we prove:

Theorem 2. Let Q = QL minimize the free energy (2) among axially symmetric
maps satisfying the boundary conditions (9)–(11). Then, as L → 0, a subsequence
of QL converges to a map

Q∗(x) = s∗(n(x) ⊗ n(x) − I/3),

locally uniformly in �\{p0}. Here n minimizes the Dirichlet energy in �, among
axially symmetric S

2-valued maps satisfying the boundary conditions

n = er on ∂ B1, and
∫

�

(n1)
2 + (n2)

2

|x |2 dx < ∞,

and n is analytic away from exactly one point defect p0, located on the axis of
symmetry.

The core of Theorem 2 is verifying that the minimizing harmonic map n admits at
most one defect. We achieve this by investigating the topology of the sets {n3 > 0}
and {n3 < 0} where n points “more upward” or “more downward”. Using basic
energy comparison arguments and the analyticity of minimizers away from the
z-axis, we show that these sets are connected. Merging this with the observation
that defects correspond to “jumps” between upward- and downward-pointing n, we
conclude that there cannot be more than one defect.

We note that there are very few cases in which the number of defects is actually
known to match the topological degree. This is true in a ball with radial Dirichlet
boundary conditions, because then the energy of the radial map can be explicitly
computed and seen to coincide with a general lower bound [4], and this is true
also for geometries close enough to the radial one [12]. We do expect that our
minimizers in the axially symmetric class are actually minimizers in the general
(nonsymmetric) case, but this remains an open question.

The plan of the paper is as follows. In Section 2 we prove the existence of
minimizers and some basic properties. In Section 3 we investigate the small particle
regime and the quadrupolar “Saturn ring” configurations. In Section 4 we study the
large particle regime and the associated axially symmetric harmonic map problem.

Notations. We will use cylindrical coordinates (ρ, θ, z) defined by

x1 = ρ cos θ, x2 = ρ sin θ, x3 = z,

and the associated orthonormal frame (eρ, eθ , ez), where

eρ = (cos θ, sin θ, 0), eθ = (− sin θ, cos θ, 0).

We will also use spherical coordinates (r, θ, ϕ) with (r, ϕ) defined by

ρ = r sin ϕ, z = r cosϕ.
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2. Existence and First Properties of Minimizers

As mentioned in the introduction, an appropriate functional setting to establish
the existence of minimizers is the affine Hilbert space

H∞ := Q∞ + H,

H :=
{

Q ∈ H1
loc(�;S0) :

∫

�

|∇Q|2 +
∫

�

|Q|2
|x |2 < ∞

}

.
(12)

Note that the free energy functional (2) is not everywhere finite on the space H∞,
since the potential term f (Q) � 0 may very well not be integrable in �. However,
since f (Q∞) = 0, at finite anchoring W < +∞ the energy F(Q) is finite for any
Q = Q∞ + H with H smooth and compactly supported in �. In the Dirichlet
case W = +∞ we may find an appropriate compactly supported H for which
Q = Q∞ + H satisfies the boundary condition (9), and conclude that in all cases

inf
H∞

F < ∞.

This bound is of course not uniformwith respect to the parameters [it can be checked
that inf F scales as O(L), both as L → 0 and L → ∞]. Next we show that the
infimum is attained, and that the minimizer has a limit at infinity:

Proposition 3. Let L > 0 and W ∈ [0,+∞]. Then there exists Q ∈ H∞ such that

F(Q) = inf
H∞

F .

Moreover, the far-field condition holds in the strong sense (5), and this is true for
any solution of the Euler–Lagrange equation (10) in H∞.

Remark 4. The case W = +∞ will be understood as the strong anchoring case: it
amounts to considering only maps Q ∈ H∞ which satisfy the Dirichlet boundary
condition (9) in the sense of traces.

Proof of Proposition 3. Existence follows from the direct method of the calcu-
lus of variations. Thanks to Hardy’s inequality, any minimizing sequence (Qn) is
bounded inH∞ and admits (up to taking a subsequence) a weak limit Q ∈ H∞. We
may also assume that the convergence Qn → Q holds almost everywhere. Convex-
ity and Fatou’s lemma allow us to conclude that F(Q) � lim inf F(Qn) = inf F .

The limit at infinity follows from estimates for solutions of the Euler–Lagrange
equation (10). From Lemma 5 below we know that Q ∈ L∞(�), and (10) readily
implies that �Q ∈ L∞(�). Using standard elliptic estimates, we deduce that
∇Q ∈ L∞(�), so that Q is uniformly continuous. Since on the other hand
Sobolev inequality implies that |Q − Q∞| belongs to L6(�), we conclude that
|Q(x) − Q∞| converges to zero as |x | goes to +∞. ��

In the proof of Proposition 3 we used the following L∞ bound for solutions of
(10), related to the growth of the potential f (Q).
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Lemma 5. If Q ∈ H∞ solves (10), it holds

‖Q‖L∞(�) � q0,

for some q0 > 0 that depends only on a, b and c (but not on L and W ).

Proof. The proof is similar to [22, Lemma 8.3], with slight modifications to deal
with the unbounded domain. Let Q̃ := Q − Q∞, so that Q̃ ∈ H solves

L�Q̃ = ∇ f (Q∞ + Q̃). (13)

We may use as a test function in (13) any function 	 ∈ H with compact support
in �. Let us consider a test function

	 = V Q̃, for some V � 0 with compact support in �.

Multiplying (13) by 	 we find

L
∫

�

∇ Q̃ · ∇	 = −
∫

�

V ∇ f (Q∞ + Q̃) · Q̃ +
∫

∂�

V Q̃ · ∂ Q̃

∂ν
. (14)

It follows from the asymptotic behavior Q̃ · ∇ f (Q∞ + Q̃) ∼ c|Q̃|4 as |Q̃| → ∞
that there exists q̃0 = q̃0(a, b, c) > 0 such that

∇ f (Q∞ + Q̃) · Q̃ � 0 for |Q̃| � q̃0, and |Qs − Q∞| � q̃0.

Now let us take V of the form

V = Uϕ, U = min((|Q̃|2 − q̃2
0 )+, M), 0 � ϕ ∈ C∞

c (�). (15)

Note that V is non-negative and supported inside the set {|Q̃| � q̃0}.
Thanks to the choice of q̃0, both terms in the right-hand side of (14) are non-

positive: for the first term this is clear, and the second term is zero in the case of
strong anchoring (9) and non-positive in the case of weak anchoring (8) because
|Q̃|2 − Q̃ · (Qs − Q∞) � 0 for |Q̃| � q̃0. Thus we obtain

L
∫

�

∇ Q̃ · ∇	 � 0,

that is
∫

�

ϕ

(
U |∇ Q̃|2 + 1

2
|∇U |2

)
� −

∫

�

U Q̃ · ∇ Q̃ · ∇ϕ.

Next we take ϕ = ϕR such that

ϕR(x) =
{
1 for |x | � R,

0 for |x | � 2R,
and |∇ϕR(x)| � C

|x | ,

for some constant C > 0 independent of R. We obtain
∫

�

ϕR

(
U |∇ Q̃|2 + 1

2
|∇U |2

)
� MC‖∇ Q̃‖L2(|x |�R)‖Q̃/r‖L2(|x |�R).
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Since Q̃ ∈ H, the right hand side converges to zero as R goes to +∞ and it holds

∫

�

(
U |∇ Q̃|2 + 1

2
|∇U |2

)
= 0.

Recalling the definition (15) of U , we conclude that |Q̃| � q̃0 almost everywhere,
and therefore ‖Q‖L∞ � q̃0 + s∗

√
2/3. ��

Remark 6. It would be interesting to prove an explicit convergence rate for the
far-field behavior (5). The small particle limit (cf. Section 3) suggests a bound of
the form |Q(x) − Q∞| � C/ |x |, for some C = C(a, b, c, L) > 0. An indication
that this bound could indeed be true is given by the following proposition, which
confirms that the minimizers Q approach the uniaxial set U∗ at the desired rate
|x |−1. An analogous situation prevails in the case of solutions of the Ginzburg–
Landau equations in the plane [34], which have an explicit rate of decay of the
complex modulus |u|−1, but provides much weaker asymptotic information in the
behavior of the complex phase, the circle S1 playing the role of U∗ in that setting.

Proposition 7. There exists a constant C = C(a, b, c) > 0 so that, for any solution
Q ∈ H∞ of (10) with finite energy F(Q) < ∞ we have:

dist(Q(x),U∗) � C
√

L

|x | and |∇Q(x)| � 2C

|x | . (16)

Proof. We follow the strategy of [34], which proved decay estimates for solutions
to theGinzburg–Landau equations in the plane. Let A := B4\B1 and for any R > 1,
AR := B4R\BR . Define Q R(y) := Q(Ry) for y ∈ A, with energy

ER(Q R; A) =
∫

A
eR(Q) dy, with eR(Q) = 1

2
|∇Q R |2 + R2

L
f (Q R).

By a change of variables in the integral,

ER(Q R; A) = 1

L R

∫

AR

[
L

2
|∇Q|2 + f (Q)

]
dx = o(R−1),

as R → ∞, by the finite energy assumption on Q. Thus, ∇Q R → 0 and R2
∫

A
f (Q R) dx → 0. Recalling that Q(x) → Q∞ as |x | → ∞ from Proposition 3, we
may assume Q R → Q∞ in H1(A).

We now employ the convergence results for Landau–de Gennes as L → 0,
proven in [24], with our L

R2 → 0 replacing their L in this context. Although the
convergence results in [24, § 4] are stated for global minimizers of the energy in
bounded domains with Dirichlet condition, the proofs of the various convergence
lemmas are based on the monotonicity formula, and apply as well to solutions of
the Euler–Lagrange equations (10) with uniformly bounded energy, converging in
H1-norm. In particular, we apply Lemma 7 of [24] to Q R in Ã := B3\B1, which
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contains no singularities for sufficiently large R: since for every a ∈ A we have∫
B1(a)

eR(Q R(y)) dy � o(1), by the lemma there existsC2 = C2(a, b, c) forwhich

sup
B 1
2
(a)

[
1

2
|∇Q R |2 + R2

L
f (Q R)

]
� C2.

Covering Ã by balls of radius 1, we obtain the same uniform bound

1

2
|∇Q R(y)|2 + R2

L
f (Q R(y)) � C2, (17)

for all y ∈ Ã.
Next, we claim that there exists a constant C3 = C3(a, b, c) such that for any

Q ∈ S0,

[dist(Q,U∗)]2 � C3 f (Q). (18)

Indeed, since f (Q) � |Q|4 as |Q| → ∞ and f (Q) = 0 if and only if Q ∈ U∗, for
any fixed δ > 0 there exists C = C(δ, a, b, c) such that the desired bound holds
for all Q ∈ S0 with [dist(Q,U∗)]2 � δ.

SinceU∗ is smooth and compact, there exists δ > 0 such that for all Q ∈ S0 with
dist(Q,U∗) < δ there is a unique orthogonal projection Q∗ ∈ U∗ which minimizes
the distance from Q to U∗. Thus, Q = Q∗ + Qn , with Qn ⊥ TQ∗U∗, and |Qn| =
dist(Q,U∗). The function f is frame-invariant [it holds f (R−1Q R) = f (Q) for
any rotation R], so without loss of generality we may assume that Q∗ = Q∞ =
s∗

(
ez ⊗ ez − 1

3 I
)
. Let us consider the orthonormal basis {A j } of S0 given by

A1 =
√
3

2
(ez ⊗ ez − I/3), A2 = 1√

2
(ex ⊗ ex − ey ⊗ ey),

A3 = 1√
2
(ex ⊗ ey + ey ⊗ ex ), A4 = 1√

2
(ex ⊗ ez + ez ⊗ ex ),

A5 = 1√
2
(ey ⊗ ez + ez ⊗ ey),

and identify Q ∈ S0 with u ∈ R
5 via

Q =
∑

j

u j A j .

On this basis, TQ∗U∗ = span {A4, A5}, and thus we may represent

Qn =
3∑

j=1

u j A j . (19)

Expanding the potential in terms of u,

f (Q) = f (Q∗ + Qn) − f (Q∗) =
(
2a + bs∗

6

)
u2
1 + bs∗

2
(u2

2 + u2
3) + h(u),
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where h(u) = O(|u|3) is a polynomial with terms of third and fourth degree in u.
By the representation (19) of Qn , we thus have

f (Q) = f (Q∗ + Qn) � C4(u
2
1 + u2

2 + u2
3) = C4|Qn|2 = C4 [dist(Q,U∗)]2 ,

with constant C4 = C4(δ, a, b, c). The claim is thus established for all Q ∈ S0.
Finally, as in [34] we may return to the original scale x = Ry, to obtain the

desired bounds (16). Indeed, by (17) and |x | = R|y| � 3R,

1

2
|∇Q(x)|2+ 1

L
f (Q(x))= R−2

(
1

2
|∇Q R(y)|2+ R2

L
f (Q R(y))

)
� C2

R2 � 9C2

|x |2 ,

so the conclusion follows from the above and (18). ��
Remark 8. From the decay estimate (16) it is straightforward (see Proposition 7
of [24]) to show that the eigenvalues of Q(x) tend to those of the uniaxial tensors
in U∗, and at the same asymptotic rate

√
L/|x | as |x | → ∞.

3. Small Particle: The Saturn Ring

This section is dedicated to proving Theorem 1, and then studying the limiting
configuration Q0, whose expression we recall here:

Q0 = s∗
w

3 + w

1

r3

(
er ⊗ er − 1

3
I

)
+ s∗

(
1 − w

1 + w

1

r

)(
ez ⊗ ez − 1

3
I

)
.

(20)

Proof of Theorem 1. Recall that we are taking the limit (L , W ) → (∞, w). It is
straightforward to check that the map Q0 (20) belongs toH∞ and solves

{
�Q0 = 0 in �,
1
w

∂ Q0
∂ν

= Qs − Q0 on ∂�.
(21)

We claim that it is the unique solution in H∞. Indeed, by linearity it suffices to
show that any Q ∈ H such that

∫

�

∇Q · ∇H +
∫

∂�

Q · H = 0 ∀H ∈ H,

must be Q ≡ 0. Let ϕ = ϕR be as in the proof of Lemma 5, and use H = ϕQ as a
test function to obtain

∫

�

ϕ |∇Q|2 +
∫

∂�

|Q|2 =
∫

∇ϕ · Q · ∇Q

� C ‖∇Q‖L2(|x |�R) ‖Q/r‖L2(|x |�R) .

Letting R → ∞ we deduce that Q ≡ 0, proving the uniqueness of Q0.
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Next, we show that Q is bounded inH∞, uniformly with respect to W > 0 and
L � 1. To this end, fix a smooth function ϕ(r) such that ϕ(1) = 1 and ϕ(r) ≡ 0
for r � 2, and consider the energy competitor

Q(x) = ϕ(r)Qs + (1 − ϕ(r))Q∞.

For any W > 0 and L � 1 it holds
∫

�

|∇Q|2 � 2

L
F(Q) � 2

L
F(Q) �

∫

�

∣
∣Q

∣
∣2 + 2

∫

�

f (Q) < ∞.

Invoking Hardy’s inequality we deduce that Q is uniformly bounded inH∞. There
exists therefore a subsequence converging weakly in H∞. Lemma 5 implies that
‖∇ f (Q)‖L∞ � C for some C > 0 depending only on a, b and c, therefore we
may pass to the limit in the weak formulation of the Eq. (10) satisfied by Q and
deduce that the limit satisfies (21). By the uniqueness of the solution of (21) inH∞
we conclude that the full family Q converges to Q0 as (L , W ) → (∞, w), weakly
in H∞. Moreover, by elliptic estimates, ∇Q is uniformly bounded in L∞(�) and
we deduce that the convergence is in fact locally uniform in �. ��
Remark 9. (a) The map Q0 is not the unique L∞ solution to (21), as Q0 + (r−1 −

(1 + w)/w)A0 is another bounded solution for any A ∈ S0.
(b) As the unique solution of (21) inH∞, the configuration Q0 satisfies all possible

symmetries of the problem. In particular it is axially symmetric, as is the dipolar
configuration obtained in the large particle limit (Theorem 2). The additional
symmetry that really distinguishes Q0 is the symmetry by reflectionwith respect
to the horizontal plane. However these symmetries are far from providing the
particular form of Q0, which is truly enforced by the fact that Q0 solves (21).

The main interest of Theorem 1 lies in the explicit expression for the limit Q0.
Next we investigate its most important features. We start by interpreting the Saturn
ring defect as a locus of uniaxiality. More precisely, let Uw be the uniaxial locus
of Q0 = Q0,w (20) away from the z-axis (on which er = ±ez and Q0 is trivially
uniaxial):

Uw := {x ∈ �\Rez : Q0(x) is uniaxial} . (22)

Then we have:

Proposition 10. For w >
√
3 it holds that

Uw = {(x1, x2, 0) : x21 + x22 = r2w}, (23)

where rw is the unique solution r > 1 of

r3 − w

1 + w
r2 − w

3 + w
= 0. (24)

The function w �→ rw increases from r√
3 = 1 to a finite value r∞ ≈ 1.47, as w

increases from
√
3 to ∞.

For w �
√
3, Uw is empty.
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Proof. Using spherical coordinates (r, θ, ϕ), the map Q0 is of the form

Q0 = α(r)(er ⊗ er − I/3) + β(r)(ez ⊗ ez − I/3), (r > 1),

where the functions α(r), β(r) > 0 are given by

α(r) = s∗
w

3 + w

1

r3
, β(r) = s∗

(
1 − w

1 + w

1

r

)
. (25)

Using the fact that er = cosϕ ez + sin ϕ eρ , and defining

σ := α + β, ν := αβ,

elementary computations show that the characteristic polynomial of Q0 is

P(X) =
(

X + σ

3

)(
X2 − σ

3
X − 2

9
σ 2 + ν sin2 ϕ

)

=
(

X + σ

3

)
⎛

⎝X − σ

6
−

√
σ 2

4
− ν sin2 ϕ

⎞

⎠

⎛

⎝X − σ

6
+

√
σ 2

4
− ν sin2 ϕ

⎞

⎠.

Note that

σ 2

4
− ν sin2 ϕ = 1

4
(α − β)2 + ν cos2 ϕ � 0,

so that the above square root is well defined. The eigenvalues λ01 � λ02 � λ03 of Q0
are given by

λ01 = σ

6
+

√
σ 2

4
− ν sin2 ϕ,

λ02 = σ

6
−

√
σ 2

4
− ν sin2 ϕ,

λ03 = −σ

3
.

We are looking for the points where Q0 is uniaxial, that is either λ01 = λ02 or
λ02 = λ03. For 0 < ϕ < π , it holds

λ01 = λ02 ⇐⇒ ϕ = π

2
and α = β,

λ02 = λ03 ⇐⇒ α = 0 or β = 0.

Since α, β > 0, only the first case (λ01 = λ02) can occur. Given the expressions (25)
of α and β, we deduce that

Uw =
{
(x1, x2, 0) : 1 < x21 + x22 = r2, p(w, r) = 0

}
,

where p(w, r) := r3 − w

1 + w
r2 − w

3 + w
.
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It is straightforward to check that r �→ p(w, r) is increasing on (1,∞) and therefore
p(w, ·) = 0 has at most one solution in this interval. Since, on the other hand,

(1 + w)(3 + w) · p(w, 1) = 3 − w2,

there is a solution rw > 1 if and only if w >
√
3. The function w �→ rw is easily

seen to be smooth, and its derivative has the same sign as

−∂w p(w, r) = r2

(1 + w)2
+ 3

(3 + w)2
> 0,

so that rw is an increasing function of w. As w increases to ∞, rw increases to
r∞ > 1 such that r3∞ − r2∞ − 1 = 0. ��

Remark 11. Since Q0 is biaxial except along the Saturn ring locus Uw, there is
no conventional nematic director field attached to it. However, it is reasonable to
distinguish a principal direction as an approximate or mean “director” field n0, the
unit eigenvector associated to the largest eigenvalue λ01. This is well-defined up to
a sign, at every point where λ01 is a simple eigenvalue: that is everywhere except
at Uw, where it jumps discontinuously as the eigenvalue branches cross. Then one
may compute, for 0 < ϕ � π/2,

n0 =
√
1 − μ

2
eρ +

√
1 + μ

2
ez, μ := α(1 − 2 sin2 ϕ) + β

√
α2 + β2 + 2αβ(1 − 2 sin2 ϕ)

,

with α, β as in (25). For π > ϕ > π/2 the director field is obtained by reflecting
with respect to the horizontal plane : n0(ϕ) = √

(1 − μ)/2 eρ − √
(1 + μ)/2 ez .

Note that this way n0 is not continuous in �\Uw, but it is continuous as an RP
2-

valued map : the map n0 ⊗ n0 is continuous in �\Uw.

Corollary 12. Let w >
√
3. There exists δ0 > 0 such that, if

δ := 1

L
+

∣
∣
∣
∣

L

W
− 1

w

∣
∣
∣
∣ < δ0,

then any solution Q ∈ H∞ of (10)–(8) admits a uniaxial ring near Uw. More
precisely, Q(x) is uniaxial for all x belonging to

U = {(ρu(θ) cos θ, ρu(θ) sin θ, zu(θ)) : θ ∈ R} ,

where the functions ρu(θ) and zu(θ) satisfy

|ρu(θ) − rw| + |zu(θ)| � ε(δ) → 0,

as δ → 0.
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Proof. Biaxiality can be quantified through the biaxiality parameter [20]

β(Q) = 1 − 6
(tr(Q3))2

|Q|6 ,

which is such that : Q is uniaxial if and only if β(Q) = 0. Let us fix R > rw. From
Theorem 1 and Proposition 10 we infer that there exists δ0 such that for δ < δ0 it
holds

β(Q) > 0 in A := {
x ∈ BR : dist(x, Uw ∪ Rez) � ε(δ)

}
,

for some ε(δ) → 0 as δ → 0. Let us write χ0, the characteristic polynomial of Q0,
as

χ0 = (X − λ01)P0,

where P0 = (X − λ02)(X − λ03). By continuity of the roots of a polynomial (see for
example [6] or [39, §V.4]), the characteristic polynomial χ of Q satisfies

χ = (X − λ1)P,

∣
∣
∣λ1 − λ01

∣
∣
∣ + |P − P0| � c1(δ) in A,

for some c1(δ) → 0 as δ → 0. The eigenvalue λ1 and the coefficients of P depend
continuously on x ∈ A. Since λ01 is a simple eigenvalue, P0(Q0)n0 �= 0 in A, and
hence we may define

u := 1

|P0(Q0)n0| P(Q)n0.

Then Q u = λ1u, and |u − n0| � c2(δ) → 0 in A, so that u �= 0 and we may
define n = u/ |u|. It holds Q n = λ1n and

|n(x) − n0(x)| � c3(δ) → 0.

Moreover the map n ⊗ n is continuous in A.
Now fix θ ∈ R and denote by Hθ the half plane corresponding to the azimuthal

angle θ

Hθ = {
(ρ cos θ, ρ sin θ, z) : ρ � 0, z ∈ R

}
,

and by Dθ the disc in Hθ of radius ε(δ) and of center at the point where the ring
Uw intersects Hθ :

Dθ = {(ρ cos θ, ρ sin θ, z) : (ρ − rw)2 + z2 � ε(δ)2}.
We claim that for low enough δ there exists x ∈ Dθ such that Q(x) is uniaxial
(which obviously proves Corollary 12).

To prove the claim, note that when restricted to Hθ , the director field n0 may be
viewed as an S

1-valued map since it takes values in S
2 ∩ Hθ . Then the restriction

of n0 ⊗ n0 to ∂ Dθ is topologically non trivial : it corresponds to a non trival class
of π1(RP

1), as can be seen by explicitly computing its degree. Since for δ low
enough n(x) is arbitrarily close to n0(x), this implies that the map n ⊗ n, which is
continuous in A ∩ Hθ , admits no continuous extension inside Dθ . Therefore Q can
not be biaxial everywhere in Dθ : if it were the case, Q would have only simple
eigenvalues and admit a differentiable eigenframe [28]. In particular there would
be a differentiable vector field ñ defined in Dθ , such that ñ ⊗ ñ extends n ⊗ n. ��
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4. Large Particle: The Dipole Structure

As mentioned in the introduction, the core of Theorem 2 is the fact that the
axially symmetric harmonic map obtained in the limit of a large particle has exactly
one singularity. In this section, we prove this result (Theorem 13 below) and then
complete the proof of Theorem 2.

We define the axially symmetric S
2-valued maps to be exactly the maps n ∈

H1
loc(�;S2) which can be written in cylindrical coordinates (ρ, θ, z) as

n = sinψ(ρ, z) eρ + cosψ(ρ, z) ez, (26)

for some real-valued function ψ ∈ H1
loc(�cyl) defined in the domain

�cyl := {(ρ, z) ∈ R+ × R : ρ2 + z2 > 1}. (27)

We consider here strong anchoring conditions given by

n = er for |x | = 1, (28)

and the far-field conditions in integral form

∫

�

(n1)
2 + (n2)

2

|x |2 dx . (29)

As in Section 2, the existence of an axially symmetric S2 valued map n minimizing
the Dirichlet functional

E(n) =
∫

�

|∇n|2 ,

under the conditions (28) and (29) follows from the direct method of the calculus
of variations and Hardy’s inequality. Such a map is analytic away from a discrete
set of singularities on the z-axis [10]. Here we prove:

Theorem 13. Let n ∈ H1
loc(�;S2) be a minimizer of the Dirichlet functional E

among all axially symmetric S
2-valued maps satisfying (28) and (29). Then n is

analytic away from exactly one point defect: there exists |z0| > 1 such that n is
analytic in �\{(0, 0, z0)}.

Remark 14. In [10, Lemma 4.3], point defects are classified according to their
tangent maps: up to director orientation there are only two possible tangent maps,
corresponding to defects of degrees ±1. At the level of the Q-tensor description
however the situation is more complex. Questions related to uniqueness, stability
and qualitative properties of defect profiles give rise to challenging issues, that have
recently attracted substantial attention [5,7,16–19].
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Proof of Theorem 13. Preliminaries. Let ψ ∈ H1
loc(�cyl) be the function asso-

ciated to n through (26). Then ψ minimizes the energy

E(ψ) =
∫

�cyl

[∣
∣∂ρψ

∣
∣2 + |∂zψ |2 + 1

ρ2 sin2 ψ

]
ρdρdz

among all functions ψ ∈ H1
loc(�cyl) such that the corresponding n satisfies (28)

and (29). Next we express these boundary conditions in terms of ψ .
The strong anchoring condition (28) is more conveniently expressed using

spherical coordinates (r, θ, ϕ):

ψ = ϕ for r = 1. (30)

It holds in the sense of traces, whichmakes sense as soon as E(ψ) < ∞. (In fact we
should have written ψ ≡ ϕ mod 2π , but since any Z-valued function of regularity
H1/2 is constant [3] we may reduce to the above.)

The far-field condition (29) becomes
∫

�cyl

sin2 ψ

ρ2 + z2
ρ dρ dz < ∞. (31)

Hence the class of admissible functions consists exactly of the ψ ∈ H1
loc(�cyl)

satisfying E(ψ) < ∞ and (30) and (31).
The Euler–Lagrange equation satisfied by ψ is

∂2z ψ + ∂2ρψ + 1

ρ
∂ρψ = 1

2ρ2 sin(2ψ) in �cyl. (32)

Note that, by elliptic regularity, any solution of (32) is real-analytic away from the
z-axis {ρ = 0}. Also note that, since replacing ψ by max(ψ, 0) or min(ψ, π) does
not change the boundary conditions and decreases the energy, it holds that

0 � ψ � π.

The rest of the proof is divided into three steps.

Step 1. We claim that the open subsets of �cyl ∩ {ρ > 0},
X+ = {ψ > π/2} and X− = {ψ < π/2},

are connected.
We split the half-circle ∂�cyl ∩ {ρ > 0} into two arcs:

A± = {r = 1, ϕ = π/2 ± t : t ∈ (0, π/2)} .

The boundary conditions ensure that A± ⊂ X±. We denote by ω± the connected
component of X± containing A±.

Let us show first that X+ = ω+. Consider the function

ψ̃ =
{

ψ in ω+,

min(ψ, π − ψ) in �cyl\ω+.
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Then it can be checked that ψ̃ ∈ H1
loc(�cyl). Moreover, E(ψ̃) = E(ψ) and ψ̃

clearly satisfies the boundary conditions (30) and (31). Therefore ψ̃ minimizes E ,
and is analytic away from the z-axis. In particular, min(ψ, π − ψ) is analytic in
�cyl\ω+.

On the other hand, since X− is open and non-void, there is an open subset of
�cyl\ω+ in which ψ < π/2. In that open subset, the two analytic functions ψ and
min(ψ, π − ψ) coincide, so they must coincide in the whole �cyl\ω+. We deduce
that

ψ � π − ψ that is ψ � π/2 in �cyl\ω+,

and therefore X+ = ω+ is connected.
To show that X− is connected, consider

ψ̃ =
{

ψ in ω−,

max(ψ, π − ψ) in �cyl\ω−.

As above, E(ψ̃) = E(ψ) and we conclude that X− = ω− is connected.

Step 2. There is at most one singularity.
We know [10] that n is analytic in � away from a set of isolated points

Z ⊂ {ρ = 0, |z| > 1}.
In particular ψ is continuous in �cyl\Z , and since

∫

�cyl

sin2 ψ

ρ
dρ dz � E(ψ) < ∞,

and 0 � ψ � π , it follows that

ψ ∈ {0, π} on (∂�cyl ∩ {ρ = 0})\Z .

At every point (0, z0) ∈ Z , ψ must be discontinuous, because otherwise n would
be continuous around that point (and then real analytic). Therefore it must hold that

either ψ =
{
0 in (z0 − δ, z0),

π in (z0, z0 + δ),
or ψ =

{
π in (z0 − δ, z0),

0 in (z0, z0 + δ),

for some δ > 0.
Let us argue by contradiction and assume that there exist two distinct points

(0, z1), (0, z2) ∈ Z , z1 < z2, [z1, z2] ∩ Z = {z1, z2}.
There are three cases: either z1 < z2 < −1, or z1 < −1 < 1 < z2, or 1 < z1 < z2.
Note that the boundary conditions (together with the boundary regularity of n [10])
ensure that ψ = π in (−1− δ,−1) and ψ = 0 in (1, 1+ δ) for some δ > 0. In all
three cases, it is easy to see that there must exist four distinct points

(0, z′
j ) /∈ Z , z′

1 < z′
2 < z′

3 < z′
4,
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such that

either ψ(z′
1) = ψ(z′

3) = 0, ψ(z′
2) = ψ(z′

4) = π,

or ψ(z′
1) = ψ(z′

3) = π, ψ(z′
2) = ψ(z′

4) = 0.

We may assume that we are in the first case (the second case can be dealt with
similarly). Then by continuity there exists δ > 0 such that

[
B((0, z′

1), δ) ∩ �cyl
] ∪ [

B((0, z′
3), δ) ∩ �cyl

] ⊂ X−,
[
B((0, z′

2), δ) ∩ �cyl
] ∪ [

B((0, z′
4), δ) ∩ �cyl

] ⊂ X+.

Since the sets X± are path-connected we deduce from the above that there is a
continuous path γ− from z′

1 to z′
3 inside X−, and a continuous path γ+ from z′

2
to z′

4 inside X+. Since z′
1 < z′

2 < z′
3 < z′

4, these paths must intersect, but then
there intersection would belong to X− ∩ X+ = ∅. This contradiction shows that Z
contains at most one point.

Step 3. There is at least one singularity.
Assume that Z is empty. Then n is continuous in �, and therefore

deg(n, ∂ Br ) = −1

2

∫ π

0
∂ϕψ(r, ϕ) sinψ(r, ϕ) dϕ,

is independent of r � 1. We deduce that

1 = deg(n, ∂ B1) = deg(n, ∂ Br )

� 1

4

∫ π

0

sin2 ψ(r, ϕ)

sin2 ϕ
sin ϕ dϕ + 1

4

∫ π

0
∂ϕψ(r, ϕ)2 sin ϕ dϕ,

which implies E(ψ) � 4
∫ ∞
1 dr = ∞, a contradiction. ��

Before turning to the proof of Theorem 2, we define rigorously the axially
symmetric Q-tensor maps. They are the maps Q ∈ H∞ which satisfy the two
following natural symmetry constraints:

• the map Q is invariant by rotation around the vertical axis:

Q(Rx) = tRQ(x)R for all rotations R of axis ez, (33)

• the vector eθ is everywhere an eigenvector of Q:

Q(x)eθ · eρ = Q(x)eθ · ez ≡ 0. (34)

These constraints are natural, in the sense that a minimizer of the free energy (2)
under those restrictions is still a solution of the complete (unconstrained) Euler–
Lagrange system (10)—as can be easily checked.We denote this class of symmetric
maps by Hsym∞ ⊂ H∞.
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Proof of Theorem 2. Recall that we are considering the limit L → 0. Since axial
symmetry (33) and (34) is clearly preserved by pointwise convergence, we may
proceed exactly as in [2, Proposition 1] to obtain a subsequence (Qk) converging
inH∞ to an axially symmetric U∗-valued map Q∗ minimizing the Dirichlet energy∫
�

|∇Q|2. The estimates in [24,27] show that the convergence is in fact locally
uniform in �, away from the singular set of Q∗.

Because� is simply connected, U∗-valued H1
loc maps can be lifted to S2-valued

H1
loc maps [1]: for any U∗-valued Q ∈ H∞, there exists n ∈ H1

loc(�;S2) such that
Q = Qn := s∗(n ⊗ n − I/3).

Therefore, the limiting map Q∗ can be written as Q∗ = Qn , and the map n mini-
mizes the Dirichlet energy in the class

Hsym∗ := {n ∈ H1
loc(�;S2) : Qn ∈ Hsym∞ with strong anchoring (9)}.

To conclude the proof, it remains to show that the class Hsym∗ actually corre-
sponds to the class considered in Theorem 13.

Using the fact that |n|2 = 1, we calculate

s−2∗ |Qn − Q∞| = 2(n2
1 + n2

2),

so that Qn satisfying (11) translates into n satisfying (29).
The strong anchoring condition (9) for Qn is equivalent to

n|∂ B = τ er ,

for some {±1}-valued function τ , which must be of regularity H1/2 and therefore
constant [3]. Therefore, up to multiplying the map n by a sign, the strong anchoring
condition becomes (28).

The fact that Qn admits eθ as an eigenvector (34) is equivalent to

(n · eθ )(n · eρ) = (n · eθ )(n · ez) = 0 ⇔ n · eθ ∈ {0,±1}.
Since the function n · eθ is H1

loc, it must therefore be constant. The boundary
conditions prevent it to be equal to ±1, so that n · eθ ≡ 0.

The invariance by rotation (33) for Qn is equivalent to n(Rx) = ±Rn(x) for
any rotation R of axis ez . The sign ±1 may depend on x and on R, but the H1

loc
regularity implies that it does not depend on x . Therefore it holds, using cylindrical
coordinates, that

n(ρ, θ, z) = τ(θ) Rθ n(ρ, 0, z), τ (θ) = ±1,

where Rθ ∈ SO(3) is the rotation of axis ez and angle θ . The function τ is easily
seen to belong to H1/2(R/2πZ): we conclude that τ ≡ 1.

Therefore the axial symmetry (33) and (34) of Qn is equivalent to

n(ρ, θ, z) = Rθ n(ρ, 0, z), and n · eθ ≡ 0,
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which implies that

n(ρ, θ, z) = u1(ρ, z) eρ + u2(ρ, z)ez, u ∈ H1
loc(�cyl;S1).

Since �cyl is simply connected, u can be lifted to a real-valued function ψ ∈
H1
loc(�cyl): u1 = sinψ , u2 = cosψ . Therefore n is of the form (26), and Hsym∗

corresponds indeed (up to a sign) to the class of axially symmetric S2-valued maps
satisfying (28) and (29).
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