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Abstract

The main objective of this work is to estimate a low dimensional sub-
space of operators in order to improve the identi�ability of blind inverse
problems. We propose a scalable method to �nd a subspace Ĥ of low-rank
tensors that simultaneously approximates a set of integral operators. The
method can be seen as a generalization of tensor decomposition models,
which was never used in this context. In addition, we propose to con-
struct a convex subset of Ĥ in order to further reduce the search space.
We provide theoretical guarantees on the estimators and a few numerical
results.

1 Introduction

In many measurement devices, a signal v0 living in some Hilbert space Bn of
dimension n is probed indirectly using an operator H0 : Bn → Bm, where Bm
is a Hilbert space of dimension m1. This yields a measurement vector u0 ∈ Bm
de�ned by

u0 = f(H0v0),

where f is some perturbation of the measurements (e.g. additive noise, modulus
for phase retrieval, quantization,...). Solving an inverse problem consists in
recovering an approximation v̂ of the signal v0 using the measurements u0.

1In all this paper, we assume that the operators are de�ned in �nite dimensional spaces. An

extension to in�nite dimensional Hilbert spaces is feasible but requires additional discretization

procedures. We decided to skip this aspect to clarify the exposition.
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When the operator H0 is known, many e�cient solutions are now available.
Unfortunately, in many cases, only a crude estimate of H0 is available or it is
even completely unknown. This is the �eld of bilinear or blind inverse problems.
In that case, �nding a reasonable approximation is far more involved. Signi�cant
theoretical progresses have been achieved in the last fews years though, [18, 1,
23, 24, 22, 25].

One of the key ideas behind these methods is the principle of lifting. To
apply it, it is common to assume that the operator H0 and the signal v0 live in
known low dimensional vector spaces of operators H = span(P1, . . . , P|S|) and
signals Q = span(q1, . . . , q|T |). Then, we can write that H0 = Pα0 and that

v0 = Qβ0 for some α0 ∈ R|S| and some β0 ∈ R|T |. Under those assumptions, the
blind inverse problem is simpli�ed to �nding a pair of vectors (α, β) ∈ R|S|×R|T |
and the measurement associated to the pair can be written as

u0 = (Pα)(Qβ) =
∑

s∈S,t∈T
αsβtws,t,

with ws,t = Psqt, S = {1, . . . , |S|} and T = {1, . . . , |T |}. This last expression
only depends on the outer product αβT , allowing to lift the problem to the
matrix space R|S|×|T |. A typical way to attack the blind inverse problem is
then to solve the following optimization problem:

min
M∈R|S|×|T |,rank(M)=1

1

2
‖WM − y‖22, (1)

where W : M 7→
∑
s∈S,t∈T Ms,tws,t. Various relaxations and algorithms can

then be used to solve the lifted problem (1) and come with strong theoretical
guarantees. We refer the interested reader to the above mentioned papers.

A critical issue to apply these techniques is the knowledge of the subspaces
H and Q. In this paper, we will focus on the estimation of the subspace H from
a sampling set of operators (Hl)l∈L in C ⊂ H.

The interest is that determining a low dimensional set of operators with
a small volume can signi�cantly ease the problem of operator identi�cation
in blind inverse problems. While our primary motivation lies in the �eld of
inverse problems, this problem can also be understood as a generic problem of
approximation theory.

1.1 Application examples

Space varying blur An example that will be used in our numerical experi-
ments is the case of space varying blurs in wide �eld microscopy. In this imaging
modality, the blur varies spatially due to multiple e�ects such as scattering or
defocus for instance. The possible family of blurs may vary depending on factors
such as the focal screw, the temperature (which changes the refractive index of
the immersion oil), small tilts with respect to the focal plane and many other
parameters that are hard to model from a mathematical point of view. It is
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possible to collect a family of operators (Hl)l∈L by observing �uorescent micro-
beads in a slide under various conditions and by using operator interpolation
techniques such as [5].

Magnetic Resonance Imaging (MRI) In MRI, the traditional observation
model simply states that the Fourier transform values of the image are observed.
The reality is far more complex and complete image formation models comprise
many unknowns such as inhomogeneities of the main magnetic �eld or spatial
sensitivities [17]. To apply the proposed methodology to this device, the idea
would be to �rst run many calibration scans to recover a list of operators (Hl)l∈L
and then build a reduced model from this set.

Di�usion equations In many applications such as electrical impedance to-
mography [9], the operators Hl are given implicitly as solutions of partial di�er-
ential equations (PDEs). For instance di�usion equations, which are widespread
in applications, are of the form div(cl∇u) = v, where cl is a space varying
di�usion coe�cient that may change depending on external parameters. The
application that maps v to u can be written as a linear integral operator Hl.

1.2 Contributions

The simplest approach to �nd a low dimensional vector space of operators H is
to apply a principal component analysis (PCA) on the set of vectorized operators
(Hl)l∈L. This approach is optimal in the sense of the Hilbert-Schmidt norm,
but infeasible in practice. For instance, space varying blurring operators acting
on small 2D images of size 1000 × 1000 can be encoded as matrices Hl of size
106× 106, which can hardly be stored since each of them contains 9 Tera octets
of data.

In this work, we therefore work under the assumption that the operators can
be well approximated by low-rank tensors up to an invertible transformation.
This hypothesis is reasonable for many applications of interest. For instance,
it includes product-convolution expansions [16] and hierarchical matrices [19]

as special cases. We then provide an estimator Ĥ of the subspace of operators
H with an upper-bound of its rate of approximation. In addition, we propose
to construct an estimator Ĉ of C, as the convex hull (in a matrix space) of the

operators (Hl)l∈L projected onto Ĥ. To make further use of this convex hull, we

propose a fast projection algorithm on Ĉ. We �nally provide various numerical
examples to highlight the strengths of the approach and its scalability.

1.3 Related works

To the best of our knowledge, the overall objective of this work is new, even
though most of the individual tools that we combine together are well estab-
lished. A related idea can be found in the literature of PDEs, where reduced
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order bases [26, 31] or their variants [10] allow to solve families of PDEs e�-
ciently. However, the objective there is to approximate the solutions of a PDE
(usually linear) and not the associated operator. This is a signi�cant di�erence,
since approximating the operator (and its adjoint) allows to use the rich collec-
tion of nonlinear regularizers commonly used in the �eld of inverse problems to
�nd regularized solutions.

2 Notation

In all the paper, I, J , K and L are the sets of integers ranging from 1 to |I|, |J |,
|K| and |L|. We assume that u ∈ Bm is de�ned over a set X of cardinality m.
We let u(x) denote the value of u at x ∈ X. Similarly, we assume that Hu ∈ Bn
is de�ned over a set Y . The set of linear operators from Bm to Bn is denoted Ξ.
An operator H ∈ Ξ can either refer to an operator or its matrix representation
in an arbitrary orthogonal basis. The entries in the matrix representation will be
denoted H(x, y). The Frobenius norm of H is de�ned by ‖H‖F :=

√
tr(H∗H).

It is invariant by orthogonal transforms. The scalar products over all spaces
will be denoted by 〈·, ·〉.

The tensor product between two vectors a ∈ Bn and b ∈ Bm is de�ned by
(a⊗b)(x, y) = a(x)b(y). The notation� stands for the element-wise (Hadamard)
product and if X has a group structure and a1, a2 ∈ Bm, a1 ? a2 denotes the
convolution product between a1 and a2.

Let E = (ei)i∈I denote a family of elements in Bm. The same notation will
also apply to the matrix E = [e1, . . . , e|I|] and to the subspace E = span(ei, i ∈
I). Let W = (wk)k∈K denote a family of vectors with an SVD of the form
W = UΣV T with U = [u1, . . . , un], then

SVD|I|(wk, k ∈ K)
def.

= [u1, . . . , u|I|],

i.e. the |I| left singular vectors associated to the largest singular values.

We let ∆N−1 = {x ∈ RN ,
∑N
i=1 xi = 1} denote the simplex of dimension

N . We let Kd denote the set of compact and convex sets of Rd with non empty
interior. The Hausdor� distance between C1 and C2 is de�ned by D(C1, C2) =
inf{ε ≥ 0 : C1 ⊂ C2 + εB(0, 1), C2 ⊂ C1 + εB(0, 1)}, where B(0, 1) is the
unit Euclidean ball. Let (Xn)n∈N be sequence of random variables and (tn)n∈N
denote a sequence of real numbers, the notation Xn = OP(tn) means that for
any ε > 0, there exists M > 0 and N > 0 such that P (|Xn/tn| > M) < ε for all
n > N .

3 Operator representations

A critical requirement in this work is that the operators Hl can be approximated
by (local) low-rank tensors, up to a linear transform. This need comes from the
fact that arbitrary operators have no chance of being i) computed e�ciently
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in large scale applications and ii) approximated e�ciently by low dimensional
subspaces. We describe a few possible decompositions below.

3.1 Low-rank approximations

The simplest assumption is to state that every operator Hl is well approximated
by a low-rank tensor of the form Hl =

∑
k∈K αk,l⊗βk,l, with |K| � min(m,n).

Unfortunately, many observation operators met in practice are concentrated
along their diagonal, making this assumption unrealistic.

3.2 Product-convolution expansions

Product-convolution expansions are a family of decompositions that were ana-
lyzed recently in [16]. They can be de�ned whenever X = Y and X possesses a
group structure. It amounts to assuming that

Hl(u) =
∑
k∈K

αk,l ? (βk,l � u). (2)

This decomposition can be computed e�ciently using fast Fourier transforms.
To understand its link with the low-rank assumption, it is handy to introduce

the space varying impulse response (SVIR) of Hl de�ned by Sl(x, y) = Hl(x +
y, y). One can show that the SVIR of an operator Sl of the form (2) can be
written as Sl =

∑
k∈K αk,l⊗βk,l. Hence, assuming that Hl can be approximated

by a product-convolution expansion is equivalent to saying that its SVIR is
nearly low-rank.

This assumption covers many practical applications. For instance, a su�-
cient condition for an operator Hl to be well approximated using this decompo-
sition is that all the impulse responses (Sl(·, y))y∈Y of the operators Hl can be
simultaneously encoded in the basis span(αk,l, k ∈ K).

3.3 Hierarchical matrices

Hierarchical matrix approximations [3, 19], are another popular method to ap-
proximate linear operators. It amounts to assuming that Hl =

∑
k∈K αk,l⊗βk,l,

where |K| is not necessarily small compared to m and n, but where most of the
elements αk,l and βk,l have a small support, allowing for fast matrix-vector
products. It can be shown that many practical applications are well suited to
those approximations. It is particularly popular in the �elds of PDEs and some
inverse problems. In addition, related approximations such as fast multipole
methods [2] or wavelet expansions [4, 15] also �t this formalism.

3.4 A general setting

Overall, the most generic assumption on Hl can be formulated as follows.
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Assumption 1. There exists a left invertible linear mapping R : Ξ → Ξ such
that each sample Hl ∈ Ξ satis�es:

Sl = R(Hl) =
∑
k∈K

αk,l ⊗ βk,l,

where for all l ∈ L, the sets (αk,l)k ∈ A and (βk,l)k ∈ B, where A and B are

subspaces of B|K|m and B|K|n respectively.

Introducing the operator R allows to encompass the usual low-rank assump-
tion by taking R = Id, but also the product-convolution expansions: going from
the SVIR to the matrix representation can be expressed through an operator
R : Ξ→ Ξ that shifts each column of Hl. The spaces A and B allow to incorpo-
rate support constraints, which are used for many decompositions such as the
hierarchical matrices.

The �nal objective of this work is to estimate a subspace H and a set C. In
fact, we will rather estimate HR = RH and CR = RC, which is equivalent since
R is assumed to be left-invertible. In order to lighten the notation, we will skip
the multiplication by R in the rest of the paper.

4 Subspace estimation

In this section we provide an e�cient and robust method to estimate the vector
space of operators H. We look for an estimator Ĥ of H with a tensor product
structure:

E ⊗ F def.

= span(ei ⊗ fj , (ei)i∈I ∈ E|I|, (fj)j∈J ∈ F|J|),

where the sets E|I| and F|J| can be thought of as:

• The set of orthogonal families of cardinality |I| and |J | de�ned by

E|I| = {ei ∈ Bm, i ∈ I, ‖ei‖2 = 1, 〈ei, ei′〉 = δi,i′} (3)

and

F|J| = {fj ∈ Bn, j ∈ J, ‖fj‖2 = 1, 〈fj , fj′〉 = δj,j′}. (4)

• The set of orthogonal families of cardinality |I| and |J | with support con-
straints.

• Additional knowledge on the operators, such as non-negativity, can possi-
bly be added.

We impose a tensor product structure so that every operator living in Ĥ can
be evaluated rapidly. The sets E|I| and F|J| do not necessarily coincide with
the sets A and B, since it could be interesting to change the structure of the
operators that are given as input to the algorithm.
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The principle of our approach is to �nd a structured low-dimensional basis of
operators that allows to approximate simultaneously all the sampled represen-
tations (Sl)l∈L. This principle can be expressed through a variational problem,
as follows:

(Ê, F̂ )
def.

= argmin
(ei)i∈I∈E|I|
(fj)j∈J∈F|J|

φ(E,F ), (5)

with

φ(E,F )
def.

=
1

2

∑
l∈L

‖ΠE⊗F (Sl)− Sl‖2F ,

where ΠE⊗F is the projection onto the tensor product space E ⊗ F .

4.1 The algorithm

Problem (5) is bi-convex: it is non-convex in the pair (E,F ) ∈ E|I|×F|J|, but it
is convex when minimizing in E ∈ E|I| for F ∈ F|J| �xed and when minimizing
in F ∈ F|J| for E ∈ E|I| �xed. This motivates the use of the alternating
minimization procedure presented in Algorithm 1.

Algorithm 1 Alternating Least Squares (ALS)

Approximatively solve: Problem (5)
INPUT: (Sl)l∈L, subspace constraints E|I| and F|J|, initial guess (E0, F0).

1: procedure
2: Initialization: t = 0.
3: while stopping criterion not satis�ed do
4: Et+1 = argmin

E∈E|I|
φ(E,Ft).

5: Ft+1 = argmin
F∈F|J|

φ(Et+1, F ).

6: t = t+ 1
7: end while
8: Return ĤL = Et ⊗ Ft.
9: end procedure

This algorithm is tightly related to common methods found in the �eld of
tensor decompositions. In the particular case where E|I| and F|J| are sets of
orthogonal families of cardinality |I| and |J |, Problem (5) coincides exactly with
the Tucker2 model. This decomposition was �rst introduced by Tucker in [32].
It was then reinvented independently and given several names such as tensor
PCA, 2DSVD, GLRAM, common component analysis, or tensor decompositions
[32, 14, 34, 33]. We refer to the review papers [21, 12] for more insight on
tensor decompositions. Computing this decomposition is a complex nonconvex
problem, but the most standard approach to solve it takes the algorithmic form
provided in Algorithm 1. It does not converge to the global minimizer in general
and only provides approximate solutions. However, it is observed that it usually
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yields estimates close to the global minimizer in practice with a properly chosen
initialization.

4.1.1 Orthogonal constraints

In this section, we detail the algorithm, when the spaces E|I| and F|J| denote
the set of orthogonal families of cardinality |I| and |J | respectively.

Initialization The initialization of Algorithm 1 is of major importance since
Problem (5) is non convex. We suggest using the High Order Singular Value
Decomposition (HOSVD) [13] in order to initialize the algorithm. This can be
seen as a generalization of the SVD for tensors. As discussed in [21], this popular
method provides a good starting point for an alternating algorithm.

From a variational point of view, the principle of the HOSVD consists in
solving the following problems:

E0 = argmin
E∈E|I|

1

2

∑
l∈L

‖Sl −
∑
k∈K

ΠE(αk,l)⊗ βk,l‖2F , (6)

F0 = argmin
F∈F|J|

1

2

∑
l∈L

‖Sl −
∑
k∈K

αk,l ⊗ΠF (βk,l)‖2F , (7)

i.e. to �nd the subspace E (resp. F ) that captures most of the energy.
We will show below that we can leverage the speci�c low-rank structure of

the operators Sl to evaluate the HOSVD rapidly. We let Al = [α1,l, . . . , α|K|,l]

and Bl = [β1,l, . . . , β|K|,l]. We also diagonalize ATl Al ∈ R|K|×|K| and BTl Bl ∈
R|K|×|K| as

ATl Al = ΨAlΛlΨ
T
Al

and BTl Bl = ΨBlΣlΨ
T
Bl

with Σl = diag(σ2
1,l, . . . , σ

2
|K|,l) and Λl = diag(λ2

1,l, . . . , λ
2
|K|,l).

Lemma 1 (Higher Order Singular Value Decompositon (HOSVD)). Let Ãl =
AlΨBl = [α̃1,l, . . . , α̃|K|,l] and B̃l = BlΨAl = [β̃1,l, . . . , β̃|K|,l]. We have

E0 = SVD|I|(σk,lα̃k,l, k ∈ K, l ∈ L)

and
F0 = SVD|J|(λk,lβ̃k,l, k ∈ K, l ∈ L)

Proof. We concentrate on E0 only, since the proof for F0 is similar. The �rst
argument is to notice that Problem (6) is equivalent to

E0 = argmax
E∈E|I|

1

2

∑
l∈L

‖
∑
k∈K

ΠE(αk,l)⊗ βk,l‖2F ,
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since we are looking for the subspace that captures most of the energy. Expand-
ing the squared Frobenius norm leads to:

E0 = argmax
E∈E|I|

1

2

∑
l∈L
k1∈K
k2∈K

〈ΠE(αk1,l)⊗ βk1,l,ΠE(αk2,l)⊗ βk2,l〉

= argmax
E∈E|I|

1

2

∑
l∈L
k1∈K
k2∈K

〈ΠE(αk1,l),ΠE(αk2,l)〉〈βk1,l, βk2,l〉

= argmax
E∈E|I|

1

2

∑
l∈L

〈ΠE(Al)
TΠE(Al), B

T
l Bl〉.

Recalling that Ãl = AlΨBl = [α̃1,l, . . . , α̃|K|,l] and BTl Bl = ΨBlΣlΨ
T
Bl
, this

leads to:

E0 = argmax
E∈E|I|

1

2

∑
l∈L

〈ΨT
Bl

ΠE(Al)
TΠE(Al)ΨBl ,Σl〉

= argmax
E∈E|I|

1

2

∑
l∈L

∑
k∈K

σ2
k,l‖ΠE(α̃k,l)‖22

= argmax
E∈E|I|

1

2

∑
l∈L

∑
k∈K

‖ΠE(σk,lα̃k,l)‖22

= SVD|I|(σk,lα̃k,l, k ∈ K, l ∈ L).

Lemma 1 shows that the computational cost of this initialization is domi-
nated by the computation of two singular value decompositions: the �rst matrix
is of sizem×|L||K| and the second is of size n×|L||K|. Depending on the cardi-
nality |L||K|, this can be achieved either with standard linear algebra routines,
or with randomized SVDs [20]. In the applications that we consider here, n and
m would typically be very large, while the number of samples |L| and the rank
of the tensors |K| are expected to be small. In that situation, the computation
can be performed even for very large scale applications.

Apart from being computable, the HOSVD presents additional advantages:
the cost function can be controlled by the tail of the square singular values
and running the alternating least squares on top of this initialization procedure
ensures that the cost function will not increase above this upper-bound [13]. In
addition, the ranks |I| and |J | of the decomposition can be chosen automatically
according to the decay of the singular values in the HOSVD.

The partial optimization problems The ALS algorithm requires to solve
the two following partial optimization problem

argmin
(ei)i∈I∈E|I|

φ(E,Ft), (8)
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and
argmin

(fj)j∈J∈F|J|
φ(Et+1, F ), (9)

where Et = [et,1, . . . , et,|I|] and Ft = [ft,1, . . . , ft,|J|] are the output of Algorithm
1 at iteration t ≥ 0. Solving the two subproblems requires the computation of
two SVDs as in the previous section.

Lemma 2 (Partial optimization problem (8) and (9)). Let Ãl = Al(B
T
l Ft) =

[α̃1,l, . . . , α̃|J|,l] and B̃l = Bl(A
T
l Et+1) = [β̃1,l, . . . , β̃|I|,l]. For all t > 0 we have

Et+1 = SVD|I|(α̃j,l, j ∈ J, l ∈ L)

and
Ft+1 = SVD|J|(β̃i,l, i ∈ I, l ∈ L)

Proof. We concentrate on Et+1 only, since the proof for Ft+1 is similar.
The projection ΠE⊗Ft(Sl) of the operator Sl onto the subspace E ⊗ Ft can

be expressed as follows

ΠE⊗Ft(Sl) =
∑
k∈k

ΠE(αk,l)⊗ΠFt(βk,l)

=
∑
k∈K

∑
i∈I
〈αk,l, ei〉ei ⊗

∑
j∈J
〈βk,l, ft,j〉ft,j

=
∑
i∈I

∑
j∈J

〈∑
k∈K

〈βk,l, ft,j〉αk,l, ei

〉
ei ⊗ ft,j

=
∑
j∈J

ΠE(α̃j,l)⊗ ft,j .

Replacing this expression in (8), leads to solve the problem (6) again, with the
di�erence that the second factors (ft,j) form an orthogonal family. This allows
to avoid the diagonalization step of Lemma 1:

Et+1 = argmax
E∈E|I|

1

2

∑
l∈L

‖
∑
j∈J

ΠE(α̃j,l)⊗ ft,j‖2F

= argmax
E∈E|I|

1

2

∑
l∈L

∑
j∈J
‖ΠE(α̃j,l)‖2F

= SVD|I|(α̃j,l, j ∈ J, l ∈ L).

4.1.2 Hierarchical matrices

The results presented in the previous paragraph can readily be applied to the
case of hierarchical decompositions. To this end, let (Tp)p∈P denote a block-
partition of X × Y [19]:
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• each Tp has a product structure: Tp = Xp × Yp for some Xp ⊂ X and
Yp ⊂ Y .

• Tp1 ∩ Tp2 = ∅ if p1 6= p2.

• X × Y = ∪p∈PTp.
We assume that the subspaces A and B de�ning the operators Sl (see

Assumption 1) encode support constraints. For each l ∈ L, the k-th tensor
αk,l ⊗ βk,l should satisfy:

∃p ∈ P, supp (αk,l ⊗ βk,l) ⊆ Tpk
for some pk ∈ P . In order to apply the proposed ideas, we can �rst de�ne two
vectors of ranks (qp)p∈P and (rp)p∈P and generate an estimate Ĥ of H of the
form

Ĥ =
∑
p∈P

Ep ⊗ Fp,

with dim(Ep) = qp and dim(Fp) = rp.

The estimation of the subspaces Êp and F̂p can then be achieved with the
same methodology as the one described for orthogonal matrices. In this setting,
we can use HOSVD algorithm for each sub-blocks, this implies computing |P |
SVDs with lower dimensional matrices (depending of the size of support).

4.1.3 Non-negative decompositions

A common choice of family is the set of non-negative vectors, that is

E|I| = {e ∈ Rm+ , ‖e‖2 = 1}|I|

and

F|J| = {f ∈ Rn+, ‖f‖2 = 1}|J|,

where Rm+ denotes the set of nonnegative vectors of Rm. Problems of the form
(5) can then be solved with approaches such as [7, 27, 11]. We do not explore
this possibility further in this paper.

4.2 Theoretical guarantees

We are now ready to establish the theoretical guarantees of the estimator (Ê, F̂ )
under additional assumptions on the sampling model.

Assumption 2 (Sampling model). The operators Sl are i.i.d. copies of a ran-

dom operator S with ‖S‖F ≤ r almost surely. Let Φ(E,F )
def.

= 1
2E
(
‖ΠE⊗F (S)− S‖2F

)
.

We assume that:

inf
(E∈E|I|,F∈F|J|)

Φ(E,F ) = r2κ(I, J). (10)

The scaling in r2 in equation (10) is natural: if the random operator S is
scaled by a constant factor, so will the approximation error. The bound (10)
provides the best achievable estimate of subspace.
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4.2.1 Arbitrary bounded errors

We let (ÊL, F̂L) denote the solution of (5). In practice, we do not directly
observe the operator Sl, but only an approximate version SKl of it. Hence we
need to estimate the approximation error.

Assumption 3 (Approximation error). The operators SKl satisfy the following
inequality : ‖SKl − Sl‖F ≤ κ(K)‖Sl‖F with κ(K) ≤ 1.

Theorem 1. Assume that Assumptions 2 and 3 hold, then:

P
(

Φ(ÊL, F̂L) ≤ 6r2 max (κ(K), κ(I, J))
)
≥ 1−2 exp

(
−8|L|max (κ(K), κ(I, J))

2
)
.

We �rst discuss the consequences of this Theorem 1 prior to detailing its
proof. In case the relative approximation error κ(K) is too large w.r.t. to
κ(I, J) there will be no guarantee to reach Φ(E∗, F ∗) since the best achievable
error will be of the order r2κ(K). This bound can be achieved with probability

1 − δ by choosing |L| = log(2/δ)
8κ(K)2 . However, when the approximation gets �ner

i.e. κ(K) < κ(I, J), the estimator (ÊL, F̂L) becomes as good as possible up
to a constant. This bound can be achieved with probability 1 − δ by choosing

|L| = log(2/δ)
8κ(I,J)2 .

Proof. We let

ΦL(E,F )
def.

=
1

2|L|
∑
l∈L

(
‖ΠE⊗F (Sl)− Sl‖2F

)
and

ΦKL (E,F )
def.

=
1

2|L|
∑
l∈L

(∥∥ΠE⊗F (SKl )− SKl
∥∥2

F

)
.

Step 1. We �rst control the bias term as follows

|ΦKL (E,F )− ΦL(E,F )| ≤ 3r2κ(K)/2. (11)

Let G = E ⊗ F and G⊥ denote its orthogonal complementary with respect to
the Frobenius inner-product over the space of operators. We let Dl = SKl − Sl
and notice that ‖Dl‖F ≤ κ(K)‖Sl‖F by Assumption 3. Now, we can decompose

Sl as Sl = SGl + SG
⊥

l and SKl as SKl = SGl + SG
⊥

l +DG
l +DG⊥

l . This leads to

‖ΠG(Sl)− Sl‖2F = ‖SG
⊥

l ‖2F
and

‖ΠG(SKl )− SKl ‖2F = ‖SG
⊥

l +DG⊥

l ‖2F .
So that ∣∣‖ΠG(SKl )− SKl ‖2F − ‖ΠG(Sl)− Sl‖2F

∣∣
=
∣∣∣2〈SG⊥l , DG⊥

l 〉+ ‖DG⊥

l ‖2F
∣∣∣

≤ 2r2κ(K) + r2κ(K)2 ≤ 3r2κ(K).

12



By summing this inequality over l ∈ L, we get the inequality (11).
Step 2. As in the previous step, we let G = E ⊗ F . We show here that

P(|ΦL − Φ| ≥ t) ≤ 2 exp

(
−8|L|t2

r4

)
. (12)

Let us introduce the random variable Zl = ‖ΠG(Sl) − Sl‖2F = ‖SG⊥l ‖2F .
We have E(Zl) = Φ and by Assumption 2, we have Zl ∈ [0, r2]. Let X

def.

=∑
l∈L(Zl − E(Zl)). We have X/(2|L|) = ΦL − Φ and Hoe�ding's inequality [6,

Thm 2.8] ensures that for all t > 0 the random variable X satis�es

P(|X| ≥ t) ≤ 2 exp

(
− 2t2

|L|r4

)
.

Step 3. We are now ready to conclude the proof. We have

|ΦKL − Φ| ≤ |ΦKL − ΦL|+ |ΦL − Φ|.

The problem (10) has at least one solution denoted (E?, F ?). Indeed, the �nite
dimensional vector spaces E and F can be parameterized by |I| and |J | unit
vectors. The tensor product of |I||J | unit balls is a compact set and the function
Φ is continuous, ensuring the existence of a minimizer. We get:

Φ(ÊL, F̂L) ≤ ΦLK(ÊL, F̂L) + |ΦKL − ΦL|+ |ΦL − Φ|
≤ ΦLK(E?, F ?) + 3/2r2κ(K) + |ΦL − Φ|
≤ Φ(E?, F ?) + 3r2κ(K) + 2|ΦL − Φ|.

Using the inequality (12), we get for all t > 0:

P
(

Φ(ÊL, F̂L) ≤ r2 (κ(I, J) + 3κ(K)) + 2t
)
≥ 1− 2 exp

(
−8|L|t2

r4

)
.

The �rst part of the theorem is obtained by selecting t = r2 max(κ(K), κ(I, J)).

4.2.2 Random errors

The bound in Theorem 1 may look a bit disappointing since it is impossible
to reach the absolute best error r2κ(I, J). This is due to the fact that the
approximation errors Dl = SKl − Sl can be adversarial and create a bias in the
estimation. If we add randomness assumptions on these errors, the situation
can improve. We illustrate it below with random isotropic errors.

Theorem 2. Suppose that assumptions 2 and 3 hold. Assume furthermore that
the errors Dl have an isotropic distribution with E(‖Dl‖2F ) = R2 and ‖Dl‖2F ≤
κ2(K)r2 almost surely then:

P
(

Φ(ÊL, F̂L) ≤ r2(κ(I, J) + ε)
)
≥ 1− 8 exp

(
− 2|L|ε2

(6κ(K) + 1)2

)
.

13



Theorem 2 shows that under isotropic random approximation errors, the
estimator (ÊL, F̂L) can become arbitrarily good. This bound can be achieved

with probability 1− δ by choosing |L| = (6κ(K)+1)2

2ε2 log
(

8
δ

)
.

Proof. We let,

ΦL(E,F )
def.

=
1

2|L|
∑
l∈L

(
‖ΠE⊗F (Sl)− Sl‖2F

)
and

ΦKL (E,F )
def.

=
1

2|L|
∑
l∈L

(∥∥ΠE⊗F (SKl )− SKl
∥∥2

F

)
− R2

mn
(mn− |I||J |)R2,

where m and n are the dimension of the space Bm and Bn respectively.
The di�erence compared to the previous proof is that we can now bound

|ΦKL −ΦL| by a quantity that vanishes with the number of observations L. For
any pair of subspaces (E,F ), we have:

P
(∣∣ΦKL (E,F )− ΦL(E,F )

∣∣ ≥ t) ≤ 2 exp

(
− |L|t2

18r4κ(K)2

)
.

To prove this statement, let G = E ⊗ F . We get:

|ΦKL (E,F )−ΦL(E,F )| =
∣∣∣ 1

2|L|
∑
l∈L

(
2〈SG

⊥

l , DG⊥

l 〉+ ‖DG⊥

l ‖2F
)
− R

2

mn
(mn−|I||J |)

∣∣∣.
Letting ZG

⊥

l = 2〈SG⊥l , DG⊥

l 〉+ ‖DG⊥

l ‖2F , we get E(ZG
⊥

l ) = (mn− |I||J |)R2

since Dl is isotropic. Indeed, E
(

2〈SG⊥l , DG⊥

l 〉
)

= 0 since E(Dl) = 0, and by

letting ΠG⊥ denote the projection onto G⊥ we get:

E
(
‖DG⊥

l ‖2F
)

= E
(
tr
(
DT
l ΠT

G⊥ΠG⊥Dl

))
= E

(
tr
(
ΠG⊥DlD

T
l ΠT

G⊥

))
= tr

(
ΠG⊥E(DlD

T
l )ΠT

G⊥

)
=

R2

mn
tr
(
ΠT
G⊥ΠG⊥

)
=

R2

mn
(mn− |I||J |)

Noticing that |ZG⊥l | ≤ r2(2κ(K)+κ(K)2) ≤ 3r2κ(K), we can use Hoe�ding's
inequality:

P

(∣∣∣∣∣ 1

2|L|
∑
l∈L

ZG
⊥

l − E(ZG
⊥

l )

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− 2|L|t2

9r4κ(K)2

)
.

We are now ready to conclude the proof. Similarly to the previous proof, we
get:

Φ(ÊL, F̂L) ≤ ΦKL (E?, F ?)+|ΦKL (ÊL, F̂L)−ΦL(ÊL, F̂L)|+|ΦL(ÊL, F̂L)−Φ(ÊL, F̂L)|.
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Using a union bound argument (given a set of events (Ai)i∈N, we have
P (∪i∈NAi) ≤

∑
i∈N P(Ai)), we get:

P
(

Φ(ÊL, F̂L) ≤ ΦKL (E?, F ?) + t+ t′
)
≥ 1−2 exp

(
− 2|L|t2

9r4κ(K)2

)
−2 exp

(
−8|L|t′2

r4

)
.

Using another union bound argument, we get:

P
(

Φ(ÊL, F̂L) ≤ Φ(E?, F ?) + 2t+ 2t′
)
≥ 1−4 exp

(
− 2|L|t2

9r4κ(K)2

)
−4 exp

(
−8|L|t′2

r4

)
.

By taking t = 6κ(K)t′ we get

P
(

Φ(ÊL, F̂L) ≤ Φ(E?, F ?) + t′(12κ(K) + 2)
)
≥ 1− 8 exp

(
−8|L|t′2

r4

)
.

Letting ε > 0 and setting t′ = r2ε
12κ(K)+2 , we get:

P
(

Φ(ÊL, F̂L) ≤ Φ(E?, F ?) + εr2
)
≥ 1− 8 exp

(
− 2|L|ε2

(6κ(K) + 1)2

)
.

Finally, given δ > 0, we can select |L| = (6κ(K)+1)2

2ε2 log
(

8
δ

)
so that the following

holds true:
P
(

Φ(ÊL, F̂L) ≤ Φ(E?, F ?) + r2ε
)
≥ 1− δ.

This concludes the proof.

5 Subset estimation and projection

5.1 Convex hull estimator

In this section, we assume that (Sl)l∈L are i.i.d. copies of the random operator
S. We assume that the distribution of S is uniform over a convex, compact and
non-empty set C. Letting ΠL denote the projector onto ĤL = ÊL ⊗ F̂L, we
propose to construct an estimate ĈK,ΠL of C, by taking the convex hull of the
projected and observed operators

ĈK,ΠL
def.

= conv(ΠL(SKl ), l ∈ L).

We can only expect ĈK,ΠL to approximate ΠL(C), and not C directly, since some
information is lost by the projection. The following proposition summarizes the
rate of convergence of ĈK,ΠL .

Proposition 1. Under the assumptions 2 and 3, we get the following result

D(ĈK,ΠL ,ΠL(C)) ≤ rκ(K) +OP

((
ln |L|
|L|

)− 1
α

)
,

where D denotes the Hausdor� distance between sets and
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• α = d if C is a polytope,

• α = d+1
2 if C has C3 boundary and positive curvature everywhere.

Proof. Step 1. The di�cult part of this inequality is the rightmost term, which
is due to [8] ( Theorem 11). With our notation, his main result states that

D(ĈL, C) = OP

((
ln |L|
|L|

)− 1
α

)
, where ĈL = conv(Sl, l ∈ L).

Step 2. In order to obtain our result, we �rst observe that since ΠL is a
projection, it is also a contraction and D(ΠL(ĈL),ΠL(C)) ≤ D(ĈL, C).

Step 3. Now, let ĈKL
def.

= conv(SKl , l ∈ L). We have

D(ĈL, Ĉ
K
L ) ≤ rκ(K) (13)

Indeed, the distance function dĈKL
(H) = infH′∈ĈKL

‖H −H ′‖2 is convex. Hence,

the problem supH∈ĈL dĈKL
(H) appearing in the de�nition of the Hausdor� dis-

tance consists of �nding the maximum of a convex function over a convex set.
Hence the maximum is attained at an extremal point of ĈKL , i.e. at a point SKl .
All those points satisfy ‖SKl −Sl‖F ≤ rκ(K), hence supH∈ĈL dĈKL

(H) ≤ rκ(K).

A similar reasoning on the other part of the distance yields the inequality (13).

Since ΠL is a contraction, we also get D(ΠL(ĈL),ΠL(ĈKL )) ≤ rκ(K).
Step 4. To conclude, we use the fact that the Hausdor� distance satis�es the

triangle inequality. Hence:

D(ĈK,ΠL ,ΠL(C)) ≤ D(ĈK,ΠL ,ΠL(ĈL))

+D(ΠL(ĈL),ΠL(C))

≤ rκ(K) +OP

((
ln |L|
|L|

) 1
α

)
.

Remark 1. There are di�erent ways to control the distance between sets. An-
other possibility is to use the Nikodym metric, i.e. the relative di�erence of
volume between ĈK,ΠL and ΠL(C). For this metric, it can be shown that the
convex hull estimator is a minimax operator (i.e. that it is optimal uniformly
on the class of convex bodies) and we also obtain a convergence rate of the
form OP(|L|−2/d+1) for a convex set C with C3 boundary and positive curvature
everywhere.

Remark 2. Proposition 1 only characterizes the asymptotic behavior of this
estimator. This result should be taken carefully since the constants in the OP
depend on the geometry of the convex set C. In particular, the sharper the
corners of C, the larger the constant.
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5.2 A projection algorithm

In what follows, we let Ĉ = ĈK,ΠL to simplify the notation. In the framework

of blind inverse problems (see equation (1)), the knowledge of the convex set Ĉ
may lead to the resolution of variational problems of the form

min
H∈Ĉ,u∈W

1

2
‖Hu− y‖22. (14)

A critical tool to solve (14) is a projection operator ΠĈ onto the set Ĉ. For
instance, it would allow using a projected gradient descent. Let H ∈ Ξ and
S = R(H). The projection is de�ned as follows:

ΠĈ(S) = argmin
λ∈∆|L|

1

2
‖Mλ− S‖2F , (15)

where M : λ→
∑
l∈L λlΠL(SKl ).

Depending on the number of samples |L|, di�erent algorithms can be used to
solve (15). For small |L|, interior point methods [29] are an excellent candidate,
since they lead to high precision solutions in short computation times. For
larger |L|, they become intractable and it is then possible to use lighter, but less
precise �rst order solutions. We detail such an approach below.

First, we let τ = 1/‖M∗M‖F . This quantity can be computed using a power
method for instance. We can then use the accelerated proximal gradient [28]
descent described in Algorithm 2.

Algorithm 2 Projection onto convex hull of operators

INPUT: ΠL(SKl ), S, initial guess λ0 ∈ ∆|L|.

OUTPUT: Projection of S onto Ĉ.
1: procedure
2: for k = 1, 2, . . . , kend do
3: λ̃k = Π∆|L| (λk − τM∗(Mλk − S))

4: λk+1 = λ̃k + k−1
k+2

(
λ̃k − λ̃k−1

)
5: end for
6: Return Mλkend
7: end procedure

The projection on the (|L|−1)-dimensional simplex can be computed in linear
time and Algorithm 2 ensures that the cost function decays as O(1/k2). The
matrixM∗M can be precomputed with a numerical complexity in O(|L|2(|I|2n+
|J |2m)). The product M∗S can also be computed e�ciently, for operators S

given in a tensor form. This is for instance the case if S ∈ ĤL.

6 Numerical experiments

In this section we illustrate the previous methods with a few numerical examples.
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(a) Kernel operator
1.

(b) SVIR operator 1. (c) Kernel operator
2.

(d) SVIR operator 2.

Figure 1: Kernel and SVIR of two di�erent inverse di�usion operators.

6.1 Approximation rate and computation times

6.1.1 The setting

We start with a one dimensional di�usion equation as introduced in Section
1.1. Our main aim here is to illustrate the computational complexity of the
approach.We take Bn = Bm = Rn with n = m. We de�ne the operator ∇ with
forward �nite di�erences and homogeneous Neumann boundary conditions. The
divergence operator div = −∇∗, where ∇∗ is the adjoint of ∇.

We wish to �nd a family of estimators of the mapping f 7→ u for the following
equation

div (c∇u) = f, ∀f ∈ Rn,

and for di�usion coe�cients c ∈ Rn living in a subset Ω of nonnegative vectors.
We assume that we can access |L| observations of c, denoted cl for l ∈ L. We
let

Hl : Rn 7→ Rn
f 7→ (div (cl∇))

+
f

denote the operators of interest, where + denotes the pseudo-inverse. In our
simulations we consider di�usion coe�cients cl of the form:

cl(x) = 3 +
∑
p∈P

wl,1(p) cos (2πpx) + wl,2(p) sin (2πpx) ,∀x ∈ Rn,

with wl,1, wl,2 taken uniformly at random in the |P | − 1-dimensional simplex
∆|P |−1. We assume that the operators Hl are given in a product-convolution
form, or equivalently that their SVIR Sl can be written as Sl =

∑
k∈K αk,l⊗βk,l.

In our numerical experiments, we compute the factors αk,l and βk,l using a SVD
of Sl. This is feasible since we work in 1D. The number of factors in the SVD is
set to |K| = 20 which is enough to capture 97% percent of the energy on average.
Two instances of operators Hl and their SVIR Sl are displayed in Figure 1.
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6.1.2 Description of the approaches

Given |I| and |J |, our aim is to �nd two families (ei)i∈I ∈ E|I| and (fj)j∈J ∈ F|J|,
with E|I| and F|J| de�ned as the sets of orthonormal families, see equations (3)
and (4). We compare four approaches to estimate the subspace H.

• SVD: We concatenate the vectorized representation of Hl in a matrix M .
The family (ei)i∈I is set to be the �rst |I| left-eigenvectors, and the family
(fj)j∈J is set to be the �rst |J | right-eigenvectors of M . This approach is
optimal in terms of Frobenius norm but can only be applied because we
work in a low dimensional 1D setting.

• DCT: We set ei and fj as the �rst elements of the discrete cosine trans-
form, i.e. ei(x) = cos(π/(n − 1)ix) and fj(y) = cos(π/(m − 1)iy) with n
corresponding to the number of elements in the discretization. The family
(ei⊗fj)i∈I,j∈J is in tensor product form and it is orthogonal, which allows
making very fast computations.

• HOSVD: implements the decomposition in equations (6) and (7).

• ALS: use the Alternating Least Square Algorithm 1 with 15 iterations and
the HOSVD as an initialization.

We �rst compare the four di�erent methods in terms of their approximation
quality for |L| = 50 observations. We evaluate the average relative projection

error de�ned by E
(
‖H−ΠĤ(H)‖F

‖H‖F

)
. It can be evaluated through a Monte-Carlo

simulation. Figure 2a shows the relative error for the di�erent methods and
various sizes |I| with |I| = |J |.

The approximation rate given by the SVD is upper-bounded by the approx-
imation properties of the considered family of operators. This is an illustration
of Theorem 1 which describes the behavior of the approximation rate in terms
of the constants κ(I, J) and κ(K). In this example, we distinguish two regimes:
when |I||J | < |L| the approximation rate is bounded by the constant κ(I, J),
and when |I||J | ≥ |L|, the approximation rate is bounded by the constant κ(K).

6.1.3 Computing times

We now examine the computational time for each method in Figure 2b.
The e�ciency of the SVD has to be balanced by its important computational

time. It becomes completely impractical on a usual workstation when the di-
mension n of the space Bn is larger than 105. We also observe that using the
ALS algorithm instead of the HOSVD leads to negligible gains, despite a signif-
icantly higher computational burden. The runtime is basically proportional to
the number of iterations.

6.2 Blind deblurring

In this section we apply the proposed method of subspace estimation to solve a
blind deblurring problem. We use simulated operators and grayscale images.
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SVD
DCT
HOSVD
Tucker 2 via ALS

(a) Relative approximation error versus the dimension |I||J | of each basis.

1,024 2,048 4,096
0

20

40 SVD
DCT
HOSVD
Tucker 2 via ALS

(b) Computation time in seconds versus the dimension n of the problem (the operators
(Hl)l∈L are of size n× n).

Figure 2: Numerical behavior for 1D operators.

The setting We let Bn = Bm = Rn×n with n = 64 and set A = Rn×n and
B = Rn×n. We generate random space varying impulse responses of the form

Sl =

|K|∑
k=1

αk ⊗ βk,l.

In the following, we set |K| = 5, let θk = πk
6 and set for all l ∈ L and all

(x1, x2) ∈ {1, . . . , n}2

αk,l(x1, x2) = exp
(
− (cos(θk)x1 − sin(θk)x2)2

8
− (sin(θk)x1 + cos(θk)x2)2

2

)
.

This corresponds to anisotropic Gaussian functions rotated di�erently. We gen-
erate the maps βk,l as follows. For each l ∈ L:

1. We generate a matrix of Rn×n where each element is a uniform random
number in [0, 1], independent of the others.

2. We compute a discrete convolution of this random matrix with an isotropic
Gaussian blur. We then rescale it in [0, 1], producing a discrete random
�eld fl ∈ [0, 1]n×n.
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Figure 3: Examples of factors. Top: the full collection of (αk)k∈K . Bottom:
the factors (βk,1)k∈K .

Figure 4: Learned family (ei)i∈I .

3. We then partition the domain Ω into |K| sets (ωk,l)k∈K de�ned as

ωk,l = f−1
l ([(k − 1)/|K|, k/|K|]) .

4. Finally, the factors βk,l are de�ned as the indicators of ωk,l convolved with
a Gaussian kernel.

We display the elements αk and βk,1 in Figure 3.

The output of our algorithm With those de�nitions, we get a list of random
product-convolution operators Hl de�ned by

Hlu =
∑
k∈K

αk ? (βk,l � u),∀u ∈ Rn×n.

From the collection of (Sl)l∈L we can use the initialization of Algorithm 1 to

estimate a subspace ĤI,J . In this paragraph we index the estimator by I and
J .

The families (ei)i∈I and (fj)j∈J produced by the initialization of Algorithm
1 are displayed in Figure 4 and 5. The family (ei)i∈I is an orthogonalization
of the family αk. The family (fj)j∈J is quite similar to the �rst elements of a
Fourier basis. This is to be expected since the functions βk,l are smooth and
Fourier bases optimally encode smooth function spaces, see e.g. [30].
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Figure 5: Learned family (fj)j∈J .

A blind-deblurring experiment Using the notation of the introduction, we
set |S| = |I||J | and let Ps = ei⊗fj for s = (i, j) denote the elementary operators

constituting the subspace Ĥ = span(P1, . . . , P|S|). We let Q ∈ Rm×|T | denote
a matrix with columns (qt)t∈T corresponding to elements of the discrete Haar
wavelet basis with |T | = 274. We let

Q = {Qβ, β ∈ R|T |}

denote the subspace containing the images of interest. We let β0 ∈ R|T | denote
the coe�cients of the true image in the subspace Q, and H0 ∈ H the true
operator that we want to recover. Finally we let

u0 = H0v0 + η,

where η is an additive white Gaussian noise. We display the true image v0 in
Figure 6a and the blurry-noisy image u0 in Figure 6b.

We wish to solve the following bilinear inverse problem

min
v∈Q,
H∈Ĥ

‖Hv − u0‖22. (16)

Using the lifting and convex relaxation techniques described in [1] leads to

min
M∈R|T |×|S|

‖M‖? +
λ

2
‖W(M)− u0‖22 (17)

where λ > 0 is a regularization parameter. For a matrix M , ‖M‖? denotes the
nuclear norm, i.e. the sum of the singular values of M . This convex program is
solved using an accelerated proximal gradient method.

We let the algorithm run until the cost function stops decreasing. In Figure
6, we compare the reconstructed images with three di�erent estimations Ĥ of
H:

• When Ĥ = H, we use the full subspace to solve (17), this yields the result
in Figure 6c. It takes 390 seconds to solve the problem and we obtain a
SNR of -3.0dB. The reason for this failure is that the dimension of the
subspace is too large, making it impossible to identify the true image.
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(a) Original. (b) Blurry-noisy. (c) Ĥ = H, 390 sec-
onds.

(d) Ĥ = Ĥ5,30,120
seconds.

(e) Ĥ = Ĥ5,8, 31 sec-
onds.

Figure 6: Blind deblurring experiment with di�erent estimated subspaces. 6c:
full dimensional search space. 6d: |I| = 5 and |J | = 30. 6e: |I| = 5 and
|J | = 8. Reducing the search space makes the problem identi�able and reduces
the computing times.

• When Ĥ = ĤI,J with |I| = 5 and |J | = 30, i.e we use subspace of dimen-
sion 150 to solve (17), we obtain the result in Figure 6d. The computing
times are divided by three (120 seconds) compared to the full subspace

Ĥ = H. More importantly, the method succeeds to recover the sharp
image and we obtain a SNR of 26.7dB.

• When Ĥ = ĤI,J with |I| = 5 and |J | = 8, we subspace of dimension 40 to
solve (17), leading to the results in Figure 6e. This time, the computing

times decay to 31 seconds, which is 12 times faster than the case Ĥ = H.
We also obtain a good result with a SNR of 26.2dB.

7 Conclusion

We presented a scalable approach to estimate a low dimensional subspace of
linear operators from a sampling set of operators expressed as low rank tensors.
This formalism covers several commonly used operator structures such as hi-
erarchical matrices, wavelet expansions or product-convolutions. An important
application lies in the �eld of blind inverse problems where the prior knowledge
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of a low dimensional subspace can make it possible to identify both the signal
and the operator.

The principle outlined in this paper changes the way a device is calibrated:
instead of characterizing it through a single operator, we propose to describe
all its potential states. For instance, in microscopy, variations of temperature
change the refraction indexes and hence the associated measurement operators.
With the proposed approach, we can capture these variations and hence use
more precise models for image reconstruction. We hypothesize that the proposed
formalism can improve reconstructions for many other practical problems.
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