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Abstract

Multivariate functional anomaly detection has received a large amount of at-
tention recently. Accounting both the time dimension and the correlations be-
tween variables is challenging due to the existence of different types of outliers
and the dimension of the data. In the context of predictive maintenance and
quality control, data sets often contain a large number of functional variables.
However, most of the existing methods focus on a small number of functional
variables. Moreover, in fields that have high reliability standards, detecting a
small number of potential multivariate functional outliers with as few false pos-
itives as possible is crucial. In such a context, the adaptation of the Invariant
Coordinate Selection (ICS) method from the multivariate to the multivariate
functional case is of particular interest. Two extensions of ICS are proposed:
point-wise and global. For both methods, the choice of the relevant components
together with outlier identification and interpretation are discussed. A com-
parison is made on a predictive maintenance example from the avionics field
and a quality control example from the microelectronics field. It appears that
in such a context, point-wise and global ICS with a small number of selected
components can be recommended.

Keywords: affine invariance, functional outlier map, global ICS, outliers,
point-wise ICS, scatter matrices.

1. Introduction

Functional data analysis (FDA) is meanwhile a well-established field as
demonstrated for example in text books like Ramsay & Silverman (2005); Kokoszka
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& Reimherr (2017). The main focus of FDA so far seems however to be on
univariate functional data and time series as for example recent special issues
on FDA like Kokoszka et al. (2017); Ferraty et al. (2022) show. Only recently
research on multivariate functional methods started although multivariate func-
tional data are frequently encountered in many different fields including mete-
orology (Suhaila et al., 2011), medicine (Erbas et al., 2007) and quality control
(Millán-Roures et al., 2018). More precisely, the observations that we consider
here are functions of a univariate input variable (usually time) with multivari-
ate output values. In what follows, the number of dimensions of the vector
of output curves is denoted by p and the number of observed sets of these p
curves is denoted by n with the assumption that n > p. Daily measurements of
temperature, log precipitation and wind speed at some weather stations provide
one example of such data. Other examples include fields with high reliability
standards, such as automotive, avionics or aerospace engineering, where many
parameters are measured over a certain period of time. In avionics, dozens of
technical parameters, such as the airspeed, altitude, and so on, are recorded
throughout flights by the aircraft. In microelectronics semiconductor fabrica-
tion, there is a large collection of process-control measurements, recorded by var-
ious sensors during the processing of silicon wafers. In the usual non-functional
multivariate framework, it is well-known that anomalies might not be outlying
in any of the original variables but could exhibit a different correlation pat-
tern compared to the main bulk of the data. While univariate outliers can
be identified quite easily, specifically by visually searching for extreme values,
multivariate outliers are more difficult to detect, especially in large dimension
(Archimbaud et al., 2018). In the univariate functional context, outliers in the
sense of their magnitude are usually distinguished from outliers in the sense of
their shape. While magnitude outliers can be identified visually by tracking the
extreme values of the curves, it can be difficult to detect observations that have
neither especially high nor especially low values but instead exhibit anomalous
patterns. When looking at multivariate functional data with a large number of
dimensions p, both difficulties (multivariate and functional) are combined, and
there are many possible types of outliers (see Hubert et al. (2015) for a tax-
onomy). Outliers are usually first divided into isolated and persistent outliers
depending on whether their abnormal behaviour lasts for a short or long time.
In the present contribution, focusing on high reliability applications, we assume
that any extreme behaviours over a very short time is detected beforehand, and
we focus on outliers that are quite persistent.

Detecting outliers in a multivariate functional framework is an issue that
has received a large amount of attention very recently (see Rousseeuw et al.
(2018), Staerman et al. (2019), Dai et al. (2020), Lejeune et al. (2020) and the
references therein). Given that shape outliers are more difficult to identify than
magnitude outliers, several recent papers tackle the problem of detecting shape
anomalies in either a univariate functional framework (Nagy et al. (2017) and
Harris et al. (2021)) or a multivariate functional framework (Dai et al. (2020)
and Lejeune et al. (2020)).

Many papers in the univariate and multivariate functional data analysis lit-
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erature consider the problem of outlier detection through a functional depth or
pseudo-depth approach (e.g. Hubert et al. (2015), Kuhnt & Rehage (2016), Dai
et al. (2020) and references therein). Each depth notion leads to a centrality
index for the observed curves that allows for the identification of non-central
curves as outliers. In a multivariate context with large dimension (p ≥ 5),
the depth-based methods are, however, computationally costly. Besides depths,
there exist also other approaches such as the shape-based feature extraction
method by Lejeune et al. (2020) and the isolation forest method by Staerman
et al. (2019). Nevertheless, none of the proposed methods incorporate a dimen-
sion reduction step with regard to the dimension p. The lack of a dimension
reduction step most likely explains why most examples discussed in the litera-
ture on multivariate functional outlier detection do not go beyond p = 3, and
instead focus on the bivariate case (Kuhnt & Rehage (2016), Rousseeuw et al.
(2018), Dai & Genton (2019), Dai et al. (2020), Staerman et al. (2019) and
Lejeune et al. (2020)). To the best of our knowledge, robust PCA for univari-
ate functional outlier detection (Sawant et al., 2012) has not been previously
extended to the multivariate case.

In a non-functional framework, Archimbaud et al. (2018) consider the prob-
lem of outlier detection in large dimension (but still with n > p) and show that
the Mahalanobis distance, which is a particular depth measure, works poorly.
They propose to use instead the Invariant Coordinate Selection (ICS) method
(see also Archimbaud et al. (2018b) and the R packages ICSOutlier by Archim-
baud et al. (2018a) and ICSShiny by Archimbaud et al. (2018) for the implemen-
tation of the method in R), which is based on the joint diagonalization of two
scatter matrices. The theoretical properties of the method are studied in Tyler
et al. (2009) from the perspectives of mixtures of elliptical distributions and
Independent Component Analysis. The method is similar to PCA in the sense
that it allows a dimension reduction by calculating and selecting a small number
of coordinates, or components. However, instead of relying on the eigendecom-
position of one scatter matrix, it relies on the eigendecomposition of one scatter
matrix relative to a second matrix (Nordhausen & Ruiz-Gazen, 2022). When
observations are structured in groups as is the case in the presence of outliers
(one large group accompanied by several small groups), ICS is able to retrieve
the Fisher discriminant subspace without knowing the group memberships (see
Theorem 3 in Tyler et al. (2009)). With respect to the outlier detection, this
capability means that dimension reduction through ICS is more likely to retain
the outlyingness structure compared to PCA which has no guarantee of recov-
ering the Fisher discriminant subspace. Moreover, ICS is affine invariant while
PCA is only orthogonally invariant. Archimbaud et al. (2018) consider different
pairs of scatter matrices where one scatter is more robust than the other. In
fields with high reliability standards, such as automotive, avionics or aerospace
industries, where only a small proportion of observations can be abnormal, the
authors recommend the use of the regular covariance matrix and the so-called
matrix of fourth moments as the scatter pair. They also exhibit the advantages
of ICS over the use of Mahalanobis distances and robust PCA.

Recently, Li et al. (2016a) and Virta et al. (2020) proposed to generalize ICS
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to functional data in the context of Independent Component Analysis. While Li
et al. (2016a) focus on the univariate case, Virta et al. (2020) consider multivari-
ate functional data. To the best of our knowledge, there exists no extension of
ICS to multivariate functional outlier detection. In the present paper we focus
on the problem of detecting a small proportion of outliers (no more than 2%)
as in Archimbaud et al. (2018), and we propose two functional ICS extensions.
The first method, called “point-wise ICS”, is comparable with the point-wise
approach used in Dai & Genton (2018) and Rousseeuw et al. (2018) but replaces,
at each time step, the depth procedure with ICS. As detailed in Archimbaud
et al. (2018), ICS consists of getting invariant coordinates, selecting the relevant
components and calculating, for each observation, an outlyingness score using
only the selected components. To select the relevant components, we propose
to use the asymptotic test from Nordhausen et al. (2017, 2022) separately at
each time point. Following Rousseeuw et al. (2018), the obtained scores are
summarized by calculating certain average and dispersion measures. Using the
Functional Outlier Map (FOM) from Rousseeuw et al. (2018), the amplitude
and shape outliers can then be identified. The second ICS adaptation to func-
tional data is called “global ICS” and consists in expanding the data on a basis,
such as a Fourier or B-spline basis, and selecting a number D of basis functions.
ICS is then applied to the resulting vectors of p × D coordinates. This pro-
cedure, which is very similar to the procedure described in Virta et al. (2020)
in the case of Independent Component Analysis, is then supplemented by an
outlier identification step. For global ICS, we follow the recommendations from
Archimbaud et al. (2018) and use the scree plot as a simple tool to choose the
relevant components and identify outliers using a Monte Carlo cutoff. To il-
lustrate and compare “point-wise” and “global” ICS, we propose to examine
in detail an example of daily weather measurements in small dimension. This
example illustrates that point-wise and global ICS can identify amplitude and
shape outliers with a multivariate perspective. Selecting a small number of
components allows us to identify the most extreme multivariate amplitude and
shape outliers. In the context of quality control, where univariate outliers have
already been detected upstream, a small false positive rate is crucial. Thus,
point-wise and global ICS with a small number of selected components are in-
teresting approaches as illustrated on two real data sets.

This paper is organized as follows. Section 2 is divided into five subsec-
tions. First, in Subsection 2.1, we recall ordinary ICS for multivariate outlier
detection, which is generalized in the following two subsections to the func-
tional setting in two different ways: point-wise functional ICS and global ICS.
Point-wise functional ICS in Subsection 2.2 consists in applying the ordinary
ICS separately at each time point, whereas global ICS consists in implementing
ICS only once on the coefficients of a functional basis expansion of each of the
variables and is detailed in Subsection 2.3. Details concerning the criteria for
the dimension selection are also discussed for both methods. Since each of the
two approaches operates on data pre-processed in specific ways, guidelines to
achieve these conditions in practice are discussed in Subsection 2.4. An illustra-
tive and low-dimensional example of applying the two methods to the weather
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data set is given in Subsection 2.5. Section 3 is devoted to illustrate the two
functional ICS approaches on two real data sets from the predictive maintenance
and quality control fields. The performance of the methods is also evaluated in
Section 3 through a small simulation study with p = 2 and p = 20. Section 4
concludes and gives research perspectives.

2. ICS for multivariate functional data

2.1. Ordinary ICS

For a p-variate data set Xn = (x1, . . . ,xn)′, where ′ denotes the transpose
operator, a location vector m(Xn) is an affine equivariant statistical functional
taking values in Rp and a scatter matrix V(Xn) is an affine equivariant statis-
tical functional taking values in the space of p × p symmetric positive definite
matrices. By “affine equivariant” we mean that m(Xn) and V(Xn) are such
that

m(XnA + 1nb
′) = A′m(Xn) + b and V(XnA + 1nb

′) = A′V(Xn)A,

where A is a full rank p× p matrix, b a p-vector and 1n stands for the n-vector
full of ones.

Scatter matrices are often computed with respect to a location vector and
the most popular, and also most relevant, location vector for our purpose is the
sample mean x̄ = 1

n

∑n
i=1 xi.

One example of a scatter pair is the regular covariance matrix

COV(Xn) =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)′,

combined with the so-called scatter matrix of fourth moments

COV4(Xn) =
1

(p+ 2)n

n∑
i=1

r2i (xi − x̄)(xi − x̄)′,

where r2i = (xi − x̄)′COV(Xn)−1(xi − x̄) is the classical squared Mahalanobis
distance (see Nordhausen & Tyler (2015) and the references therein for other
examples of scatter matrices). As illustrated on simulations by Archimbaud
et al. (2018) in the context of a small proportion of outliers, this particular
scatter pair is not only simple and fast to compute but also effective in detecting
outliers when compared to other pairs that involve robust scatter estimators
and a very popular combination in many other contexts (Nordhausen & Virta,
2019). The context in which there is a small proportion of outliers (less than
2%) is encountered in fields where the data quality standards are high, such as
in avionics or aerospace, and it is precisely the context we are interested in.

ICS consists in the joint diagonalization of a scatter pair (V1(Xn),V2(Xn)).
That is, we look for a p× p matrix B(Xn) and a diagonal matrix D(Xn) such
that:

B(Xn)V1(Xn)B(Xn)′ = Ip and B(Xn)V2(Xn)B(Xn)′ = D(Xn),
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where Ip denotes the p × p identity matrix. Diagonal of D(Xn) contains the
eigenvalues of V1(Xn)−1V2(Xn) in decreasing order, while the rows of the
matrix B(Xn) = (b1, . . . ,bp)′ contain the corresponding eigenvectors so that

V1(Xn)−1V2(Xn)B(Xn)′ = B(Xn)′D(Xn).

Using any location estimator m(Xn), the corresponding scores,

Zn = (z1, . . . , zn)′ = (Xn − 1nm(Xn)′)B(Xn)′,

are the affine invariant coordinates or components. As proved in Archimbaud
et al. (2018), the Euclidian norm

√
z′izi of the ith observation, i = 1, . . . , n,

is equal to the Mahalanobis distance of the ith observation from the location
m(Xn) in the sense of V1(Xn). Note that this property does not depend on the
location estimators used in V1(Xn) and V2(Xn). The Mahalanobis distance
does not offer the possibility of dimension reduction. However, this property of
the invariant coordinates can be useful if the outliers belong to a space of reduced
dimension and if we attempt to avoid false positives, as in high reliability fields.
Indeed, ICS offers the possibility to select the components that are helpful to
detect rare and real anomalies, and consequently, it avoids false positives caused
by noisy dimensions. In the case of a small proportion of outliers, the theoretical
properties of ICS (see Archimbaud et al. (2018) for details) lead us to only focus
on the invariant components associated to the largest eigenvalues. Archimbaud
et al. (2018) propose various automatic selection procedures based on hypothesis
testing, but they acknowledge the fact that these procedures tend to select too
many components, and they propose the scree plot as an alternative. Once
having selected k invariant components, the last step of the procedure is the
identification of the outlying observations. For each observation i = 1, . . . , n, we
calculate its squared “ICS distance”, which corresponds to the squared Euclidian
norm in the invariant coordinate system restrained to the k first coordinates:

(ICS distance)
2
i,k =

k∑
j=1

(
zji

)2
, (1)

where zji denotes the jth coordinate of the score zi. In Archimbaud et al.
(2018), an observation is flagged as an outlier when its ICS distance using k
components is larger than a cutoff based on Monte Carlo simulations from the
standard Gaussian distribution. Being given a data dimension, a scatter pair
and a number k of selected components, many Gaussian samples are generated
and the ICS distances are computed. A cutoff is derived for a fixed level γ as
the 1− γ quantile of these distances.

2.2. Point-wise functional ICS

In this and the following subsections we generalize the ordinary ICS to mul-
tivariate functional data into two complementary ways. Both approaches as-
sume that our sample consists of n observations of p-variate functions on [0, 1].
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Furthermore, for point-wise functional ICS, we require that the np curves are
aligned both across the n observations and the p features and that we have
available the values of the curves on the equispaced grid {1/T, 2/T, . . . , 1} for
some T ∈ N. See Subsection 2.4 on preprocessing the data in cases where these
assumptions are not satisfied.

Thus, for each of the T time points on the grid, we have a sample of n obser-
vations of the point-wise values of the p curves. Point-wise functional ICS then
consists of applying the ordinary ICS to each of these samples and calculating
the resulting sets of n observations of p invariant coordinates for each of the T
time points. For each time point t, we further select k(t) components with a rule

specified below and compute the set of n ICS distances, (ICS distance)
2
i,k(t) (t),

i = 1, . . . , n. This process leads us to n curves of ICS distances (one per obser-
vational unit) on the grid.

If there is no dimension reduction (i.e., k(t) = p for each time point t), the
method is equivalent to the calculation of the Mahalanobis distance at each time
point. However, the main advantage of ICS distances compared to Mahalanobis
distances is that they can be based on a subset of components that form a
more informative subspace. Basically all of those components that appear to be
the most non-Gaussian should be selected. ICS can be considered in this case
to be non-Gaussian component analysis (NGCA) (Nordhausen et al., 2017),
where we assume that all of the outliers lie in a subspace that obviously is
non-Gaussian and that this subspace is independent from the uncontaminated
Gaussian subspace. Tyler et al. (2009); Nordhausen et al. (2017); Radojicic
& Nordhausen (2020) then show that the eigenvalues d1, . . . , dp contained in
D(Xn) are the key to identifying the two subspaces because these can be seen
as generalized measures of kurtosis. In the Gaussian subspace all eigenvalues
must be equal and the exact values then only depend on the scatter matrices
used in ICS. In the case of COV and COV4, it can be shown that the “Gaussian”
eigenvalues are equal to 1, and in our setting of only a few outliers, the “Non-
Gaussian” eigenvalues are all larger than one. Thus, we have d1 ≥ . . . ≥ dk >
1 = · · · = 1, where the problem is now that k is unknown. One could, for
example, use a scree plot or marginal tests as discussed in Archimbaud et al.
(2018) or use successive applications of hypothesis tests of the form H0q : k = q

and test H00, H01, H02, . . . to find the value k̂ = q where H0q is the first
test not rejected at a given significance level. The test statistic and its limiting
distribution under the null hypothesis for a given q are presented in Nordhausen
et al. (2017) where it is also shown that these statistics are fast to compute and
lead to a consistent estimate of k for an appropriate sequence of significance
levels.

In point-wise functional ICS, we follow the procedure detailed above, taking
1% as the initial significance level for testing H00, and applying a type of Bonfer-
roni adjustment by dividing the level by 2 for H01, by 3 for H02, and so on (see
Archimbaud et al. (2018) for more details). Note that this sequence of statistical
tests is performed separately for each of the T time points, implying that the
number of selected components varies over time. The procedure leads to two
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natural graphical displays of the results. First, one can plot the ICS distances
of the n observations according to the time, allowing the pin-pointing of both
outlying observations and the times during which they exhibit their anomalous
behavior. Second, we can plot the estimated dimension k(t) with respect to
the time, giving us a glimpse of the “complexity” of the data along the time.
Additionally, the ICS distances can also be used to construct a 2-dimensional
outlier map as in Rousseeuw et al. (2018). However, we have postponed the
definition of this, along with some additional guidelines for interpreting the re-
sults, to Subsection 2.5 where the weather data is used to illustrate point-wise
functional ICS.

Before moving to global functional ICS, we note that point-wise functional
ICS could also be defined at the population level. Namely, let L2 := L2([0, 1], dt)
denote the Hilbert space of square integrable functions on [0, 1] (with respect to
the Lebesgue measure dt) endowed with the usual inner product 〈f, g〉L2 =∫ 1

0
f(t) g(t) dt. Then, let (Ω,F ,P) be a probability space and let X(t) =

(X1(t), . . . , Xp(t)) be a centered random element in L := L2 × · · · × L2 that is
measurable F\B, where B is the Borel sigma-algebra in the topology generated
by the metric induced by the inner product 〈f, g〉L := 〈f1, g1〉L2 +· · ·+〈fp, gp〉L2 .
Then, point-wise functional ICS consists in applying the ordinary, population-
level ICS to each of the random vectors X(t) = (X1(t), . . . , Xp(t)) for t ∈ [0, 1].
In order to be well-defined, this process requires that Cov{X(t)} is invertible
and that E‖X(t)‖4 < ∞ for each t ∈ [0, 1], see, e.g., Ilmonen et al. (2010);
Miettinen et al. (2015) for details.

2.3. Global functional ICS

For global functional ICS, we assume that our n observations of p-variate
functions on [0, 1] are aligned across the n observations but not necessarily
across the p features. Additionally, we assume that, for each of the features, the
curves have been projected into a D-dimensional functional space, see Subsec-
tion 2.4 for some guidelines to achieve this in practice. These projections are
implemented separately for each feature which explains that there is no need to
align the curves across the features. This gives us a n× pD data matrix which
no longer consists of functions per se, but is rather made up of n observations
of pD variables corresponding to the basis function coefficients of the curves.
Assuming that n > pD, we define global functional ICS as the application of
the ordinary ICS to this data set, producing n observations of pD invariant
components.

We now follow Archimbaud et al. (2018), see Subsection 2.1, and use a test
procedure to select the number of invariant coordinates using the test proposed
by Nordhausen et al. (2017) as detailed previously. However, we instead recom-
mend the scree plot, as advised by Archimbaud et al. (2018), and spot an elbow
in the decrease of the eigenvalues or some large differences between successive
eigenvalues. This graphical method is simple and tends to select fewer variables
than the test procedure which selects all eigenvalues significantly larger than
one. It cannot be used in the context of point-wise ICS, where the dimension
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selection must be performed at each time point and must be automated, but we
recommend its use for global ICS. Having selected an appropriate dimension, we
proceed by computing the ICS distances of the observations, the plot of which
can again be used to identify outliers. We postpone the full illustration of this
procedure to Subsection 2.5 where the two proposed functional ICS methods
are applied to the weather data set.

Again, global functional ICS also admits a population-level formulation. An
equivalent procedure is detailed in the case of independent component analysis
in Virta et al. (2020) and, hence, we only give its rough outline in the following.
Given the same setting as what was assumed in the population-level version
of point-wise functional ICS earlier, assume that E‖X‖4L < ∞, where ||.||L is
the norm associated with the scalar product 〈., .〉L defined in Subsection 2.2.
Applying global functional ICS to X consists of two steps: dimension reduction
through the Karhunen-Loeve expansion and subsequential projection onto the
eigenfunctions of a specific fourth-order operator. In the first step, we let Σij

denote the cross-covariance operator between Xi and Xj and collect the p2

cross-covariance operators into a “matrix of operators” Σ = (Σij)
p
i,j=1. Then,

we consider the pD leading eigenfunctions of Σ, project X onto their span and
standardize the obtained random element to have covariance operator equal to
the identity operator (within the subspace). We denote the resulting finite-
dimensional random element by X∗. In the second step, we compute the full
set of eigenfunctions of the FOBI-operator C(X∗), see Virta et al. (2020) for
its precise formulation, and project X∗ onto them. The resulting variables now
correspond to the pD invariant coordinates.

2.4. Preprocessing multivariate functional data

The format of the data we observe in practice might not be as clean as we
assumed in Subsections 2.2 and 2.3. For example, the numbers of time points
can differ across both observations and features, and alignment or warping might
be necessary. In this subsection, we briefly discuss some preprocessing steps one
might need to carry out before applying the methods.

For point-wise ICS, the curves need to be aligned for both observations
and features, while for global ICS, the alignment is necessary only across the
observations, even if different features can have different alignments. In both
data analyses of Section 3, the features are already aligned for each observation
and as a result, the curves are only required to be aligned across observations.
For the sake of simplicity, we use a linear interpolation. Other methods as the
ones proposed by Tucker et al. (2013) and implemented in Tucker (2020) are
also possible. In practice, we fix a value for the number of time points T , for
example at the median value of the different curve time lengths. Then, we
linearly interpolate each curve at T equally spaced points. For a curve with
a length greater than T we reduce the number of points by averaging points
and for the curves with a length smaller than T , we add points using linear
interpolation. Finally, we rescale the time axis such that the observations occur
at the times {1/T, 2/T, . . . , 1}.

9



For point-wise ICS, no other preprocessing is needed. For global ICS, a
preliminary dimension reduction is necessary. We consider expansion of the
functions associated with the aligned data on an orthonormal basis. The ex-
pansion of a function f ∈ L2 according to the orthonormal basis {ξd}d∈N is
given by

∀ t ∈ [0, 1], f(t) =
∑
d∈N

cd ξd(t), with cd = 〈f, ξd〉L2 .

In our application, only discretizations of our functions are available and we
estimate cd on a regular grid of step 1/T in [0, 1] by

ĉd =
1

T

T∑
t=1

f

(
t

T

)
ξd

(
t

T

)
.

To apply global ICS in practice, we only need these coefficients ĉd but we do
not make use of the orthonormality of the basis. To illustrate this in the sequel,
we focus on the Fourier basis which is orthonormal and on the B-splines basis
which is not. Many other bases can also be used (see Ramsay & Silverman
(2005)).

In order to reduce the dimension, a truncation is done and only the D ∈ N
first coefficients are kept for each variable. The resulting truncation gives a data
matrix of dimension n× pD that is then used as the input for global functional
ICS, as described in Subsection 2.3. We choose the same number of coefficients
for each variable for the sake of of simplicity but it is conceivable to let this
number vary: if we choose a number Dj of coefficients for each of the variables
j = 1, . . . , p, we get a data set of dimension n(D1 + · · ·+Dk).

As detailed in Barreyre et al. (2019) in the context of satellite data, the
choice of the basis to represent functional data in a reduced dimension could
have an impact on the whole outlier detection procedure. In particular, the
authors exhibit an artificial example in which isolated outliers are more likely
to be identified when using a data-dependent basis such as PCA rather than a
Fourier basis. However, as mentioned in the introduction, we do not focus on
isolated outliers and we only consider Fourier and B-splines bases which lead to
similar results in our experience.

2.5. Weather data example

In this subsection, we illustrate the point-wise and global functional ICS
methods on a small Spanish weather dataset from the R package fda.usc (Febrero-
Bande & de la Fuente, 2012). The data set consists of p = 3 variables that
represent the daily average (T = 365) of temperature, wind speed and log pre-
cipitation records from 1980 to 2009 from n = 73 weather stations in Spain.
As in Dai & Genton (2018) the curves are smoothed using a B-spline basis
truncated at D = 11. No expert opinion on outlying weather stations is avail-
able but the example is small enough in terms of the number of observations
and variables to be studied in detail by examining the curves. For the sake of
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readability, the curves are plotted in the appendix with different colours (see
Figures 21 to 23 in the appendix). More details can be found in Dai & Genton
(2019) and Dai et al. (2020). Each figure focuses on one of the 3 variables.
In Figure 21, we coloured in red and identified by a number the curves that
look different from the vast majority of curves in terms of their temperature
behaviour. These are curves 45 and 56, which have very low temperatures, and
the seven curves 34, 35, 36, 55, 57, 58 and 60, which have much flatter temper-
ature curves than the other weather stations (see the left panel). These nine
curves are also coloured in red on the wind speed (resp., log precipitation) plot
in the middle (resp., right) panel of the same figure. In Figure 22, we have kept
the red curves and coloured in blue the curves that were not already coloured in
red and that look different from the others in terms of the wind speed. Curves
20 and 59 take large values with several large bumps. Curves 51 and 72 take
small wind speed values. Finally, in Figure 23, we have kept the red and blue
curves and coloured in green the curves that were not already coloured in red
or blue and that look different from the others in terms of the log precipitation.
These are curves 33, 39, 44 and 66, which have large values of log precipitation
with a small dispersion. All together, this process gives 17 curves out of 73
(23%) that can be suspected as outlying. In the present paper, the objective
is to detect only a small percentage (approximately 2%) of the observations as
outliers, which corresponds to at most two or three observations in this small
data set. Clusters of outliers, such as some curves among the red and green
ones in Figure 22, are not relevant in our context, since we are rather looking
for observations that differ as much as possible from other observations (while
accounting for the interactions between the variables) and that are unique in
their outlying behaviour. For both generalizations of ICS to functional data, a
detailed outlier detection analysis of the weather data set is presented hereafter.
Differences between point-wise and global ICS are also discussed.

Point-wise functional ICS

We applied point-wise functional ICS to the weather data and the resulting
time courses of the estimated dimensions and squared ICS distances are given in
Figure 1. When no component is selected, no outliers are detected and the ICS
distances are thus equal to 0 for these time points. As mentioned previously,
the number of selected components varies over time. However, on Figure 1 (left
panel), the plot is quite structured with only one selected component except in
the middle of the year where two components are selected. Note that selecting
more components usually leads to more outliers. Looking at the ICS distance
curves (the right panel of Figure 1), it is possible to identify the curves 20, 36
and 56 as outlying and detect at which periods of time they differ from the
other curves. Observations 20 and 56 differ from the other curves at similar
periods of time (at approximately the 50th, 150th and 300th days of the year),
but their ICS distances are not the same. Curve 36 differs from the other curves
essentially at approximately the 200th day. In the presence of many curves,
it can be tedious to identify outliers by looking at such a plot. Moreover, it is
costly and not recommended to flag the outliers by calculating a cutoff based on
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Figure 1: Weather data set - Point-wise ICS, Left: Number of components selected, Right:
square ICS distance.

Monte Carlo simulations at each time point. We thus propose to summarize the
information and to flag the outliers by using a functional outlier map (FOM),
as defined by Rousseeuw et al. (2018). For each observation, we calculate and
plot a weighted average (fICS) and a measure of variability (vICS) for the ICS
squared distances:

fICSi =

T∑
t=1

W (t) (ICS distance)
2
i,k(t) (t) (2)

and

vICSi =
stdevi

1 + fICSi
, (3)

where W (.) is a weight function such that
∑T

t=1W (t) = 1 and stdevi denotes the

standard deviation of the (ICS distance)
2
i,k(t) (t) values over time. As mentioned

in Rousseeuw et al. (2018), vICS is a relative metric that is preferable to the
usual standard deviation. We could also use a weighted standard deviation as
suggested in Rousseeuw et al. (2018). The number of components involved in
the calculation of the ICS distances may vary from one time to another, and
the larger the number of components selected is, the larger the ICS distance.
This relationship means that if we limit ourselves to uniform weights W (t) =
1/T , time points with a large number of selected components can have a larger
impact in the fICS calculation than time points with a small number of selected
components. This relationship is especially true for time points at which no
components are selected because the ICS distances are zero and such time points
do not contribute to the fICS value. To give truly uniform weights over time, it
should be recommended to divide the squared ICS distances at each time by the
number of selected dimensions as discussed in Section 3. This standardization
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is equivalent to take W (t) = 1/(Tk(t)) in (2). The FOM is a scatterplot of
fICS and vICS. Large values of fICS correspond to curves that are outlying
during a long period or for the entire period of time. Note that such curves
are not necessarily shifted curves since a high ICS distance can correspond to a
multivariate outlier (an observation outlying in the correlation structure but not
necessarily extreme). Large vICS values correspond to curves whose behaviour
differs from the other curves during some subperiods of time. Figure 2 gives the
FOM for the weather data set. Note that the cutoff curve (red dashed curve
on Figure 2) is calculated as in Rousseeuw et al. (2018) using the combined
functional outlyingness (CFO) with a quantile order of 0.95. Its calculation is
adapted from Rousseeuw et al. (2018). For each observation i = 1, . . . , n, we
define

LfICSi = log

0.1 +

√(
fICSi

med(fICS)

)2

+

(
vICSi

med(vICS)

)2
 ,

where med(·) stands for the median. An observation i is flagged as an outlier if

LfICSi −med(LfICS)

MAD(LfICS)
> Φ−1(α), (4)

where MAD denotes the median absolute deviation, Φ the standard normal cu-
mulative distribution function and α a quantile order. For α = 0.95, expression
(4) yields the dashed red curve in Figure 2 which is part of an ellipse. The
scatterplot clearly distinguishes the curves 20, 36 and 56 from the other curves
both in terms of fICS and vICS (with slightly more variability for observation
36 than for observations 20 and 56). As already noticed in Figure 1, these three
curves have a large average but also have widely dispersed ICS distances over
time.
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Figure 2: Weather data set - Point-wise ICS: FOM with the automatic dimension selection
and the cutoff quantile of order 0.95.
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The impact of the dimension reduction step can be analysed by looking at
Figure 3, where we give the FOM when the number of selected components is
set to k = 1 (resp., k = 2 and k = 3) during the whole time period, in the
left (resp., middle and right) panel. As anticipated, the number of observations
flagged as outliers increases when the dimension increases. Note that the case
k = p = 3 corresponds to the Mahalanobis distance and leads to the detection of
most of the 17 curves detailed previously and suspected of atypical behaviour (in
particular, the green and red curves in Figure 23 in the appendix). In contrast,
selecting k = 1 gives a similar result to the result obtained with automatic
selection in Figure 2. The result obtained with k = 2 is in between, with
essentially the curves 33, 39, 44 and 66 (the green curves on Figure 23 in the
appendix) detected in addition to the curves 20, 36 and 56. In the context that
we are interested in, which has a small proportion of outliers to detect, we prefer
the automated selection or the choice k = 1. The question that arises is how
can we interpret the outlyingness of the three observations 20, 36 and 56.
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Figure 3: Weather data set - Point-wise ICS: FOM with k = 1 (resp., k = 2 and k = 3) on
the left (resp., middle and right) panel and the cutoff quantile of order 0.95.

Interpreting outlying curves in the context of point-wise ICS is possible but
not easy because of the temporal dimension combined with the possible presence
of many variables. For the weather data, it is possible to interpret the three
outlying curves 20, 36 and 56 by looking closely at Figures 21 and 22 in the
appendix. Curve 36 is unique in the sense that it has a very particular wind
speed curve with very high values and a unimodal and peaked shape around
the 200th day. Observation 56 is also very special in the sense that it takes
quite large values in terms of the wind speed, with some small bumps around
the 50th and 300th days and a clear decrease around the 200th day. Other
curves exhibit large values for the wind speed and, in particular, all of the red
curves in Figure 21 have large and unusual behaviour in terms of temperature.
However, observation 56 is the only curve among the red curves that has large
wind speed values jointly with small temperature values. Observation 20 is even
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more atypical than 56 for large wind speed values, even though its temperature
values are not so small. Note that curve 59 is also quite different from all of
the other curves that have large values of wind speed and medium temperature
values. However, as seen in Figure 4, curve 59 (in cyan) is not detected using
point-wise ICS.
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Figure 4: Weather data set - Point-wise ICS: square ICS distance.

To make the interpretation easier, we propose to calculate at each time point
the correlations between the selected invariant components and the initial vari-
ables. Examining such correlation curves is possible if the number of initial
variables and the number of selected components are not too large, which is the
case for the weather data set, where p = 3 and the number of selected compo-
nents is not larger than 2. The plot on the left (resp., middle and right) panel
of Figure 5 gives the correlation curve between the temperature (resp., wind
speed and log precipitation) and the first ICS component. Values larger than
0.20 in absolute value are plotted in red. Note that the range of correlation
values differs from one plot to another to zoom in. It seems clear that the first
invariant component is highly positively correlated with the wind speed with a
smaller correlation between the 100th and 200th days. During the same period
of time, the correlation of the first component becomes negative with the log
precipitation and moderately negative with the temperature. These plots in
conjunction with Figure 4 confirm our previous interpretation of the outlying
curves 20, 36 and 56. At approximately days 50, 200 and 300, the first compo-
nent is strongly positively correlated with the wind speed, and observations 20
and 56 (resp., 36) take very large wind speed values at days 50 and 300 (resp.,
200). Curves 20 and 56 are also outlying at day 150, when the component is
positively correlated with the wind speed but also negatively correlated with
the temperature and the log precipitation, which corresponds to the fact that
these curves have large wind speed together with a small temperature and log
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precipitation. We do not give the plot of the correlations for the second com-
ponent, but this component is highly positively correlated with the wind speed
only between day 100 and day 200. This finding explains the fact that curve
36 is closer in terms of the ICS distance from 20 and 56 in Figure 2, where the
second component of ICS accounted for between day 120 and day 180 (see the
left plot of Figure 1) compared with Figure 3, which has only one component
(left plot). The second component is also very much positively correlated with
the log precipitation during the first 100 days which explains that the green
curves in Figure 23 are detected as outliers on Figure 3 when k = 2 at every
time (middle plot). In the case of large p, the previous interpretations could
become intractable, and global ICS, applied to the data next, appears as a good
alternative.
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Figure 5: Weather data set - Point-wise ICS: correlations between the first component and
the three initial variables by time. Red colour corresponds to correlation with absolute value
larger than 0.20.

Global functional ICS

We applied global ICS to the weather data and, as described in Subsec-
tion 2.3, we use now the scree plot as in Figure 6 to determine an appropriate
number of invariant coordinates. There are p × D = 3 × 11 = 33 eigenvalues
and we have several possible dimension choices k when looking at large differ-
ences between successive eigenvalues. We consider values for k that corresponds
to a large jump between the kth and (k + 1)th eigenvalues. This procedure
leads us to choose k = 2 (squares on the plot), 3 (squares and triangle) or 4
(squares, triangle and cross) components. We then calculate and plot the ICS
distance of each observation using the expression (1) for the given number of
selected components. Note that we get only one ICS distance for each observa-
tion in global functional ICS. We also plot a cutoff line obtained by Monte Carlo
simulations as proposed by Archimbaud et al. (2018) and previously detailed.
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Figure 6: Weather data set - Global ICS: scree plot.

Figure 7 illustrates the ICS distance plot for k = 2 (resp., k = 3 and k = 4)
selected components on the left (resp., middle and right) panel. Selecting only
two components leads to detecting curves 20 and 56 as outliers while selecting
three (resp., four) components leads to also detecting curve 59 (resp., 59 and
36).

It is possible to interpret the outliers by looking at the correlations between
the basis coefficients of each initial variable and the selected invariant coordi-
nates. Figure 8 gives the correlations of the four components in different plots.
On every plot the points correspond to the different B-spline coefficients (11 per
variable) and they are grouped by variable in 3 columns, with the temperature
on the left side of the first vertical green line, the wind speed in between the
first and second green lines, and the log precipitation on the right of the second
green line. Interestingly, we note that the correlations are quite similar for a
given component among the different coefficients of the same variable. For the
first three components leading to the detection of curves 20, 56 and 59, the
correlation structure is globally similar and has negative correlations between
the components and wind speed coefficients and low or medium positive corre-
lations with the temperature and log precipitation coefficients. The first three
plots differ when looking at the correlations with the different B-splines coef-
ficients in detail. However it is not easy to interpret these coefficients. With
regard to the correlations with the fourth component on the right bottom plot,
they differ from the other plots and exhibit positive correlations with both the
temperature and the wind speed, and negative correlations with the log precip-
itation. This finding explains that curve 36 which has a very high level of wind
speed together with a large temperature is detected with k = 4. Note that Fig. 9
from Dai et al. (2020) plot, for the same weather data set, give joint outlying
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Figure 7: Weather data set - Global ICS: square ICS distance with k = 2 (resp., k = 3 and
k = 4) selected components on the left (resp., center and right) panel and the cutoff quantile
of order 0.975.

curves that are not detected using univariate methods, and among them are
observations 56 (green on Fig. 9) and 59 (purple on Fig. 9).

Each of our two functional ICS approaches has advantages and disadvan-
tages. One disadvantage of the point-wise approach is that it does not account
for the temporal dependence in the data. This limitation is not the case for the
global approach which accounts for the temporal behaviour of the data through
functional dimension reduction. However, global ICS depends on the choice of
a functional basis, and interpreting the outlying curves using the coefficients
in the basis is not easy to accomplish. An advantage of global ICS is that the
domains for the functional variables do not need to be the same. Because it only
involves one joint diagonalization, global ICS is much less expensive in terms of
the calculation time than point-wise ICS. Additionally, global ICS uses one and
only one dimension selection, which can be made using the scree plot. With
regard to point-wise ICS, it allows for a graphical representation of the results
in the form of curves, which is helpful to deepen the results.

3. Data analysis and simulation

In the next two subsections, we consider two real data sets that come from
the fields of aeronautics and microelectronics manufacturing. In the third sub-
section, we give results on a small simulation study and assess the performance
of the ICS methods compared to other multivariate functional outlier detection
methods. The first example concerns the predictive maintenance of an aero-
nautical electrical generator before its failure. The second example concerns
a quality control process in a semiconductor microelectronics fabrication. The
first data set is completely confidential, while the second one is available online.
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Figure 8: Weather data set - Global ICS: correlations between the first four components
and the 11 B-spline coefficients of the three initial variables. Red colour corresponds to
correlation with absolute value larger than 0.20. The green lines are separators between the
features Temperature, Wind speed and log precipitation.
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For both examples, we work under the assumption that only a small proportion
of the observations is expected to be diagnosed as anomalies (no more than 2%),
as is usually the case in areas where quality is of a high standard. Moreover,
for each of these two data sets, we have prior information on some particular
observations that we would like to detect.

The goal is to compare our two functional ICS approaches to detect outly-
ing curves. We also include in the comparison the directional outlier detection
method proposed by Rousseeuw et al. (2018) using a point-wise Directional Out-
lyingness (DO) measure. Both point-wise ICS and the method by Rousseeuw
et al. (2018) make use of the functional outlier map (FOM) tool. For point-wise
ICS, the weights take into account the number of selected dimensions at each
time point while, for DO, the weights are uniform. We use the fOutl and the
fom functions available in the R package mrfDepth (Segaert et al., 2020) to
implement the method in Rousseeuw et al. (2018). The fom function is cus-
tomized to be able to change the colours and the cutoff quantile order. From
our experience on these two data sets, but also on dozens of other data files,
the default quantile level 0.95 for the FOM leads to an excessive number of
outliers and has to be adjusted. Depending on the field of interest one can, for
example, use the simple 1-2% rule, meaning that we do not flag more than 1%
to 2% of observations as outliers. On the other hand, it is usually worthwhile
to choose the cutoff by taking into account also the plot characteristics. If the
FOM exhibits some rare (less than 2%) observations clearly separated from the
main bulk of the data, it is recommended to flag these observations and only
these ones as outliers. In the two examples below the cutoffs are such that the
observations far from the main bulk of the data are flagged as outliers while
keeping the proportion of outliers lower than 2%.

As functional expansion used in global ICS, we consider the Fourier basis
but note that the results obtained with a B-spline basis are similar. Concerning
the choice of the dimension D, based on our experience of using global ICS on
many real examples, the number of observations n and the number of features p
are to be taken into account. The number of observations per dimension p×D
should not be smaller than 10. This criterion gives the rule of thumb that D
should be smaller than n/(10p), implying that, regardless of the value of D, the
number of observations n should always be larger than 10p. In the main body of
the text, we focus on particular D values in {5, 11, 15} using the recommended
rule of thumb. Comparisons with results obtained using the other values of D
for the quality control example are given in the appendix.

3.1. Predictive maintenance of an aeronautical electrical generator

Our first application uses aircraft flight data. In the aeronautics literature,
several recent papers tackle the problem of anomaly detection on flight data
even if the literature is still rather sparse. Most articles consider a multivariate
time series framework (see Li et al. (2015), Li et al. (2016b), Memarzadeh et al.
(2020) and the references therein). One exception is the paper by Jarry et al.
(2020) which considers PCA in a univariate functional framework together with
a clustering method, to detect atypical approaches using landing radar records.
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Table 1: Recorded features by flight to detect abnormal electrical generator behaviour.

Notation Description Unit
X1 Generator oil temperature C◦

X2 Engine speed Knots (kts)
X3 Generator load KVA
X4 Static air temperature C◦

X5 Computed air speed kts
X6 Altitude ft

Our application concerns the monitoring of aircraft electrical generators dur-
ing routine flights. Electrical generator failures lead to delays or cancellations
of flights which can be extremely costly to the manufacturer and the airline.
To reduce this cost, electrical design engineers are willing to detect abnormal
generator behaviour before it turns into a failure. The goal is to raise a warn-
ing when successive flights are detected as outliers and to suggest performing a
maintenance action on the generator. Such a process is called predictive main-
tenance. We consider n = 590 flights of varying duration from a given aircraft
and a given generator. What makes this data set particularly interesting is that
during the 591st flight, which followed the 590 flights for which the data are
available, an electrical generator failed. The objective with this example is to
figure out whether functional ICS could have detected outlying generator be-
havior in advance. For each flight, we observe p = 6 features with a sampling
rate of one record per second. These features are identified as relevant by elec-
trical engineers and are detailed in Table 1. To be able to apply the selected
approaches, we must first align the flights to obtain equal numbers T of time
points. To account for the different flight phases, which correspond to differ-
ent electrical behaviours, we split each flight into takeoff, cruise and landing
phases. Each flight phase is aligned separately, and the whole flights are rebuilt
afterwards. In the present example, the flights are aligned on the duration of
T = 2900 seconds. In Figure 24 of the appendix, we plot the aligned flights by
the features for the engine speed, the static air temperature, the computed air
speed and the altitude. For confidentiality reasons, we cannot plot the gener-
ator oil temperature and the generator load curves but we use the data in the
analysis. The reason why some flights are coloured in red will be clarified later.
Given that the size of the sample is n = 590, and considering that the maximum
percentage of outliers is between 1 and 2%, the maximum number of flights de-
tected as outliers cannot exceed 12. Let us now implement and compare the
two functional ICS approaches on this real data set.

First, we apply global ICS on the aligned flights using D = 5 since the rule
of thumb D < n/(10p) leads to D < 9. With D = 5, we have a data set with
dimension 590 × 30. Global ICS consists of computing the squared distances
using the first k invariant components. To select the number of components, we
use the scree plot (see Figure 9) and consider the values of k that correspond to
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Figure 9: Aeronautical data set - Global ICS: scree plot.

large jumps between the kth and (k+1)th eigenvalues. In this example, the large
jumps correspond to 3 different possibilities for k, namely k = 1 (square symbol),
2 (triangle) and 4 (diamond). For each value of k, we compute the squared ICS
distances by flight and the ICS cutoff using the Monte Carlo calculation with
m = 100 replications and a level γ = 0.025 (function dist.simu.test from the R
package ICSOutlier (Archimbaud et al., 2018b)). The method simulates squared
ICS distances using the first k invariant components from a Gaussian population
whose dimension is that of our data set. Then, the cut-off corresponds to the
mean (1−γ)-quantile over these m replicates. The results are given in Figure 10,
where the flights are ordered by date, and we plot a black dashed vertical line
that represents the flight that precedes the generator loss (number 590). The
symbols of the flights that are detected as abnormal are the same as the symbols
used in the scree plot (square when detected on the first component, triangle on
the second and diamond on the third and fourth components). With k = 4, we
have already too many outliers compared to the 2% limit and thus we should
consider k = 1 or k = 2. When k = 1, only the flights 587 to 590 are detected as
outliers while for k = 2, more flights (11, 17, 53, 66, 260 and 456) are detected.
However, even with k = 2, the only successive flights detected are the four
that precede the generator loss. Looking at the correlations between the first
invariant component and the 5 Fourier coefficients of the engine speed feature
in Figure 25, we can see that the four flights differ from the others because of
the engine speed variable. Figure 24 where flights 587 to 590 have been plotted
in red helps to confirm our interpretation of the outlyingness of the flights. In
practice, it is not possible to monitor each feature separately, and the procedure
we propose gives an automatic way to detect abnormal behaviors preceding a
failure of an electrical generator by taking into account many features.
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Figure 10: Aeronautical data set - Global ICS: square ICS distance with k = 1 (resp.,
k = 2 and k = 4) selected components on the left (resp., center and right) panel and the
cutoff quantile of order 0.975.
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Next, we apply point-wise functional ICS on the aligned curves and use the
automatic component selection procedure described previously as in Nordhausen
et al. (2017). The number of selected components by time (see Figure 11) varies
from two to six and is higher during the cruise period than during take-off and
landing. Using fICS and vICS, the FOM is plotted on the left panel of Figure
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Figure 11: Aeronautical data set - Point-wise IC: number of selected components.

12. The cutoff curve has been adjusted to detect observations that clearly differ
from the main bulk of the data in terms of fICS. It can be seen that flights
587 to 590 are detected together with six other flights (11, 17, 34, 53, 308 and
456). Of these, four flights (11, 17, 53 and 456) were also detected by global
ICS with k = 2 (see the middle panel of Figure 10). The squared ICS distances
are plotted in Figure 13 with the same colour code as in Figure 12 (red for the
four successive outliers and blue for the additional outliers detected by point-
wise ICS). It can be seen that the red curves differ from the other curves at the
end of the flights while the blue curves are outlying during the cruise period.
However, it is difficult to analyse the reasons for the outlyingness of the red and
blue flights by looking at the correlation curves because of the high number of
initial features and the large and highly variable numbers of components. To
visualize the flights detected as anomalies by global and point-wise ICS, and to
interpret their outlyingness, we plot the original curves with different colours
in Figure 14 (see the caption for details on the colours). It can be seen that
all of the flights that are detected as outliers either by global or point-wise ICS
exhibit a different behaviour compared to the other flights. Global and point-
wise ICS do not give exactly the same results but have in common many curves
detected as outliers. We now compare the ICS results with the FOM obtained
using the DO index as defined in Rousseeuw et al. (2018). Using the default
options leads to very poor results (see Figure 26); as a result, we tried out other
options (available but not detailed in the documentation) that lead to Figure
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Figure 12: Aeronautical data set - Point-wise ICS, Left: FOM, Right: fICS.
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Figure 13: Aeronautical data set - Point-wise ICS: square ICS distances with an automatic
components selection. Normal flights are coloured in grey whereas the four successive flights
detected as outliers are coloured in red and the isolated flights detected as outliers are in blue.
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Figure 14: Aeronautical data set - Detected outliers. Normal flights are coloured in grey
whereas the four successive flights detected as outliers are coloured in red. The curves 66 and
260 detected as outliers only by global ICS with k = 2 (G ICS) are in blue, the curves 34
and 308 detected as outliers only by point-wise ICS (PW ICS) with an automatic component
selection are in green, while the curves 11, 17, 53 and 456 detected as outliers by both G ICS
and PW ICS are in cyan.
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15, which permits us to detect the flights 587 to 590 that precede the failure
only. However, the method is quite unsatisfactory because for almost half of the
time points (46%), an exact fit is detected and it is not possible to calculate the
outlyingness index. Figure 27 in the appendix gives the time points at which
it is not possible to calculate the DO index and they correspond to the cruise
part of the flights. This finding explains why the method does not detect any
of the curves 11, 17, 34, 53, 66, 260, 308 and 456 which are outlying precisely
during the cruise period. Thus, we conclude that the results obtained by the
DO method are only good by chance and it is worrying that the method cannot
be applied for almost half of the time points.

Figure 15: Aeronautical data set - DO method using the R package mrfDepth (with distOp-
tions = list(rmZeroes = TRUE,maxRatio = 3) in the fOutl function). Left: FOM, Right: fDO
by flight.

3.2. Semiconductor quality control application
Anomaly detection is crucial in quality control and especially in semiconduc-

tor microelectronics, which has safety-critical applications, such as automotive
electronics, medical devices, and aerospace systems. Archimbaud (2018) gives a
review of the common unsupervised methods that are used in practice together
with their implementations in R software. It appears that only a few multivari-
ate methods, such as Mahalanobis distance or Principal Component Analysis,
are used by manufacturers. Some recently published articles in the field of in-
dustrial process monitoring consider a multivariate functional framework (see
for example Liu et al. (2020) and the references therein).

The database that we consider is available online: https://www.cs.cmu.

edu/~bobski/data/data.html. It contains a collection of sequences of mea-
surements (or runs) that are recorded by one vacuum-chamber sensor during
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Table 2: Sensor descriptions for the semiconductor manufacturing data set.

Notation Sensor description
Sensor 6 Radio frequency forward power sensor
Sensor 7 Radio frequency reflected power sensor
Sensor 8 Chamber pressure sensor
Sensor 11 405 nm emission sensor
Sensor 12 520 nm emission sensor
Sensor 15 Direct current bias sensor

the etch process applied to one silicon wafer during the manufacture of semi-
conductor microelectronics. An etch process is a complex process during which
layers of various materials are applied to a silicon wafer and selectively removed
to define circuit elements on the wafer. Each run, among the 1194 runs, has an
assigned classification of normal or abnormal and 127 runs are flagged as abnor-
mal. This number corresponds to 10.6% of the observations which is much larger
than the 2% we are interested in. Among the 127 abnormal runs, four runs are
severe or very severe faults which correspond to 0.3% of the observations. The
objective of our analysis is to check whether the functional ICS methods can
detect these four runs as outliers. Six sensors have been identified by domain
experts as being critical for monitoring purposes (see Olszewski (2001), p. 68-
69, for more details on the sensors). Description of the p = 6 sensors is given
in Table 2. We have n = 1194 runs with a duration that varies from 104 to 198
records. The runs are aligned by linear interpolation to a duration of T = 150
records. The aligned runs are plotted in Figure 28 for each sensor. The four runs
with severe and very severe faults are 73, 107, 317 and 351 and are highlighted
in red.

For global ICS, a dimension reduction is applied on the aligned runs for
each sensor using the Fourier basis, with the number of basis functions equal to
D = 11. The appendix gives the results for other values of D (see Figure 29),
but applying the rule of thumb D < n/(10p) leads to D < 19, and thus, we focus
on D = 11. The global ICS results on this 1194×66 data set are given in Figures
16 and 17. The scree plot in Figure 16 shows that we can consider k = 1, 3, 6 or
7, and we use different symbols to differentiate between the eigenvalues (square
for the first two eigenvalues, triangle for the third, diamond for the fourth to
the sixth and cross for the seventh). Figure 17 gives the squared ICS distances
and the ICS cutoff (red line) for each of the four values of k. To compute the
ICS cutoffs we use again the function dist.simu.test with a quantile of order
1− γ = 0.975. The symbols correspond to the ones used in Figure 16. A value
k = 6 or 7 leads to the detection of a dozen observations which corresponds to
approximately 1% of the observations. Such a choice leads to the detection of
the four runs with severe or very severe faults together with some other runs.

For point-wise functional ICS, we apply T = 150 ordinary ICS with n = 590
and p = 6. For each ordinary ICS, we select the number of invariant components
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Figure 16: Semiconductor data set - Global ICS: scree plot.
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Figure 17: Semiconductor data set - Global ICS: square ICS distance for k = 1, 3, 6 and
7, using the cutoff quantile of order 0.975.
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automatically as detailed in Section 2.2 and the corresponding plot is given in
Figure 18. Figure 19 gives the FOM with fICS weighted by the number of
components selected at each time point. If we tolerate a detection rate of 1%,
we can use the weighted fICS and detect the four runs with severe and very
severe outliers with six other runs. We note that the runs 122, 964, 311 and
326 are detected by both functional ICSs but that some additional observations
are detected by only one of the methods. Note also that if we ignore the run
162 for global ICS and 489 for point-wise ICS which are normal runs, all the
runs declared as outliers are abnormal runs (but with no severe or very severe
faults). We also give the FOM for the Directional Outlyingness index proposed
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Figure 18: Semiconductor data set - Point-wise ICS: number of selected components.

0 20 40 60 80

2
4

6
8

fICS

vI
C

S

73
107

122

311

317

326

351

489
964

1062
73

107

317351

0 200 600 1000

0
20

40
60

80

runs

fIC
S

73

107

122

311

317

326351 489 964
106273

107 317

351

Figure 19: Semiconductor data set - Point-wise ICS, Left: FOM, Right: fICS.

by Rousseeuw et al. (2018) in Figure 20. Once again, some exact fit problems
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do not allow us to calculate the DO index 50% of the time (see Figure 31 in the
appendix for a plot of the time points, where the calculation is not possible).
This finding could explain the fact that among the 2% of observations (24 runs)
that have the largest DO index, only one run (number 317) has severe or very
severe faults. The other 3 runs with severe or very severe faults (73, 107 and
351) are not detected among the 2% of outliers.

0.0e+00 6.0e+12 1.2e+13

0
2

4
6

8

fDO

vD
O

122

73

107

317351

0 200 600 10000.
0e

+
00

6.
0e

+
12

1.
2e

+
13

runs

fD
O

122

73107

317

351

Figure 20: Semiconductor data set - DO method, Left: FOM, Right: fDO.

We conclude this section with a small simulation study to assess the per-
formance of the ICS extensions and to compare the new proposals with other
existing methods.

3.3. Simulation

We consider two different setups. We first follow the simulation framework
of Subsection 5.2 from Dai & Genton (2019) with 100 curves generated at 50
equidistant time points on [0, 1], conducting a total of 500 replications of this
setting. We consider bivariate functional models (p = 2) as in Dai & Genton
(2019). The uncontaminated model (Model 5 in Dai & Genton, 2019) is a
bivariate Gaussian process with a cross-covariance function from the Matérn
class, while the contaminated models (Model 6 to 9 in Dai & Genton, 2019) are
obtained by replacing 10% of the observations of the uncontaminated model by
some outliers. For Models 6 and 8, the outliers are obtained by multiplying the
Gaussian process by a constant larger than one over the whole time period. The
constant is equal to 4 for Model 6 and 1.7 for Model 8. For Models 7 and 9, the
outliers are also obtained by multiplying the Gaussian process by a constant
larger than one but only on a part of the time period (10% randomly chosen on
[0, 1]). The constant is equal to 12 for Model 7 and 5 for Model 9. Following
Dai & Genton (2019), we calculate the correct outlier detection rate and the
false outlier detection rate over the 500 simulations to assess the properties of
the outlier detection methods.
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Table 3: Average correct outlier detection rate (pc) and false outlier detection rate (pf ) for
the four models under consideration together with their standard deviations based on 500
repetitions for different data dimensions p.

Model p
Model 6 Model 7

pc pf pc pf

G ICS
2 86.9 (3.2) 0.0 (0.0) 56.8 (4.1) 0.0 (0.1)
20 99.0 (1.4) 0.0 (0.0) 71.5 (0.7) 0.0 (0.0)

PW ICS
2 100.0 (0.0) 0.6 (0.9) 100.0 (0.0) 0.8 (1.1)
20 100.0 (0.0) 0.6 (0.2) 100.0 (0.0) 0.6 (0.1)

Tot.Dir.Out
2 100.0 (0.0) 0.0 (0.1) 100.0 (0.0) 0.0 (0.1)
20 100.0 (0.0) 0.0 (0.0) 100.0 (0.0) 0.0 (0.0)

Model p
Model 8 Model 9

pc pf pc pf

G ICS
2 21.8 (16.1) 0.9 (1.0) 33.6 (13.8) 0.3 (0.7)
20 31.6 (5.7) 2.2 (0.5) 31.1 (4.9) 1.6 (0.5)

PW ICS
2 68.1 (18.3) 0.9 (1.1) 98.7 (3.8) 0.8 (1.1)
20 44.0 (24.0) 0.4 (0.2) 99.5 (0.7) 0.7 (0.6)

Tot.Dir.Out
2 82.3 (13.3) 0.0 (0.0) 91.9 (8.5) 0.0 (0.1)
20 10.0 (2.8) 0.0 (0.0) 64.0 (5.7) 0.1 (0.0)

In Dai & Genton (2019), several multivariate functional outlier detection
methods are compared, and the best results are clearly obtained for the direc-
tional outlyingness method (denoted by Tot.Dir.Out). Thus, we compare the
global and point-wise ICS to Tot.Dir.Out only. To go beyond the bivariate case,
we consider a second setup of data sets with n = 1000 curves and p = 20 di-
mensions. For this new setup, the first two dimensions are generated exactly
as before using the different uncontaminated and contaminated models, while
the 18 additional dimensions are generated using 9 times the uncontaminated
bivariate model (Model 5 in Dai & Genton, 2019). For both dimensions (p = 2
and 20), we compare Tot.Dir.Out with global and point-wise ICS (denoted re-
spectively by G ICS and PW ICS), and the results are reported in Table 3
for Models 6 to 9. The results for the uncontaminated model are not reported
because the three methods give very similar results with less than 1% of false
positives. For both ICS methods, the choice of the number of components is
based on the test given by Nordhausen et al. (2017) with an initial level of
10%. For PW ICS, the observations are flagged as outliers using equation (4)
and α = 95%. For G ICS, we use the Fourier basis with a number of basis
functions equal to D = 5 which corresponds to D = n/(10p) in both setups
(n = 100, p = 2 and n = 1000, p = 20). The cutoff value for the ICS distances
(see equation (1)) is obtained through Monte Carlo simulations with a 5% level.

For the bivariate setup, the results obtained by PW ICS in terms of true
positives are comparable to Tot.Dir.Out but at the cost of a small increase in the
number of false positives (less than 1% however). The results are not as good for
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G ICS in terms of true positives for Model 8 and 9 where outliers do not differ a
lot from the rest of the data, especially for Model 8. Looking at the results for
p = 20, we see that PW ICS and Tot.Dir.Out are still comparable for Model 6
and 7 in terms of true positives. However, the results are much better for PW
ICS than for Tot.Dir.Out when looking at Model 8 and 9. For Model 8, even
G ICS gives better results than Tot.Dir.Out in terms of true detection with a
small deterioration in terms of false detection. Moreover, note that Tot.Dir.Out
uses a projection depth based on the Stahel-Donoho outlyngness measure (see
Dai & Genton, 2019). This measure is based on a projection pursuit algorithm
which is costly in large dimensions and only approximate.

Overall, the ICS extensions and especially the point-wise method prove to be
attractive compared to other methods, especially in a large dimensional setup
and with no need for an approximate algorithm.

4. Conclusions and perspectives

Given the complexity of outlier detection in the framework of multivariate
functional data, it appears to be unrealistic to find a method that works in all
situations. The methodology we propose is particularly suitable when there is
a small number of observations likely to be real anomalies but that may not be
identified when looking at univariate functional characteristics only. In this con-
text, we propose two generalizations of ICS to multivariate functional data with
many diagnostic plots to help the data analyst in the detection and interpreta-
tion of outlying curves. Both approaches have advantages and disadvantages.
Compared to global ICS, point-wise ICS does not take into account the time
dependence, is more costly in terms of computation and does not allow simple
interpretation of the outliers. Nevertheless, point-wise ICS depends neither on
the choice of the functional basis nor on the choice of the number of elements
in this basis. Moreover, the constraint that the number of observations has
to be larger than ten times the dimension is not required for point-wise ICS.
Finally, the results from our small simulation study indicate that point-wise
ICS can achieve better performance than global ICS. In the context of a small
proportion of outliers, it is important to have detection methods that lead to
the identification of only a few anomalies with the possibility of understanding
their anomalous behaviour. Functional ICS, either global or point-wise, with
the covariance matrix and the matrix of fourth moments as the scatter pair, is
particularly suitable for such a context.

Regarding the future research perspectives for the global ICS method, it
is worth investigating the impact of the choice of the functional basis and the
number of basis coefficients, possibly separately for each feature. Moreover,
even if global ICS can be applied with a non-orthonormal basis, it is relevant
to study the consequences of such a choice on the procedure. In particular, the
expressions of the COV−COV4 scatter pair should be adapted as suggested by
Virta et al. (2020). Let us also mention the case of curves measured on different
domains (Happ & Greven, 2018) such as images (Rousseeuw et al., 2018) for
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which the global ICS could be extended. Further work on the automatic selec-
tion of invariant components using a multiple testing approach, instead of the
scree plot, is also of interest.
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Appendix

Supplementary figures for the Weather data set

Visualization of the outliers on the aligned curves. In Figures 21 to 23 we give
the curves for the three variables, and we highlight the abnormal curves using
colors and add the curves number. In Figures 21 (resp., 22 and 23) we coloured
in red (resp., blue and green) the abnormal curves observed in the temperature
(resp., wind and log precipitation) on the 3 variables.
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Figure 21: Weather data set - Suspected outlying curves (34,35,36,45,55,56,57,58,60) flagged
in red based on the temperature.
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Figure 22: Weather data set - Additional suspected outlying curves (20,51,59,72) flagged
in blue based on the wind speed.

Supplementary figures for the Aeronautic data set

Visualization of the outliers on the aligned curves. In Figure 24, we plot 100
normal flights in grey and highlight the successive flights detected as outliers
in red. It can be seen that the four red curves differ from the others at the
end of the flight with an engine speed that drops compared to the other curves.
The failure occurred during the flight that followed, the data of which were not
included in our statistical analysis.

Global ICS. Figure 25 gives the correlations between the first invariant compo-
nent and the 5 Fourier coefficients of the 6 initial variables. The first component
is clearly only correlated with coefficients associated with the engine speed (X3).

Directional outlyingness method. The result of the DO method proposed by
Rousseeuw et al. (2018), without changing the distOptions in the fom function
is given in Figure 26. The four successive flights detected as outliers are coloured
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Figure 23: Weather data set - Additional suspected outlying curves (33,39,44,66) flagged
in green based on the log precipitation.
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Figure 24: Aeronautical data set - Observed flights after alignment by feature with T =
2900 seconds. In red the flights that precede the generator loss.
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Figure 25: Aeronautical data set - Global ICS: correlations between the first invariant
component and the 5 Fourier coefficients of the 6 initial variables. Red colour corresponds to
correlation with absolute value larger than 0.20. The green lines are separators between the
features which are ordered from X1 to X6.

in red, the abnormal flights detected by the FOM cutoff on the vDO axis are
coloured in green and those detected by the fDO axis are coloured in blue.

The abnormal flights detected are very different from the flights detected
using global or point-wise ICS. Figure 27 gives the time points where the weight
is equal to zero, meaning that it was not possible to calculate the outlyingness
index at these time points. In fact, all of the cruise period is removed from the
analysis. This observation is not only true for this example. Of the dozens of
data files we have studied in the aeronautical domain, we have encountered this
problem systematically at least at some time points and often on nearly half of
the time points.

Supplementary figures for the Semiconductor data set

Visualization of the outliers on the aligned curves. In Figure 28, we plot in grey
the normal curves and in red the runs that were classified as abnormal in the
data file. It is not easy to interpret the outlyingness of the red curves but it
seems that there is a mix between shift and amplitude outliers.

Global ICS. In Figures 29 and 30 respectively, we give the scree plot and the
ICS distances by run using the first 6 ICS components for each D = 5, 11 and
15. The results for D = 11 and 15 are similar, but for D = 5, when using the
cutoff we recommend, we detect a number of outliers much larger than the 2%
we can tolerate. Nevertheless, when looking at the three plots of Figure 30, we
can note that the observations associated with large ICS distances compared to
the majority group are very similar.
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Figure 26: Aeronautical data set - DO method, Left: FOM, flights. Right: fDO.
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Figure 27: Aeronautical data set - DO method: 0/1 weights with a zero weight at time
points where the method cannot run (46% of the points).
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Figure 28: Semiconductor data set - Observed runs by sensor after alignment. The 4
abnormal (severe or very severe faults) runs are coloured in red.
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Figure 29: Semiconductor data set - Global ICS: scree plot with D = 5 (left), 11 (center)
and 15 (right) coefficients for the Fourier basis.
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Figure 30: Semiconductor data set - Global ICS: square ICS distance with k = 6 and
D = 5 (left), 11 (center) and 15 (right) coefficients for the Fourier basis.
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Directional outlyingness method. We observe in Figure 31 that the fom function
cannot run for 50% of the time points that correspond to weights equal to 0,
essentially at the beginning and at the end of the time period.

0 50 100 150

time index

W
ei

gh
ts

0

1

Figure 31: Semiconductor data set - Directional outlyingness method: 0/1 weights with a
zero weight at time points where the method cannot run (50% of the points).
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