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Abstract. We establish a general principle which states that regularizing an inverse problem
with a convex function yields solutions that are convex combinations of a small number of atoms.
These atoms are identified with the extreme points and elements of the extreme rays of the regularizer
level sets. An extension to a broader class of quasi-convex regularizers is also discussed. As a
side result, we characterize the minimizers of the total gradient variation, which was previously an
unresolved problem.
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1. Introduction. Let E denote a real vector space. Let Φ : E → Rm be a linear
mapping called a sensing operator and u ∈ E denote a signal. The main results in this
paper describe the structural properties of certain solutions of the following problem:

(1.1) inf
u∈E

f(Φu) +R(u),

where R : E → R∪{+∞} is a convex function called a regularizer and f is an arbitrary
convex or nonconvex function called the data fitting term. In many applications,
one looks for “sparse solutions” that are linear sums of a few atoms. This article
investigates the theoretical legitimacy of this usage.

Representer theorems and Tikhonov regularization. The name “representer the-
orem” comes from the field of machine learning [43]. To provide a first concrete
example,1 assume that Φ ∈ Rm×n is a finite-dimensional measurement operator and
L ∈ Rp×n is a linear transform. Solving an inverse problem using Tikhonov regular-
ization amounts to finding the minimizers of

(1.2) min
u∈Rm

1

2
‖Φu− y‖22 +

1

2
‖Lu‖22.
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Provided that ker Φ ∩ kerL = {0}, it is possible to show that, whatever the data y,
solutions are always of the form

(1.3) u? =

m∑
i=1

αiψi + uK ,

where uK ∈ ker(L) and ψi = (ΦTΦ + LTL)−1(φi), where φTi ∈ Rn is the ith row
of Φ. This result characterizes structural properties of the minimizers without actually
needing to solve the problem. In addition, when E is an infinite-dimensional Hilbert
space, (1.3) sometimes allows us to compute exact solutions by simply solving a finite-
dimensional linear system. This is a critical observation that explains the practical
success of kernel methods and radial basis functions [49].

Representer theorems and convex regularization. The Tikhonov regularization
(1.2) is a powerful tool when the number m of observations is large and the oper-
ator Φ is not too ill-conditioned. However, recent results in the fields of compressed
sensing [17], matrix completion [11], and super-resolution [46, 10]—to name a few—
suggest that much better results may be obtained in general by using convex regular-
izers, with level sets containing singularities. Popular examples of regularizers in the
finite-dimensional setting include the indicator of the nonnegative orthant [18], the
`1-norm [17] or its composition with a linear operator [41], and the nuclear norm [11].
Those results were nicely unified in [13] and one of the critical arguments behind all
these techniques is a representer theorem of type (1.3). In most situations, however,
this argument is only implicit. The main objective of this paper is to generalize (1.3)
to arbitrary convex functions R. This paper covers all the aforementioned problems,
as well as new ones for problems formulated over the space of measures.

To the best of our knowledge, the name “representer theorem” is new to the field
of convex regularization, and its first mention is due to Unser, Fageot, and Ward [48].
Describing the solutions of (1.1) is, however, an old problem which has been studied
since at least the 1940s in the case of Radon measure recovery.

Total variation regularization of Radon measures. A typical example of the in-
verse problem in the space of measures is

(1.4) min
µ∈M(Ω)

|µ|(Ω) s.t. Φµ = y,

where Ω ⊆ RN , M(Ω) denotes the space of Radon measures, |µ|(Ω) is the total
variation of the measure µ (see section 4) and Φµ is a vector of generalized moments,
i.e., Φµ = (

∫
Ω
ϕi(x)dµ(x))1≤i≤m, where {ϕi}1≤i≤m is a family of continuous functions

(which “vanish at infinity” if Ω is not compact).
Problems of the form (1.4) have received considerable attention since the pio-

neering works of Beurling [6] and Krein [31], sometimes under the name L-moment
problem (see the monograph [32]). To the best of our knowledge, the first “representer
theorem” for problems of the form (1.1) is given for (1.4) by Zuhovickĭı [50] (see [51,
Theorem 3] for an English version). It essentially states that

(1.5) there exists a solution to (1.4) of the form

r∑
i=1

aiδxi with r ≤ m.
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A more precise result was given by Fisher and Jerome in [23]. When considering
the problem (1.4), and for a bounded domain Ω, the result reads as follows:

the extreme points of the solution set to (1.4) are of the form
r∑
i=1

aiδxi with r ≤ m.
(1.6)

Incidentally, the Fisher–Jerome theorem considers more general problems of the form

(1.7) min
u∈E
|Lu|(Ω) s.t. Lu ∈M(Ω) and Φu = y,

where E ⊆ D′(Ω) is a suitably defined Banach space of distributions, L : D′(Ω) →
D′(Ω) maps E ontoM(Ω), and Φ : E → Rm is a continuous linear operator. We refer
the reader to section 4 for precise assumptions. Let us mention that the initial results
by Fisher and Jerome were extended to a significantly more general setting in [48].

It is important to note that the Fisher–Jerome theorem [23] provides a much finer
description of the solution set than Zuhovickĭı’s result [50]. Indeed, the well-known
Krein–Milman theorem states that if E is endowed with the topology of a locally
convex Hausdorff vector space and C ⊂ E is compact convex, then C is the closed
convex hull of its extreme points,

(1.8) cl conv(ext(C)) = C.

In other words, the solutions described by the Fisher–Jerome theorem are sufficient
to recover the whole set of solutions. Let us mention that the Krein–Milman theorem
was extended by Klee [30] to unbounded sets: if C is locally compact, closed, convex,
and contains no line, then

(1.9) cl conv(ext(C) ∪ rext(C)) = C,

where rext(C) denotes the union of the extreme rays of C (see section 2).
“Representer theorems” for convex sets. As the Dirac masses are the extreme

points of the total variation unit ball, each of the abovementioned “representer the-
orems” for inverse problems actually reflects some phenomenon in the geometry of
convex sets. In that regard, the celebrated Minkowski–Carathéodory theorem [28,
Theorem III.2.3.4] is fundamental: any point of a compact convex set in an m-
dimensional space is a convex combination of (at most) m + 1 of its extreme points.
In [29, Theorem (3)], Klee removed the boundedness assumption and obtained the
following extension: any point of a closed convex set in an m-dimensional space is a
convex combination of (at most) m+ 1 extreme points, or m points, each an extreme
point or a point in an extreme ray.

One aim of the present paper is to point out the connection between the Fisher–
Jerome theorem and a lesser known theorem by Dubins [20] (see also [8, Exercise
II.7.3.f]): the extreme points of the intersection of C with an affine space of codimen-
sion m are a convex combination of (at most) m+ 1 extreme points of C,2 provided
C is linearly bounded and linearly closed (see section 2). That theorem was extended
by Klee [29] to deal with the unbounded case.

2In the rest of the paper, we omit the “at most,” with the convention that some points may be
chosen to be identical.
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Although the connection with the Fisher–Jerome theorem is striking, Dubins’s
theorem actually provides one extreme point too many. In the case of (1.4), it would
yield two Dirac masses for one linear measurement. We provide in this paper a refined
analysis of the case of variational problems, which ensures at most m extreme points.

Contributions. The main results of this paper yield a description of some solutions
to (1.1) of the following form:

u? =

r∑
i=1

αiψi + uK ,

where r ≤ m, the atoms ψi are identified with some extreme points (or points in
extreme rays) of the regularizer level sets, and uK is an element of the so-called
constancy space of R, i.e., the set of directions along which R is invariant. The
results take the form (1.5) when f is an arbitrary function and the form (1.6) when
it is convex. We provide tight bounds on the number of atoms r, which depends on
the geometry of the level sets and on the link between the constancy space of R and
the measurement operator Φ.

Our general theorems then allow us to revisit many results in the literature (lin-
ear programming, semidefinite programming, nonnegative constraints, nuclear norm,
analysis priors) to give simple and accurate descriptions of the minimizers. Our anal-
ysis also allows us to characterize the solutions of a resisting problem: we provide a
representation theorem for the minimizers of the total gradient variation [41] as sums
of indicators of simple sets. This provides a simple explanation to the staircasing
effect when only a few measurements are used.

Let us mention that, shortly after this work was posted on arXiv, similar results
appeared, with somewhat different proofs, in a paper by Bredies and Carioni [9].

2. Notation and preliminaries. Throughout the paper, unless otherwise spec-
ified, E denotes a finite- or infinite-dimensional real vector space and C ⊆ E is a
convex set. Given two distinct points x and y in E, we let

]x, y[ = {tx+ (1− t)y : 0 < t < 1} and [x, y] = {tx+ (1− t)y : 0 ≤ t ≤ 1}

denote the open and closed segments joining x to y. We recall the following definitions,
and we refer the reader to [20, 30] for more details.

Lines, rays, and linearly closed sets. A line is an affine subspace of E with di-
mension 1. An open half line, i.e., a set of the form ρ = {p + tv : t > 0}, where
p, v ∈ E, v 6= 0, is called a ray (through p). We say that the set C is linearly closed
(respectively, linearly bounded) if the intersection of C and a line of E is closed (re-
spectively, bounded) for the natural topology of the line. If E is a topological vector
space and C is closed for the corresponding topology, then C is linearly closed.

If C is linearly closed and contains some ray ρ = p + R∗+v, it also contains the
endpoint p as well as the rays q + R+v for all q ∈ C. Therefore, if C contains a ray
(respectively, line), it recesses in the corresponding direction.

Recession cone and lineality space. The set of all v ∈ E such that C + R∗+v ⊆ C
is a convex cone called the recession cone of C, which we denote by rec(C). If C is
linearly closed, then so is rec(C), and rec(C) is the union of 0 and all the vectors v
that direct the rays of C. In particular, C contains a line if and only the vector space

(2.1) lin(C)
def.
= rec(C) ∩ (− rec(C))

is nontrivial. The vector space lin(C) is called the lineality space of C. It corresponds
to the largest vector space of invariant directions for C.
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If E is finite dimensional and C is closed, the recession cone coincides with the
asymptotic cone.

Extreme points, extremal rays, faces. An extreme point of C is a point p ∈ C
such that C \ {p} is convex. An extremal ray of C is a ray ρ ∈ C such that if x, y ∈ C
and ]x, y[ intersects ρ, then ]x, y[⊂ ρ. If C contains the endpoint p of ρ (e.g., if C is
linearly closed), this is equivalent to p being an extreme point of C and C \ ρ being
convex.

Following [20, 29], if p ∈ C, the smallest face of C that contains p is the union
of {p} and all the open segments in C that have p as an inner point. We denote it
by FC(p). The (co)dimension of FC(p) is defined as the (co)dimension of its affine
hull. The collection of all elementary faces, {FC(p)}p∈C , is a partition of C. Extreme
points correspond to the zero-dimensional faces of C, while extreme rays are (generally
a strict subcollection of the) one-dimensional faces.

Quotient by lines. As noted above, if C is linearly closed, it contains a line if and
only if the vector space lin(C) defined in (2.1) is nontrivial. In that case, letting W
denote some linear supplement to lin(C), we may write

(2.2) C = C̃ + lin(C) with C̃
def.
= C ∩W

and the corresponding decomposition is unique (i.e., any element of C can be de-
composed in a unique way as the sum of an element of C̃ and lin(C)). The convex
set C̃ (isomorphic to the projection of C onto the quotient space E/ lin(C)) is then
linearly closed, and the decomposition of C in elementary faces is exactly given by
the partition {FC̃(p) + lin(C)}p∈C̃ , where FC̃(p) is the smallest face of p in C̃.

One may check that C̃ contains no line, as its recession cone rec(C̃), the projection
of rec(C) onto W parallel to lin(C), is a salient convex cone.

3. Abstract representer theorems.

3.1. Main result. Our main result describes the facial structure of the solution
set to

(P) min
u∈E

R(u) s.t. Φu = y,

where y ∈ Rm, Φ : E → Rm is a linear operator, and m ≤ dimE, m < +∞. In the
following, let t? denote the optimal value of (P), S? denote its solution set, and C?

denote the corresponding level set of R,

C?
def.
= {u ∈ E : R(u) ≤ t?} .(3.1)

Theorem 3.1. Let R : E → R ∪ {+∞} be a convex function. Assume that
infE R < t? < +∞, that S? is nonempty, and that the convex set C? is linearly closed
and contains no line. Let p ∈ S? and let j be the dimension of the face FS?(p). Then
p belongs to a face of C? with dimension at most m+ j − 1.

In particular, if j < +∞, p can be written as a convex combination of
◦ m+ j extreme points of C?, or
◦ m+ j − 1 points of C?, each an extreme point of C? or in an extreme ray of
C?.

Moreover, rec(S?) = rec(C?) ∩ ker(Φ) and therefore lin(S?) = lin(C?) ∩ ker(Φ).

The proof of Theorem 3.1 is given in Appendix A.1. Before extending this theorem
to a wider setting, let us formulate some remarks.
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ρ1

ρ2

S?

e0

e1

e2

Φ−1({y})

C?

Fig. 1. An illustration of Theorem 3.1 for m = 2. The solution set S? = C?∩Φ−1({y}) is made
of an extreme point and an extreme ray. The extreme point is a convex combination of {e0, e1}.
Depending on their position, the points in the ray are a convex combination of {e0, e1, e2} or a pair
of points, one in ρ1 and the other in ρ2.

Remark 3.2 (extreme points and extreme rays of S?). In particular (j = 0), each
extreme point of S? is a convex combination of m extreme points of C? or a convex
combination of m − 1 points of C?, each an extreme point of C? or in an extreme
ray. Similarly (j = 1), each point on an extreme ray of S? is a convex combination
of m + 1 extreme points of C? or a convex combination of m points of C?, each an
extreme point of C? or in an extreme ray. Hence, provided the assumptions of Klee’s
theorem (see (1.9)) hold, Theorem 3.1 completely characterizes the solution set. An
illustration is provided in Figure 1.3

Remark 3.3 (the hypothesis infE R < t?). We have focused on the case t? >
infE R in the theorem, since the case t? = minR is easier. In that case, M = Φ−1({y})
can be in an arbitrary position (i.e., not necessarily tangent) w.r.t. C? = argminR,
and one can only use the general Dubins–Klee theorem [20, 29] to describe their
intersection. As a result, the conclusions of Theorem 3.1 are slightly weakened, p
belongs to a face of C? with dimension m + j, and one must add one more point
in the convex combination (e.g., for j = 0, each extreme point of S? is a convex
combination of m+ 1 extreme points of C?, or m points of C?, each an extreme point
of C? or in an extreme ray).

Remark 3.4 (gauge functions or seminorms). A common practice in inverse prob-
lems is to consider positively homogeneous regularizers R, such as (semi)norms or
gauge functions of convex sets. In that case the extreme points of C? correspond, up
to a rescaling, to the extreme points of {u ∈ E : R(u) ≤ 1}. In several cases of interest,
the extreme points of such convex sets are well understood; see section 4 for examples
in Banach spaces or, for instance, [13, section 2.2] for examples in finite-dimensional
spaces.

Remark 3.5 (extension to semistrictly quasi-convex functions). Theorem 3.1 can
be extended to the case where R is a semistrictly quasi-convex function. A function
R is said to be semistrictly quasi-convex [14] if it is quasi-convex and if

R(x) < R(y) =⇒ R(λx+ (1− λ)y) < R(y) ∀λ ∈ ]0, 1[ .

3Color figures are available in the online version of this paper.
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In other words, semistrictly quasi-convex functions are functions that, when restricted
to a line, are successively decreasing, constant, and increasing on their domain. In
comparison, strictly quasi-convex functions are successively decreasing and increasing,
while quasi-convex functions are successively nonincreasing and nondecreasing.

The set of semistrictly quasi-convex functions is a subset of quasi-convex func-
tions and it contains all convex and strictly quasi-convex functions. In the proof of
Theorem 3.1, only the semistrictly quasi-convex property is required to ensure that
(A.2) holds.

Remark 3.6 (topological properties). The assumption that C? is linearly closed
is fulfilled in most practical cases, since E is usually endowed with the topology of a
Banach (or locally convex) vector space and R is assumed to be lower semicontinuous
(so as to guarantee the existence of a solution to (P)). Note also that if R is lower
semicontinuous on any line (for the natural topology of the line), the set C? is linearly
closed.

3.2. The case of level sets containing lines. The reader might be intrigued
by the assumption of Theorem 3.1 that C? contains no line, since in several appli-
cations the regularizer R is invariant by the addition of, e.g., constant functions or
low-degree polynomials (see section 4). In that case, one is generally interested in the
nonconstant or nonpolynomial part, and it is natural to consider a quotient problem
for which the theorem applies. We describe below (see Corollary 3.7) how our result
extends to the case where C? contains lines.

E/K

C?

Φ−1({y})

S?

C̃?

q1

q2

K = lin(C?)

Fig. 2. Taking the quotient by K = lin(C?) yields a level set C̃? with no line. In this figure, to
simplify the notation, we have omitted the isomorphism ψK(i.e., in this figure C? should be replaced
with ψK(C?), and similarly for S? and Φ−1({y})).

If C? is linearly closed and contains some line, it is translation invariant in the
corresponding direction. The collection of all such directions is the lineality space of

C? (see section 2); we denote it by K
def.
= lin(C?) (typically, if R is the composition of

a linear operator and a norm, K is the kernel of that linear operator). Let πK : E →
E/K be the canonical projection map. We recall that there exists a linear isomorphism
ψK : E → (E/K)×K such that the first component of ψK(p) is πK(p) for all p ∈ E.
We may now describe the equivalence classes (modulo K) of the solutions.
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Corollary 3.7. Let R : E → [−∞,+∞] be a convex function. Assume that
infE R < t? < +∞, that S? is nonempty, and that the convex set C? is linearly

closed. Let K
def.
= lin(C?) be the lineality space of C? and d

def.
= dim Φ(K). Let

p ∈ S?, let πK(p) denote its equivalence class, and let j be the dimension of the face
FπK(S?)(πK(p)).

Then, πK(p) belongs to a face of πK(C?) with dimension at most m+ j − d− 1.
In particular, if j < +∞,

◦ πK(p) is a convex combination of m+ j − d extreme points of πK(C?), or
◦ πK(p) is a convex combination of m + j − d − 1 points of πK(C?), each an

extreme point of πK(C?) or in an extreme ray of πK(C?).
As a result, letting q̃1, . . . , q̃r denote those extreme points (or points in extreme

rays),

(3.2) p =

r∑
i=1

θiψ
−1
K (q̃i, 0) + uK , where θi ≥ 0,

r∑
i=1

θi = 1, and uK ∈ K.

The proof of Corollary 3.7 is given in Appendix A.2.
One can have an explicit representation with elements of E of a solution p ∈ S?.

Indeed, let W be some linear complement to K = lin(C?). One may decompose
C? = C̃? +K, where C̃? = C ∩W , and observe that πK(C?) and C̃? are isomorphic.
In this case, Corollary 3.7 implies that p can be written as the sum of one point in
lin(C?) and of a convex combination of

◦ m+ j − d extreme points of C̃?, or
◦ m+ j− 1− d points of C̃?, each an extreme point of C̃? or in an extreme ray

of C̃?.

3.3. Extensions to data fitting functions. In this section, we discuss the
extension of the above results to more general problems of the form

(Pf ) inf
u∈E

f(Φu) +R(u),

where f : Rm → R ∪ {+∞} is an arbitrary fidelity term.

3.3.1. Convex data fitting term. When f is a convex data fitting function f ,
we get the following result.

Corollary 3.8. Assume that f is convex and that the solution set S?f of (Pf )
is nonempty. Let p ∈ S?f such that C?

def.
= {u ∈ E, R(u) ≤ R(p)} is linearly closed,

K
def.
= linC? and let j be the dimension of the face FπK(S?

f )(πK(p)).

If infE R < R(p), then the conclusions of Corollary 3.7 (or Theorem 3.1 if K =
{0}) hold. If infE R = R(p), they hold with one more dimension (see Remark 3.3).

Let us recall that, in view of Remark 3.6, if E is a topological vector space and
R is lower semicontinuous, C? is closed regardless of the choice p.

Proof. Let y = Φp and consider the following problem:

min
u∈E

R(u) s.t. Φu = y.(P{y})

Let S?{y} denote its solution set. It is a convex subset of S?f , with p ∈ S?{y}. Addition-

ally, if j is the dimension of FπK(S?
f )(p) (respectively, FS?

f
(p) if C? contains no line),

then the face FπK(S?
{y})(p) (respectively, FS?

{y}
(p)) has dimension at most j, since

S?{y} ⊆ S
?
f . It suffices to apply Corollary 3.7 (respectively, Theorem 3.1) to obtain the

result.



1268 BOYER ET AL.

Remark 3.9 (the case of a strictly convex function). In the case when f is strictly
convex, it is known that ΦS?f is a singleton, which means that S?{y} = S?f .

Remark 3.10 (the case of quasi-convex functions). The result actually holds when-
ever the solution set S?f is convex. In particular, this property holds when f is quasi-
convex and R is convex.

3.3.2. Nonconvex function. In the general case, i.e., when f : Rm → R ∪
{+∞} is an arbitrary function, it is difficult to describe the structure of the solution
set. However, one may choose a solution p0 (as before, provided it exists) and observe
that it is also a solution to (P) for y

def.
= Φp0. Then, one may apply Corollary 3.7,

but the difficult part is that the dimensions j to consider are with respect to the
solution set S? of the convex problem (P). Nevertheless, if one is able to assert that
the solution set S? has at least one extreme point p, then Corollary 3.7 ensures that
p can be written in the form (3.2), where r ≤ m and the q̃i’s are extreme points (or
points in extreme rays) of C?. Since p must also be a solution to (Pf ), one obtains
that there exists a solution to (Pf ) of the form (3.2).

3.4. Ensuring the existence of extreme points. It is important to note
that, in Theorem 3.1, the existence of a face of S? with dimension j (or of an extreme
point for j = 0) is not guaranteed. The convex set S? might not even have any finite-
dimensional face! For instance, let E be the space of Lebesgue-integrable functions

on [0, 1]. If R(u) =
∫ 1

0
|u(x)|dx, Φ : E → R is defined by u 7→

∫ 1

0
u(x)dx, and y = 1,

then

(3.3) S? =

{
u ∈ E :

∫ 1

0

|u(x)|dx ≤ 1 and

∫ 1

0

u(x)dx = 1

}
.

It is possible to prove that such a set S? does not have any extreme point. As
a consequence S? does not have any finite-dimensional face (otherwise an extreme
point of the closure of a face would be an extreme point of S?).

However, Theorem 3.1 (in fact the Dubins–Klee theorem [20, 29]) asserts that
if there is a finite-dimensional face in S?, then C? indeed has extreme points (and
possibly extreme rays), and the convex combinations of such points generate the
abovementioned face.

As a result, it is crucial to be able to assert a priori the existence of some finite-
dimensional face for S?, and this is where topological arguments come into play. If E is
endowed with the topology of a locally convex (Hausdorff) vector space, Theorems 3.3
and 3.4 of [30], which generalize the celebrated Krein–Milman theorem, state that S?
has an extreme point provided

◦ S? is nonempty and convex,
◦ S? contains no line, and
◦ S? is closed and locally compact.

The last two conditions hold in particular if S? is compact. Moreover, as in Corol-
lary 3.7, the second condition can be ensured by considering a suitable quotient map,
provided it preserves the other topological properties (e.g., if lin(C) has a topological
complement).

Remark 3.11. Whereas local compactness is a very strong property for topologi-
cal vector spaces (implying their finite-dimensionality; see [8, Chapter 1, Theorem 3]),
it is not so difficult to ensure the local compactness of S? in practice. Indeed, very
often, even the existence of solutions is usually ensured using compactness arguments
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for a suitable weak or weak-∗ topology. The unbounded cases require more specific ar-
guments, but let us mention that there are examples of cones that are locally compact
without being contained in any finite-dimensional vector space. In subsection 4.2.2,
we discuss the example of the cone M+(Ω) of nonnegative measures over a compact
set for the weak-∗ topology. Another example of a locally compact convex cone is

C =

{
x ∈ RN such that xn ≥ 0 and

∑
n∈N

xnωn ≤
∑
n∈N

xn < +∞
}
⊆ `1(N),

for some nondecreasing positive sequence (ωn)n converging to +∞ (note that ω0 ≤ 1
for the cone to be nonempty). The cone C is locally compact for the strong topology.
Indeed, consider the intersection K of the cone C and the strong unit ball, namely
K = {x = (xn)n : xn ≥ 0,

∑
n ωnxn ≤

∑
n xn ≤ 1} and consider a sequence of

elements of K denoted (xk)k ⊂ K. Using a diagonal argument, each (xkn)k converges
to some x̄n ≥ 0. Furthermore, using that {n : ωn < 1} is finite and Fatou’s lemma, it
holds that ∑

n

x̄n ≤ lim inf
k

∑
n

xkn ≤ 1 and∑
n:ωn≥1

(ωn − 1)x̄n ≤ lim inf
k

∑
n:ωn≥1

(ωn − 1)xkn

≤ lim inf
k

∑
n:ωn<1

(1− ωn)xkn =
∑

n:ωn<1

(1− ωn)x̄n,

and we deduce that x̄ = (x̄n)n ∈ K. Furthermore, one has

‖xk − x̄‖1 =

M∑
n=0

|xkn − x̄n|+
∑
n>M

|xkn − x̄n|

and M will be chosen later. Finally,∑
n>M

|xkn − x̄n| ≤
∑
n>M

(xkn + x̄n) ≤ (1/ωM )
∑
n>M

ωn(xkn + x̄n) ≤ 2/ωM

since ωn/ωM ≥ 1 for n > M . Therefore, choosing M large enough ensures that the
second term,

∑
n>M |xkn− x̄n|, is less than some ε > 0. Choosing k large enough leads

to ‖xk − x̄‖1 ≤ 2ε.

4. Application to some popular regularizers. We now show that the ex-
treme points and extreme rays of numerous convex regularizers can be described
analytically, allowing us to describe important analytical properties of the solutions
of some popular problems. The list given below is far from being exhaustive, but it
gives a taste of the diversity of applications targeted by our main results.

4.1. Finite-dimensional examples. We first consider examples where one has
dimE < +∞. In that case, Φ is continuous, and since the considered regularizations R
are lower semicontinuous, we deduce that

◦ the level set C? is closed,
◦ the solution set S? = C?∩Φ−1({y}) is closed and locally compact (even com-

pact in most cases), and hence it admits extreme points provided it contains
no line.
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4.1.1. Nonnegativity constraints. In a large number of applications, the sig-
nals to recover are known to be nonnegative. In that case, one may be interested in
solving nonnegatively constrained problems of the form

(4.1) inf
u∈Rn

+

f(Φu− y).

An important instance of this class of problems is the nonnegative least squares [33],
which finds its motivation in a large number of applications. Applying the results of
section 3 to problem (4.1) yields the following result.

Proposition 4.1. If the solution set of (4.1) is nonempty, then it contains a
solution that is m-sparse. In addition if f is convex and the solution set is compact,
then its extreme points are m-sparse.

Choosing R as the characteristic function of Rn+, the result simply stems from
the fact that the extreme rays of the positive orthant are the half lines {αei, α ≥ 0},
where (ei)1≤i≤n denote the elements of the canonical basis. We have to consider m
atoms and not m− 1 since t? = inf R = 0; see Remark 3.3.

It may come as a surprise to some readers, since the usual way to promote sparsity
consists in using `1-norms. This type of result is one of the main ingredients of [18]
that shows that the `1-norm can sometimes be replaced by the indicator of the positive
orthant when sparse positive signals are looked after.

4.1.2. Linear programming. Let ψ ∈ Rn be a vector and Φ ∈ Rm×n be a
matrix and consider the following linear program in standard (or equational) form:

(4.2) inf
u∈Rn

+

Φu=y

〈ψ, u〉.

Applying Theorem 3.1 to problem (4.2), we get the following well-known result
(see, e.g., [34, Theorem 4.2.3]).

Proposition 4.2. Assume that the solution set of (4.2) is nonempty and com-
pact. Then, its extreme points are m-sparse, i.e., of the form

(4.3) u =

m∑
i=1

αiei, αi ≥ 0,

where ei denotes the ith element of the canonical basis.

In the linear programming literature, solutions of this kind are called basic solu-
tions. To prove the result, we can reformulate (4.2) as follows:

(4.4) inf
(u,t)∈Rn

+×R
Φu=y
〈ψ,u〉=t

t.

Letting R(u, t) = t+ ιRn
+

(u), we get inf R = −∞. Hence, if a solution exists, we only
need to analyze the extreme points and extreme rays of

C? = {(x, t) ∈ Rn × R, R(x, t) ≤ t?} = Rn+× ]−∞, t?],

where t? denotes the optimal value. The extreme rays of this set (a shifted nonnegative
orthant) are of the form {αei, α > 0} × {t?} or {0}× ]−∞, t?[ . In addition, C?

possesses only one extreme point (0, t?). Applying Theorem 3.1, we get the desired
result.
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4.1.3. `1 analysis priors. An important class of regularizers in the finite-
dimensional setting E = Rn contains the functions of the form R(u) = ‖Lu‖1, where
L is a linear operator from Rn to Rp. They are sometimes called analysis priors,
since the signal u is “analyzed” through the operator L. Remarkable practical and
theoretical results have been obtained using this prior in the fields of inverse problems
and compressed sensing, even though—to the best of the authors’ knowledge—many
of its properties are still quite obscure.

Since R is 1-homogeneous, it suffices to describe the extremality properties of the
unit ball C = {u ∈ Rn, ‖Lu‖1 ≤ 1} to use our theorems. The lineality space is simply
equal to lin(C) = ker(L). Let K = ker(L), K⊥ denote the orthogonal complement of
K in Rn, and L+ : Rn → K⊥ denote the pseudoinverse of L. We can decompose C as
C = K + CK⊥ with CK⊥ = C ∩K⊥. Our ability to characterize the extreme points
of CK⊥ depends on whether L is surjective or not. Indeed, we have

(4.5) ext(CK⊥) = L+(ext(ran(L) ∩Bp1)),

where Bp1 is the unit `1-ball defined as

Bp1 = {z ∈ Rp, ‖z‖1 ≤ 1}.

Property (4.5) simply stems from the fact that CK⊥ and D = ran(L) ∩ Bp1 are in
bijection through the operators L and L+.

The case of a surjective operator L. When L is surjective (hence p ≤ n), the
problem becomes rather elementary.

Proposition 4.3. If L is surjective, the extreme points u of CK⊥ are ext(CK⊥) =
(±L+ei)1≤i≤p, where ei denotes the ith element of the canonical basis. Consider
problem (Pf ) and assume that at least one solution exists. Then problem (Pf ) has
solutions of the form

(4.6) u? =
∑
i∈I

αiL
+ei + uK ,

where uK ∈ ker(L) and I ⊂ {1, . . . , p} is a set of cardinality |I| ≤ m−dim(Φ ker(L)).

The proof of Proposition 4.3 follows from Corollary 3.7 and subsection 3.3.2, with
j = 0 and observing that πK is the orthogonal projection on K⊥.

The case of an arbitrary operator L. When L is not surjective, the description
of the extreme points ext(D) becomes untractable in general. A rough upper bound
on the number of extreme points can be obtained as follows. We assume that L has
full rank n and that ran(L) is in general position. The extreme points of ran(L) ∩
Bp1 correspond to the intersections of some faces of the `1-ball with a subspace of
dimension n. In order for some k-face to intersect the subspace ran(L) on a singleton,
k should satisfy n + k − p = 0, i.e., k = p − n. The k-faces of the `1-ball contain
(k+1)-sparse elements. The number of (k+1)-sparse supports in dimension p is

(
p
k+1

)
.

For a fixed support, the number of sign patterns is upper-bounded by 2k+1. Hence,
the maximal number of extreme points satisfies |ext(ran(L)∩Bp1)| ≤ 2k+1

(
p
k+1

)
. This

upper bound is pessimistic since the subspace may not cross all extreme points, but
it provides an idea of the combinatorial explosions that may happen in general.

Notice that enumerating the number of faces of a polytope is usually a hard
problem. For instance, the Motzkin conjecture [36], which upper bounds the number
of k faces of a d polytope with z vertices, was formulated in 1957 and only solved by
McMullen [35] in 1970.
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4.1.4. Matrix examples. In several applications, one deals with optimization
problems in matrix spaces. The following regularizations/convex sets are commonly
used.

Semidefinite matrix constraint. Similarly to subsection 4.1.1, one may consider
in Rn×n the following constrained problem:

(4.7) inf
M�0

f(ΦM − y),

where M � 0 means that M must be symmetric positive semidefinite (p.s.d.). The
extreme rays of the positive semidefinite cone C? are the p.s.d. matrices of rank 1
(see, for instance, [15, section 2.9.2.7]). Hence, arguing as in subsection 4.1.1, we may
deduce that if there exists a solution to (4.7), there is also a solution that has rank
(at most) m.

However, that conclusion is not optimal, as in that case a theorem by Barvinok [5,
Theorem 2.2] ensures that there exists a solution M with

(4.8) rank(M) ≤ 1

2

(√
8m+ 1− 1

)
.

To understand the gap with Barvinok’s result, let us note that the p.s.d. cone has
a very special structure that makes the Minkowski–Carathéodory theorem (or its
extension by Klee) too pessimistic. By [15, section 2.9.2.3], given M � 0, the smallest
face of the p.s.d. cone that contains M (i.e., the set of p.s.d. matrices that have the
same kernel) has dimension

(4.9) d =
1

2
rank(M)(rank(M) + 1).

Equivalently, if the smallest face that contains M has dimension d, then rank(M) =
1
2 (
√

8d+ 1 − 1); hence, M is a convex combination of 1
2 (
√

8d+ 1− 1) points in ex-
treme rays, a value which is less than the value d predicted by Klee’s extension of
Carathéodory’s theorem.

As a result, we recover Barvinok’s result by noting that, as ensured by the first
claim of Theorem 3.1,4 any extreme point M of the solution set belongs to a face
of dimension m. Then, taking into account (4.9) improves upon the second claim of
Theorem 3.1, and we immediately obtain (4.8).

Semidefinite programming. Semidefinite programs are problems of the form

(4.10) inf
M�0

Φ(M)=y

〈A,M〉,

where A ∈ Rn×n is a matrix and 〈A,M〉 def.
= Tr(AM). Arguing as in Proposition 4.2,

if the solution set of (4.10) is nonempty, our main result allows us to state that its
extreme points are matrices of rank m. In view of the above discussion, it is possible
to refine this statement and show that (4.8) holds.

The nuclear norm. The nuclear norm of a matrix M ∈ Rp×n is often denoted by
‖M‖∗ and defined as the sum of the singular values of M . Lately, it has gained consid-
erable attention as a regularizer thanks to its applications in matrix completion [11]
or blind inverse problems [2]. The geometry of the unit ball {M ∈ Rp×n, ‖M‖∗ ≤ 1}

4Or, more precisely, by its variant when t? = inf R; see Remark 3.3.
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is well studied due to its central role in the field of semidefinite programming [38]. Its
extreme points are the rank-1 matrices M = uvT , with ‖u‖2 = ‖v‖2 = 1.

Combining Theorem 3.1 with this result explains why regularizing problems over
the space of matrices with the nuclear norm allows rank-m solutions to be recovered.

The rank-sparsity ball. The rank-sparsity ball is the set

{M ∈ Rm×n, ‖M‖∗ + ‖M‖1 ≤ 1},

where ‖M‖1 is the `1-norm of the entries of M . The corresponding regularization is
sometimes used in order to favor sparse and low-rank matrices. Drusvyatskiy, Vavasis,
and Wolkowicz [19] have described the extreme points of this unit ball and proved
that the extreme points M of the rank sparsity ball satisfy r(r+1)

2 − |I| ≤ 1, where |I|
denotes the number of nonzero entries in M and r denotes its rank. This result partly
explains why using the rank-sparsity gauge promotes sparse and low-rank solutions.
Let us stress that this effect might be better obtained by using different strategies
[39, 40].

Bistochastic matrices. A doubly stochastic matrix is a matrix with nonnegative
rows and columns summing to one. The set of such matrices is called the Birkhoff
polytope. The Birkhoff–von Neumann theorem states that its extreme points are
the permutation matrices. We refer the interested reader to [26] for the use of such
matrices in DNA sequencing.

4.2. Examples in infinite dimension. In this section, we provide results in
infinite-dimensional spaces, which mirror those described in finite dimensions.

4.2.1. Problems formulated in Hilbert or Banach sequence spaces. The
case of Hilbert spaces (or countable sequences) can be treated within our formalism,
and all the examples presented previously have their natural counterpart in this set-
ting. In the same vein, one can also treat Banach sequence spaces `p for 1 ≤ p ≤ ∞.
We do not reproduce the results here due to space limitations. Let us mention, how-
ever, that the two works [47, 1] treat this specific case with `1 regularizers.

4.2.2. Linear programming and the moment problem. Let Ω be a compact
metric space, letM(Ω) be the set of Radon measures on Ω, and letM+(Ω) ⊆M(Ω)
be the cone of nonnegative measures on Ω. Let ψ and (φi)1≤i≤m denote a collection of
continuous functions on Ω. Now, let Φ :M(Ω)→ Rm be defined by (Φµ)i = 〈φi, µ〉,
where 〈φi, µ〉

def.
=
∫

Ω
φidµ, and consider the following linear program in the standard

form:

(4.11) inf
µ∈M+(Ω)

Φµ=y

〈ψ, u〉.

Applying Theorem 3.1 to problem (4.11), we get Proposition 4.4. We do not
provide a proof here, since it mimics very closely the one given for linear programming
in finite dimension. The extreme rays of M+(Ω) can be described, arguing as in [3,
Theorem 15.9], as the rays directed by the Dirac masses.

Proposition 4.4. Assume that the solution set (4.11) is nonempty. Then, its
extreme points are m-sparse, i.e., of the form

(4.12) u =

m∑
i=1

αiδxi
, xi ∈ Ω, αi ≥ 0.
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To make sure that the above proposition is nontrivial, one may wish to ensure that
the solution set S? does indeed have extreme points, using arguments from subsec-
tion 3.4. It is straightforward that S? is convex and does not contain any line. Now,
let us endow M(Ω) with the weak-∗ topology (i.e., the coarsest topology for which
µ 7→

∫
Ω
ηdµ is continuous for every η ∈ C (Ω)). By lower semicontinuity, S? is closed.

Moreover, S? is locally compact since the closed convex cone M+ is itself locally
compact (taking any µ ∈M+(Ω), its neighborhood {ν ∈M+(Ω) : ν(Ω) ≤ µ(Ω) + 1}
is compact in the weak-∗ topology).

Proposition 4.4 is well known (see, e.g., [44]). Note that if we optimize the linear
form 〈ψ, u〉 over the set of probability measures instead of the set of nonnegative
measures, we get the so-called moment problem [45] for which we can obtain a similar
result.

4.2.3. The total variation ball. Let Ω denote an open subset of Rd and let
M(Ω) denote the set of Radon measures on Ω. The total variation ball BM =
{u ∈ M(Ω), ‖u‖M(Ω) ≤ 1} plays a critical role in problems such as super-resolution
[10, 46, 21]. It is compact for the weak-∗ topology and its extreme points are the
Dirac masses: ext(BM) = {±δx, x ∈ Ω}. Hence, total variation regularized problems
of the form

inf
u∈M

f(Φu) + ‖u‖M

yield m-sparse solutions (under an existence assumption). A few variations around
this central result were provided in [22].

Demixing of sines and spikes. In [22, Page 262], Fernandez-Granda presents a
regularization of the type

‖µ‖M + η‖v‖1,
where η > 0 is a tuning parameter, µ a complex measure, and v ∈ Cn a sparse vector.
Define E as the set of (µ, v), where µ is a complex Radon measure on a domain Ω
and v ∈ Cn. Consider the unit ball

B
def.
= {(µ, v) ∈ E : ‖µ‖M + η‖v‖1 ≤ 1}.

Its extreme points are the points
◦ (aδt, 0) for all t ∈ Ω (δt denotes the Dirac mass at point t) and all a ∈ C such

that |a| = 1,
◦ (0, aek) for all k = 1, . . . , n and all a ∈ C such that |a| = 1/η and ek denotes

the vector with 1 at entry k and 0 otherwise.
Group total variation: Point sources with a common support. In [22, Page 266],

Fernandez-Granda presents a regularization of the type

‖µ‖Mn := sup
F :Ω→Cn, ‖F (t)‖2≤1, t∈Ω

∫
Ω

〈F (t), ν(t)〉d|µ|(t),

where F is continuous and vanishing at infinity, and µ is a vectorial Radon measure
on Ω such that |µ|-a.e. µ = ν · |µ| with ν a measurable function from Ω onto Sn−1 the
n-sphere and with |µ| a positive finite measure on Ω. Consider the unit ball

B
def.
= {µ, ‖µ‖Mn ≤ 1}.

Its extreme points are aδt for all t ∈ Ω (δt denotes the Dirac mass at point t) and all
a ∈ Cn such that ‖a‖2 = 1.
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4.2.4. Analysis priors in Banach spaces. The analysis of extreme points
of analysis priors in an infinite-dimensional setting is more technical. Fisher and
Jerome [23] proposed an interesting result, which can be seen as an extension of (4.6).
This result was recently revisited in [48] and [25]. Below, we follow the presentation
in [25].

Let Ω denote an open set in Rd. Let D′(Ω) denote the set of distributions on Ω
and let L : D′(Ω) → D′(Ω) denote a linear operator with kernel K = ker(L). We
let E = {u ∈ D′(Ω), Lu ∈ M(Ω)} and let ‖ · ‖K denote a seminorm on E, which,
restricted to K, is a norm. We define a function space B(Ω) as

B(Ω) = {u ∈ E, ‖Lu‖M(Ω) + ‖u‖K < +∞},

and equip it with the norm ‖u‖B(Ω) = ‖Lu‖M(Ω) + ‖u‖K . We assume that L is
surjective, i.e., M(Ω) = L(B(Ω)), and that K has a topological complement (with
respect to B(Ω)), which we denote by K⊥. This setting encompasses all surjective
Fredholm operators, for instance. Under the stated assumptions, we can define a
pseudoinverse L+ of L relative to K⊥ [7].

The representer theorems in [23, 48, 25] can be obtained using Theorem 3.1 as
exemplified below.

Proposition 4.5. Let B = {u ∈ B(Ω), ‖Lu‖M(Ω) ≤ 1}. Then the extreme

points of the set CK⊥ = B ∩K⊥ are of the form ±L+δx for x ∈ Ω.
Let f : Rm → R ∪ {+∞} denote a convex function and define

S? = argmin
u∈B(Ω)

f(Φu) + ‖Lu‖M(Ω).

Assume that S? is nonempty and does not contain 0. Then the extreme points (if they
exist) of πK(S?) are of the form u =

∑m
i=1 αiL

+δxi .

Proof. The proof mimics the finite-dimensional case (4.6). First notice that B =
L−1(BM), where L−1({µ}) is the preimage of µ by L and BM is the unit total
variation ball. We have L−1(BM) = L+(BM) + K and we can identify CK⊥ with
L+(BM). Since L+ is bijective from M(Ω) to K⊥, the extreme points of CK⊥ are
the image by L+ of the Dirac masses.

The end of the proposition follows from Corollary 3.8 and from the fact that the
lineality space of {u ∈ B(Ω), ‖Lu‖M(Ω) ≤ 1} is equal to K.

Let us mention that, although the description of the extreme points follows di-
rectly from the results of section 3, proving the existence of minimizers and the exis-
tence of extreme points is a considerably more difficult problem that needs a careful
choice of topologies. Unser, Fageot, and Ward [48] provide a systematic way to con-
struct Banach spaces and pseudoinverse L+ for “spline admissible operators” L such
as the fractional Laplacian. In addition, they prove the existence of solutions by
adding weak-∗ continuity assumptions on the sensing operator Φ.

4.2.5. The total gradient variation. Since its introduction into the field of
image processing [41], the total gradient variation has proved to be an extremely
valuable regularizer in diverse fields of data science and engineering. It is defined, for
any locally integrable function u, as

TV (u)
def.
= sup

(∫
udiv(φ)dx, φ ∈ C1

c (Rd)d, sup
x∈Rd

‖φ(x)‖2 ≤ 1

)
.
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(a) (b)

Fig. 3. Illustration for the total gradient variation problem min{TV (u) : Φ(u) = y}. Here, Φ
is a linear mapping giving access to three measurements, y ∈ R3, by taking the mean of an image
u of size 200 × 200 on three different disks represented in (a). The TV problem is solved using a
primal-dual algorithm, also known as the Chambolle–Pock algorithm [12]. The recovered image is
displayed in (b): it can be represented as the sum of three indicator functions of simple sets.

If the above quantity is finite, we say that u has bounded variation and its gradient
Du is a Radon measure with

TV (u) =

∫
Rd

|Du| = ‖Du‖(M(Rd))d .

Working in E = Ld/(d−1)(Rd), one is led to consider the convex set

C = {u ∈ E, TV (u) ≤ 1},

referred to as the TV unit ball.
The generalized gradient operator is not a surjective operator. Hence, the analysis

of subsection 4.2.4 cannot help us to find the extreme points of the TV ball. Still,
those were described in the 1950s by Fleming [24] and refined analyses have been
proposed more recently by Ambrosio, Caselles, Masnou, and Morel in [4].

Theorem 4.6 (extreme points of the TV ball [24, 4]). The extreme points of
the unit TV unit ball are the indicators of simple sets normalized by their perimeter,
i.e., functions of the form u = ± 1F

TV (1F ) , where F is an indecomposable and saturated

subset of Rd.

Informally, the simple sets of Rd are the simply connected sets with no hole. We
refer the reader to [4] for more details. Using Theorem 4.6 in conjunction with our re-
sults tells us that functions minimizing the total variation subject to a finite number of
linear constraints can be expressed as the sum of a small number of indicators of sim-
ple sets; see, for instance, Figure 3, which is yet another theoretical result explaining
the common observation that total variation tends to produce staircasing [37].

5. Conclusion. In this paper we have developed representer theorems for convex
regularized inverse problems (1.1), based on fundamental properties of the geometry
of convex sets: the solution set can be entirely described using convex combinations
of a small number of extreme points and extreme rays of the regularizer level set.

Obviously, the conclusion of Theorem 3.1 is only nontrivial when C? has a “suf-
ficiently flat boundary,” in the sense that two or more faces of C? have dimension
larger than m. For instance, if C? is strictly convex (i.e., has only zero-dimensional
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faces, except its interior5), then the solution set S? is always reduced to a single ex-
treme point of C?! Nevertheless, several regularizers that are commonly used in the
literature (notably sparsity-promoting ones) have that flatness property, and Theo-
rem 3.1 then provides interesting information on the structure of the solution set, as
illustrated in section 4.

To conclude, the structure theorem presented in this paper highlights the impor-
tance of describing the extreme points and extreme rays of the regularizer: this yields
a fine description of the set of solutions of variational problems of the form (1.1). Our
theorem also suggests a principled way to design a regularizer. If a particular family
of solutions is expected, then one may construct a suitable regularizer by taking the
convex hull of this family. Finally, representer theorems have had a lot of success
in the fields of approximation theory and machine learning [42], in the frame of re-
producible kernel Hilbert spaces. One reason for this success is that they allow us
to design efficient numerical procedures that yield infinite-dimensional solutions by
solving finite-dimensional linear systems. Such numerical procedures have recently
been extended to the case of Banach spaces for some simple instances of the problems
described in this paper [22, 16, 25]. The price to pay when going from a Hilbert space
to a Banach space is that semi-infinite convex programs have to be solved instead of
simpler linear systems. We foresee that the results in this paper may help to design
new efficient numerical procedures, since they allow us to parameterize the solutions
using only extreme points and extreme rays.

Appendix A. Proofs of section 3.

A.1. Proof of Theorem 3.1. The set of solutions S? is precisely C?∩Φ−1({y}),
and the statement of the theorem amounts to describing its elementary faces. Since
Φ−1({y}) is an affine space with codimension at most m, the main theorem of [29]
almost provides the desired conclusion, but, for our particular case, it yields one
extreme point/ray too many. We now show how to obtain the correct number.

Let p be a point of S? such that FS?(p) has dimension j. Up to a translation, it
is not restrictive to assume that p = 0, so that S? = C?∩ker Φ. Let T be the union of
{0} and all the lines ` such that C? ∩ ` contains an open interval containing 0. Note
that T is a linear space, the linear hull of FC?(0).

We claim that codimT (T ∩ ker Φ) ≤ m− 1. By contradiction, assume that there
is a complement Z to T ∩ ker Φ in T with dimension m. Then Φ|Z has rank m and is
a bijection; hence, we may define

z
def.
= − θ

(1− θ)
(Φ|Z)−1(Φu0) ∈ Z ⊂ T,

where θ ∈ ]0, 1[ and u0 ∈ C? is such that inf R ≤ R(u0) < t?. For θ small enough,
z ∈ C?, and hence R(z) ≤ t?. Moreover,

(A.1) Φ((1− θ)z + θu0) = (1− θ)Φz + θΦu0 = 0,

so that (1− θ)z + θu0 lies in C? ∩ ker Φ. Since R(u0) < R(z) and R is convex,

(A.2) R((1− θ)z + θu0) < R(z) ≤ t?,

and we obtain a contradiction with the fact that t? is the minimal value of (P). As
a result, codimT (T ∩ ker Φ) ≤ m − 1. Observing that T ∩ ker Φ is the linear hull of

5In this example, to simplify the discussion, we assume that E has finite dimension.
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FS?(0), and hence j = dim(T ∩ ker Φ), we deduce that

(A.3) dimFC?(0)
def.
= dimT = codimT (T ∩ ker Φ) + dim(T ∩ ker Φ) ≤ m− 1 + j,

and the first claim of the theorem is proved.
Now, applying statement (3) of the Carathéodory–Klee theorem in [29, Page 425],

p is a convex combination of at most m+ j (respectively, m+ j − 1) extreme points
(respectively, extreme points or in an extreme ray) of FC?(0). The conclusion stems
from the fact that the extreme points (respectively, rays) of FC?(0) are extreme points
(respectively, rays) of C? (see the proof of the main theorem in [29]).

A.2. Proof of Corollary 3.7. Assume that the vector space

K
def.
= rec(C?) ∩ (− rec(C?))

is nontrivial (otherwise the conclusion follows from Theorem 3.1). We note that, for
any u ∈ C?, the convex function v 7→ R(u + v) is upper bounded by t? on K, and
hence is constant. As a result, possibly replacing R with R+χC? , it is not restrictive
to assume that R is invariant by translation along K.

Now, let πK , πΦ(K) be the canonical quotient maps and define R̃ and Φ̃ by the
commutative diagrams

E [−∞,∞]

E/K

R

πK

R̃

E Rm

E/K Rm/Φ(K)

Φ

πK πΦ(K)

Φ̃

Note that R̃ is a convex function and that Φ̃ is a linear map with rank m− d, where

d
def.
= dim(Φ(K)). It is then natural to consider the problem

(P̃) min
ũ∈E/K

R̃(ũ) s.t. Φ̃ũ = ỹ,

where ỹ
def.
= πΦ(K)(y). In other words, one still wishes to minimize R(u), but one is

satisfied if the constraint Φu = y merely holds up to an additional term Φv, where
v ∈ K. We observe that (P) and (P̃) have the same value t?, and the level set

(A.4) C̃?
def.
=
{
ũ ∈ E/K : R̃(ũ) ≤ t?

}
= πK(C?)

is convex linearly closed and contains no line. Let S̃? be the solution set to (P̃).
Theorem 3.1 now describes the elements of the j-dimensional faces of S̃? as convex
combinations of m− d+ j (respectively, m− d+ j − 1) extreme points (respectively,
extreme points or points in an extreme ray) of C̃?, which we denote by q̃1, q̃2, . . . , q̃r.

To conclude, we have obtained πK(p) =
∑
i θiq̃i for some θ ∈ Rr+ with

∑
i θi = 1.

Equivalently, since ψ−1
K (·, 0) provides one element in the corresponding class, this

means that p ∈ ψ−1
K (
∑
i θiq̃i, 0) +K. We get the claimed result by linearity of ψ−1

K .

Remark A.1. Incidentally, we note that, for Y = {y}, the face FS?
{y}

(p) is isomor-
phic (through ψK) to FπK(S?

{y})(πK(p))× (K ∩ ker Φ).
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