TD: Fourier.

Exercice 1. L'application qui à une fonction associe ses coefficients de Fourier est-elle :

- 1. continue de L^1_{per} dans $c_0(\mathbb{Z})$?
- 2. surjective de C_{per}^1 dans $\ell^1(\mathbb{Z})$?
- 3. injective de C_{per}^0 dans $\ell^1(\mathbb{Z})$?
- 4. bijective de $\mathcal{C}_{per}^{\infty}$ dans l'espace des suites à décroissance rapide :

$$s_0(\mathbb{Z}) = \{(c_n) \in \mathbb{C}^{\mathbb{Z}} : \forall p \ge 0, c_n = o(|n|^{-p})\}$$
?

Exercice 2. Soit P le polynôme trigonométrique

$$P(t) = \sum_{k=-N}^{N} c_k e^{ikt}.$$

Calculer les coefficients de Fourier de P.

Exercice 3. L'égalité de Parseval affirme que si $f \in L^2_{per}$, alors $(c_n(f))_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$ et

$$||f||_2^2 = \sum_{n \in \mathbb{Z}} |c_n(f)|^2.$$

Ecrire l'égalité de Parseval avec les coefficients $a_n(f)$ et $b_n(f)$.

Exercice 4. Soit f la fonction paire 2π périodique définie par $f(x) = \pi - x$ pour $x \in [0, \pi]$.

- 1. Dessiner le graphe de f.
- 2. Calculer les coefficients de Fourier de f.
- 3. En étudiant la convergence de la série de Fourier de f, en déduire les sommes suivantes

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}, \qquad \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4}.$$

Exercice 5 (Quelques valeurs de la fonction ζ sur les entiers pairs). En considérant les fonctions 2π périodiques f_k définies par

$$\forall x \in]-\pi,\pi[, \qquad f_k(x)=x^k$$

pour k = 1, 2 ou 3, montrer que

$$\sum_{n>0} \frac{1}{n^2} = \frac{\pi^2}{6}, \quad \sum_{n>0} \frac{1}{n^4} = \frac{\pi^4}{90}, \quad \sum_{n>0} \frac{1}{n^6} = \frac{\pi^6}{945}.$$

Exercice 6. Soit f une fonction 2π périodique de classe C^1 vérifiant $\int_0^{2\pi} f = 0$.

1. Montrer que

$$\int_0^{2\pi} |f|^2 \le \int_0^{2\pi} |f'|^2.$$

2. Déterminer les cas d'égalité.

Exercice 7. On rappelle que le noyau de Dirichlet d'ordre n est défini par

$$D_n(x) := \frac{1}{2\pi} \sum_{k=-n}^n e^{ikx}.$$

1

1. Montrer que pour tout $x \neq 0$,

$$D_n(x) = \frac{1}{2\pi} \frac{\sin\left(\left(n + \frac{1}{2}\right)x\right)}{\sin\frac{x}{2}}.$$

2. Soit $f \in L^1_{per}$. Montrer que

$$(D_n * f)(x) = \sum_{k=-n}^{n} c_k(f)e^{ikx}.$$

3. Traduire à l'aide de D_n le théorème de convergence en moyenne quadratique.

Exercice 8. On rappelle que le noyau de Féjer est défini pour tout n > 0 par

$$F_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} D_k(x).$$

1. Montrer que pour tout $x \neq 0$,

$$F_n(x) = \frac{1}{2\pi n} \left(\frac{\sin(nx/2)}{\sin(x/2)} \right)^2.$$

2. Montrer que pour tout $x \in \mathbb{R}$,

$$(F_n * f)(x) = \sum_{k=-(n-1)}^{n-1} \left(1 - \frac{|k|}{n}\right) c_k(f)e^{ikx}.$$

3. Montrer que les noyaux de Féjer $(F_n)_{n>0}$ forment une approximation de l'unité : $F_n \geq 0$, $\int_{-\pi}^{\pi} F_n(t) dt = 1$ et pour tout $\varepsilon > 0$,

$$\lim_{n \to +\infty} \int_{s < |t| < \pi} |F_n(t)| \, dt = 0.$$

- 4. Montrer que pour tout $f \in \mathcal{C}^0_{per}$, $(F_n * f)_{n \in \mathbb{N}}$ converge uniformément vers f.
- 5. Soit $p \in [1, \infty)$. Montrer que pour tout $f \in L_{per}^p$, $(F_n * f)_{n \in \mathbb{N}}$ converge vers f dans L_{per}^p .
- 6. Soit $f \in \mathcal{C}^0_{per}$ et $x \in \mathbb{R}$. Expliquer pourquoi si la série de Fourier de f en x converge, alors elle converge nécessairement vers f(x).
- 7. Montrer que l'application qui à $f \in L^1_{per}$ associe ses coefficients de Fourier est injective.

Exercice 9 (Phenomène de Gibbs). Soit f la fonction 2π -périodique égale à 1 sur $]0, \pi[$, 0 sur $]\pi, 2\pi[$, et 1/2 en 0 et π .

- 1. Calculer la série de Fourier de f, et montrer qu'elle converge simplement vers f.
- 2. Montrer que pour tout $N \geq 1$, les dérivées des sommes partielles vérifient

$$S_{2N-1}(f)'(t) = \frac{1}{\pi} \frac{\sin(2Nt)}{\sin t} \quad \forall t \in \mathbb{R} \setminus \pi \mathbb{Z}.$$

3. En déduire que

$$\max_{[0,\pi]} S_{2N-1}(f) = S_{2N-1}(f) \left(\frac{\pi}{2N}\right) = \frac{1}{2} + \frac{1}{\pi} \int_0^{\frac{\pi}{2N}} \frac{\sin(2Nt)}{\sin t} dt.$$

4. Montrer que

$$\max_{[0,\pi]} S_N(f) \longrightarrow \frac{1}{2} + \frac{1}{\pi} \int_0^{\pi} \frac{\sin t}{t} dt \quad \text{lorsque } N \to \infty.$$

5. On admet que $\frac{1}{2} + \frac{1}{\pi} \int_0^{\pi} \frac{\sin t}{t} dt \approx 1,089$. Que dire de l'approximation de f par $S_N(f)$? On pourra illustrer le phénomène par un dessin.

Exercice 10 (Problème de Dirichlet et noyau de Poisson). On note D le disque unité ouvert dans $\mathbb{R}^2 \approx \mathbb{C}$. Soit $u \colon \overline{D} \to \mathbb{C}$ de classe C^2 dans D.

1. Montrer que pour tout $n \in \mathbb{Z}$ il existe $u_n : [0,1] \to \mathbb{C}$ de classe C^2 telle que

$$u(re^{i\theta}) = \sum_{n \in \mathbb{Z}} u_n(r)e^{in\theta} \quad \forall r \in [0, 1[, \theta \in \mathbb{R}.$$

- 2. Montrer que $u_n(0) = 0$ pour tout $n \neq 0$.
- 3. On suppose que $\Delta u = \partial_1^2 u + \partial_2^2 u = 0$ dans D. Montrer que

$$u_n''(r) + \frac{1}{r}u_n'(r) - \frac{n^2}{r^2}u_n(r) = 0 \quad \forall r \in]0, 1[, n \in \mathbb{Z}.$$

- 4. On suppose de plus que u_n est continue sur \overline{D} . Déterminer u_n en fonction des coefficients de Fourier de $f: \theta \mapsto u(e^{i\theta})$. On pourra chercher des solutions particulières de la forme $r \mapsto r^{\lambda}$ $(\lambda \in \mathbb{R})$ pour l'équation différentielle obtenue à la question précédente.
- 5. Montrer que $u(re^{i\theta}) = (P_r * f)(\theta)$, où

$$P_r(\theta) = \frac{1 - r^2}{1 - 2r\cos\theta + r^2} \quad \forall r \in [0, 1[, \theta \in \mathbb{R}.$$

6. Réciproquement, si $f \in C^0_{2\pi}(\mathbb{R}, \mathbb{C})$ et u est définie par la formule de la question précédente, montrer que u est C^2 sur D et continue sur \overline{D} , que $\Delta u = 0$ dans D et $u(e^{i\theta}) = f(\theta)$ pour tout $\theta \in \mathbb{R}$.

Exercice 11 (Equation de la chaleur périodique). Soit $u: [0, +\infty \times \mathbb{R} \to \mathbb{C}, (t, x) = u(t, x)$ une fonction continue, de classe C^1 sur $]0, +\infty[\times\mathbb{R},$ et telle que pour tout $t > 0, x \mapsto u(t, x)$ soit 2π -périodique et de classe C^2 .

1. Montrer que pour tout $n \in \mathbb{Z}$ il existe $u_n : [0, +\infty[\to \mathbb{C}$ de classe C^1 sur $]0, +\infty[$ telle que

$$u(t,x) = \sum_{n \in \mathbb{Z}} u_n(t)e^{inx} \quad \forall t > 0, x \in \mathbb{R}.$$

- 2. On suppose que $\partial_t u = \partial_x^2 u$. Exprimer u_n en fonction des coefficients de Fourier de la fonction continue $f: x \mapsto u(0, x)$.
- 3. Montrer que $u(x,t)=(f*H_t)(x)$, où H_t est le noyau de la chaleur sur $\mathbb{S}^1=\mathbb{R}/2\pi\mathbb{Z}$ donné par

$$H_t(x) = \sum_{n \in \mathbb{Z}} e^{-n^2 t} e^{inx} \quad \forall (t, x) \in]0, +\infty \times \mathbb{R}.$$

Exercice 12. On définit les fonctions suivantes

$$s_n \colon x \mapsto \sqrt{\frac{2}{\pi}} \sin(nx), \quad c_n \colon x \mapsto \sqrt{\frac{2}{\pi}} \cos(nx), \quad c_0 \colon x \mapsto \frac{1}{\sqrt{\pi}} \quad \text{pour } n \ge 1.$$

1. Montrer que $(s_n)_{n\geq 1}$ et $(c_n)_{n\geq 0}$ sont des bases hilbertiennes de $L^2([0,\pi])$.

- 2. Soit $f \in C^0([0,\pi])$ et $u \in C^0([0,\pi]) \cap C^2([0,\pi])$ telle que u'' = f dans $[0,\pi]$ et $u(0) = u(\pi) = 0$. Déterminer u en fonction des coefficients $\langle f, s_n \rangle$.
- 3. Soit $f \in C^0([0,\pi])$ et $u \in C^0([0,\pi]) \cap C^2([0,\pi])$ telle que u'' = f dans $[0,\pi]$ et $u'(0) = u'(\pi) = 0$. Déterminer u en fonction des coefficients $\langle f, c_n \rangle$.

Exercice 13 (Espace de Schwartz). Démontrer les assertions suivantes:

- 1. $x \mapsto e^{-|x|^2} \in \mathcal{S}(\mathbb{R}^n)$.
- 2. $C_c^{\infty}(\mathbb{R}^n) \subsetneq \mathcal{S}(\mathbb{R}^n) \subsetneq C_0^{\infty}(\mathbb{R}^n)$.
- 3. Si $f, g \in \mathcal{S}(\mathbb{R}^n)$ alors $fg \in \mathcal{S}(\mathbb{R}^n)$.
- 4. Si $f \in \mathcal{S}(\mathbb{R}^n)$ et P est une fonction polynomiale sur \mathbb{R}^n , alors $Pf \in \mathcal{S}(\mathbb{R}^n)$.
- 5. Si $f, g \in \mathcal{S}(\mathbb{R}^n)$, alors $f * g \in \mathcal{S}(\mathbb{R}^n)$.

Exercice 14. Soit $f \in L^1(\mathbb{R}^n)$. Calculer, en fonction de \hat{f} , les transformée de Fourier des fonctions

- 1. $x \mapsto f(\lambda x)$ pour $\lambda > 0$.
- 2. $x \mapsto f(Rx)$ pour $R \in O(n)$.
- 3. $x \mapsto f(x+\tau)$ pour $\tau \in \mathbb{R}^n$.
- 4. $\partial^{\alpha} f$ pour $\alpha \in \mathbb{N}^n$, si $f \in \mathcal{S}(\mathbb{R}^n)$.

Exercice 15. Soit $f \in L^2(\mathbb{R}^n)$ une fonction radiale: il existe $f_0: [0, \infty) \to \mathbb{C}$ telle que $f(x) = f_0(|x|)$.

- 1. Montrer que \hat{f} est radiale: il existe $F_0: [0, \infty[\to \mathbb{C}$ telle que $\hat{f}(\xi) = F_0(|\xi|)$. On pourra utiliser l'invariance de f par les rotations.
- 2. Exprimer F_0 en fonction de f_0 .

Exercice 16. Soit $G: \mathbb{R}^n \to \mathbb{R}$ définie par $G(x) = e^{-|x|^2}$. Calculer \hat{G} . On pourra traiter d'abord le cas n = 1 en obtenant une relation entre \hat{G}' et \hat{G} .

Exercice 17. Soit $A \in M_n(\mathbb{R})$ une matrice symétrique définie positive. Calculer la transformée de Fourier de $x \mapsto e^{-x \cdot Ax}$. On pourra traiter d'abord le cas où A est diagonale.

Exercice 18. Soit $f \in L^2(\mathbb{R}^n)$ telle que $\xi \mapsto |\xi|^{\lambda} \hat{f}(\xi) \in L^2(\mathbb{R}^n)$ pour un certain $\lambda > n/2$. Montrer qu'il existe C > 0 tel que

$$|f(x+h) - f(x)| \le C\left(|h|^{\lambda - \frac{n}{2}} + |h|\right) \qquad \forall x, h \in \mathbb{R}^n.$$

On pourra exprimer f(x+h) - f(x) comme une intégrale en fonction de \hat{f} et distinguer les domaines d'intégration $|\xi| \le 1/|h|$ et $|\xi| > 1/|h|$.

Exercice 19 (Equation de la chaleur). Soit $u: [0, +\infty[\times \mathbb{R}^n \text{ une fonction continue, de classe } C^1 \text{ sur }]0, +\infty[\times \mathbb{R}^n, \text{ et telle que pour tout } t \geq 0, \ u(t, \cdot) \in \mathcal{S}(\mathbb{R}^n).$ On suppose que $\partial_t u = \Delta_x u$ dans $]0, +\infty[\times \mathbb{R}^n.$

- 1. Soit $\hat{u}(t,\xi) = \int u(t,x)e^{-2i\pi x\cdot\xi}dx$ pour tous $(t,\xi) \in]0,+\infty[\times\mathbb{R}^n$. Calculer $\partial_t\hat{u}$ en fonction de \hat{u} , puis \hat{u} en fonction de \hat{f} , où $f = u(0,\cdot)$.
- 2. Montrer que $u(t,x)=(f*\mathcal{H}^n_t)(x)$, où \mathcal{H}^n_t est le noyau de la chaleur sur \mathbb{R}^n , donné par

$$\mathcal{H}_t^n(x) = \lambda(t)e^{-\frac{|x|^2}{2\sigma(t)}} \quad \forall (t,x) \in]0, +\infty[\times \mathbb{R}^n,$$

pour des fonctions $\lambda, \sigma > 0$ qu'on déterminera.

3. Montrer la formule de sommation de Poisson: pour toute $\varphi \in \mathcal{S}(\mathbb{R})$, on a

$$\sum_{n\in\mathbb{Z}}\varphi(x+n)=\sum_{n\in\mathbb{Z}}\hat{\varphi}(n)e^{2i\pi nx}\quad\forall x\in\mathbb{R}.$$

4. En déduire une expression du noyau de la chaleur H_t sur \mathbb{S}^1 en fonction de \mathcal{H}_t^1 , et que H_t est à valeurs dans $[0, +\infty[$.