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Abstract
‘Coil design’ is an inverse problem in which arrangements of wire are designed to generate a
prescribed magnetic field when energized with electric current. The design of gradient and
shim coils for magnetic resonance imaging (MRI) are important examples of coil design. The
magnetic fields that these coils generate are usually required to be both strong and accurate.
Other electromagnetic properties of the coils, such as inductance, may be considered in the
design process, which becomes an optimization problem. The maximum current density is
additionally optimized in this work and the resultant coils are investigated for performance and
practicality. Coils with minimax current density were found to exhibit maximally spread wires
and may help disperse localized regions of Joule heating. They also produce the highest
possible magnetic field strength per unit current for any given surface and wire size. Three
different flavours of boundary element method that employ different basis functions (triangular
elements with uniform current, cylindrical elements with sinusoidal current and conic section
elements with sinusoidal-uniform current) were used with this approach to illustrate its
generality.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In magnetic resonance imaging (MRI) an exquisitely uniform
and very intense magnetic field is used to polarize the spin
population of a sample so as to maximize the strength of
the nuclear magnetic resonance (NMR) signal. A process
known as ‘shimming’ is performed at the start of every scan
to ensure that this field is as uniform as possible. Shimming
involves adjusting the electric current in a set of ‘shim coils’
that each generate a magnetic field of spherical harmonic
intensity in the region of interest (ROI). MR images are formed
by superimposing magnetic field gradients which causes the
frequency of the NMR signal, the Larmor frequency, to vary
linearly across the sample. Fourier techniques reconstruct
the image from these frequency encoded NMR signals. The
linearly varying magnetic fields are generated by ‘gradient
coils’. This paper deals with the design of both gradient and
shim coils that dictate the speed, resolution and accuracy of
MRI [1].

Gradient and shim coil design is an inverse problem in
which arrangements of wire are required to generate a specified
magnetic field when energized. Additional considerations are
required such as minimal stored energy, so that they may be
switched rapidly, or minimal resistive power dissipation, so
that their temperature does not increase excessively. As MRI
machines get shorter to improve patient comfort [2] so too must
the gradient coils [3]. Reducing the length of the gradient coils
pushes the wires closer together to maintain magnetic field
accuracy. However, gradient and shim coils are constructed
from finite sized wire and hence there is a minimum wire
separation that can be built. In this work the maximum
current density was minimized in the coil design process which
maximally increases the minimum wire spacing of a coil for
fixed coil surface geometry. For a given engineering limit
for the minimum spacing between wires this technique can
be used to increase the efficiency of the coil (the amount of
field per Ampère). It can also be used to reduce the local
power dissipation and disperse the hot spots of a coil. This
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study demonstrates the design of coils with some increase in
inductance or resistance in order to spread wires. Such designs
should be judged by appropriate metrics that better encapsulate
the coil design problem than those designed to reflect purely
the stored energy or power dissipation of the design.

Coil design is also known as magnetic field synthesis and
is described by a Fredholm equation of the first kind, which is
known to be ill-posed [4]. Early approaches to coil design in
MRI cancelled undesired spherical harmonic components of
the magnetic field by symmetry and appropriate positioning
of loops and arcs of wire (e.g. [5]) or by parameterized
surface current densities [6]. The ‘target field’ method [7]
circumvented the problem of ill-posedness by employing a
Fourier–Bessel expansion of the 1/|r − r′| Green’s function
(see section 3.11 in [8]) and defining a continuous target field
function for −∞ < z < ∞. Since Fourier transforms have
unique inverses, it is possible to analytically determine the
current density on an infinitely long cylinder for a limited set
of target field functions.

If the target field is defined at a finite set of points,
there exists an infinite number of current densities that can
produce such a field. With the introduction of the minimum
inductance as a constraint [9] the problem becomes regularized
and a unique solution exists. This is essentially Tikhonov
regularization [10] of the ill-conditioned system of linear
equations [11–13]. This minimum inductance solution was
found to be somewhat impractical, so the field was allowed to
deviate from its prescribed target values in order to permit a
smoother wire pattern. In a related method, a smooth current
density was always obtained if it was defined as a weighted
sum of a finite number of truncated sinusoidal functions
[11–15]. Parametrizing the current density in this manner
allowed more practical, finite-length cylindrical coils with
limited spatial frequency to be designed in a method sometimes
referred to as the Turner–Carlson method. Minimization of
the inductance (the current-normalized stored energy) can be
easily substituted by the resistance (the current-normalized
power dissipation) while still resulting in a unique solution
[16]. For coil designs with asymmetric target field location it
is necessary to enforce zero net torque in the presence of an
intense background magnetic field [17].

A coil may be defined by its surface current density. The
magnitude of that current density defines the wire spacing
and the amount of heat generated at positions on the surface.
To spread the closest wires or to reduce the local heating,
the maximum value of the current density magnitude was
incorporated into the coil design problem and its maximum
value was minimized. This term is not linear nor quadratic,
but only convex with respect to the current density. In contrast
to more traditional approaches where only linear systems
are solved, we used techniques of convex programming to
handle the non-linearities and singularities that arise from the
‘max’ term. We developed an original algorithm to solve this
optimization problem that can be seen as a continuation of two
works by Nesterov [18, 19]. It can be shown to converge to
the global minimizer of the cost function but details of this
algorithm will be presented elsewhere.

The concept of minimum maximum current density
(minimax|j |) coil design is general and is not limited to any

particular coil design method. In this work, three different
boundary element methods (BEMs) were used to investigate
the behaviour of minimax|j | coils. These are the Turner–
Carlson [14, 15], triangular [20] and axisymmetric [21, 22]
BEMs. The target field was specified at a finite set of discrete
points in a region of interest (ROI). The field synthesis problem
is defined as minimizing the sum-of-squares field error and is
an ill-posed problem. Therefore, a regularizing term must be
included to obtain a unique solution.

In a previous attempt to reduce the maximum current
density the regularization term was adaptively modified [23].
This method showed a considerable reduction in maximum
current density, but it was not known how optimal the solutions
were. Other approaches in which regions of the coil were
designed manually have been used to control the maximum
current density: for example, by predefining the return
conductors [24, 25] or by manually introducing a large number
of constraints (p 146 of [21]). The method presented here truly
minimizes the maximum current density for coils designed
on surfaces of arbitrary shape that generate any physically
realizable magnetic field.

2. Methods

2.1. Physical model

In magnetostatics, Ampère’s Law, ∇ × B(r) = µ0J(r),
relates the magnetic field, B(r), and the free current density,
J(r). Current density must be conserved, so ∇ · J(r) = 0.
Employing the magnetic vector potential, A(r), where
B(r) = ∇ × A(r), Ampère’s Law becomes a Poisson
equation, ∇2A(r) = µ0J(r), which has the solution

A(r) = µ0

4π

∫
J(r′)

|r − r′| dV ′ (1)

in the Coulomb gauge (∇ · A(r) = 0). µ0 is the permeability
of free space and has the value 4π × 10−7 H m−1. With some
algebra, this leads to the familiar volumetric integral form of
the Biot–Savart law [8],

B(r) = µ0

4π

∫
J(r′) × (r − r′)

|r − r′|3 dV ′. (2)

For each directional component of B(r), (2) is a Fredholm
equation of the first kind which is known to be ill-posed. MRI
conventionally requires a strong magnetic field for polarization
of the nuclear spin states within the sample to be imaged [1].
We consider a system immersed in a background magnetic
field, B0(r), that is highly uniform, unidirectional and very
strong, i.e. B0(r) = B0zẑ, where ẑ is the unit vector parallel
to the z-axis. The magnitude of the combined magnetic
field, |B0zẑ + B(r)| ≈ (B0z + Bz(r)), dictates the local
Larmor frequency of the NMR signal and subsequent spatial
localization. Therefore we only need to design coils to
generate a specific Bz(r), justifiably neglecting the two other
components, Bx(r) and By(r).

In the context of this paper, ‘coil design’ is the inversion
of (2) to design an arrangement of wires that, when energized,
form a current density which generates a prescribed magnetic
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field. The region of space in which the field is prescribed, the
ROI, is separate from the region in which the current density
exists.

Coil design is rarely as simple as inverting (2) but requires
the consideration of other electromagnetic properties. The
stored energy, W , associated with J(r) is [8]

W = µ0

8π

∫
�c

∫
�c

J(r) · J(r′)
|r − r′| dV dV ′, (3)

where �c is the region of the coil in which J(r) is confined to
flow. The resistive power dissipation, P , is

P = ρCu

∫
�c

|J(r)|2 dV, (4)

where ρCu is the resistivity of the conducting medium which,
in this case, is assumed to be copper, ρCu = 1.68×10−10 � m.

The coil may be in close proximity to other conducting
surfaces defined by the region �e. Changing J(r) in time
causes B(r) to also change, Faraday’s Law, ∇ × E(r) =
∂B(r)/∂t , and J(r) = σE(r) show that currents may be
induced in other conducting surfaces. These ‘eddy currents’
can cause deleterious effects on MRI. So, a coil designer must
consider the effects that the induced eddy currents have on
the field in the ROI [26]. For low frequencies (<10 kHz)
the quasistatic approximation may be used and following the
approach of Peeren [27], a Heaviside function response in the
coil current was assumed. This leads to a linear relationship
between coil currents and eddy currents.

Lorentz forces act on the coil when immersed in a
background magnetic field, B0. The net Lorentz force is zero
for a divergence-free current density in a uniform B0, but there
may exist a consequential net torque, τ ,

τ =
∫

�c

r × [J(r) × B0] dV. (5)

Current density was confined to flow on thin surfaces so
that a scalar stream function, ψ(r), can be used to define the
vector current density

J(r) = ∇ × [ψ(r)n̂(r)], (6)

where n̂(r) in the unit vector normal to the surface at r.

2.2. Discrete formulation

The coil design problem may be solved analytically for some
special cases [7] but for other geometries the physical problem
must be described by a finite number of parameters in order to
apply numerical methods. The type of parametrization may
chosen to best suit the type of coil that is to be designed.
ψ(r) can be approximated as a finite weighted sum of N basis
functions,

ψ(r) ≈
N∑
n

ψnψ̂n(r), (7)

and so can the current density by combination of (7) with (6),

J(r) ≈
N∑
n

ψnĵn(r), (8)

where ψ̂n(r) and ĵn(r) are the nth stream function and current
density basis functions, respectively, and ψn are the weights.

Equation (8) can be incorporated in (2)–(5), so that Bz(r),
W , P and τ are parametrized as finite summations.

2.3. Matrix equations

This discrete formulation allows matrix equations for each
of the physical properties to be written. A vector
of stream-function weights, ψ , was defined; ψ =
[ψ1, . . . , ψn, . . . , ψN ]T (where T represents the transpose
operation). Each Cartesian component of the current density
at a set of points, rs , can be written as matrix equations

jx = Jxψ, jy = Jyψ, jz = Jzψ, (9)

where jx is a vector that lists values of the x-component
of the current density at a set of S points, jx =
[Jx(r1), . . . , Jx(rs), . . . , Jx(rS)]T and Jx in an S × N matrix.
Similar matrix equations can be written for the cylindrical
coordinate system to give jρ , jφ and jz.

A H × N matrix B relates ψ to a vector b of
length H containing magnetic field values, where b =
[Bz(r1), . . . , Bz(rh), . . . , Bz(rH )]T;

b = Bψ. (10)

Similarly, each component of the torque vector (5) can be
written as the inner product of ψ and a vector,

τx = Txψ, τy = Tyψ, τz = Tzψ. (11)

The energy terms (3) and (4) are quadratic with respect
to ψ ,

W = ψTLcψ, (12)

P = ψTRcψ, (13)

where Lc and Rc are symmetric, N × N matrices of the
inductance and resistance of the coil surface, respectively. In
fact, Rc = ρCu(J

T
x Jx + J T

y Jy + J T
z Jz).

Three types of parametrization are used in this work.
The first assumes that the current-carrying surface is a finite-
length cylinder and that ψ(r) is a weighted sum of truncated
sinusoidal functions [14, 15]. In the second approach, surfaces
are described by flat triangular elements and ψ(r) is a
piecewise-linear function [20, 27–29]. The third approach uses
surfaces of revolution about the z-axis and is an axisymmetric
BEM [21, 22]. The way in which ψ(r) and J(r) are
parametrized in each case are given in the appendices. For
details of how to calculate the matrices, B, Tx , Ty , Tz, Lc,
Rc for each type of parametrization, the reader is advised to
seek the above references. Other approaches to discretizing
the problem are possible, such as using quadrilateral elements,
but are not described in this work.
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2.4. Numerical problem

The vector ψ is a list of the stream-function weights ψn

which are the free parameters of the coil design problem. The
problem including the maximum current density and all other
terms can be written generally

min
ψ∈	

{U(ψ) = f (ψ) + αe(ψ) + βW(ψ)

+ γP (ψ) + δ||j (ψ)||∞}. (14)

It contains terms to control the residual primary field, f (ψ),
eddy current field, e(ψ), stored magnetic energy, W(ψ), power
dissipation, P(ψ), and maximum current density, ||j (ψ)||∞,
along with their respective, user-definable weighting factors,
α, β, γ and δ. One, two or three of these parameters are
usually set equal to zero to remove them from U(ψ). For
example, γ = δ = 0 will result in an actively shielded, torque-
balanced coil with minimal stored energy. Each term in (14)
possesses a natural scaling from the physical constants used in
their calculation. Choice of α, β, γ and δ values must balance
these scalings: for example, α, β, γ and δ are typically in the
order 1, 10−7, 10−9 and 10−10, respectively, so that they have
a magnitude comparable to the f (ψ) term, but are dependent
on the specific problem.

The minimization was performed such that ψ , belonged to
the set of stream functions, 	, that exhibit zero net torque (11);

	 = {ψ ∈ R
N, Txψ = 0 and Tyψ = 0}, (15)

whereTxψ andTyψ give thex- andy-components of the torque
vector τx and τy , respectively. In this work it was assumed
that the background magnetic field was uniform and oriented
parallel to z, and as such τz = 0. It is also possible to balance
the torque of coils immersed in non-uniform background
magnetic fields.

The f term in (14) represents the sum of squares of the
error in the primary magnetic field,

f = 1
2 ||Bcψ − bt||22, (16)

where || · ||2 is the classical �2-norm, Bc is a H × N matrix
relating ψ to the magnetic field values at the H target field
points in the ROI (10) and bt is a vector of length H containing
the target magnetic field values.

The term e in (14) represents the sum of squares of the
magnetic field that the eddy currents produce in the ROI. A
Heaviside function in coil current was assumed [27] and the
stream function of the instantaneously induced eddy current
density, ψe, is linearly related to ψ by

ψe = −L−1
e Mecψ, (17)

where Le is an Ne × Ne (Ne is the number of basis functions
approximating the current density on the eddy current surface)
self-inductance matrix of the conducting surface where eddy
currents are induced and Mec is an Ne ×N matrix of the mutual
inductance between the coil surface and eddy current surface.

The field produced by the eddy current at the target points
was desired to be minimal, hence we use the sum-of-squares
eddy current field to enforce active magnetic shielding.

e = 1
2 ||BeL

−1
e Mecψ ||22, (18)

where Be is a H × Ne matrix relating ψe to the eddy current
magnetic field values at the target points.

The stored magnetic energy, W , and power dissipation,
P , terms in (14) are quadratic with respect to ψ and are given
by equations (12) and (13), respectively.

The maximum current density magnitude in the coil
design is written here as the �∞-norm of the current density
magnitudes, j . j is a list of length S containing the current
density magnitude values at each surface point

||j ||∞ = lim
p→∞

(∑
s

(js)
p

)1/p

:= max
s

{js}, (19)

js = |js | =
√

j 2
sx + j 2

sy + j 2
sz. (20)

2.5. Optimization algorithm

Previous methods solved min{U(ψ)} by partial differentiation
of U(ψ), ∂U/∂ψ , and subsequent matrix inversion of the
consequential system of linear equations [28, 29]. This cannot
be done with (14) since U(ψ) contains a non-differentiable �∞

term. To solve (14) we used an accelerated descent algorithm
of Nesterov [19] on a dual problem smoothed using ideas of
Moreau–Yosida. Full details of the algorithm will be submitted
elsewhere. For the purposes of this paper it should be noted
that the algorithm requires as inputs the smoothing parameter,
µ, for the �∞-norm, the number of iterations to perform, Q,
and an initial guess for the solution, ψ0. µ and Q are related
by some inverse relationship that requires more iterations
when less smoothing is applied, but will approximate the non-
differentiable �∞-norm to a greater degree. Convergence was
checked by observing the value of the dual cost function as
q → Q.

The optimization algorithm was coded in Matlab (The
Mathworks, Natick, MA) and was executed on a 64-bit Linux
server with Intel (Intel Corporation, Santa Clara, CA) Xeon
E5430 quad-core CPUs at 2.66 GHz.

2.6. Examples

The impact of designing coils with the minimax|j | was
investigated by three examples. These examples are described
in the following sections and were chosen to elucidate the
behaviour of the system when designing realistic coils. In the
examples outlined below the convergence rates and calculation
times were recorded.

Relevant properties of the coil performance were recorded
in all cases. The efficiency, η, is the intensity of magnetic
field that the coil can generate with 1 A and is also sometimes
referred to as the sensitivity. Inductance, L, resistance, R,
minimum spacing between wires, w, maximum field error in
the ROI, max(�Bz) and maximum eddy current field in the
ROI, max(Bez), are all recorded. Derived figures of merit
(FOMs) η2/L, η2/R and ηw are independent of the number of
contours, Nc, used to convert ψ into wires and are useful for
comparing between coils.
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2.6.1. Cylindrical X-gradient coils. We initially demonstrate
minimax|j | coil design with ψ(r) parametrized by a sum
of sinusoidal basis functions [14, 15]. Appendix A details
the parametrization of ψ(r) and J(r). The current-carrying
surface for these examples was assumed to be a finite-length
cylinder 760 mm in diameter. The region of uniformity (ROU)
was a 400 mm long, 400 mm diameter cylindrical region
positioned concentrically inside the current-carrying surface.
The target field in the ROI has a magnitude that varies linearly
in the x-direction; Bz(r) ∝ x. This simple geometry was
used to investigate some of the more fundamental behaviours
of coils designed with minimax|j |. In all cases max (�Bz)

was kept at 5 ± 0.01% and no torque balancing was required
because J(r) is forced to be symmetric by the limited
parametrization. No active shielding was used, so α = 0.

The length of the coil, l, was varied between 700 and
2000 mm to observe its behaviour with respect to standard
min(W ) and min(P ) coils.

In a second experiment, minimax|j | coils were designed
with varying amounts of power minimization to investigate
their behaviour on the continuum from min(P ) to minimax|j |.
This was performed with l = 1400 mm, for N = 36 and 200.
For N = 36, with reference to (A.1), M ′ = 4 and N ′ = 8. For
N = 200, M ′ = 10 and N ′ = 20.

2.6.2. Shielded gradient coils. Short, cylindrical, actively
shielded gradient coils were designed with minimax|j |. The
dimensions of a coil presented in [30] was used in this example.
The system was modelled with a triangular BEM [20] which
approximates ψ(r) as piecewise linear in each triangle as
described in appendix B.

Four different X-gradient coils were designed using
different types of minimization, all with max(�Bz) = 5 ±
0.01% in the ROI and α = 20; min(W ), min(P ), minimax|j |
and min(P & max|j |) which is some combination of min(P )
and minimax|j |.

A full set of gradient coils comprises X, Y and Z coils,
with Y being a 90◦ rotation of the X-gradient. Z-gradient
coils (Bz(r) ∝ z) were designed with min(P ), minimax|j |
and min(P and max|j |). It is known that for axisymmetric
geometries and target fields (i.e. zonal coils) ψ(r) is φ

invariant. All nodes with identical ρn and zn were treated
together and forced to have the same value of ψn. In some
way this is equivalent to the axisymmetric case described in
the next example.

2.6.3. Shim coils. Designing shim coils not only requires
the production of magnetic fields that have a different spatial
form to gradient coils, but the engineering and electronic
requirements are also different. The efficiency, η, is of
primary importance and higher order shims are considerably
less efficient than low order shims. Improving η for the higher
order shim coils would be useful to improve correction of
geometric distortion in MR images induced by B0 field error
and may provide smaller linewidths for MR spectroscopy via
higher order shimming. Due to the often constrained axial and
radial space provided for shim coils, wire spacing can become
a problem and limits η. Coils designed with the minimax|j |

were studied to see if they could help improve shim coil
performance. X2–Y2 biplanar shim coils (Bz(r) ∝ x2 − y2)
were designed with 860 mm diameter and 500 mm separation
[31]. The ROI is a spherical volume of 380 mm diameter in
which max(�Bz) was fixed at 10 ± 0.01%. In both cases, the
φ dependence of ψ(r) was spectrally decomposed in terms of
seven sinusoids, i.e. M ′ = 7, see appendix C.

3. Results

3.1. General observations

Calculation of the system matrices for both the sum of
sinusoids and the axisymmetric BEM took on the order of a
few seconds. The time required for the triangular BEM system
matrix calculations was reduced over previously reported times
[29] by coding this part in C. It took less than 10 min to calculate
all the matrices for a large problem containing 3200 nodes and
6144 triangles. For a medium-sized problem containing 1632
nodes and 3072 triangles the system matrix calculation time
was less than 2 min.

The optimization algorithm converged in all cases as
expected from its deterministic nature. The smoothing
parameter, µ, for the �∞-norm controls how close the solution
to the smoothed problem, ψ∗

µ, is to the true solution, ψ∗.
Practically, we make µ small enough so that no observable
difference in the solutions is seen for smaller µ. The time
required to find a solution close to ψ∗ varies widely and is
dependent on the problem. The number of iterations, Q, that
the algorithm required to converge is inversely related to µ.
For a typical problem tackled in this work, 1 × 10−16 �
µ � 1 × 10−14 resulted in indistinguishable solutions which
typically required 10 000 � Q � 200 000.

3.2. Cylindrical X-gradient coils

The time required to find the solution to a small problem
with µ = 1 × 10−15, Q = 20 000 and the number of free
variables, N = 36 was approximately 23 s. Figure 1 shows
how the FOMs for (a) stored energy, (b) power dissipation and
(c) wire spacing varied for min(W ), min(P ) and minimax|j |
X-gradient coils as the length of the coil surface varied with
max(�Bz) = 5 ± 0.01%. Figure 2(a) shows the values of
δ that were used with varying γ to maintain max(�Bz) =
5 ± 0.01% in the ROU. The variations of the two relevant
FOMs with γ are shown in figures 2(b) and (c). Figure 3 shows
one quadrant of the wire paths for four coils designed with
(a) min(W ), (b) min(P ), (c) minimax|j | with N = 200 and
(d) minimax|j | with N = 36. Wire positions are unwrapped
from their cylindrical shape onto a flat z–aφ plane. As
with all coils presented in this paper, connections must be
made during construction from each loop to its neighbour
to ensure current flow throughout the coil. The location of
these coils are marked for reference in figures 2(b) and (c)
where ①, ② and ③ to the coils in figures 3(b), (c) and (d),
respectively.
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Figure 1. Variation of (a) η2/L, (b) η2/R and (c) ηw with
length-to-diameter ratio, l/d for unshielded X-gradient coils
designed with a sum-of-sinusoids parametrized stream function.

3.3. Shielded gradient coils

One quadrant of the wire paths for min(W ), min(P ),
minimax|j | and min(P & max|j |) shielded X-gradient coils is
shown in figure 4. The left-hand side shows the primary coils
and the right-hand side shows their active magnetic shields.
Their performance characteristics are given in table 1. Due
to the high number of free parameters, N = 1985, it took
approximately 480 min to perform Q = 210 000 iterations to
obtain a well converged solution.

The stream functions of the current densities of
the three Z-gradient coils with min(P ), minimax|j | and

Figure 2. (a) δ values required in combination with varying γ in
order to maintain field error of 5 ± 0.01% with β = 0. (b) the
resulting η2/R and (c) ηw of the coils for 32 and 200 sinusoidal
basis functions. Data points labelled ①, ② and ③ correspond to the
coils shown in figures 3(b), (c) and (d), respectively.

min(P & max|j |) are shown in figure 5. The FOMs are given
in table 2. The calculation time required to find the optimal
solution was dramatically reduced for the Z-gradient coils by
reducing the number of free variables. The time required
for Q = 80 000 iterations was 10 min for a well converged
solution.

3.4. Shim coils

The wire paths of one plane of a minimax|j | X2–Y2 biplanar
shim coil are shown in figure 6(b) next to an equivalent min(P )

6
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(a) (b)

(c) (d)

Figure 3. One quadrant each of the wire paths for the sum of sinusoids, unshielded, X-gradient coils in the cases of (a) min(W ), (b) min(P ),
(c) minimax|j | with 200 sinusoids and (d) minimax|j | with 32 sinusoids. Red wires indicate reversed current flow with respect to blue and
only 12 contours of the stream function are shown for clarity.

coil. Given a 4 mm wire spacing limit for construction, the
maximum achievable η were 73.8 and 102.0 mT m−2 A−1 for
the min(P ) and minimax|j | coils using Nc = 17 and 20,
respectively.

4. Discussion

This paper reports a method to directly minimize the maximum
current density for the magnetic field synthesis or coil design
problem. It focuses on the design of gradient and shim coils
for MRI applications, but can be considered as a general
approach to coil design; it may prove useful outside the realm
of gradient and shim coil design. Superconducting magnet
design (e.g. see [32]) is one such application that merits some
comment. Although no experiments have yet been performed
on magnet design using this minimax optimization, it might be
employed to design magnets with reduced peak current density
and/or peak magnetic field in the conductors, for example. For
practical designs, �1-norm minimization of the current density
may be incorporated to yield low peak, yet sparse current
density designs.

Previous gradient coil design methods have very
effectively minimized the stored energy [9] and power
dissipation [16] subject to the production of magnetic fields
of a prescribed accuracy. Other approaches that lower the
maximum current density have been presented [21, 23, 31], but
none can be shown to be optimal in terms of minimax current
density. We used the adaptive regularization technique [23] to
design shielded X-gradient coils shown in figure 4 and found
that it could achieve a minimum wire spacing of 8.7 mm.
The minimax|j | algorithm achieved 9.3 mm wire spacing
indicating that adaptive regularization works well, but cannot
maximally spread the wires. The reason for the difficulty in
achieving truly minimax current density coils is that such a

term is non-differentiable with respect to the solution variables.
It is surely possible to insert such a non-differentiable term
into a stochastic optimization technique such as a genetic
algorithm [33] or simulated annealing [34], but it is expected
that such methods would require very long computing times
and converge to a solution that is not necessary the global
one. Here, the maximum operation is expressed as the infinity
norm (also known as the uniform or Chebychev norm), || · ||∞,
smoothed and converted to its norm-dual, the �1-norm.

The time required for this algorithm to converge varies
widely on the size of the (S × N) current density matrices,
Jx , Jy and Jz. For the Turner–Carlson approach [7, 9, 14, 15]
with N = 32 and S = 441 convergence was obtained in
23 s. However, for N = 1985 and S = 4096 with the
triangular BEM it took 480 min. It should be noted that for
δ = 0, the solution is obtained in less than a second as just one
matrix inversion is needed [28, 29]. This illustrates the need
to take into account any symmetry that might be present in
the system to lower the number of free variables and speed up
the calculation. For a defined maximum field error, the design
process needs to be repeated in order to obtain the ideal trade-
off parameter, δ. It is hoped that the amount of user input
and computational burden can be reduced by describing the
problem as a constrained one in which maximum field error is
a user-definable constraint.

The length of an unshielded X gradient coil was varied
such that the length-to-diameter ratio, l/d , ranged from 0.92
to 2.63. The performances of the coils designed with min(W ),
min(P ) and minimax|j | were evaluated and figure 1 shows
the dependences of η2/L, η2/R and ηw on coil length. η2/L

characterizes the power requirements of the driving amplifier
and η2/R characterizes the total amount of heat generated by
the coil where higher values indicate better performance in
both cases. ηw, on the other hand, characterizes the maximum
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Figure 4. Wire paths for the triangular BEM, actively shielded, X-gradient coils in the cases of (a) and (b) min(W ), (c) and (d) min(P ),
(e) and ( f ) minimax|j | and (g) and (h) min(P & max|j |). The active magnetic screens appear on the right for the primary coils on the left.
Red wires indicate reversed current flow with respect to blue and only 12 contours of the stream function are shown for clarity.

Table 1. Properties of the triangular BEM designed, actively shielded X-gradient coils. Input parameters α, β, γ , δ and coil properties
including efficiency, η, maximum field error in the ROU, max(�Bz), maximum eddy current field in the ROU, max(Bez), inductance, L,
resistance, R, minimum wire spacing, w and figure-of-merit values, η2/L, η2/R, ηw.

Property min(W ) min(P ) minimax|j | min(P & max|j |)
Coil A B C D
α 20 20 20 20
β 1.54 × 10−7 0 0 0
γ 0 5.5 × 10−9 0 0.5 × 10−9

δ 0 0 6.3 × 10−9 5.1 × 10−9

η, (µTm−1 A−1) 72.9 71.7 74.0 74.3
max(�Bz) (%) 5.0 5.0 5.0 5.0
max(Bez) (%) 0.11 0.09 0.16 0.13
L (µH) 661 654 1621 843
R (m�) 132 111 392 158
w (mm) 4.1 6.0 9.3 9.0
η2/L (T2 m−2 A−2 H−1) 8.3 × 10−6 8.1 × 10−6 5.4 × 10−6 6.6 × 10−6

η2/R (T2 m−2 A−2 �−1) 4.0 × 10−8 4.6 × 10−8 1.4 × 10−8 3.5 × 10−8

ηw (TA−1) 3.0 × 10−7 4.3 × 10−7 6.9 × 10−7 6.7 × 10−7
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Figure 5. Stream functions for the actively shielded, Z-gradient
coils designed with min(P ), minimax|j | and min(P & max|j |). The
shield stream functions are greater than zero and the primary stream
functions are less than zero.

field strength that can be obtained irrespective of inductance
or resistance for a given minimum wire spacing. Several
interesting behaviours are apparent from studying the data in
figure 1. First, when designing a coil with min(W ) it will have
the highest η2/L value. Likewise, a min(P ) coil will have the
highest η2/R value and minimax|j | coils will have the highest
ηw. This is to be expected. min(W ) and min(P ) designed
coils have very similar η2/L values and slightly different η2/R

values, with the minimax|j | coils possessing lower values of
these two FOMs. In fact, for very long coils (l/d � 2.2), the
value of η2/L and η2/R actually decreases for the minimax|j |
coils. However, the minimax|j | coils possess a ηw value that
is considerably larger than that of the min(W ) and min(P )
designed coils. Figure 1(c) shows that for min(W ) and min(P )
coils with l/d � 2 the value of ηw becomes flat. This happens
when the region of max|j | occurs approximately at the end
of the ROI and not at the end of the coil. This indicates
that the length of the coil surface is no longer restricting the
maximum achievable field strength when l/d � 2. ηw appears
to be tending to a particular value for long minimax|j | coils
that is approximately 1.5–2 times larger than the other coils.
Unlike a previous approach [23], minimax current density coils
are dramatically different from their Tikhonov regularized
counterparts even for long cylindrical coils.

It is known that a unique solution is found when ill-posed
problems are solved with Tikhonov regularization, which is
the case for min(W ) and min(P ). It is not known if a unique
solution results from including the minimax|j | term in the
functional. It is suspected by the authors that there is no unique
solution, but more theoretical analysis is required to establish
this. Figure 2 shows the behaviour when β = 0 and both γ

and δ are finite, i.e. as min(P ) is traded for minimax|j | in the
optimization. The δ value required to maintain a constant field
error is inversely related to γ , as expected. γ and δ values
are similar for N = 32 and 200 sinusoidal basis functions.
Figure 2(b) shows the variation of the power FOM, η2/R, as
this trade-off happens. It is evident from these data that by

adding a small amount of γ to the minimax|j | coil, a sharp
increase in η2/R can be effected at the expense of very little
decrease in ηw. When N = 32 more smoothness is enforced
by the basis functions and P is limited. Hence η2/R is lower
when more basis functions are used, indicated by ② and ③

in figure 2(b), but ηw is also limited. This difference is also
evident in figures 3(c) and (d). Conversely, figure 2(c) shows
that by adding a small amount of δ to the min(P ) coil, a large
increase in ηw can be achieved with only a small change in the
power dissipation of the coil. It is not surprising to observe
that both min(P ) coils with N = 32 and 200 are essentially
the same since min(P ) coils favour low spatial frequencies
in ψ(r). It is clearly possible to choose any solution on
the continuum from min(P ) to minimax|j |. Although not
presented in this paper, it is also possible to trade min(W )
with minimax|j | along a similar continuum.

From figure 3 it can be seen that the min(W ) coil possesses
an area with the highest current density at the ends of the
primary with the wires of the power minimized coil being
more spread, as expected [16]. ψ(r) conforms to the usual
cos φ dependence for the min(W ) and min(P ) coils despite
no such constraint. However, this leads to regions of higher
current density at φ = 0 which is optimally dispersed in the
minimax|j | coils. Deviation from the cos φ behaviour at the
ends of the coils means that spherical harmonic fields of higher
degree will be introduced in the ROI. These high degrees are
then cancelled by ψ(r) variations closer to the ROI.

Incorporating active magnetic shielding [26] into the
functional is a simple matter since it can be written in a similar
form as the target field term. Actively shielded X-gradient coils
were designed using the same geometry as appears in [30].
Figure 4 shows one quadrant each of the primary and shield
wire paths of the min(W ), min(P ), minimax|j | and min(P
& max|j |). It is interesting to note that the shield coil for
the purely minimax|j | coil has unnecessary current density
with many reversed turns, figure 4( f ). This results from the
fact that there is no penalty for extra current density when β

and γ are zero. By incorporating a small amount of γ , this
impractical design is very effectively converted into a highly
practical design with smooth wire paths, low resistance and
very well spread wires, figure 4(h). It would also be simple
to have different γ and δ values for primary and shield coils.
The wire paths in figure 4(e) show the tendency of minimax|j |
in an extreme case where right-angular corners appear in the
design.

Similar, but less pronounced effects were observed from
the results of the Z-gradient coil of identical geometry. Figure 5
shows the stream functions along the z-direction for the coils
designed with max(�Bz) = 5 ± 0.01%. The magnitude of the
current density (in this case the steepness of the slope of the
stream function) is almost the same in all parts of the coil.
This again leads to unnecessarily large amounts of current
density on the shield coil, which is easily removed by the
addition of a small value of γ . The combined min(P & max|j |)
Z-gradient coil exhibits large wire spacing and marginally
increased resistance when compared with the min(P ) coil.
The problems associated with high current densities are less
severe when compared with those of X-gradient coils, but this
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Table 2. Properties of the triangular BEM designed, actively shielded Z-gradient coils. Input parameters α, β, γ , δ and figure-of-merit
values, η2/L, η2/R, ηw are given.

Property min(P ) minimax|j | min(P & max|j |)
α 20 20 20
β 0 0 0
γ 6.1 × 10−9 0 5 × 10−10

δ 0 7.8 × 10−9 7.6 × 10−9

η2/L (T2 m−2 A−2 H−1) 1.35 × 10−5 0.73 × 10−5 1.16 × 10−5

η2/R (T2 m−2 A−2 �−1) 1.44 × 10−8 0.60 × 10−8 1.05 × 10−8

ηw (TA−1) 8.45 × 10−7 11.43 × 10−7 11.13 × 10−7

Figure 6. One plane of the wire paths for the axisymmetric BEM designed biplanar X2–Y2 shim coils in the cases of (a) min(P ) and
(b) minimax|j |. Red wires indicate reversed current flow with respect to blue.

approach may be more useful for zonal shim coils of higher
order.

In a final example, an axisymmetric BEM was used to
design biplanar X2–Y2 shim coils. Rotational symmetry of
the system about the z-axis is assumed. ψ(r) is spectrally
decomposed in φ and spatially in ρ and z. Qualitatively, it
can be seen from figure 6 that the minimax|j | coil used all
the space provided, whereas the min(P ) coil forced wires to
be very smooth. For a fixed max(�Bz) = 10 ± 0.01% and
w � 4 mm, η is 38% higher for the minimax|j | coil. The
construction of such coils may be made slightly more complex
by the additional loops in the design. Again, a combined
min(P & max|j |) coil might provide a good balance between
simplicity and efficiency.

5. Conclusion

It has been shown that the magnetostatic field synthesis
problem can be solved for coils with minimax current density.
The problem was solved in this study with three different BEMs
to illustrate the generality of the approach. It can therefore
be used to synthesize any physically realistic magnetic field
with currents flowing on arbitrary surfaces. Alternatively, the
time needed to solve the problem can be dramatically reduced
by assuming some degree of symmetry. Coils with minimax
current density possessed increased resistance and inductance
for the same field error and in some cases had high current
densities in regions known to naturally require only low current

density. More practical coils were obtained with a mixture
of power and maximum current density minimization. Such
coils are characterized by low inductance and resistance, but
also a large spacing between all the wires of the coil. This
spreading of wires may be used to increase the efficiency of
the coil by permitting extra turns to be added, reduce turn-
to-turn eddy current effects, reduce localized heating in the
coil, and design coils that are easier to manufacture and/or
are extremely short. Moreover, it allows a coil designer to
explore a new range of optimal solutions to the field synthesis
problem. The resultant coils must be judged by figures-of-
merit appropriate to the desired characteristics of the coil,
since field accuracy, gradient efficiency, stored energy, power
dissipation and maximum current density may all be traded for
each other.
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Appendix A. Sum of sinusoids

In this appendix we present for completeness the formulation
for calculating the matrices in equations (8)–(13) necessary

10



J. Phys. D: Appl. Phys. 43 (2010) 095001 M Poole et al

for implementing the minimax current density algorithm with
sinusoidal stream function basis functions. In this case, the
coil surface is assumed to be a finite-length, l, cylinder of
radius a with its axis of symmetry oriented in the z direction.
The stream function of the current density, ψ(r), is spectrally
decomposed and assumed to be a finite weighted sum of
truncated sinusoidal functions in z and φ;

ψ(φ, z) =
M ′∑

m′=1

N ′∑
n′=1

λm′n′ψ̂m′n′(φ, z), (A.1)

where

ψ̂m′n′(φ, z) =




sin

(
2πn′

l
z

)
cos ((2m′ − 1)φ) if |z| � l

2
,

0 if |z| >
l

2
.

(A.2)

The prime indicates the difference between n used
in the main algorithm and the order, n′, and degree, m′, of
the sinusoid. Equation (7) is obtained by a reordering of
the weights λm′n′ as ψn. It restricts the magnetic field to
be antisymmetric in the x-direction and symmetric in the z-
direction. Extra basis functions that are symmetric in x and
antisymmetric in z can be included in order to remove the
inherent field symmetry enforcement [11–13], but this is not
required in this study since we are designing an X-gradient
coil and know that ψ(r) = 0 at |φ| = π

2 . Due to this enforced
symmetry it is known that the net torque experienced by the
coil is zero.

The current density on the coil surface has Jφ- and
Jz-components that are

Jφ(φ, z) = ∂ψ

∂z

=
M ′∑
m′

N ′∑
n′

λm′n′
2πn′

l
cos

(
2πn′

l
z

)
cos ((2m′ − 1)φ), (A.3)

Jz(φ, z) = −∂ψ

a∂φ

=
M ′∑
m′

N ′∑
n′

λm′n′
m′

a
sin

(
2πn′

l
z

)
sin ((2m′ − 1)φ) (A.4)

and are equivalent to (8) and (9).

Appendix B. Triangular boundary elements

A surface can be meshed as a series of I triangular elements
with N nodes at the corners of the triangles [20]. In this
case, ψ(r) is piecewise linear in each triangle and the stream-
function values at the node positions, ψn, define the whole
stream function;

ψ(r) =
N∑

n=1

ψn

I∑
i=1

ψ̂ni(r), (B.1)

where

ψ̂ni(r) = 1 − (r − rn) · dni

|dni | (B.2)

if r is a point in triangle i and n is a node of that triangle.
ψ̂ni(r) = 0 otherwise. It is possible to use higher order shape
functions over the triangle so long as they form a divergence-
free basis [35].

The current density on the surface is found from (B.1),
(B.2) and (6) yielding (8) and

ĵn(r) =
I∑
i

vni(r) =
I∑
i

eni

2Ai

(B.3)

if r is a point in triangle i and n is a node of that triangle.
vni(r) = 0 otherwise. Ai is the area of the triangle i and eni is
the vector that describes the edge of the ith triangle opposite
the nth node. This demonstrates that the current density is
uniform over each element of the mesh and so that there needs
to be one current density sample for each I triangles in order
to fully characterize it. Therefore s becomes i and S is equal to
the number of triangles, I .

Appendix C. Axisymmetric boundary elements

The axisymmetric BEM is used for coil supports that can be
described by surfaces of revolution about the z-axis. Each
‘node’, n′, of this surface is in fact a circle in the xy-plane and
defined by its radius, ρn′ and axial position zn′ . There may be a
conical element, i, either side of each node, labelled + and −.
A local coordinate, ζ(ρ, z), is defined for each element that is
0 at one end and 1 at the other. Positions on these two conical
surfaces are

r+
n(ζ, φ) =


ρn

φ

zn


 + ζ


ρn+1 − ρn

0
zn+1 − zn


 ,

r−
n (ζ, φ) =


ρn−1

φ

zn−1


 + ζ


ρn − ρn−1

0
zn − zn−1


 .

(C.1)

The surface and therefore ψ(r) are parametrized in ρ

and z. ψ(r) is decomposed spectrally parametrized in the
φ-direction as a sum of sinusoids. In section 2.6.3 an X2–Y2
shim coil is designed that has a target magnetic field with 2-fold
rotational symmetry about z. Therefore, ψ(r) is restricted
in the φ-direction to take the form cos (2(2m′ − 1)φ). As
described in appendix A, the basis function weights, λm′n′ can
be reordered to comply with the vector arrangement, ψ , in the
main algorithm.

ψ(ζ, φ) =
M ′∑
m′

N ′∑
n′

λm′n′

I∑
i

ψ̂m′n′i (ζ ) cos (2(2m′ − 1)φ),

(C.2)

where
ψ̂m′n′i (ζ ) = (1 − ζ ) (C.3)

if i is on the positive side of n′, for 0 � ζ � 1,

ψ̂m′n′i (ζ ) = ζ (C.4)
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if i is on the negative side of n′, for 0 � ζ � 1 and
ψ̂m′n′i (ζ ) = 0 otherwise.

The stream function (6) is applied to obtain, after
considerable amounts of algebra, the discretized current
density

J(r) =
M ′∑
m′

N ′∑
n′

λm′n′

I∑
i

vm′n′i (r), (C.5)

where

vm′n′i (r) =
[

cos(2(2m′ − 1)φ) sin φ√
(ρn+1 − ρn)2 + (zn+1 − zn)2

+
m′(1 − ζ )(ρn+1 − ρn) sin(2(2m′ − 1)φ) cos φ√
(ρn+1 − ρn)2 + (zn+1 − zn)2(ρn + ζ(ρn+1 − ρn))

]
x̂

+

[
− cos(2(2m′ − 1)φ) cos φ√
(ρn+1 − ρn)2 + (zn+1 − zn)2

+
m′(1 − ζ )(ρn+1 − ρn) sin(2(2m′ − 1)φ) sin φ√
(ρn+1 − ρn)2 + (zn+1 − zn)2(ρn + ζ(ρn+1 − ρn))

]
ŷ

+

[
m′(1 − ζ )(zn+1 − zn) sin(2(2m′ − 1)φ)√

(ρn+1 − ρn)2 + (zn+1 − zn)2(ρn + ζ(ρn+1 − ρn))

]
ẑ

(C.6)

if i is on the positive side of n′, for 0 � ζ � 1 and 0 � φ < 2π ,

vm′n′i (r) =
[

− cos(2(2m′ − 1)φ) sin φ√
(ρn − ρn−1)2 + (zn − zn−1)2

+
m′ζ(ρn − ρn−1) sin(2(2m′ − 1)φ) cos φ√

(ρn − ρn−1)2 + (zn − zn−1)2(ρn−1 + ζ(ρn − ρn−1))

]
x̂

+

[
cos(2(2m′ − 1)φ) cos φ√

(ρn − ρn−1)2 + (zn − zn−1)2

+
m′ζ(ρn − ρn−1) sin(2(2m′ − 1)φ) sin φ√

(ρn − ρn−1)2 + (zn − zn−1)2(ρn−1 + ζ(ρn − ρn−1))

]
ŷ

+

[
m′ζ(zn − zn−1) sin(2(2m′ − 1)φ)√

(ρn − ρn−1)2 + (zn − zn−1)2(ρn−1 + ζ(ρn − ρn−1))

]
ẑ

(C.7)

if i is on the negative side of n′, for 0 � ζ � 1 and 0 � φ < 2π

and vm′n′i (r) = 0 otherwise.
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