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a b s t r a c t

We consider a Stein’s approach to estimate a covariance matrix using regularization
of the sample covariance matrix Cholesky factor. We propose a method to estimate
accurately the regularization vector which minimizes the risk associated with the
recently introduced log-Cholesky metric.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction and problem statement

Covariance matrix (CM) estimation is at the core of most methods used to process multichannel data, in a wide variety
of applications, including social science, life science, physics, engineering, finance. The estimation of the covariance matrix
is indeed needed for the most widely used tools of multivariate analysis, e.g., principal component analysis, adaptive
detection, filtering (Scharf, 1991; Pourahmadi, 2013; Srivastava, 2002). Under the Gaussian assumption, the maximum
likelihood estimate (MLE) of the covariance matrix is the sample covariance matrix (SCM) S = XXT where X is the p × n
data matrix where columns of X are assumed to be independent and to follow a normal distribution with zero mean and
covariance matrix Σ. Unfortunately, when the number of observations n is not significantly larger than the observation
size p, S has been observed to be much less well-conditioned than Σ. More precisely, large eigenvalues of Σ tend to be
over-estimated while small eigenvalues tend to be under-estimated. Therefore, there has been a natural need to somehow
regularize the SCM.

The literature about this problem is huge. However, the approach proposed by Stein (1956, 1986), James and Stein
(1992) has markedly emerged and influenced a great deal of research, see e.g., Haff (1979, 1980), Dey and Srinivasan
(1985, 1986), Perron (1992), Ledoit and Wolf (2004), Ma et al. (2012) and Tsukuma (2016) and references therein. The
basic principle of Stein’s approach is to define a loss function and to minimize its average value, referred to as the
risk, within a given class of estimates Σ̂. Three main classes of estimates have been considered: regularization of the
eigenvalues of the SCM, regularization of its Cholesky factor or shrinkage. The first class involves estimates of the form
Σ̂ = Udiag(ϕ(λ))UT where S = Udiag(λ)UT denotes the eigenvalue decomposition of the SCM and ϕ(λ) is some non-linear
function of the eigenvalues λ. For the risk L1(Σ, Σ̂) = Tr{Σ̂Σ−1

} − log det(Σ̂Σ−1) − p, it was proposed to minimize an
unbiased estimate of the corresponding risk, this unbiased estimate being obtained from the so-called Stein–Haff identity
for Wishart matrices (Haff, 1979), or using the distribution of λ (Sheena, 1995). It turns out that this procedure results
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in some eigenvalues of Σ̂ being negative and, moreover, it does not preserve the order of the eigenvalues in λ. This
means that it can be improved upon by an estimator which preserves the order (Sheena and Takemura, 1992). In order
to overcome these problems, Stein proposed an isotonizing scheme which guarantees that the eigenvalues ϕ(λ) are all
ositive and in decreasing order, see Lin and Perlman (1985) for details. Note that Ledoit and Wolf, applying to the theory
f large-dimensional asymptotics, proposed a procedure that alleviates all above mentioned problems and minimizes an
nbiased estimate of the risk, in the spirit of Stein’s approach (Ledoit and Wolf, 2018).
Another class of estimates amounts to shrinkage of the SCM to the identity matrix, leading to estimates of the form

ˆ = a[S + bI] where a and b are regularizing parameters. One of the fundamental works is due to Haff (1980) who
onsidered b = g(Tr{S−1

}) and an empirical Bayes approach but this approach triggered the highest number of studies,
ee e.g., Ledoit and Wolf (2004), Konno (2009), Chen et al. (2010), Coluccia (2015) and Ikeda et al. (2016) and references
herein.

However, the first class of estimates considered by Stein was that based on the regularization of the Cholesky factor
f S, i.e., estimates of the form Σ̂ = GSdiag(d)GT

S where GS is the Cholesky factor of S. Stein showed that, for the loss
L1(Σ, Σ̂), the corresponding risk R1(Σ, d) = E{L1(Σ, Σ̂)} is minimized when

[d1]j = (p − j + E{χ2
n−j+1})

−1 (1)

The optimal vector, say d2, which minimizes R2(Σ, d) = E{L2(Σ, Σ̂)} where L2(Σ, Σ̂) = Tr{(Σ̂Σ−1
− In)2} was derived

y Selliah in Selliah (1964). In Tsukuma and Kubokawa (2016) extensions of these estimators to the case p < n are given.
sing estimates of the type Σ̂ = GSdiag(d)GT

S is interesting for some reasons. First, the Cholesky factor is easy to compute.
urthermore, it is of interest when used for whitening purposes: indeed, in order to whiten data, only a triangular system
f equations needs to be solved. Whitening is particularly useful when detecting a signal of interest among noise with
ovariance matrix Σ since the optimal detection scheme involves whitening followed by matched filtering (Scharf, 1991).
ow, since estimation of the Cholesky factor may be interested per se, it is natural to consider risk functions that are
xpressed in terms of the Cholesky factor. This is what was proposed by Eaton and Olkin (1987) who considered the two
ollowing loss functions

L3(GΣ,GΣ̂) = Tr{(G−1
Σ GΣ̂ − I)(G−1

Σ GΣ̂ − I)T } (2)

L4(GΣ,GΣ̂) = Tr{(G−1
Σ̂

GΣ − I)(G−1
Σ̂

GΣ − I)T } (3)

nd associated risks R3(GΣ, d) = E{L3(GΣ,GΣ̂)} and R4(GΣ, d) = E{L4(GΣ,GΣ̂)}. They showed that the optimal d, which
inimize these risks, are respectively

[d3]
1/2
j =

E{

√
χ2
n−j+1}

p − j + E{χ2
n−j+1}

(4)

[d4]
1/2
j =

n − 1
(n − j)(n − j − 1)

1
E{(χ2

n−j+1)−1/2}
(5)

In this letter, we investigate estimates of the form Σ̂ = GSdiag(d)GT
S and we focus on a loss function that depends on

the Cholesky factor. More precisely, we consider a recently proposed distance in the set of lower triangular matrices with
positive diagonal entries. We show that the optimal regularization vector depends on Σ and we propose a procedure to
find an accurate approximation. Finally, we evaluate the four approaches mentioned above as well as our new method
on a relevant metric which is related to the natural distance between covariance matrices.

Notations. The jth entry of a vector d is denoted dj or [d]j and we sometimes use d = vect(dj). The (i, j)-th entry of a
p × p matrix M is either denoted by Mij or [M]ij. We let diag(M) be the p × 1 vector whose entries are Mjj. Conversely,
for any vector d, diag(d) is a diagonal matrix whose diagonal entries are dj. We will sometimes note diag(dj). ddiag(M)
is defined as ddiag(M) = diag(diag(M)). ⊙ is the Hadamard product, i.e., element-wise product. The Cholesky factor
of matrix Σ will be denoted GΣ, i.e., GΣ is lower-triangular with positive diagonal entries and GΣGT

Σ = Σ. N
(
µ, σ 2

)
denotes the normal distribution with mean µ and variance σ 2. χ2

q stands for the chi-square distribution with q degrees of

freedom and Wp (n,Σ) stands for the Wishart distribution with n degrees of freedom and parameter matrix Σ. d
= means

‘‘is distributed as’’.
In the paper, we will need the following result on some statistics associated with GW̄ where W̄ d

= Wp (n, I). This result
stems from the fact that all entries of GW̄ are independent with [GW̄]ij

d
= N (0, 1) for i > j and [GW̄]jj

d
=

√
χ2
n−j+1 (Muirhead,

982; Gupta and Nagar, 2000).

esult 1. For any matrixM, E{MGW̄} = Mdiag(E{

√
χ2
n−j+1}) which implies that E{

[
MGW̄

]
jj} = [M]jjE{

√
χ2
n−j+1}. Additionally

{GT
W̄MGW̄} is a diagonal matrix given by

[
E{GT

W̄MGW̄}
]
jj

= E{χ2
n−j+1}Mjj +

p∑
i=j+1

Mii (6)
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2. Minimization of risk function associated with log-Cholesky metric

As stated above, we consider here a new Riemannian metric, termed log-Cholesky metric, defined on the set of lower
triangular matrices with positive diagonal entries as (Lin, 2019):

L5(GΣ,GΣ̂) =

∑
i>j

(
[GΣ̂]ij − [GΣ]ij

)2
+

p∑
j=1

(
log[GΣ̂]jj − log[GΣ]jj

)2
=

GΣ̂ − GΣ

2
F −

diag(GΣ̂) − diag(GΣ)
2

+
log diag(GΣ̂) − log diag(GΣ)

2 (7)

ince GΣ̂ = GΣGW̄D1/2, one hasGΣ̂ − GΣ

2
F = Tr{(GΣ̂ − GΣ)(GΣ̂ − GΣ)T }

= Tr{GΣ(GW̄D1/2
− I)(GW̄D1/2

− I)TGT
Σ}

= Tr{GΣGW̄DGT
W̄GT

Σ} − 2Tr{GΣGW̄D1/2GT
Σ} + Tr{Σ}

=
√
d
T
ddiag(GT

W̄GT
ΣGΣGW̄)

√
d − 2

√
d
T
diag(GT

ΣGΣGW̄) + Tr{Σ} (8)

Moreover, since [GΣ̂]jj = d1/2j [GΣGW̄]jj, one has

diag(GΣ̂) − diag(GΣ)
2

=

p∑
j=1

(d1/2j [GΣGW̄]jj − [GΣ]jj)2

=
√
d
T
ddiag(GΣGW̄ ⊙ GΣGW̄)

√
d − 2

√
d
T
diag(GΣGW̄ ⊙ GΣ) + ∥diag(GΣ)∥2 (9)

and log diag(GΣ̂) − log diag(GΣ)
2

=

p∑
j=1

(log d1/2j + log[GW̄]jj)2

= (log
√
d)T (log

√
d) + 2(log

√
d)T log diag(GW̄) +

log diag(GW̄)
2 (10)

athering the previous equations yields the following expression for L5(Σ, Σ̂):

L5(GΣ,GΣ̂) =
√
d
T [

ddiag(GT
W̄GT

ΣGΣGW̄) − ddiag(GΣGW̄ ⊙ GΣGW̄)
]√

d

− 2
√
d
T [

diag(GT
ΣGΣGW̄) − diag(GΣGW̄ ⊙ GΣ)

]
+ (log

√
d)T (log

√
d) + 2(log

√
d)T log diag(GW̄)

+ Tr{Σ} − ∥diag(GΣ)∥2
+

log diag(GW̄)
2 (11)

It ensues that the corresponding risk is given by

R5(GΣ, d) = E{L5(GΣ,GΣ̂)}

=
√
d
T
diag(a)

√
d − 2

√
d
T
b + (log

√
d)T (log

√
d) + 2(log

√
d)T c

+ Tr{Σ} − ∥diag(GΣ)∥2
+ E{

log diag(GW̄)
2

} (12)

with

a = E{diag(GT
W̄GT

ΣGΣGW̄)} − E{diag(GΣGW̄ ⊙ GΣGW̄)}

b = E{diag(GT
ΣGΣGW̄)} − E{diag(GΣGW̄ ⊙ GΣ)}

c = E{log diag(GW̄)} (13)

The jth elements of these vectors are given by

aj = E{χ2
n−j+1}

(
[GT

ΣGΣ]jj − [GΣ]
2
jj

)
+

p∑
i=j+1

[GT
ΣGΣ]ii

bj = E{

√
χ2
n−j+1}

(
[GT

ΣGΣ]jj − [GΣ]
2
jj

)
c = E{log

√
χ2

} (14)
j n−j+1
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Table 1
Average value of RRI5(Σ, d) = [R5(GΣ, d) − R5(GΣ, d5(Σ))]/R5(GΣ, d5(Σ)).

p, n d = d5(Ip) d = d̂5

p = 16, n = p + 2 13.32% 0.56%
p = 16, n = 2p 11.08% 0.09%
p = 64, n = p + 2 17.38% 0.18%
p = 64, n = 2p 12.45% 0.03%

Fig. 1. Risks of the various estimators over 100 random trials of Σ. p = 16 and n = p + 2.

t can be observed that R5(GΣ, d) depends on GΣ. Note also that, in order to minimize this risk, we need to minimize
ver R+ functions of the form

fj(x) = ajx2 − 2bjx + log2 x + 2cj log x

We have

f ′

j (x) = 2ajx − 2bj + 2x−1 log x + 2cjx−1

= 2x−1
[ajx2 − bjx + log x + cj]

= 2x−1gj(x) (15)

ifferentiating gj(x) yields

g ′

j (x) = x−1(2ajx2 − bjx + 1)

t can be readily shown that g ′

j (x) > 0 given the values of aj and bj, which implies that gj(x) is monotonically increasing
rom −∞ (when x → 0) to +∞ (when x → +∞). Therefore, there exists a unique x⋆ for which g (x⋆) = 0 and hence
j j j
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Fig. 2. Risks of the various estimators over 100 random trials of Σ. p = 16 and n = 2p.

′

j (x
⋆
j ) = 0. Since gj(x) < 0 for x < x⋆

j , it follows that fj(x) achieves its unique minimum at x⋆
j . Therefore, the risk is

inimized for d1/2j = x⋆
j . We let d5(Σ) be the optimal vector for this log-Cholesky distance, where we emphasize that this

ector depends on Σ.
Since the optimal regularizing matrix depends on Σ which is unknown, the usual procedure is to resort to Stein

nbiased risk estimation (SURE), that is to find a function L̂5(d, S) such that E{L̂5(d, S)} = R5(GΣ, d), or at least such that
E{L̂5(d, S)} coincides with the part of R5(GΣ, d) that depends on d, and to minimize L̂5(d, S). In our case, this amounts
to obtain unbiased estimates of a and b. Since one has

E{[GT
SGS]jj} = E{χ2

n−j+1}[G
T
ΣGΣ]jj +

p∑
i=j+1

[GT
ΣGΣ]ii

E{[GS]
2
jj} = E{χ2

n−j+1}[GΣ]
2
jj

it is clear that âj = [GT
SGS]jj − [GS]

2
jj is an unbiased estimate of aj. However, finding an unbiased estimate of bj turns

out to be more problematic because an unbiased estimate of [GT
ΣGΣ]jj does not seem feasible to obtain because of the

term
∑p

i=j+1[G
T
ΣGΣ]ii in E{[GT

SGS]jj}. Moreover, minimizing an estimate L̂5(d, S) instead of R5(GΣ, d) unavoidably leads
to performance loss. Therefore, we investigate alternative solutions here.

A first straightforward method comes from the observation that, for all other losses Ri(Σ, d), i = 1, . . . , 4, the optimal
vector di(Σ) does not depend on Σ and can be computed as di(Ip). Therefore, one can choose d5(Ip) as the regularization
vector. This solution is very simple, yet one needs to study how far is the risk associated with d5(Ip) from the risk obtained
with the optimal solution d5(Σ). In case the risk increase is not very important, using d5(Ip) is much simpler than an
approximate SURE approach and may perform as well.

However, one can anticipate some loss of performance of d5(Ip) compared to d5(Σ). To remedy this problem, we use
the fact that R5(GΣ, d) and its minimizer depend on Σ and we suggest an alternative approach which consists in finding
d as the minimizer of R5(GΣ̂, d) where Σ̂ is some estimate of Σ. For instance, one could use Σ̂ = n−1S. Then, one obtains
d̂ = argmin R (G , d), which provides the estimate G diag(d̂)GT . In fact, the process can be iterated as follows. Let
d 5 Σ̂ S S
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Fig. 3. Risks of the various estimators over 100 random trials of Σ. p = 64 and n = p + 2.

ˆ (0)
5 be some initial vector, for instance d̂(0)

5 = d5(Ip) or d̂(0)
5 = n−1/21p where 1p is a length-p vector whose elements

re all equal to one, and Σ̂(0)
= GSdiag(d̂

(0)
5 )GT

S . Then, for n = 1, . . ., one can compute d̂(n)
5 = argmind R5(GΣ̂(n−1) , d)

nd Σ̂(n)
= GSdiag(d̂

(n)
5 )GT

S . We let d̂5 be the vector at the end of the iterations. It is our experience that these iterations
onverge rather fast and that, typically, 5 iterations are sufficient.
In order to evaluate the difference between R5(GΣ, d5(Σ)), R5(GΣ, d5(I)) and R5(GΣ, d̂5) we conducted the following

xperiment. A large number of matrices Σ were drawn at random as Σ = Udiag(λ)UT where U is uniformly distributed
ver the set of unitary matrices, and λj are independent random variables drawn uniformly on ]0, 1]. For each matrix Σ,
he optimal d5(Σ) was computed along with the corresponding risk. The relative risk increase RRI5(Σ, d) = [R5(GΣ, d)−
5(GΣ, d5(Σ))]/R5(GΣ, d5(Σ)) was evaluated for d = d5(Ip) and d = d̂5, and then averaged over the 103 experiments.
or d̂5, the iterative scheme was initialized with d5(Ip) and 5 iterations were used. The results are given in Table 1. It
an be observed that the risk increase incurred when using d5(I) instead of d5(Σ) is about 10− 13%, which is acceptable.
owever, the iterative scheme is seen to perform very well and incurs almost no loss compared to the optimal d5(Σ),
hich makes it a rather optimal solution to minimize R5(GΣ, d).

. Numerical illustrations

In this section we first evaluate the performance of each vector dq not only for Rq(Σ, d) – for which it is optimal
but also for all other risks, with a view to figure out the performance of dq over a wider range of losses. Through
reliminary simulations it appeared that d4 provided very poor performance and thus it is not considered in the sequel,
or the corresponding risk. Furthermore, since all remaining d perform better than the SCM, the latter is not shown in
he figures below. On the other hand, we compare the above schemes, based on regularization of the Cholesky factor of
he SCM, to a reference method, namely the Ledoit–Wolf (LW) estimator (Ledoit and Wolf, 2004) which corresponds to
hrinkage of the SCM. Similarly to the previous section, we draw a large number of matrices Σ = Udiag(λ)UT where U
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Fig. 4. Risks of the various estimators over 100 random trials of Σ. p = 64 and n = 2p.

s uniformly distributed over the set of unitary matrices, and λj are independent random variables drawn uniformly on
0, 1]. For each Σ, the risks Rq(Σ, Σ̂) (q = 1− 3, 5) are evaluated for vectors d1, d2, d3 and d̂5, and for the LW estimator.

The results are reported in Figs. 1–2 for p = 16 and in Figs. 3–4 for p = 64. These curves show rather interesting
esults. First note that d1 performs well for R5(GΣ, d) and, vice versa, d̂5 is very good for R1(Σ, d). Additionally both of
hem are quite accurate with respect to R3(GΣ, d). Therefore, it seems that the new estimator d̂5 bears some resemblance
ith Stein’s initial method. A similarity is also observed between d2 and d3 which performs well only on R2(GΣ, d) and
3(GΣ, d). As for the LW estimator, it performs very poorly on R2(Σ, Σ̂), poorly on R1(Σ, Σ̂) and R3(Σ, Σ̂) but is the
est method for R5(Σ, Σ̂), at least when n = p+ 2. For n = 2p, d1 and d̂5 achieve the same risks R1(Σ, Σ̂) and R5(Σ, Σ̂)
s the LW estimator. However a striking fact is that the risks associated with the LW estimator are highly variable when Σ

aries. In contrast, the estimators based on d1−3 have constant risks R1−3(GΣ, d) and their risk R5(GΣ, d1−3) varies very
eakly. Similarly, d̂5 offers weakly varying risks R1−3,5(GΣ, d̂5). Therefore, while the LW has often a lower risk R1,5(Σ, Σ̂),

t exhibits some instability as the values of the risks are highly dependent on Σ, which is a drawback in practice.
To close this section, we now evaluate the respective merits of the above estimates on another loss function, which

s highly relevant for the case of interest where covariance matrices are concerned, since it is the (square of the) natural
istance between covariance matrices defined as

Lg (Σ, Σ̂) =

p∑
k=1

log2 λk(Σ−1Σ̂) (16)

here the λks are the generalized eigenvalues of (Σ̂,Σ). The corresponding risk is defined as Rg (Σ, Σ̂) = E{Lg (Σ, Σ̂)}.
he loss in (16) corresponds to the natural distance between Σ and Σ̂ in the set of positive definite matrices (Bhatia,
007). It can also be derived as the geodesic distance induced by Rao’s metric which measures dissimilarity between two
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Fig. 5. Risk corresponding to the natural distance of the various estimators over 100 random trials of Σ. p = 16 (left panel) and p = 64 (right
anel).

ero-mean Gaussian distributions with different covariance matrices (Amari et al., 1987; Atkinson and Mitchell, 1981). It
s thus a very relevant metric and there is interest in comparing d1, d2, d3 and d̂5 on this third-party, meaningful criterion.
As before, the risks were computed for 100 different Σ. The results are given in Fig. 5. They show that the LW estimator
ffers the smallest risk, followed by d̂5, which is the best among estimators based on regularization of the Cholesky factor.
ote that the difference between d̂5 and LW is rather small for n = 2p. Therefore, given that d̂5 results in much smaller
isk variability, it constitutes an interesting trade-off.

. Conclusions

In this paper, we considered estimation of a covariance matrix using Stein’s approach. We focused on estimates of the
orm Σ̂ = GSdiag(d)GT

S where GS is the Cholesky factor of the sample covariance matrix. This problem was addressed
y Stein, Selliah, Eaton and Olkin for various loss functions. We extended this kind of approach to a recently introduced
iemannian metric on the set of lower triangular matrices with positive diagonal elements. The optimal regularization
ector was shown to depend on Σ but we proposed an iterative scheme that incurs a very small loss and offers a good
rade-off over various loss functions, including the natural distance between covariance matrices. Moreover, the risks
ssociated with this new estimator are very weakly dependent on Σ.
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