
Supervised Learning & Inverse Problems in Imaging
(or How I Became a Bayesian)

Pierre Weiss, CNRS, Université de Toulouse

Introduction

Can we recover the missing information?

2

The RIM team philosophy

• “If we cannot measure, we should change the acquisition protocol”

• “You can trust every pixel we provide”

The deviant approach (today)

• “If you don’t have the information just invent it!”

3

The RIM team philosophy

• “If we cannot measure, we should change the acquisition protocol”

• “You can trust every pixel we provide”

The deviant approach (today)

• “If you don’t have the information just invent it!”

3

The RIM team philosophy

• “If we cannot measure, we should change the acquisition protocol”

• “You can trust every pixel we provide”

The deviant approach (today)

• “If you don’t have the information just invent it!”

3

Asking my students

4

Asking my students

4

Asking my students

4

Asking my students

4

Asking my students

4

Asking my students

4

Asking my students

4

Observation

• Average scientist scholar ̸= fine arts school student

• Not much can be said... Likely 2 eyes, glasses and a nose!

Main objectives today

• Can computers can do this better?

• What are the main mathematical tools and their properties?

• Some practical implications

5

Observation

• Average scientist scholar ̸= fine arts school student

• Not much can be said... Likely 2 eyes, glasses and a nose!

Main objectives today

• Can computers can do this better?

• What are the main mathematical tools and their properties?

• Some practical implications

5

Observation

• Average scientist scholar ̸= fine arts school student

• Not much can be said... Likely 2 eyes, glasses and a nose!

Main objectives today

• Can computers can do this better?

• What are the main mathematical tools and their properties?

• Some practical implications

5

1990-2015: "handcrafted" approaches

Total variation minimization

x̂ = argmin
x|mask=y|mask

∥∇x∥1

Limited practical interest!

6

1990-2015: "handcrafted" approaches

Total variation minimization

x̂ = argmin
x|mask=y|mask

∥∇x∥1
Limited practical interest!

6

Today: AI and the MAP. x̂ = argmaxx p(x |y)

7

Today: AI and the MMSE. x̂ = E(x |y)

8

Today: AI and sampling the posterior px|y

9

Preliminaries

Inverse problems

y = A(x) + b

• A : RN → RM observation operator

• x : image to recover

• b: noise

• y : observed measurements

Inverse problem ≡ recover x from y

10

Inpainting

0
1

A = Mask Multiplication (inpainting in the space domain)

11

Microscopy super-resolution

A = Convolution = Fourier + Mask (outpainting in the Fourier domain)

12

Magnetic Resonance Imaging

Image x Fourier transform Sampling scheme

A = Fourier + Mask (inpainting in the Fourier domain)

13

The main difficulties in linear inverse problems

A−1(y) = {A+y + ker(A) + A+b}

• A+y : information "available" on x

• ker(A): information lost in the process

• A+b: structured noise

14

Bayesian formalism

Some information is lost in the acquisition!

We inject it through a probabilistic model.

• x is the realization of a random variable X with density pX .

• b is the realization of a random variable B with density pB .

We’ll write p(x) for pX (x) to simplify the notation.

15

What is a prior pX?

A function that evaluates the probability of an image.

If X is the image of a sheep.

pX ()

≥ pX ()≥ pX ()≥ pX () = 0!

16

What is a prior pX?

A function that evaluates the probability of an image.

If X is the image of a sheep.

pX ()≥ pX ()

≥ pX ()≥ pX () = 0!

16

What is a prior pX?

A function that evaluates the probability of an image.

If X is the image of a sheep.

pX ()≥ pX ()≥ pX ()

≥ pX () = 0!

16

What is a prior pX?

A function that evaluates the probability of an image.

If X is the image of a sheep.

pX ()≥ pX ()≥ pX ()≥ pX () = 0!

16

What is a prior pX?

• It is domain specific

• More or less spread depending on the amount of information

Sampling pX|cell

Sampling pX|molecule

Sampling pX|sheep

17

MAP, MMSE and Posterior Sampling

Learning to denoise

• A = Id and B ∼ N (0, σ2Id)
• Y = X + B: noisy image.

Prerequisities

• Neural network N(y ,w).

• A database of clean images (x1, . . . , xI)

• Synthesize yi = xi + bi .

Training ≡ Stochastic gradient

• inf
w

1
I

I∑
i=1

∥N(yi ,w)− xi∥2
2

Output

• N(y ,w⋆): a trained network

• Can be used with arbitrary images

18

Learning to denoise

• A = Id and B ∼ N (0, σ2Id)
• Y = X + B: noisy image.

Prerequisities

• Neural network N(y ,w).

• A database of clean images (x1, . . . , xI)

• Synthesize yi = xi + bi .

Training ≡ Stochastic gradient

• inf
w

1
I

I∑
i=1

∥N(yi ,w)− xi∥2
2

Output

• N(y ,w⋆): a trained network

• Can be used with arbitrary images

18

Learning to denoise

• A = Id and B ∼ N (0, σ2Id)
• Y = X + B: noisy image.

Prerequisities

• Neural network N(y ,w).

• A database of clean images (x1, . . . , xI)

• Synthesize yi = xi + bi .

Training ≡ Stochastic gradient

• inf
w

1
I

I∑
i=1

∥N(yi ,w)− xi∥2
2

Output

• N(y ,w⋆): a trained network

• Can be used with arbitrary images

18

Learning to denoise

• A = Id and B ∼ N (0, σ2Id)
• Y = X + B: noisy image.

Prerequisities

• Neural network N(y ,w).

• A database of clean images (x1, . . . , xI)

• Synthesize yi = xi + bi .

Training ≡ Stochastic gradient

• inf
w

1
I

I∑
i=1

∥N(yi ,w)− xi∥2
2

Output

• N(y ,w⋆): a trained network

• Can be used with arbitrary images

18

Minimum Mean Square Estimation (MMSE)

x̂MMSE(y)
def.
= argmin

x∈RN

E(∥x − X∥2
2|Y = y)

= E(x |y)

Claim (informal)

If I is large enough, N(·,w) is expressive and good training.

N(y ,w⋆) ≈ x̂MMSE(y)

Proof.

x̂MMSE : y 7→ argmin
x∈RN

E(∥x − X∥2
2|Y = y) Average risk

≈ argmin
x :RN→RN

1
I

I∑
i=1

∥x(yi)− xi∥2
2 Empirical risk

≈ argmin
w

1
I

I∑
i=1

∥N(yi ,w)− xi∥2
2 NN Approximation

≈ N(·,w⋆)! Good optimization

19

Minimum Mean Square Estimation (MMSE)

x̂MMSE(y)
def.
= argmin

x∈RN

E(∥x − X∥2
2|Y = y) = E(x |y)

Claim (informal)

If I is large enough, N(·,w) is expressive and good training.

N(y ,w⋆) ≈ x̂MMSE(y)

Proof.

x̂MMSE : y 7→ argmin
x∈RN

E(∥x − X∥2
2|Y = y) Average risk

≈ argmin
x :RN→RN

1
I

I∑
i=1

∥x(yi)− xi∥2
2 Empirical risk

≈ argmin
w

1
I

I∑
i=1

∥N(yi ,w)− xi∥2
2 NN Approximation

≈ N(·,w⋆)! Good optimization

19

Minimum Mean Square Estimation (MMSE)

x̂MMSE(y)
def.
= argmin

x∈RN

E(∥x − X∥2
2|Y = y) = E(x |y)

Claim (informal)

If I is large enough, N(·,w) is expressive and good training.

N(y ,w⋆) ≈ x̂MMSE(y)

Proof.

x̂MMSE : y 7→ argmin
x∈RN

E(∥x − X∥2
2|Y = y) Average risk

≈ argmin
x :RN→RN

1
I

I∑
i=1

∥x(yi)− xi∥2
2 Empirical risk

≈ argmin
w

1
I

I∑
i=1

∥N(yi ,w)− xi∥2
2 NN Approximation

≈ N(·,w⋆)! Good optimization

19

Minimum Mean Square Estimation (MMSE)

x̂MMSE(y)
def.
= argmin

x∈RN

E(∥x − X∥2
2|Y = y) = E(x |y)

Claim (informal)

If I is large enough, N(·,w) is expressive and good training.

N(y ,w⋆) ≈ x̂MMSE(y)

Proof.

x̂MMSE : y 7→ argmin
x∈RN

E(∥x − X∥2
2|Y = y) Average risk

≈ argmin
x :RN→RN

1
I

I∑
i=1

∥x(yi)− xi∥2
2 Empirical risk

≈ argmin
w

1
I

I∑
i=1

∥N(yi ,w)− xi∥2
2 NN Approximation

≈ N(·,w⋆)! Good optimization
19

MMSE denoising ≈ prior

Assume that Y = X + B with B ∼ N (0, δ2Id). Then

pY = pX ⋆ Gδ Basic property

∇ log pY (y) =
y − x̂MMSE(y)

δ2 Tweedie Formula

≈ y − N(y ,w⋆)

δ2 NN power

≈ ∇ log pX (y) Small δ

Good denoiser ≈ gradient of the log prior!

20

MMSE denoising ≈ prior

Assume that Y = X + B with B ∼ N (0, δ2Id). Then

pY = pX ⋆ Gδ Basic property

∇ log pY (y) =
y − x̂MMSE(y)

δ2 Tweedie Formula

≈ y − N(y ,w⋆)

δ2 NN power

≈ ∇ log pX (y) Small δ

Good denoiser ≈ gradient of the log prior!

20

MMSE denoising ≈ prior

Assume that Y = X + B with B ∼ N (0, δ2Id). Then

pY = pX ⋆ Gδ Basic property

∇ log pY (y) =
y − x̂MMSE(y)

δ2 Tweedie Formula

≈ y − N(y ,w⋆)

δ2 NN power

≈ ∇ log pX (y) Small δ

Good denoiser ≈ gradient of the log prior!

20

Computing the MAP (Plug&Play prior)

Assume that Y = A(X) + B.

x̂MAP(y)
def.
= argmax

x∈RN

pX |Y (x |y)

Can be computed with a gradient descent:

xk+1 = xk + τ∇pX |Y (xk |y)
Bayes
= xk − τ

[
−∇ log pY |X (y |xk)−∇ log pX (xk)

]
Tweedie
≈ xk − τ

[
−∇ log pY |X (y |xk)−

xk − N(xk ,w
⋆)

δ2

]
.

21

Computing the MAP (Plug&Play prior)

Assume that Y = A(X) + B.

x̂MAP(y)
def.
= argmax

x∈RN

pX |Y (x |y)

Can be computed with a gradient descent:

xk+1 = xk + τ∇pX |Y (xk |y)
Bayes
= xk − τ

[
−∇ log pY |X (y |xk)−∇ log pX (xk)

]
Tweedie
≈ xk − τ

[
−∇ log pY |X (y |xk)−

xk − N(xk ,w
⋆)

δ2

]
.

21

Sampling the posterior

Assume that Y = A(X) + B. Construct the Euler-Maruyama sequence:

xk+1 = xk − τ
[
∇ log pX |Y (xk |y) +

√
2bk

]
where bk ∼ N (0, Id).

Then (under mild conditions – log-Sobolev inequalities)

1
K

K∑
k=1

δxk ⇀ pX |Y

22

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

23

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

A starting problem

24

Computing the MMSE (Monte-Carlo – slow)

Run the Euler-Maruyama scheme and

x̂MMSE(y) = E[X |Y = y] ≈ 1
K

K∑
k=1

xk .

Computing the MMSE (Unrolled networks – fast)

Assume that Y = A(X) + B.

Construct a sequence of denoising networks Nk(x ,wk), k = 1 . . .K :

x0 = A+y

xk+ 1
2
= xk − τ∇ log pY |X (y |xk)

xk+1 = xk − τ
xk − N(xk ,wk)

δ2

Define the architecture UN (y ,w) = xK with w = (w1, . . . ,wK).

After training:
UN (y ,w⋆) ≈ x̂MMSE(y)!

25

Computing the MMSE (Monte-Carlo – slow)

Run the Euler-Maruyama scheme and

x̂MMSE(y) = E[X |Y = y] ≈ 1
K

K∑
k=1

xk .

Computing the MMSE (Unrolled networks – fast)

Assume that Y = A(X) + B.

Construct a sequence of denoising networks Nk(x ,wk), k = 1 . . .K :

x0 = A+y

xk+ 1
2
= xk − τ∇ log pY |X (y |xk)

xk+1 = xk − τ
xk − N(xk ,wk)

δ2

Define the architecture UN (y ,w) = xK with w = (w1, . . . ,wK).

After training:
UN (y ,w⋆) ≈ x̂MMSE(y)!

25

Main facts

• Learn to denoise!
• MMSE denoising
• ≈ prior via ∇ log pX (Tweedie formula)
• Universal: can be used for arbitrary inverse problems

• MAP estimation
• Plug&play (universal method)
• “Best” looking result
• Can be slow at runtime... But, can we trust it?

• Posterior sampling
• Obtained by SDEs (diffusion models)
• The Bayesian Graal!
• Really slow
• Heavy ongoing research

• MMSE
• Unrolled network (specific to an operator)
• “Best” result in average (blurry where unfaithful)
• Fast at runtime
• Long at train time

26

Main facts

• Learn to denoise!
• MMSE denoising
• ≈ prior via ∇ log pX (Tweedie formula)
• Universal: can be used for arbitrary inverse problems

• MAP estimation
• Plug&play (universal method)
• “Best” looking result
• Can be slow at runtime... But, can we trust it?

• Posterior sampling
• Obtained by SDEs (diffusion models)
• The Bayesian Graal!
• Really slow
• Heavy ongoing research

• MMSE
• Unrolled network (specific to an operator)
• “Best” result in average (blurry where unfaithful)
• Fast at runtime
• Long at train time

26

Main facts

• Learn to denoise!
• MMSE denoising
• ≈ prior via ∇ log pX (Tweedie formula)
• Universal: can be used for arbitrary inverse problems

• MAP estimation
• Plug&play (universal method)
• “Best” looking result
• Can be slow at runtime... But, can we trust it?

• Posterior sampling
• Obtained by SDEs (diffusion models)
• The Bayesian Graal!
• Really slow
• Heavy ongoing research

• MMSE
• Unrolled network (specific to an operator)
• “Best” result in average (blurry where unfaithful)
• Fast at runtime
• Long at train time

26

Main facts

• Learn to denoise!
• MMSE denoising
• ≈ prior via ∇ log pX (Tweedie formula)
• Universal: can be used for arbitrary inverse problems

• MAP estimation
• Plug&play (universal method)
• “Best” looking result
• Can be slow at runtime... But, can we trust it?

• Posterior sampling
• Obtained by SDEs (diffusion models)
• The Bayesian Graal!
• Really slow
• Heavy ongoing research

• MMSE
• Unrolled network (specific to an operator)
• “Best” result in average (blurry where unfaithful)
• Fast at runtime
• Long at train time

26

Mambo applications

Learning on operator families

Unrolled networks (fast MMSE) and adaptivity issues

Operator (PSF) A0 Operator (PSF) A1

Image deblurring

27

Learning on operator families

Unrolled networks (fast MMSE) and adaptivity issues

Ground truth x
27

Learning on operator families

Unrolled networks (fast MMSE) and adaptivity issues

Blurry image y0 = A0(x) + b, 19.1dB
27

Learning on operator families

Unrolled networks (fast MMSE) and adaptivity issues

No mismatch N (w∗
0 ,A0, y0) 30.1dB

27

Learning on operator families

Unrolled networks (fast MMSE) and adaptivity issues

Adaptivity issue N (w∗
0 ,A1, y1) 15.6dB

27

Learning on operator families

Unrolled networks (fast MMSE) and adaptivity issues

Model mismatch N (w∗
0 ,A0, y1) 14.5dB

27

Learning on operator families

Train on operator families!

inf
w

EX ,A,Y

[
∥UN (X ,A,w)− Y ∥2

2
]

• Do not rely on the generalization capacity

• No performance loss

• Possibility to use in blind inverse problems

28

Blind deblurring & the MAP

Assume that y = h ⋆ x + b

• h: unknown PSF
• x : unknown sharp image

Claim

For a “natural image” prior pX ⇒ MAP yields h⋆ = δ and blurry solutions!

29

Blind deblurring & the MAP

Assume that y = h ⋆ x + b

• h: unknown PSF
• x : unknown sharp image

Claim

For a “natural image” prior pX

⇒ MAP yields h⋆ = δ and blurry solutions!

29

Blind deblurring & the MAP

Assume that y = h ⋆ x + b

• h: unknown PSF
• x : unknown sharp image

Claim

For a “natural image” prior pX ⇒ MAP yields h⋆ = δ and blurry solutions!

29

Blind deblurring & the MMSE

64 51
2

y

64 25
6

64 12
8

64 12
8

64 12
8

128 64128 64
256 32256 32 512 16512 16

P
Adapt.
Pool.
γ̂

Identification Network

1 51
2

1 51
2

1 51
2

1 51
2

û

Deblurring Network

A specific architecture

30

Blind deblurring & the MMSE

Real image (actin filaments)
31

Blind deblurring & the MMSE

Deep-Blur result
31

Blind deblurring & the MMSE

Real image (R. Poincloux, podosomes)
31

Blind deblurring & the MMSE

Deep-Blur results
31

Certifying blind inverse problems

Some inverse problems are easier than others!

dim(ker(A)) doesn’t matter!

32

Certifying blind inverse problems

A favorable inverse problem

33

Certifying blind inverse problems

A problematic inverse problem

34

Certifying blind inverse problems

⋆ =

Estimator D(y , x) Kernel hx Φ(x)

Exploring equally likely images

35

Certifying blind inverse problems

⋆ =

Estimator D(y , x) Kernel hx Φ(x)

Exploring equally likely images

35

Certifying blind inverse problems

⋆ =

Estimator D(y , x) Kernel hx Φ(x)

Exploring equally likely images

35

Certifying blind inverse problems

⋆ =

Estimator D(y , x) Kernel hx Φ(x)

Exploring equally likely images

35

Certifying blind inverse problems

⋆ =

Estimator D(y , x) Kernel hx Φ(x)

Exploring equally likely images

35

Certifying blind inverse problems

⋆ =

Estimator D(y , x) Kernel hx Φ(x)

Exploring equally likely images

35

Certifying blind inverse problems

⋆ =

Estimator D(y , x) Kernel hx Φ(x)

Exploring equally likely images

35

Certifying blind inverse problems

⋆ =

Estimator D(y , x) Kernel hx Φ(x)

Exploring equally likely images

35

Certifying blind inverse problems

⋆ =

Estimator D(y , x) Kernel hx Φ(x)

Exploring equally likely images

35

Certifying blind inverse problems

⋆ =

Estimator D(y , x) Kernel hx Φ(x)

Exploring equally likely images

35

Certifying blind inverse problems

⋆ =

Estimator D(y , x) Kernel hx Φ(x)

Exploring equally likely images

35

Certifying blind inverse problems

⋆ =

Estimator D(y , x) Kernel hx Φ(x)

Exploring equally likely images

35

Certifying blind inverse problems

⋆ =

Estimator D(y , x) Kernel hx Φ(x)

Exploring equally likely images

35

Certifying blind inverse problems

⋆ =

Estimator D(y , x) Kernel hx Φ(x)

Exploring equally likely images

35

Certifying blind inverse problems

Details of two possible deconvolutions

36

Optimizing Fourier sampling trajectories

The MRI model

y = A(θ)x + b

• θ: sampling locations in the Fourier domain

How to optimally sample?

37

Optimizing Fourier sampling trajectories

38

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Video_sparkling_generation_vds

Optimizing Fourier sampling trajectories

a b c d

e f g h

SPARKLINGREFERENCE SPIRAL RADIAL

Cartesian (2’20), SPARKLING (8.8"), Spiral (8.8"), Radial (8.8")

39

Optimizing Fourier sampling trajectories

Joint sampling/reconstruction scheme optimization

inf
w,θ

EX ,Y

[
∥N(Y ,A(θ),w)− X∥2

2
]

Significantly higher performance

40

Conclusion

Bayes & Imaging

• Pre 2015 priors used to be too far from reality...

• Experiments suggest that learnt priors are now rocking!

• Provides an elegant mathematical framework

Perspectives

• How reliable is this interpretation?
• Pope et al, The intrinsic dimension of images (is ≈ 40), ICLR 2021
• 109 samples are not enough to learn an p.d.f. in dim 40!

• What neural architectures promote natural images? Are there things
beyond CNNs? What are the biases?

• Why can we optimize/train near globally?

• How to accelerate computations to quantify uncertainty?

• Plenty new applications in imaging / system biology!

41

Conclusion

Bayes & Imaging

• Pre 2015 priors used to be too far from reality...

• Experiments suggest that learnt priors are now rocking!

• Provides an elegant mathematical framework

Perspectives

• How reliable is this interpretation?
• Pope et al, The intrinsic dimension of images (is ≈ 40), ICLR 2021
• 109 samples are not enough to learn an p.d.f. in dim 40!

• What neural architectures promote natural images? Are there things
beyond CNNs? What are the biases?

• Why can we optimize/train near globally?

• How to accelerate computations to quantify uncertainty?

• Plenty new applications in imaging / system biology!

41

Conclusion

Bayes & Imaging

• Pre 2015 priors used to be too far from reality...

• Experiments suggest that learnt priors are now rocking!

• Provides an elegant mathematical framework

Perspectives

• How reliable is this interpretation?
• Pope et al, The intrinsic dimension of images (is ≈ 40), ICLR 2021

• 109 samples are not enough to learn an p.d.f. in dim 40!

• What neural architectures promote natural images? Are there things
beyond CNNs? What are the biases?

• Why can we optimize/train near globally?

• How to accelerate computations to quantify uncertainty?

• Plenty new applications in imaging / system biology!

41

Conclusion

Bayes & Imaging

• Pre 2015 priors used to be too far from reality...

• Experiments suggest that learnt priors are now rocking!

• Provides an elegant mathematical framework

Perspectives

• How reliable is this interpretation?
• Pope et al, The intrinsic dimension of images (is ≈ 40), ICLR 2021
• 109 samples are not enough to learn an p.d.f. in dim 40!

• What neural architectures promote natural images? Are there things
beyond CNNs? What are the biases?

• Why can we optimize/train near globally?

• How to accelerate computations to quantify uncertainty?

• Plenty new applications in imaging / system biology!

41

A few personal references

More details

• Gossard & P.W., Training adaptive reconstruction networks for blind inverse problems,

SIAM Imaging Science 2024

• Debarnot & P.W., DEEP-BLUR: Blind Identification and Deblurring with CNN,

Biological Imaging, 2024

• Munier, Soubies & P.W., Identifying the non identifiable, ongoing, 2024

• Nguyen, Pauwels & P.W., Don’t use the MAP blindly, ongoing, 2024

• Lazarus, Ciuciu & P.W. SPARKLING: variable density filling curves for MRI, Magnetic

Resonance in Medicine, 2019

• Gossard & P.W., Bayesian Optimization of Sampling Densities in MRI, MELBA 2023

42

Other influential references

More details

• Zhu et al, Denoising Diffusion Models for Plug-and-Play Image Restoration, CVPR 2023

• Laumont et al, Bayesian plug & play priors: when Langevin meets Tweedie, SIAM

Imaging Science, 2022

• Vahdat et al, 4h Nvidia Tutorial on Denoising diffusion models, 2023

Main collaborators

• Valentin Debarnot (Swiss post-doc, who may apply to INRA)

• Alban Gossard (@Go Pro)

• Carole Lazarus (@Siemens research)

• Nathanaël Munier, (current PhD)

• Minh Hai Nguyen, (current PhD)

• F. de Gournay, P. Escande, E. Soubies, E. Pauwels, J. Kahn

43

https://www.youtube.com/watch?v=cS6JQpEY9cs

	Introduction
	Preliminaries
	MAP, MMSE and Posterior Sampling
	Mambo applications

	fd@rm@0:

