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Can we recover the missing information?
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The RIM team philosophy

e "If we cannot measure, we should change the acquisition protocol”

e “You can trust every pixel we provide”

The deviant approach (today)

e "If you don't have the information just invent it!”
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e Not much can be said... Likely 2 eyes, glasses and a nose!



Observation

e Average scientist scholar # fine arts school student

e Not much can be said... Likely 2 eyes, glasses and a nose!
Main objectives today

e Can computers can do this better?
e What are the main mathematical tools and their properties?

e Some practical implications



Nonlinear total variation based noise removal algorithms
LI Rudin, S Osher, E Fatemi - Physica D: nonlinear phenomena, 1992 - Elsevier

A constrained optimization type of numerical algorithm for removing noise from images is
presented. The total variation of the image is minimized subject to constraints involving the -
¢ Enegistrer 0D Citer Cité 19060 fols Autres articles Les 24 versions Web of Science: 10580

1990-2015: "handcrafted" approaches

Total variation minimization

X = argmin ||Vx|:

X|mask=Y|mask
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A constrained optimization type of numerical algorithm for removing noise from images is
presented. The total variation of the image is minimized subject to constraints involving the -
¢ Enegistrer 0D Citer Cité 19060 fols Autres articles Les 24 versions Web of Science: 10580

1990-2015: "handcrafted" approaches

Total variation minimization

) . o |
2= argmin ||Vx|: Limited practical interest!

X|mask=Y|mask



Today: Al and the MAP. X = argmax, p(x|y)



Today: Al and the MMSE. % = E(x|y)



Today: Al and sampling the posterior p,|,




Preliminaries



Inverse problems

y=A(x)+b

A: RN — RM observation operator
Xx: image to recover
b: noise

y: observed measurements

Inverse problem = recover x from y
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Inpainting

Masked

Mask

A = Mask Multiplication (inpainting in the space domain)

akil,



Microscopy super-resolution

Blurry Sharp PSF

Fourier transform

Loss of high frequencies!

A = Convolution = Fourier + Mask (outpainting in the Fourier domain)




Magnetic Resonance Imaging

Image x Fourier transform Sampling scheme

A = Fourier + Mask (inpainting in the Fourier domain)

'3}



The main difficulties in linear inverse problems

A7 (y) = {ATy + ker(A) + A" b}

e A'y: information "available" on x

e ker(A): information lost in the process

e A'h: structured noise

14



Bayesian formalism
Some information is lost in the acquisition!

We inject it through a probabilistic model.

e x is the realization of a random variable X with density px.

e b is the realization of a random variable B with density pg.

We'll write p(x) for px(x) to simplify the notation.

15



What is a prior px?
A function that evaluates the probability of an image.

If X is the image of a sheep.




What is a prior px?

A function that evaluates the probability of an image.

If X is the image of a sheep.




What is a prior px?

A function that evaluates the probability of an image.

If X is the image of a sheep.




What is a prior px?

A function that evaluates the probability of an image.

If X is the image of a sheep.
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What is a prior px?

e It is domain specific

e More or less spread depending on the amount of information

Sampling px|sheep

17



MAP, MMSE and Posterior Sampling




Learning to denoise

e A=1d and B ~ N(0,5°1d)
e Y = X + B: noisy image.
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Learning to denoise

e A=1Id and B ~ N(0,5°1d)
e Y = X + B: noisy image. s 22200000

Prerequisities

e Neural network N(y,w).

e A database of clean images (x1,...,x/)

e Synthesize y; = x; + b;.

Training = Stochastic gradient

!
L1
e 065 2 IO w) —

Output

e N(y,w”): a trained network
e Can be used with arbitrary images
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Minimum Mean Square Estimation (MMSE)

~ def. .
Ruwse(y) = argmin E(||x — X||§\Y =y)
xRN
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Minimum Mean Square Estimation (MMSE)

Sumsse () argmin B(|lx — X|3|Y = y) = E(xly)
xER

Claim (informal)

If I 'is large enough, N(-, w) is expressive and good training.

N(y, w") = Rimse (y)

Proof.
Rumse © y — argmin E(||x — X|3]Y = y) Average risk
x€RN
~ argmin — Z Ix(yi) — xil|3 Empirical risk
XR’V—>RN
~ argmln - Z IN(yi, w) — x| NN Approximation
i=1
~ N(-, w")! Good optimization

]



MMSE denoising =~ prior
Assume that Y = X + B with B ~ N(0,6°Id). Then

py = px * Gs

Basic property
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MMSE denoising =~ prior

Assume that Y = X + B with B ~ N(0,6°Id). Then

py = px * Gs
Vlog py(y) = L=t ng 2
Y= N(y,w")
~ 5

~ V log px(y)

Good denoiser ~ gradient of the log prior!

Basic property

Tweedie Formula

NN power
Small §
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Computing the MAP (Plug&Play prior)
Assume that Y = A(X) + B.

def.
XMAP(y) = argmax px| Y(X|.V)
x€RN
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Computing the MAP (Plug&Play prior)
Assume that Y = A(X) + B.

A def.
Suar(y) = argmax px |y (x|y)
x€ERN

Can be computed with a gradient descent:

Xir1 = Xk + TV pxjv (Xk|y)

Bayes

= Xk —T [fv log pyx(y|xk) — V log px(xk)}

Tweedi -N )
T -1 —V log py|x(y|xk) — a 5(2Xk’ W) .

Plug-and-play priors for model based reconstruction Bayesian imaging using plug & play priors: when langevin meets tweedie
SV Venkatakrishnan, CA Bouman... - 2013 IEEE global ..., 2013 - leeexplore ieee.0rg R Laumont, VD Bortoli, A Almansa, J Delon. . - SIAM Journal on Imaging ..., 2022 - SIAM

.. This framework, which we term as Plug-and-Play priors, has the advantage that it ... We Since the seminal work of Venkatakrishnan, Bournan, and Wohiberg [Proceedings of the
demonstrate with some simple examples how Plug-and-Play priors can be used to mix and match ... Global Conference on Signal and Information Processing, IEEE, 2013, pp. 945-948] in 2013, ...
¢ Enregistrer 99 Citer Cité 1014 fois Autres articles ~Les 14 versions Y Enregistrer 99 Citer Cité 77 fois Autres articles  Les 9 versions
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Sampling the posterior

Assume that Y = A(X) + B. Construct the Euler-Maruyama sequence:

Xiy1 = Xk — T [V log pxv (xkly) + \@bk]

where by ~ N(0,1d).

Then (under mild conditions — log-Sobolev inequalities)

1K
e Z(Lk — Px|y
=1

Denoising diffusion probabilistic models
J Ho, A Jain, P Abbeel - Advances in neural information ..., 2020 - proceedings.neurips.cc
This paper presents progress in diffusion probabllistic models [53]. A diffusion probabilistic
model (which we wil cal a ‘diffusion model”for brevity) is a parameerized Markov chain
¥t Envegistrer 99 Citer Cité 6458 fois Autres articles Les 6 versions 90

i of Langevin distributions and their discrete
approximations.
GO Roberts, RL Tweede - Bemoul, 1996 - JSTOR
We will see that there

ofthe m 7r E Gom. This behaviour is Kentical to that exhibited by the m aigorithm, as shown
7 Enregisier 90 Citer Cité 1333 fois Autres artices  Les 11 versions
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A starting problem

Gradient Stochastic gradient
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Computing the MMSE (Monte-Carlo — slow)

Run the Euler-Maruyama scheme and

K
) 1
Ruse(y) = EX|Y =y~ 22 > x.
k=1
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Computing the MMSE (Monte-Carlo — slow)

Run the Euler-Maruyama scheme and

K
) 1
Ruse(y) = EX|Y =y~ 22 > x.
k=1

Computing the MMSE (Unrolled networks — fast)
Assume that Y = A(X) + B.

Construct a sequence of denoising networks Ny (x, wy), k =1...

X0 = A+y
X1 = xk — TV log py|x(y[x«)

Xk — /V(Xk7 Wk)
62

Xk+1 = Xk — T

Define the architecture UN (y, w) = xk with w = (wa, ..., wk).

After training:
UN(y, w™) = Siuse (y)!

25



Main facts

e Learn to denoise!
e MMSE denoising
e = prior via Vlog px (Tweedie formula)
e Universal: can be used for arbitrary inverse problems
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Main facts

e Learn to denoise!
e MMSE denoising
e = prior via Vlog px (Tweedie formula)
e Universal: can be used for arbitrary inverse problems

e MAP estimation
e Plug&play (universal method)

e "Best” looking result

e Can be slow at runtime... But, can we trust it?
e Posterior sampling

e Obtained by SDEs (diffusion models)

e The Bayesian Graal!

e Really slow

e Heavy ongoing research

e MMSE

Unrolled network (specific to an operator)
“Best” result in average (blurry where unfaithful)
Fast at runtime

Long at train time

26



Mambo applications




Learning on operator families

Unrolled networks (fast MMSE) and adaptivity issues

Operator (PSF) Ao Operator (PSF) Ay

Image deblurring

27



Learning on operator families

Unrolled networks (fast MMSE) and adaptivity issues

Ground truth x




Learning on operator families

Unrolled networks (fast MMSE) and adaptivity issues

Blurry image yo = Ao(x) + b, 19.1dB
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Learning on operator families

Unrolled networks (fast MMSE) and adaptivity issues

Adaptivity issue N(wg, A1, y1) 15.6dB
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Learning on operator families

Unrolled networks (fast MMSE) and adaptivity issues

Model mismatch N(wg, Ao, y1) 14.5dB

27



Learning on operator families

Train on operator families!

inf Ex,a,v [[UN(X,A,w) = Y[3]

e Do not rely on the generalization capacity
e No performance loss

e Possibility to use in blind inverse problems

28



Blind deblurring & the MAP

Assume that y = hxx+ b

e h: unknown PSF
e x: unknown sharp image
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Blind deblurring & the MAP

Assume that y = hxx+ b

e h: unknown PSF
e x: unknown sharp image

Claim

For a “natural image"” prior px
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Blind deblurring & the MAP

Assume that y = hxx+ b

e h: unknown PSF
e x: unknown sharp image

Claim

For a “natural image” prior px = MAP yields h* = § and blurry solutions!

TVo.s 1.00 0.96 0.57 0.39 0.31 0.28 0.25

no blur o =0.02 o=0.35 o =0.68 o =101 o=134 o =168
SDE 1.00 0.96 0.29 —0.86 —1.64 —2.08

no blur o =0.02 o =028 o =0.54 o =0.81 o =107 o=133 o =159

GradStepy oo;  1.00 0.87 0.19 0.08 0.06 0.05 0.04

no blur o =0.02 o =035 o =0.68 o =101 o=134 o =168 o =201 22



Blind deblurring & the MMSE

A specific architecture

30



Blind deblurring & the MMSE

Real image (actin filaments)




Blind deblurring & the MMSE

Deep-Blur result




Blind deblurring & the MMSE

Real image (R. Poincloux, podosomes)




Blind deblurring & the MMSE
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Certifying blind inverse problems

Some inverse problems are easier than others!

dim(ker(A)) doesn't matter!

32



Certifying blind inverse problems

Identifiable

A favorable inverse problem

33



Certifying blind inverse problems

AT (%) \ supp(px)

Local non identifiability

Global non identifiability

A problematic inverse problem

34



verse problems

Estimator D(y, x) Kernel hy d(x)

Exploring equally likely images
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verse problems

Estimator D(y, x) Kernel hy d(x)

Exploring equally likely images
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Certifying blind inverse problems

Details of two possible deconvolutions




Optimizing Fourier sampling trajectories

The MRI model

y=A0)x+b

e O: sampling locations in the Fourier domain

How to optimally sample?

Compressed sensing
DL Dongho - IEEE Transactions on information theory, 2006 - ieeexplore.ieee.org

Suppose x is an unknown vector in Ropf m (a digital image or signal); we plan to measure n
general linear functionals of x and then reconstruct. If x is known to be compressible by ..
¢ Enregistrer 99 Citer Cité 34060 fols  Autres articles Les 25 versions  Web of Science: 18790

Robust uncertainty principles: Exact signal reconstruction from highly incomplete
frequency information

EJ Candes, J Romberg, T Tao - IEEE Transactions on ..., 2006 - lseexplore.ieee.org

This paper considers the model problem of reconstructing an object from incomplete frequency

samples. Consider a discrete-time signal fispl isin/C/sup N/ and a randomly chosen set of ...

71 Enregistrer 99 Citer Cité 19447 fois Autres arficles Les 29 versions Web of Science: 10638
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Optimizing Fourier sampling trajectories

38
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Video_sparkling_generation_vds


Optimizing Fourier sampling trajectories

b d =
AP L ZREAY (T &2 [N
At A% ' At i%e
Y P LYSECAE




Optimizing Fourier sampling trajectories
Joint sampling/reconstruction scheme optimization

inf Ex,v [[|N(Y, A(6), w) — X|Z]

(¢) Joint traj. optim. 25% (d) Joint traj. optim. 10%

Significantly higher performance

40



Conclusion

Bayes & Imaging

e Pre 2015 priors used to be too far from reality...
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Conclusion

Bayes & Imaging

e Pre 2015 priors used to be too far from reality...
e Experiments suggest that learnt priors are now rocking!

e Provides an elegant mathematical framework

Perspectives

e How reliable is this interpretation?

® Pope et al, The intrinsic dimension of images (is = 40), ICLR 2021
e 109 samples are not enough to learn an p.d.f. in dim 40!

What neural architectures promote natural images? Are there things
beyond CNNs? What are the biases?

Why can we optimize/train near globally?

e How to accelerate computations to quantify uncertainty?

Plenty new applications in imaging / system biology!
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A few personal references

More details

Gossard & P.W., Training adaptive reconstruction networks for blind inverse problems,

SIAM Imaging Science 2024

Debarnot & P.W., DEEP-BLUR: Blind ldentification and Deblurring with CNN,
Biological Imaging, 2024

Munier, Soubies & P.W., Identifying the non identifiable, ongoing, 2024
Nguyen, Pauwels & P.W., Don’t use the MAP blindly, ongoing, 2024

Lazarus, Ciuciu & P.W. SPARKLING: variable density filling curves for MRI, Magnetic

Resonance in Medicine, 2019

Gossard & P.W., Bayesian Optimization of Sampling Densities in MRI, MELBA 2023
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More details

® Zhu et al, Denoising Diffusion Models for Plug-and-Play Image Restoration, C

® Laumont et al, Bayesian plug & play priors: when Langevin meets Tweedie, SIA

Imaging Science, 2022

® Vahdat et al, 4h Nvidia Tutorial on Denoising diffusion models, 2023

Main collaborators

Valentin Debarnot (Swiss post-doc, who may apply to INRA)
Alban Gossard (@Go Pro)

e Carole Lazarus (@Siemens research)

Nathanaél Munier, (current PhD)
e Minh Hai Nguyen, (current PhD)
e F. de Gournay, P. Escande, E. Soubies, E. Pauwels, J. Kahn
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https://www.youtube.com/watch?v=cS6JQpEY9cs
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