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Abstract

We design an image quality measure independent of
contrast changes, which are defined as a set of trans-
formations preserving an order between the level lines
of an image. This problem can be expressed as an
isotonic regression problem. Depending on the defi-
nition of a level line, the partial order between adja-
cent regions can be defined through chains, polytrees
or directed acyclic graphs. We provide a few ana-
lytic properties of the minimizers and design original
optimization procedures together with a full com-
plexity analysis. The methods worst case complex-
ities range from O(n) for chains, to O(n log n) for

polytrees and O
(
n2
√
ε

)
for directed acyclic graphs,

where n is the number of pixels and ε is a relative
precision. The proposed algorithms have potential
applications in change detection, stereovision, im-
age registration, color image processing or image fu-
sion. A C++ implementation with Matlab headers is
available at http://www.math.univ-toulouse.fr/

~weiss/PageCodes.html.

1 Introduction

Invariance to illumination conditions is often a key el-
ement for the success of image processing algorithms.
The whole field of mathematical morphology is based
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versité de Toulouse, France.
‡G. Bathie is a bachelor student at INSA de Toulouse, Uni-
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on contrast invariance [1]. The structural similarity
index [2] - one of the most popular image quality mea-
sures - also strongly relies on a partial invariance to
illumination changes.

1.1 Contrast invariant SNR

The main objective of this work is to measure the
similarity between two images u0 : Ω → R and u1 :
Ω→ R, where Ω is a discrete domain, in a way robust
to illumination changes. To this end, we propose to
solve the following variational problem:

∆T (u1, u0) = min
T∈ T

‖u0 − T (u1)‖22, (1)

where T is a family of transforms modeling illumi-
nation changes. Designing a family T reproducing
faithfully variations of illuminations is probably out
of reach and would most likely turn out to be of little
interest from a computational point of view. Here,
we will focus on simple families T that preserve the
level-lines of the image u1 as well as a partial order
between them. This amounts to comparing images
independently of local contrast changes, as defined
in [3]. The contrast invariant signal-to-noise-ratio is
then defined by:

SNRT (u1, u0) = −10 log10(∆T (u1, u0)/‖u0‖22). (2)

1.2 Potential applications

In this paper, we primarily focus on the basic prop-
erties of the model and exemplify its use as an image
quality metric. It can however be used in more ad-
vanced applications mentioned below.
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Change detection Let T ? denote the optimal
transform in problem (1). The image u? = T ?(u1)
has the same level-lines (i.e. geometry) as u1, with
the contrast of u0. The difference image u0 − T ?(u1)
contains the “objects” in u0 which are not in u1. The
proposed tool can therefore be used as a contrast in-
variant change detection algorithm. We show a few
difference images in Fig. 6. Let us mention that a
similar idea was proposed in [4] and [5]. It was how-
ever based on a purely morphological approach, while
the proposed method is both morphological and vari-
ational.

Inverse problems The image T ?(u1) is the pro-
jection of u0 on a convex set. Projections and more
generally proximal operators have proved to be key
tools for the resolution of inverse problems [6,7]. The
proposed algorithms may therefore be used as a ba-
sic brick in more advanced inverse problems, where a
natural regularizer is to impose a given topographic
map. The proposed method hence possesses potential
applications in different fields such as image fusion [8]
or color image processing [8–10].

Let us exemplify how it could be used for panchro-
matic and multi-spectral image fusion. In this appli-
cation, we are given a high resolution image u0 and
a set of low resolution images vi at different wave-
lengths. The aim is to construct a high resolution
multi-spectral image. If the wavelengths of ui are
not too far from the wavelength of u0, we may as-
sume that no local contrast inversion occur. Fusing
u0 and an image ui might therefore be achieved by
solving:

min
u∈T (u0)

1

2
‖Hu− ui‖22,

where H is a down-sampling operator and where
T (u0) is the set of admissible images.

Image registration Given two images u1 and u0

coming from different modalities, or from the same
modality with different stainings, we may try to reg-
ister them by solving a problem of the form:

inf
d∈D

∆T (u1 ◦ d, u0), (3)

where D is a family of admissible deformations and
∆T is one of the measures proposed in the paper.
This idea is similar to an idea developed in [11], with
the important difference that we promote level-lines
with an identical partial order, while [11] only fo-
cussed on aligning level-lines, with no care for their
relative orders.

Optical flow The same idea can be applied to esti-
mate the optical flow, where changes of illuminations
need to be taken with care (see e.g. section 6.3.3
of [12]). Under the assumption that the deformation
d in equation (3) is small, we may linearize u1 ◦ d as
u1◦d ' u1+∇u1�v, where v is a displacement field of
small amplitude and where ∇u1� v is the image cor-
responding to the pixelwise scalar product between
v and ∇u1. This simplification leads to problems of
the form:

inf
v∈V

∆(u1 +∇u1 � v, u0), (4)

where V is a set of admissible displacements. If the
set V is convex, the problem (4) is convex too and
could be solved efficiently using first-order methods
(see e.g. [12]) combined with the tools provided later
in this paper. We leave the practical investigation of
this idea for future works.

1.3 Isotonic regressions

After a few algebraic manipulations, the variational
problem (1) can be turned into an isotonic regression
problem with a structure that depends on the family
of transforms T . Isotonic regressions have been in-
troduced in the context of statistics in the 1950’s [13].
Letting (V,E) denote the vertices and edges of a di-
rected acyclic graph (DAG) and y ∈ R|V | denote a
label of the graph, they can be written as follows:

min
x∈R|V |

xj−xi≥0,∀(i,j)∈E

d(x, y), (5)

where d : R|V | ×R|V | → R is a convex function mea-
suring the closeness from x to y.

Solving (5) efficiently is a rather involved prob-
lem despite its convexity. It has received a consid-
erable attention and significant progresses have been
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achieved recently [14–20]. The existing methods may
be exact or approximate and their complexity de-
pends on the structure of the directed acyclic graph.
In our work, we will consider 3 different types of
graphs: i) linear graphs with a single orientation, ii)
polytrees and iii) generic directed acyclic graphs.

The case of linear graphs with a single orientation
is well understood and can be solved in O(|V |) op-
erations using pool adjacent violators algorithms for
instance [16].

To the best of our knowledge, the case of poly-
trees has not been studied in the literature yet, even
though the case of directed trees is well understood
[17]. In a recent work, Kolmogorov, Pock and Ro-
linek [21] introduced efficient dynamic programming
approaches to solve families of convex problems de-
fined on trees. Building upon this work, we de-
sign algorithms with a complexity O(|V |) when the
graph is linear with edges oriented in arbitrary di-
rections. We also design an algorithm with com-
plexity O(|V | log |V |), when the graph is a polytree
(i.e. a tree with edges in arbitrary orientations). To
the best of our knowledge, this is the first time that
these problems are considered. Combining these tools
with the Fast Level Set Transform [22] of Guichard
and Monasse, we can solve an instance of our main
problem (1) with a worst-case complexity O(n log n),
where n is the number of pixels in the image.

Finally, we introduce a simple first order algorithm
in the case of arbitrary directed acyclic graphs, to-
gether with a full complexity analysis. The proposed
method has some comparative advantages with the
current state-of-the-art approaches [18,20] both from
a theoretical and practical point of view.

2 Existing approaches

Various approaches are commonly used to compare
two images u0 and u1 independently of illumination
variations. We briefly describe a few of them below.

2.1 Contrast equalization

Probably the most common approach consists in
equalizing histograms, i.e. to change the gray-values

of u1 in such a way that the resulting histogram
matches approximately that of u0 (see e.g. [23, 24]).
This approach suffers from the fact that the image
geometry is completely forgotten: histograms only
account for gray-level distributions and not geomet-
rical features such as edges, textures,...

2.2 Mutual information

Mutual information has been popularized in the field
of image registration [25, 26] to compare images. In
its simplest form, the mutual information treats the
gray values of two images u0 and u1 as random vari-
ables X and Y with values in a discrete set Λ. This
measure is then defined as:

H(X,Y ) =
∑

x∈Λ,y∈Λ

P (x, y) log

(
P (x, y)

P (x)P (y)

)
,

where P (x, y) denotes the probability of the event
X = x and Y = y, P (x) the probability of the event
X = x and P (y) the probability of the event Y = y.

Mutual information is based solely on the gray level
distributions and does not account for the image ge-
ometry (that could be captured by the gradient for in-
stance). It is invariant to affine transforms of the pix-
els values, but not to more complex nonlinear map-
pings of the gray levels. More generally, the measure
is not invariant to local contrast changes as defined in
this paper (i.e. changes that can affect distant pixels
in a different manner). In addition, the mutual in-
formation H(X,X) of two identical images is equal
to the entropy of X which varies from an image to
another, while we could expect from a metric to yield
an identical value.

2.3 Optimal linear and affine maps

The set T in problem (1) can be replaced by any class
of transformations that describe changes of illumina-
tions. Probably the simplest classes T are the set
of linear maps T (u) = au or the set of affine maps
T (u) = au + b, where a and b are scalars. The so-
lution of both problems can be computed explicitly
in terms of u0 and u1. The same approach can be
used locally and the L2-norm can be replaced by a
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weighted L2-norm. This idea is the basis of the Struc-
tural Similarity Index Measure (SSIM).

2.4 Optimal global contrast change

A richer set of transformations T is that of global
contrast changes. Two images u0 and u1 are said to
differ by a global contrast change if there exists a non
decreasing function T : R→ R such that T ◦u1 = u0,
where the composition T ◦ u1 has to be understood
pixelwise. Let

Uglo = {u = T ◦u1, T : R→ R, non decreasing} (6)

Finding the best global contrast change amounts to
solving:

∆glo(u1, u0) = min
u∈Uglo

1

2
‖u− u0‖22. (7)

We let u?glo denote the solution of (7) and

SNRglo(u1, u0) = −10 log10(∆glo(u1, u0)/‖u0‖22)

denote the globally contrast invariant SNR. This ap-
proach seems to be vastly ignored. In fact we only
found its description in the excellent lecture notes of
Lionel Moisan [27] and we will therefore quickly recall
its principle below.

In what follows, we let

Uglo = {u = T ◦u1, T : R→ R, non decreasing}. (8)

and Λ = (λi) denote the set of gray-scale values u1(Ω)
sorted in ascending order. The infinite dimensional
problem (7) can be turned to an optimization of a
vector α ∈ R|Λ|. We first define the discrete level
lines of u1 by ρi = {x ∈ Ω, u1(x) = λi} and get∑
x∈Ω

(T (u1(x))− u0(x))
2

=
∑

1≤i≤|Λ|

∑
x∈ρi

(T (λi)− u0(x))2.

Letting

S =
{
α ∈ R|Λ|, αi+1 − αi ≥ 0, ∀1 ≤ i < |Λ|

}
,

problem (7) then becomes:

min
α∈S

∑
1≤i<|Λ|

∑
x∈ρi

(αi − u0(x))2, (9)

where αi = T (λi). We will use the following result
repeatedly in the paper:

Lemma 1. Let βi = ū0(ρj) := 1
|ρi|
∑
x∈ρi u0(x) be

the mean of u0 over the region ρi. We have for all
αi ∈ R:∑
x∈ρi

(αi − u0(x))2 = |ρi|Varρi(u0) + |ρi|(αi − βi)2,

(10)
where Varρi(u0) := 1

|ρi|
∑
x∈ρi(βi−u0(x))2 and where

|ρj | denotes the cardinality of ρj.

Proof.∑
x∈ρi

(u0(x)− αi)2

=
∑
x∈ρi

(u0(x)− βi + βi − αi)2

=
∑
x∈ρi

(u0(x)− βi)2 + (βi − αi)2 + 2(u0(x)− βi)(βi − αi)

= |ρi|Varρi(u0) + |ρi|(βi − αi)2.

Therefore Problem (7) can be rewritten as:

min
α∈S

∑
1≤i<|Λ|

|ρi|(αi − βi)2 + |ρj |Varρj (u0), (11)

The problem (11) is a simple case of isotonic re-
gression [15, 16] on a linear graph. This problem
can be solved in O(n) operations using active sets
type methods called pool adjacent violators. Unfor-
tunately, global contrast changes do not capture all
the complexity of illumination changes: in most ap-
plications, the variations are local and we will there-
fore introduce more complex sets of transformations
in the next section.

3 Local contrast changes using
a tree

3.1 The tree of shapes

Mathematical morphology emerged with the works
of Matheron [28]. Therein, he proposed to analyze
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and process an image u by operating on their upper
level-sets χ+

λ = {x ∈ Ω, u(x) ≥ λ} and lower level-
sets χ−λ = {x ∈ Ω, u(x) < λ}. The level-sets are geo-
metrical features invariant to global contrast changes.
In order to obtain a representation invariant to local
contrast changes, it is possible to consider their sat-
urated 1 connected components called shapes. This
idea was proposed and detailed thoroughly in [3, 29]
in the continuous setting and in [22,30] in the discrete
one.

Let (ωi)i∈I denote the set of shapes, i.e. the set
of saturated connected components of the lower and
upper level-sets. In the discrete setting and under
suitable choices of connexity 2, it can be shown that
the family of shapes (ωi)i∈I satisfy the following in-
clusion relationships:

For i 6= j, either ωi ⊂ ωj or ωj ⊂ ωi or ωj ∩ ωi = ∅.
(12)

This allows to embed the shapes in a tree called the
tree of shapes. This idea goes back to Kronrod [31]
and we refer the interested reader to the book [29]
for more insight on its properties in the continuous
setting. The vertices of the tree coincide with the
shapes. A shape ωj is a descendant of ωi in the tree
if ωj ⊂ ωi. This property allows to define the set of
edges E, encoding the inclusion relationship between
shapes. An edge e is a pair of indices (i, j) indicat-
ing that ωj is a child of ωi. An illustration of this
idea is proposed in Fig. 1. In this figure, we added
arrows to the tree, indicating whether the difference
of gray values between consecutive shapes is positive
or negative.

In the discrete setting and for 2D images, the tree
of shapes can be constructed in O(n log n) operations
using the so-called fast level-set transform (FLST)
[22]. In arbitrary dimensions, the complexity remains
moderate if the images are quantized [30].

1The saturation of a set S is constructed by filling the holes
of S. A hole is defined as a connected component of the com-
plementary of S which is in the interior of S.

2One should choose the 4 connexity for the upper-level sets
and the 8 connexity for the lower level-sets (or the reverse) to
satisfy a discrete version of Jordan’s theorem [22]

0

1
2 2

(a) An image

ω0

ω1

ω2

ω3

(b) Its tree of shapes

Figure 1: An example of tree of shapes

3.2 Local contrast changes on a tree

The level-set transform can be seen as a decomposi-
tion of the image u of the following form:

u = Lγ :=
∑
i∈I

γisi1ωi
, (13)

where I is a set of cardinality |I| = |V | ≤ n, (γi) ∈
R|I|+ is a vector of nonnegative coefficients encoding
the jump between a shape and its parent and si ∈
{−1, 1} is a sign vector indicating whether ωi is a
connected component of a lower or upper level-set
of u. Unfortunately, the decomposition of an image
using the linear mapping L : γ → u in equation (13) is
not computationally attractive. Indeed, if L is stored
as a sparse matrix, it can contain up toO(n2) nonzero
coefficients since a single pixel can belong to O(n)
shapes.

A more efficient reconstruction formula requires us-
ing the level-lines instead of the level-sets.

Definition 1 (Level-lines on a tree). Let children(i)
denote the indices of the children of ωi. The i-th level-
line ∂ωi is defined by ∂ωi = ωi\(∪j∈children(i)ωj)

3.

The set of level-lines (∂ωi)i∈I forms a partition of
the image domain Ω and we have the following de-
composition formula:

u = Rα :=
∑
i∈I

αi1∂ωi . (14)

where αi = u|∂ωi
is the value of u restricted to the

level-line. A matrix-vector product withR has a com-
plexity O(n) since the level-lines partition Ω. The re-
lationship between α and γ is simply αj −αi = γjsj ,

3This is a slight abuse of notation since a level-line defined
this way can have a nonempty interior.
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for all (i, j) ∈ E since γ defines the jump between
adjacent level-lines. We can now introduce the first
definition of a local contrast change.

Definition 2 (Local contrast change on a tree). Let
u1 denote a reference image, (E, V ) denote its tree
of shapes and R denote its associated reconstruction
operator. An image u is said to differ from u1 by a
local contrast change on a tree (LCCT) if it can be
written as u = Rα, where (αj − αi)sj ≥ 0 for all
(i, j) ∈ E.

In words, this means that u1 and u should have the
same level-lines and that the difference between the
gray levels of connected level-lines should have the
same sign.

We are now ready to convert the problem (1) into
an isotonic regression problem. As in the previous
section, we let

Uloc1 = {u differs from u1 by a LCCT},

(15)

∆loc1(u1, u0) = min
u∈Uloc1

1

2
‖u− u0‖22,

SNRloc1(u1, u0) = −10 log10

(
∆loc1(u1, u0)

‖u0‖22

)
,

and u?loc1 denote the solution of (15). Letting Λ =
{α ∈ R|I|, (αj − αi)sj ≥ 0,∀(i, j) ∈ E}, we get the
following problem:

min
u∈Uloc1

1

2
‖u− u0‖22 (16)

= min
α∈Λ

1

2
‖Rα− u0‖22 (17)

= min
α∈Λ

1

2
‖
∑
i∈I

αi1∂ωi
− u0‖22 (18)

= min
α∈Λ

1

2
|∂ωi|Var∂ωi

(u0) +
1

2

∑
i∈I
|∂ωi|(αi − βi)2,

(19)

where we used Lemma 1 with βi := ū0(∂ωi). By
skipping the constant terms 1

2 |∂ωi|Var∂ωi
(u0), this

problem can still be rewritten as:

min
α∈R|I|

∑
i∈I

fi(αi) +
∑

(i,j)∈E

fi,j(αj − αi), (20)

with fi(αi) = 1
2 |∂ωi|(αi − βi)

2 and

fi,j(z) =

{
0 if zsj ≥ 0

+∞ otherwise.
(21)

The equation (20) corresponds to an isotonic re-
gression problem on a polytree, for which we will de-
sign an efficient algorithm in the next section.

3.3 A dynamic programming ap-
proach

The review paper [32] shows that problems of the
form (20) can be solved efficiently using dynamic pro-
gramming, when the values of α are restricted to a
set of finite cardinality. In [21], the authors show
that this restriction is not necessary provided that
the functions fi and fi,j have a favorable convex
structure. They give a particular attention to com-
binations of piecewise quadratic and piecewise linear
functions. This is very close to our setting since fi
is quadratic and that the function fi,j in (21) can be
seen as a degenerate piecewise linear function with
an infinite slope. We sketch the principle of the ap-
proach below.

We let Mi(x) denote the optimal value of the en-
ergy restricted to the subtree rooted at i, and fixing
the value x at node i. This energy function can be
computed directly on the leaves since it only contains
the unary terms fi. It can then be propagated to the
parents by using the recursion formula:

Mi(x) = fi(x) +
∑

j∈children(i)

(Mj�fi,j)(x), (22)

where the symbol � stands for the inf-convolution
defined by:

(Mj�fi,j)(x) = inf
z∈R

Mj(z) + fi,j(x− z). (23)

The dynamic programming approach works by first
evaluating recursively the functions Mi on each node
in a first pass from the leaves towards the root. Then,
the optimal solution can be obtained using a back-
propagation: the optimal value x?r at the root r is
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obtained by x?r = argminx∈RMr(x). The rest of the
values can be computed using the recursion:

x?j = argmin
x∈R

Mj(x) + fi,j(x− xi), (24)

for all j ∈ children(i).
Making this general principle practical and efficient

requires many subtelties which are well described in
[21]. We review the main elements below:

• First, the messages Mi can be shown to be piece-
wise quadratic, with a number of pieces that does
not exceed the number of nodes in the tree. Since
the functions Mi are used only for minimization
purposes, it is more practical to encode them
through their subgradients mi which are piece-
wise linear. Hence, they can be simply encoded
as a finite sequence of slopes and breakpoints.

• In equation (22), the inf-convolution and the
summation of the messages need to be computed
in an efficient manner. In practice, this requires
using an advanced data structure called double
ended priority queue [33]. In our codes, we sim-
ply used a double ended queue from the stan-
dard C++ library, since we could find no open-
source implementation allowing to do all the nec-
essary operations (min, max, merge, removemin,
removemax, insertmin, insertmax).

• The messages mi are not stored on each node
of the tree, since it would require storing up
to O(n2) numbers. In practice it suffices to
store the location of the minimum of Mi, which
is the only information necessary in the back-
propagation.

Using these tricks, it can be shown that the
method’s worst case complexity is O(|I| log |I|). Our
current implementation has a worst case complexity
in O(|I|2) since we did not use a double ended pri-
ority queue, but it turns out to have a near linear
complexity in practice. This is due to the fact that
the number of breakpoints does not scale as n for
practical problems, but remains small compared to
n. We illustrate the practical method’s behavior in
Fig. 2. The points on the curves represent the aver-
age computing time evaluated by comparing 16 pairs

of natural images. As can be seen on the green dash-
dotted curve, the behavior of the dynamic program-
ming algorithm is slightly worst than the one of the
tree of shapes for large image sizes, but is still very
efficient. For instance, an image of size 1000×1000 is
treated in 0.7 seconds on average using a single core
of a personal laptop.
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Figure 2: Log-log plot of the computing times in sec-
onds w.r.t. the number of pixels of the image. Red:
time to construct the tree of shapes. Green: time to
solve the isotonic regression via dynamic program-
ming. Blue: total time for the algorithm (including
copies of trees, arrays, etc...).

3.4 Comparison to the state-of-the-
art

Nearly all the ideas described above are present in
the paper [21]. The only difference is that we con-
sider degenerate functions fi,j with an infinite slope,
but the theoretical analysis remains unchanged. Our
contribution on the side of dynamic programming is
therefore mostly to point out that the dynamic pro-
gramming approach from [21] allows to solve many
instances of isotonic regressions using a single algo-
rithm. Some of these instances were not considered
previoulsy in the literature. We list the improvements
below:

• We exactly solve isotonic regression problems
on linear graphs with arbitrary orientations in
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1 2 1

Figure 3: Left: a simple image u1. Right: a level-line
in the tree of shapes has two disconnected compo-
nents.

O(|I|) operations. This seems to be a novel re-
sult.

• We exactly solve isotonic regression problems on
polytrees in O(|I| log |I|) operations. This seems
to be a novel result.

• Using the algorithm in section 4.3 of [21], it can
be shown that isotonic regressions with an `1

data fitting term on a linear graph can be solved
in O(|I| log log |I|) operations, while the best ex-
isting complexity was O(|I| log |I|) [34].

To finish, let us mention that our C++ implemen-
tation with a Matlab header is seemingly the first one
to deal with isotonic regression on trees and poly-
trees.

4 Local contrast changes using
a DAG

4.1 Local contrast changes using a
DAG

The definition of level-lines and local contrast
changes provided in the previous section has the im-
portant advantage of yielding a tree structure, which
allows designing very efficient algorithms. In some
cases, this definition might however be too global.
This is illustrated in Fig. 3. In this picture, we
see that two disconnected regions might be linked
together when a level-set is separated by one of its
children. In practice we may want to design an al-
gorithm able to set different values to the left and
right parts of the level-line. This is the purpose of
this section.

4.1.1 Definitions

We endow the image domain Ω with a neighborhood
relationship N : Ω → P(Ω). We assume that N is
symmetric, meaning that x ∈ N (y) ⇒ y ∈ N (x) for
all y ∈ Ω. We will focus on the 4-connectedness to
establish theoretical properties of the model and in
the numerical experiments. For each pixel x ∈ Ω, the
set N (x) is the set of all neighbors of x. We assume
that |N (x)| ≤ cmax for all x, with cmax = 4 when
using the 4-connectedness denoted N4. We can now
introduce a second definition of level-lines and local
contrast changes.

Definition 3 (Level-lines on a DAG). The set of
level-lines (∆i)1≤i≤p of an image u1 is the set of N -
connected component of {x ∈ Ω, u1(x) = λ} for λ ∈
u1(Ω).

The set of all level-lines (∆i)1≤i≤p partitions the
image domain Ω and has a cardinality p ≤ n. In

what follows, the notation ∆i
N∼ ∆j means that the

level-lines are adjacent, i.e. that there exists x ∈ ∆i

and y ∈ ∆j such that y ∈ N (x).

Definition 4 (Local contrast changes on a DAG ).
Let u and u1 denote two images. The image u is said
to differ from u1 by a local contrast change on a DAG
(LCCD) if u|∆i is constant for all i and if the gray
levels between adjacent pixels have the same order,

i.e. for all x
N∼ y:

(u(x)− u(y)) · (u1(x)− u1(y)) ≥ 0. (25)

As in the previous section, we let

Uloc2 = {u differs from u1 by a LCCD},

(26)

∆loc2(u1, u0) = min
u∈Uloc2

1

2
‖u− u0‖22,

SNRloc2(u1, u0) = −10 log10

(
∆loc2(u1, u0)

‖u0‖22

)
,

and u?loc2 denote the solution of (26).

4.1.2 Constructing the graph

From an algorithmic point of view, we need to con-
struct the sets (∆i)1≤i≤p and a directed acyclic
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2 2 0

0 1 1

0 0 1

(a) Image u1

∆2

∆1

∆4

∆3

(b) Connected components

1

2

3

4

(c) Associated graph

A =


−1 1 0 0
−1 0 1 0
0 1 −1 0
0 1 0 −1
0 0 1 −1


(d) Transpose of the inci-
dence matrix

Figure 4: Illustration of the graph construction

graph G = (V,E) from the image u1. The ver-
tices V = (v1, . . . , vp) of this graph represent the
sets (∆i)1≤i≤p. The set E = (e1, . . . , em) contains
the edges of the graph. The edge ek ∈ E is an or-
dered pair of vertices written ek = (i(k), j(k)) going
from vertex i(k) to vertex j(k). Such an edge exists

if the sets ∆i(k)
N∼ ∆j(k) and if u1(∆j(k)) > u1(∆i(k)).

The graph G can be encoded through an incidence
matrix (or more precisely its transpose) A ∈ Rm×p.
Each row of this matrix describes an edge with the
convention A(k, i(k)) = −1 and A(k, j(k)) = 1 and
all the other coefficients of row k are null. A sim-
ple 3× 3 image u1, the associated regions (∆i)1≤i≤4,
graph and incidence matrix are represented in Figure
4.

The list of regions (∆i)1≤i≤p can be constructed
in O(n) operations using flood fill algorithms. This
yields a labelling of the regions (∆i)i. The graph
or matrix A can be constructed in O(n log n) op-
erations. The idea is to first scan all the edges in
N to construct a preliminary matrix Ã with repeti-
tions. For instance, the region ∆1 is connected three
times to ∆3 (see arrows in Figure 4a), so that after

the first scan, the matrix Ã contains three identical
rows. The complexity of building this initial matrix
is O(cmaxn). Then, the repetitions can be suppressed
in O(n log n) operations. First, the array can be rear-
ranged by putting the identical rows adjacently (this
can be achieved with a quicksort algorithm), then,
the repetitions are removed.

4.1.3 The optimization problem

With these definitions, the problem (1) can be
rephrased as follows:

min
u∈Uloc2

1

2
‖u0 − u‖22, (27)

where Uloc2 is the set of images satisfying Definition
4:

Uloc2 = {u : Ω→ R, u|∆i
= αi, 1 ≤ i ≤ p,Aα ≥ 0} .

Hence, we can simplify (27) as follows:

min
u∈Uloc2

1

2

∑
x∈Ω

(u0(x)− u(x))2

= min
u∈Uloc2

1

2

p∑
i=1

∑
x∈∆i

(u0(x)− αi)2

= min
α∈Rp,Aα≥0

1

2

p∑
i=1

|∆i|(βi − αi)2 + |∆i|Var∆i
(u0),

where βi = ū0(∆i). By letting w ∈ Rp denote the
vector with components wi = |∆i|, W = diag(w)
and by skipping the constant terms |∆i|Var∆i

(u0),
problem (1) finally simplifies to:

min
Aα≥0

1

2
〈W (α− β), α− β〉. (28)

Problem (28) is an isotonic regression problem on a
DAG. Its solution α? is unique since it is the projec-
tion of β onto a closed convex set. We will design a
simple first order solver in the next section.

4.2 A first order solver

The main idea is to exploit the strong convexity of the
squared l2-norm to design a first order algorithm on
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the dual. Nesterov type accelerations [35] make this
method particularly relevant for large scale problems
[36]. Proposition 1 summarizes the nice properties of
the dual problem.

Proposition 1. The dual problem of (28) reads:

sup
λ≤0

D(λ) = −1

2
‖W−1/2ATλ‖22 + 〈λ,Aβ〉. (29)

Let α(λ) = β−W−1ATλ, then any primal-dual solu-
tion (α?, λ?) satisfies α? = α(λ?). The function D is
differentiable with an L-Lipschitz continuous gradi-
ent and L = λmax(AW−1AT ). Finally, the following
inequality holds for any λ ∈ Rm− 4:

‖α(λ)− α?‖22 ≤ 2(D(λ?)−D(λ)). (30)

We refer the reader to the Appendix A for the
proofs. In addition, the Lipschitz constant L can be
bounded above by a constant.

Proposition 2. The Lipschitz constant L satisfies
L ≤ 4cmax.

The problem (29) has a simple structure, compat-
ible with the use of accelerated projected gradient
ascents methods [37] described in Algorithm 1.

Algorithm 1 Accelerated proximal gradient ascent
method.

1: input: initial guess µ(1) ∈ Rm, τ = 1/4cmax and
Nit.

2: for k = 1 to Nit do
3: λ(k) = min

(
µ(k) + τ∇D(µ(k)), 0

)
.

4: µ(k+1) = λ(k) + k−1
k+2 (λ(k) − λ(k−1)).

5: α(k) = α(λ(k)).
6: end for

Proposition 3. Algorithm 1 provides the following
guarantees:

‖α(k) − α?‖22 ≤
8cmax‖λ(0) − λ∗‖22

(k + 1)2
, (31)

4This result can be strengthened slightly, we refer the in-
terested reader to the example 3.1 in [7] for more details.

where λ? is any solution of the dual problem (29).
The complexity to obtain an estimate α(k) satisfying
‖α(k) − α?‖2 ≤ ε is bounded above by

O
(m
ε
‖λ(0) − λ?‖2

)
operations. (32)

4.3 Complexity analysis

At this point, the convergence analysis is not com-
plete since ‖λ(0) − λ?‖2 could be arbitrarily large.
In order to compare the proposed first order method
with the interior point method from [20], we need to
upper-bound this quantity. Unfortunately, we did not
manage to find a universal bound. Instead, we pro-
pose a detailed complexity analysis in the Appendix
B. The main conclusions are given in the following
theorem.

Theorem 1. The number of operations needed by
Algorithm 1 to reach a relative accuracy of the form:

‖α(k) − α?‖2
‖α(0) − α?‖2

≤ η (33)

varies from O
(
m
η

)
operations for simple problems

and can reach O
(
m2

η

)
operations for adversarial

problems.

Unfortunately the worst-case complexity O
(
m2

η

)
would make the proposed approach irrelevant. In the

practical examples that we treated, the ratio ‖λ?‖2
‖ATλ?‖2

however remained bounded by values never exceed-
ing 100, explaining the rather good behavior of the
proposed method.

4.3.1 Comparison with existing solvers

Isotonic regression on a DAG received a considerable
attention in the optimization literature lately. The
recent reference [20] is seemingly the best approach
available so far. Therein, the authors propose to use
an interior point algorithm [38] exploiting the special
graph structure of the matrix A [39]. Their tailored
algorithm provides a feasible estimate α(ε) of α? sat-
isfying Aα(ε) ≥ 0 with ‖α(ε) − α?‖22 ≤ ε in no more
than

O(m1.5 log2 p log(p/ε)) (34)

10



operations. This worst-case bound is significantly
better than ours, both in terms of dimension and
precision. The source code is provided here: https:

//github.com/sachdevasushant/Isotonic. Unfor-
tunately in our experiments, the algorithm worked
nicely for small m, but systematically failed to con-
verge when dealing with the large graphs appearing
in our problems. This problem seems to be related
to some instabilities of the current fast randomized
Laplacian solvers for large scale graphs [39].

An alternative algorithm was proposed in [18],
where the authors proposed to solve a sequence of lin-
ear programs https://www.tau.ac.il/~saharon/

files/IRPv1.zip to reach the solution by partition-
ing the graph. This algorithm has a worst case
complexity of order O(n4) 5, which is far too large.
Fortunately, the worst-case analysis seems to be
very pessimistic and the algorithm implemented with
MOSEK [40] is much more efficient in practice. From
a practical point of view, our experiments on real
data showed that: i) the time needed to find exact so-
lutions on real images was significantly too large, but
ii) the computing times to get approximate solutions
are on par with the ones obtained by our first-order
approach for a similar precision with our method be-
coming preferable with large images. To our belief,
the main advantage of our approach is that it is based
on simple and portable algorithms, while the recur-
sive partitioning approach in [18] requires the use of
heavy large scale linear programming solvers such as
MOSEK.

5 Some properties of the mod-
els

In this section, we propose to analyze some of the
models properties.

5As far as we could judge, there seems to be an inaccuracy
in the complexity analysis, which is based on the exact reso-
lution of linear programs using interior point methods (which
are inexact in nature). In practice the implementation is based
on a simplex-type algorithm which is exact, but with an un-
controlled complexity.

5.1 Local mean preservation

An important property of the three models is that
they promote piecewise constant images and that
the value of the solution on the constant parts are
equal to the mean of u0 over the parts. This is rem-
iniscent of the total variation regularized solutions
which suffer from staircasing. An important differ-
ence however is the mean preservation: the Rudin-
Osher-Fatemi model [41] preserves the mean of the
image globally, but the mean on the constant part is
not preserved. This produces an undesirable bias in
the jump set [42]. The models proposed in this paper
do not suffer from this drawback as proved below.

We consider the problem (28) which encompasses
(20) and (11) as specific instances. We let α? denote
its solution.

Theorem 2 (Mean preservation). Let (Bk) denote
the partition of (V,G) into connected components,
such that α?|Bk

is constant and α?|Bk
6= α?|Bj

if Bk
is adjacent to Bj. Then

α?|Bk
=

∑
i∈Bk

wiβi∑
i∈Bk

wi
. (35)

The proof is reported to the appendix, see Section
C. Let us mention that the Theorem 2 is rather stan-
dard in the literature of isotonic regressions with a
slightly refined notion of partition [17, 43]. It shows
that solving an isotonic regression is equivalent to
partitioning the graph. This is the main idea un-
derlying methods such as [18]. The following result
directly follows from Theorem 2.

Corollary 1 (Global mean preservation and maxi-
mum principle). Let u? be any of the three solutions
u?glo, u

?
loc1 or u?loc2. Then ū?(Ω) = ū0(Ω) and

min
x∈Ω

u0(x) ≤ min
x∈Ω

u?(x) ≤ max
x∈Ω

u?(x) ≤ max
x∈Ω

u0(x).

(36)

5.2 Inclusion of models

The following inclusion relationship holds between
the 3 models.
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Theorem 3. For any image u1, we have

Uglo ⊆ Uloc1 ⊆ Uloc2. (37)

Hence, SNRglo ≤ SNRloc1 ≤ SNRloc2.

The proof is reported to the appendix, see Section
D.

5.3 Regularity properties

The functions ∆glo, ∆loc1 and ∆loc2 can be seen as
the Moreau-Yosida regularization of the indicators of
the sets Uglo, Uloc1, Uloc2. Hence, the following propo-
sition directly follows.

Proposition 4 (Convexity and regularity). Let u1

denote an arbitrary image. Let ∆ : u 7→ ∆(u) de-
note any of the functionals ∆glo(u1, u), ∆loc1(u1, u)
or ∆loc2(u1, u) and u? denote the associated mini-
mizer. Then:

• The function ∆ is convex and lower semi-
continuous.

• The function ∆ is differentiable with a 1-
Lipschitz continuous gradient.

• The gradient of ∆ is given by ∇∆(u) = u− u?.

The proposition 4 may be useful to design numer-
ical procedures when the metric ∆ is used within a
variational framework.

5.4 Invariance properties

To finish this theoretical study, let us mention a few
properties of the different SNRs introduced in this
paper. The notation S(u1, u0) stands for any of the
measures SNRglo, SNRloc1 or SNRloc2.

• The SNRs are invariant to linear and affine
transforms of gray levels with a coefficient a ≥ 0,
i.e.

S(au1 + b, u0) = S(u1, u0), ∀a ≥ 0. (38)

• They are invariant to global contrast changes, by
the inclusions of models in Theorem 3. For all
non decreasing functions φ : R→ R, we get:

S(φ(u1), u0) = S(u1, u0). (39)

Similarly, SNRloc1 and SNRloc2 are invariant to
local contrast changes on a tree by construction
and by Theorem 3, while SNRloc2 is invariant
to local contrast changes on a DAG by construc-
tion.

• The SNRs are not invariant to isometries in the
space domain (i.e. translations and rotations of
the image) due to discretization issues. However,
the continuous counterparts of the measures are
invariant.

• For all images u0 and u1, we have S(u1, 0) =∞
and S(0, u0) = −10 log10(|Ω|VarΩ(u0)/‖u0‖22).

• In general, the SNRs are not symmetric:

S(u1, u0) 6= S(u0, u1).

However, it is possible to make them symmetric
by computing max(S(u1, u0), S(u0, u1)).

5.5 Invariance to real illumination
changes

At this point the reader might object that transfor-
mations preserving the level-lines are far from ap-
proaching the complexity of real world illumination
changes. This is definitely a valid objection.

The first counter-example that comes to mind is
probably that of shadows: they create new level-lines
and shapes in the images. Hence they would be de-
tected as changes in our model, while they are simply
due to variations of illuminations. Even if shadows
are neglected, it is quite easy to see that the most re-
alistic models of image formation based on ray trac-
ing or involving the bidirectional reflectance distribu-
tion function (BRDF) would yield significantly more
complex phenomena. Even in the case of a Lamber-
tian model of reflectance, it was shown in [5] that
only 3D developable surfaces make the level-lines in-
variant to illumination change. Overall the proposed
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model only accounts for very simple models involv-
ing occlusions, transparencies and variations of color
and reflectance as basic bricks, with no care for the
differential geometry of the underlying 3D scene. We
refer the interested reader to [3] for a more exhaustive
treatment of this model.

To our belief, the simplicity of this model also
makes its strength: measuring the similarity of im-
ages can be achieved by solving convex problems
with a structure amenable to efficient numerical algo-
rithms. Using realistic models would most probably
lead to hard non-convex problems with no guaranteed
complexity.

5.6 Stability issues

The stability of the topographic maps to digitization
(blur and sampling) has been studied and proved in
[3].

The proposed method is however not stable to
noise on the reference image u1. Indeed, the noise
creates spurious level-lines which can be amplified by
the projection procedure. This effect is illustrated in
Fig. 6. In this experiment, we compare the two im-
ages in Fig. 6a and in Fig. 6e. The image in Fig.
6e corresponds to u1 and contains indiscernible level-
sets in the background indicated with a red arrow.
The projection procedure yields the image in Fig. 6d.
As can be seen there, a significant amplification of the
level sets took place, creating an unnatural mark on
the image.

Mitigating this effect might be performed by de-
noising the reference image u1. The simplest way to
do it is probably to quantize the image, which also
presents the interest of speeding-up the algorithms
by reducing the graphs sizes. A better option is to
use more advanced denoisers for the reference image
u1.

In our numerical experiments, we simply used im-
ages quantized on 255 levels.

6 Numerical results

6.1 Image comparison and change de-
tection

In order to assess the relevance of the proposed ap-
proach for image comparison and change detection,
we took pictures of two scenes - denoted F and G
- under different lighting conditions (window shut-
ter closed or open). We then evaluated u?glo, u

?
loc1

and u?loc2 as well as their differences with u0 for the
same scenes under different illuminations, or differ-
ent scenes under a similar illumination. The results
are displayed in Fig. 5 and 6. As can be seen in
these experiments, the SNR between the two pairs
of images is low (below 12dB), due to the change of
illumination and to the change of scene.

As expected from the inclusion of models re-
ported in Theorem 3, we have SNR ≤ SNRglo ≤
SNRloc1 ≤ SNRloc2. The three algorithms are capa-
ble of transforming the gray-levels of u1 so that they
match those of u0 quite well. An important difference
between the models is the area of the constant zones:
the image u?glo for instance has very large areas with
constant gray values while the areas decrease for u?loc1
and even more for u?loc2. This is once again an effect
reflecting the inclusion of models from Theorem 3.

It is quite instructive to look at the difference im-
ages, especially for the two different scenes from Fig.
6. What is seen there is that the algorithms tend to
outline the objects in the picture u0 which are not in
u1: from one scene to the next, the black doll, the di-
nosaur tail and the white’s doll head moved and this
is exactly what is outlined in the difference, especially
in the models u?loc2 and u?loc1. In Fig. 6i, 6k and 6j,
we also displayed the other possible difference, which
consists in projecting u1 onto a set of images defined
through u0. It is interesting to see that the algorithm
outlines the other changes: the objects in u1 which
are not in u0. This experiment shows the asymmetry
of the model enunciated in Section 5.4.

In the differences from Fig. 5, the scenes are iden-
tical and the residuals therefore outline the types
of illumination changes which are not captured by
the proposed models. It is quite clear that some of
the specularities and shadows are still visible. For
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instance, the background in the scence is the base
plate of a metallic rack, which is specular and slightly
curved (i.e. the perception of gray-values depends on
the position of the observer with respect to the light
source). This part of the image is partly detected as
a difference.

6.2 A large panel of illumination
changes

In this section, we evaluate the different signal-to-
noise ratio between all pairs of images in Fig. 7. The
results are displayed in Tables 2, 3, 4 and 5. As
can be seen in these tables, the SNR between images
corresponding to identical scenes is higher than that
of images corresponding to different scenes, for all
notions of SNRs, except the usual one which seems
less discriminative.

We can see the different measures of similarity as
clustering algorithms: they map pairs of scenes to R.
A good algorithm should be able to cluster identical
scenes to similar parts of the real line and different
scenes to another location. To make this observation
quantitative, we can compute the similarity measure
for each pair (u0, u1). In this section, we will use the
symmetric relative mean square error defined by:

RMSE(u1, u0)

:= max

(
‖u?(u1)− u0‖22

‖u0‖22
,
‖u?(u0)− u1‖22

‖u1‖22

)
,

where for i ∈ {0, 1}

u?(ui) = argmin
u∈U(ui)

1

2
‖u− u1−i‖22

and U(ui) is any of the sets described previously, de-
fined from an image ui. We expect the RMSE to
be close to 0 when u1 and u0 come from the same
scene and to be larger when they come from different
scenes. Using all the pairs, we can construct two dis-
crete probability distributions L1 and L2 correspond-
ing to the RMSE of identical scenes and of different
scenes respectively. After computing their means µ1

and µ2 and variance σ2
1 and σ2

2 , we can compare their
ability to cluster the pairs of identical and different

RMSE SSIM RMSEglo RMSEloc1 RMSEloc2

1.86 1.63 2.89 3.27 3.00

Table 1: z-scores of the different measures to discrim-
inate whether pairs of images come from similar or
different scenes under different illuminations.

scenes by computing the ratio

z =
|µ1 − µ2|√
σ2

1 + σ2
2

.

Assuming that the distributions are Gaussian, this
ratio can be interpreted as a z-score which measures
how well the two distributions are separated relative
to their standard deviation. The higher the ratio, the
better. For instance, a ratio of order 3 indicates that
a test can be built that will fail for less than 3 out
of 1000 pairs of images. With a ratio of 2, the test
will fail about 5 percent of the time. Table 1 shows
the different results. As can be seen from this table
and for the set of images used to construct the test,
the best algorithm is SNRloc1 followed by SNRloc2,
SNRglo, SNR and SSIM . Those results are very
preliminary, subject to statistical issues and more ex-
tensive tests should be pursued. Still, this prelimi-
nary comparison shows that the proposed measures
of similarity are quite promising.
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F1 F2 F3 F4 F5 G1 G2 G3 G4 G5

F1 Inf 12.70 10.88 10.84 16.81 9.97 9.90 9.91 8.61 8.69
F2 11.26 Inf 19.24 14.72 9.91 8.07 8.61 8.44 9.99 8.73
F3 9.69 19.49 Inf 12.44 8.81 7.23 7.85 7.72 9.35 7.72
F4 8.59 13.92 11.38 Inf 8.79 8.52 8.88 8.56 10.81 10.68
F5 16.96 11.50 10.16 11.19 Inf 10.56 10.46 10.52 8.86 8.82

G1 9.18 8.72 7.63 9.97 9.62 Inf 24.55 23.99 13.54 14.32
G2 9.05 9.20 8.19 10.28 9.46 24.49 Inf 32.08 15.35 14.36
G3 9.22 9.19 8.22 10.12 9.68 24.09 32.24 Inf 15.04 13.84
G4 6.80 9.62 8.73 11.24 6.90 12.52 14.39 13.92 Inf 14.20
G5 6.51 7.99 6.74 10.76 6.50 12.94 13.04 12.36 13.84 Inf

Table 2: Standard SNRs between all pairs.

F1 F2 F3 F4 F5 G1 G2 G3 G4 G5

F1 Inf 18.11 14.60 16.05 17.24 11.65 11.21 11.14 10.26 12.47
F2 18.88 Inf 23.91 18.47 15.52 11.51 11.32 11.26 11.00 12.79
F3 17.05 25.54 Inf 18.45 14.74 11.56 11.40 11.33 11.12 12.87
F4 14.94 17.38 16.83 Inf 18.04 11.98 11.81 11.75 11.60 13.17
F5 17.14 15.01 13.03 18.82 Inf 12.24 11.75 11.69 10.64 12.79

G1 10.54 9.49 8.57 11.44 11.21 Inf 29.56 29.20 18.08 20.20
G2 10.58 9.68 8.83 11.59 11.24 29.34 Inf 36.34 19.61 21.07
G3 10.58 9.68 8.82 11.60 11.24 28.81 36.28 Inf 19.76 21.12
G4 10.41 10.34 9.71 12.46 10.97 19.51 21.59 21.63 Inf 21.49
G5 10.06 9.48 8.69 11.42 10.58 18.28 19.30 19.30 19.03 Inf

Table 3: SNRglo between all pairs

F1 F2 F3 F4 F5 G1 G2 G3 G4 G5

F1 Inf 20.72 17.27 18.39 19.36 13.56 13.19 13.13 12.38 14.19
F2 22.00 Inf 26.06 20.38 17.45 13.16 12.99 12.95 12.85 14.33
F3 19.94 27.93 Inf 20.09 16.62 13.07 12.94 12.89 12.82 14.32
F4 17.37 19.85 19.22 Inf 21.11 13.78 13.58 13.54 13.49 14.90
F5 19.83 17.99 15.99 21.49 Inf 14.29 13.83 13.77 12.86 14.59

G1 12.80 11.86 10.90 13.89 13.53 Inf 31.99 31.04 20.30 22.20
G2 12.79 12.01 11.14 13.92 13.53 32.32 Inf 37.78 21.39 23.33
G3 12.75 12.07 11.24 14.01 13.49 31.17 37.65 Inf 21.90 23.45
G4 12.03 11.92 11.19 14.15 12.68 22.42 24.39 24.61 Inf 25.23
G5 11.80 11.37 10.54 13.47 12.37 20.52 21.69 21.73 21.84 Inf

Table 4: SNRloc1 between all pairs
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(a) Reference u0 (b) Global contrast u?
glo

SNRglo(u0, u1)=18.9dB
(c) Local contrast u?

loc1

SNRloc1(u0, u1)=22.0dB
(d) Local contrast u?

loc2

SNRloc2(u0, u1)=27.3dB

(e) Illumination change u1

SNR(u0, u1)=11.4dB
(f) Difference u0 − u?

glo (g) Difference u0 − u?
loc1 (h) Difference u0 − u?

loc2

Figure 5: Comparing the different algorithms for identical scenes under different illuminations.

A Proofs of convergence of the
first order algorithm

We first prove Proposition 1.

Proof. We only sketch the proof. The idea is to use
Fenchel-Rockafellar duality for convex optimization:

min
Aα≥0

1

2
〈W (α− β), α− β〉

= min
α∈Rm

sup
λ≤0

1

2
〈W (α− β), α− β〉+ 〈Aα, λ〉

= sup
λ≤0

min
α∈Rm

1

2
〈W (α− β), α− β〉+ 〈Aα, λ〉.

The primal-dual relationship α(λ) is obtained by
finding the minimizer of the inner-problem in the last
equation. The dual problem is found by replacing α
by α(λ) in the inner-problem.

The function D is obviously differentiable with
∇D(λ) = −AW−1ATλ + Aβ. Therefore, ∀(λ1, λ2),
we get:

‖∇D(λ1)−∇D(λ2)‖2 = ‖AW−1AT (λ1 − λ2)‖2
≤ λmax(AW−1AT )‖λ1 − λ2‖2.

The inequality (30) is a direct consequence of a
little known result about the Fenchel-Rockafellar dual
of problems involving a strongly convex function. We
refer the reader to Lemma D.1 in [44] for more details,
or to [7] for a slightly improved bound in the case of
`2 metrics.

Now let us prove Proposition 2.

Proof. Notice that λmax(AW−1AT ) =
σ2

max(AW−1/2), where σmax stands for the largest
singular value. Moreover

‖AW−1/2α‖22 =

m∑
k=1

(
αi(k)
√
wi(k)

−
αj(k)
√
wj(k)

)2

≤
m∑
k=1

2

(
α2
i(k)

wi(k)
+
α2
j(k)

wj(k)

)

= 4

m∑
k=1

α2
i(k)

wi(k)

= 4

p∑
i=1

ni
α2
i

wi
,

where ni denotes the number of edges starting from
vertex i (the outdegree). To conclude, notice that
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(a) Reference u0 (b) Global contrast u?
glo

SNRglo(u0, u1)=10.6dB
(c) Local contrast u?

loc1

SNRloc1(u0, u1)=12.8dB
(d) Local contrast u?

loc2

SNRloc2(u0, u1)=16.2dB

(e) Scene change u1

SNR(u0, u1)=9.3dB
(f) Difference u0 − u?

glo (g) Difference u0 − u?
loc1 (h) Difference u0 − u?

loc2

(i) Other global difference (j) Other local 1 difference (k) Other local 2 difference

Figure 6: Comparing the different algorithms for different scenes under a similar illumination.

(a) F1 (b) F2 (c) F3 (d) F4 (e) F5

(f) G1 (g) G2 (h) G3 (i) G4 (j) G5

Figure 7: Different images used for comparison
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F1 F2 F3 F4 F5 G1 G2 G3 G4 G5

F1 Inf 26.03 21.69 23.50 24.64 17.06 16.62 16.53 15.67 17.51
F2 27.67 Inf 38.62 26.15 22.82 17.15 17.08 17.05 17.01 18.11
F3 27.07 43.07 Inf 25.77 22.27 17.02 16.94 16.90 16.83 18.04
F4 22.80 25.91 26.25 Inf 27.45 18.11 17.99 18.00 17.73 18.84
F5 25.06 23.24 20.64 26.08 Inf 17.65 17.15 17.07 16.08 17.96

G1 16.49 15.02 13.71 17.04 16.95 Inf 41.90 39.20 24.91 29.21
G2 16.83 15.79 14.57 17.46 17.42 41.11 Inf 44.36 24.90 30.40
G3 16.47 15.75 14.65 17.52 16.99 38.70 47.12 Inf 26.51 31.18
G4 15.44 15.41 14.68 17.63 15.92 28.62 32.78 33.05 Inf 33.71
G5 15.16 14.49 13.36 16.71 15.55 27.52 30.72 30.77 28.68 Inf

Table 5: SNRloc2 between all pairs

each pixel in region ∆j has at most cmax neighbors.
Therefore ni ≤ wicmax and we finally get:

‖AW−1/2α‖22 ≤ 4cmax

p∑
i=1

α2
i = 4cmax‖α‖22. (40)

Finally, we prove Proposition 3 below.

Proof. Standard convergence results [37] state that:

D(λ(k))−D(λ?) ≤ 4cmax‖λ(0) − λ∗‖22
k2

.

Combining this result with inequality (30) directly
yields (31).

To obtain the bound (32), first remark that each
iteration of Algorithm 1 requires two matrix-vector
products with A and AT of complexity O(m). The
final result is then a direct consequence of the bound
(31) and of the Proposition 2.

B Proofs of the complexity re-
sults

In this paragraph, we analyze the theoretical effi-
ciency of Algorithm 1. We consider the special case
W = Id for the ease of exposition. In practice, con-
trolling the absolute error ‖α(k) − α?‖2 is probably

less relevant than the relative error ‖α
(k)−α?‖2

‖α(0)−α?‖2
. This

motivates setting ε = η‖α(0)−α?‖2 in equation (32),
where η ∈ [0, 1) is a parameter describing the rela-
tive precision of the solution. Setting λ(0) = 0 and
noticing that:

‖α(0) − α?‖2 = ‖β − α?‖2
= ‖ATλ?‖2,

the complexity in terms of η becomes:

O

(
m

η

‖λ?‖2
‖ATλ?‖2

)
. (41)

Example of a hard problem An example of a
hard graph (a simple line graph) is provided in Fig-
ure 8. For this graph, the Algorithm 1 can be inter-
preted as a diffusion process, which is known to be
extremely slow. In particular, Nesterov shows that
diffusions are the worst case problems for the first
order methods in [37, p.59].

Proposition 5. Consider a simple line graph as de-
picted in Figure 8, with p even and W = Id. Set

βi =

{
1 if i ≤ p/2,
−1 otherwise.

(42)

Then the primal-dual solution (α?, λ?) of the isotonic
regression problem (28) is given by α? = 0 and

λ?k =

{
−k if 1 ≤ k ≤ p/2,
−n+ k if p/2 + 1 ≤ k ≤ p. (43)
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This implies that

‖λ?‖2
‖ATλ?‖2

∼ m. (44)

Proof. For this simple graph, m = p − 1. To check
that (43) is a solution, it suffices to verify the Karush-
Kuhn-Tucker conditions:

ATλ? = W (β − α?),
Aα? ≥ 0,

λ? ≤ 0,

λ?i = 0 if (Aα?)i > 0.

This is done by direct inspection, using the fact that
for this graph:

(ATλ)i =

 −λ1 if i = 1
−λi + λi−1 if 2 ≤ i ≤ p− 1
λp−1 if i = p.

(45)

The relationship (44) is due to the fact that the sum
of squares

∑m
k=1 k

2 = m(m + 1)(2m + 1)/6 ∼ m3 so
that ‖λ?‖22 ∼ m3 and ‖ATλ?‖22 = ‖β‖22 = m.

1 2 3 n-2 n-1 n

Figure 8: Worst case graph

Example of a nice problem In order to reha-
bilitate our approach, let us show that the ratio
‖λ?‖2
‖ATλ?‖2 can be bounded independently of m for

“nice” graphs.

Proposition 6. For any λ ≤ 0 and for the graph
depicted in Figure 10, we have:

1

2
≤ ‖λ?‖2
‖ATλ?‖2

≤ 1√
2
. (46)

Proof. For this graph, we get:

(ATλ)i =



−λ1

λ1 + λ2

−λ2 − λ3

...
λn−2 + λn−1

−λn−1


. (47)

0 20 40 60 80 100
−1

−0.5

0

0.5

1

0 20 40 60 80 100

−40

−20

0

Figure 9: First 20000 iterations of the primal-dual
pair (α(k), λ(k)). Top: β is displayed in red while α(k)

varies from green to blue with iterations. Bottom:
λ(k) varies from green to blue with iterations. A new
curve is displayed every 1000 iterations. As can be
seen, the convergence is very slow.

Therefore:

‖ATλ‖22 = λ2
1 + λ2

n−1 +

n−2∑
k=1

(λk + λk+1)2

= 2

n−1∑
k=1

λ2
k + 2

n−2∑
k=1

λkλk+1,

and
2‖λ‖22 ≤ ‖ATλ‖22 ≤ 4‖λ‖22. (48)

1 2 3 n-2 n-1 n

Figure 10: A nice graph

C Proof of local mean preser-
vation

We prove Theorem 2 below.
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Proof. The Karush-Kuhn-Tucker optimality condi-
tions read:

wi(α
?
i − βi) + (ATλ)i = 0 ∀i (49)

Aα ≥ 0 (50)

λ ≤ 0 (51)

λi,j(Aα
?)i,j = 0 ∀(i, j) ∈ E, (52)

with (ATλ)i =
∑
j,(i,j)∈E λi,j−

∑
j,(j,i)∈E λi,j . Hence

we get:∑
i∈Bk

(ATλ)i =
∑
i∈Bk

∑
j,(i,j)∈E

λi,j −
∑

j,(j,i)∈E

λi,j = 0.

To obtain the last equality, observe that the Lagrange
multipliers λi,j can be separated into those joining Bk
from the exterior and those linking two edges within
Bk. The first ones vanish thanks to (52) and to the
assumption that (Aα?)i,j 6= 0. The other ones cancel
since the neighborhood is symmetric. To conclude
the proof, it suffices to sum the equation (49) over
Bk.

D Proof of the models inclu-
sion

To prove Theorem 3, we first need the following
preparatory lemma.

Lemma 2 (Directed paths in the tree of shapes ).
Let u1 denote an image and (V,E) denote the graph
associated to its tree of shapes (ωi)i∈I . Let x and y

be adjacent points x
N4∼ y and ωi (resp. ωj) denote

the smallest shape containing x (resp. y).
Then there exists a path (i0 = i, i1, . . . , il−1, il =

j) in E linking ωi to ωj. In addition sign(sik) =
sign(u1(y)− u1(x)) for 1 ≤ k ≤ l.

Proof. We have x ∈ ∂ωi since ωi is the smallest con-
taining x. Otherwise, there would exist a descendant
(which would be smaller by definition of the tree)
that contains x. Similarly, y ∈ ∂ωj .

Second, we have ωi ⊂ ωj or ωj ⊂ ωi, but ωi ∩
ωj = ∅ is not possible. If it were the case, then ωi
and ωj would be shapes on different branches of the

tree. This is impossible since elements on different
branches are disconnected.

Note that u1(x) 6= u1(y), otherwise they would
be in the same shape. In what follows, we assume
that ωi ⊂ ωj and that u1(y) > u1(x). The 3
other cases can be treated similarly. We let (i0 =
i, i1, . . . , il−1, il = j) denote the path in E linking
ωi to ωj . We claim that along this path (sik)1≤k≤l
is constant and equal to 1. There is necessarily one
sign sik = 1, otherwise this would contradict the hy-
pothesis u1(y) > u1(x), so that the result holds when
l = 1. When l > 1, let us assume that there exists
one sign equal to −1. Then, there exists two consec-
utive indexes, say ik0 and ik0+1, with 1 ≤ k0 ≤ l such
that sik0

= −1 and sik0+1
= 1 (or the reverse). This

implies that ωik0
is a shape from the min-tree and

that ωik0+1
is a shape from the max-tree (see [22] or

the introduction of [30]). Therefore, ωik0+1
is a cavity

of ωik0
, so that ωj is not adjacent to ωi, contradicting

x
N4∼ y.

We are now ready to prove Theorem 3.

Proof. We first prove the inclusion Uglo ⊆ Uloc1. As-
sume that u ∈ Uglo. Then for all (x, y) ∈ Ω2,
(u(x) − u(y)) · (u1(x) − u1(y)) ≥ 0. Therefore, the
constraint Aα ≥ 0 is verified since it describes dif-
ferences of gray values in adjacent level-lines. In ad-
dition u1(x) = u1(y) ⇒ u(x) = u(y). Hence, the
constant regions of u1 are preserved.

We now prove the inclusion Uloc1 ⊆ Uloc2. The

property [x
N4∼ y and u1(x) = u1(y)] ⇒ [u(x) = u(y)]

is obvious since it implies that x and y belong to the
level line ∂ωi. Let u ∈ Uloc1 = {Rα,Aα ≥ 0} =

{Lγ, γ ≥ 0}. By Lemma 2, we deduce that x
N4∼ y

implies that (u(x) − u(y))(u1(x) − u1(y)) ≥ 0. For
instance assume that u1(y) > u1(x). Then u(y) =
u(x)+

∑
1≤k≤l γik with γik ≥ 0, so that u(y)−u(x) ≥

0.

To finish, note that if u1 is a very simple image such
as the one depicted in Fig. 11, Uglo = Uloc1 = Uloc2,
explaining why the inclusion of sets is not strict in
general.
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0

1

2

Figure 11: An example of image u1 where the three
models are equivalent.
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