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Abstract

We study the solutions of in�nite dimensional inverse problems over

Banach spaces. The regularizer is de�ned as the total variation of a linear

mapping of the function to recover, while the data �tting term is a near ar-

bitrary function. The �rst contribution describes the solution's structure:

we show that under mild assumptions, there always exists an m-sparse

solution, where m is the number of linear measurements of the signal.

Our second contribution is about the computation of the solution. While

most existing works �rst discretize the problem, we show that exact solu-

tions of the in�nite dimensional problem can be obtained by solving one

or two consecutive �nite dimensional convex programs depending on the

measurement functions structures. We �nish by showing an application

on scattered data approximation. These results extend recent advances

in the understanding of total-variation regularized inverse problems.

1 Introduction

Let u ∈ B be a signal in some Banach space B and assume that it is probed
indirectly, with m corrupted linear measurements:

b = P (Au),

where A : B → Rm is a measurement operator de�ned by (Au)i = 〈ai, u〉, each
ai being an element in B∗, the dual of B. The mapping P : Rm → Rm denotes
a perturbation of the measurements, such as quantization, modulus, additional
Gaussian or Poisson noise, or any other common degradation operator. Inverse
problems consist in estimating u from the measurements b. Assuming that
dim(B) > m, it is clearly impossible to recover u knowing b only. Hence, various
regularization techniques have been proposed to stabilize the recovery.

Probably the most well known and used example is Tikhonov regularization
[21], which consists in minimizing quadratic cost functions. The regularizers are
particularily appreciated for their ease of analysis and implementation. Over the
last 20 years, sparsity promoting regularizers have proved increasingly useful,
especially when the signals to recover have some underlying sparsity structure.
Sparse regularization can be divided into two categories: the analysis formula-
tion and the synthesis formulation.

1



The analysis formulation consists in solving optimization problems of the
form

inf
u∈B

J(u) := fb (Au) + ‖Lu‖M, (1)

where fb : Rm → R ∪ {+∞} is an application dependent data �delity term and
L : B → E is a linear operator, mapping B to some space E such as Rn, the
space of sequences in `1 or the space of Radon measuresM. The total variation
norm ‖·‖M coincides with the `1-norm when E is discrete, but it is more general
since it also applies to measures.

The synthesis formulation on its side consists in minimizing

inf
µ∈E

fb (ADµ) + ‖µ‖M, (2)

where D : E → B is the linear synthesis operator, also called dictionary. The
estimate of u in that case reads û = Dµ̂, where µ̂ is a solution of (2).

Problems (1) and (2) triggered a massive interest from both theoretical and
practical perspectives. Among the most impressive theoretical results, one can
cite the �eld of compressed sensing [8] or super-resolution [7, 14], which certify
that under suitable assumptions, the minimizers of (1) or (2) coincide with the
true signal u.

Most of the studies in this �eld are con�ned to the case where both B and
E are �nite dimensional [8, 12, 16, 19]. In the last few years, some e�orts have
been provided to get a better understanding of (1) and (2) where B and E
are sequence spaces [1, 2, 32, 30]. Finally, a di�erent route, which will be fol-
lowed in this paper, is the case where E = M, the space of Radon measures
on a continuous domain. In that case, problems (1) and (2) are in�nite di-
mensional problems over measure spaces. One instance in that class is that of
total variation minimization (in the PDE sense [3], that is the total variation
of the distributional derivative), which became extremely popular in the �eld
of imaging since its introduction in [23]. There has been surge of interest in
understanding the �ne properties of the solutions in this setting, with many
signi�cant results [6, 7, 28, 14, 9, 33]. The aim of this paper is to continue these
e�orts by bringing new insights in a general setting.

Contributions and related works The main contributions are twofold: one
is about the structure of the solutions of (1), while the other is about how to
numerically solve this problem without discretization. The results directly apply
to problem (2) since, with regards to our concerns, the synthesis problem (2) is
a special case of the analysis problem (1). It indeed su�ces to take L = Id and
B =M for (2) to be an instance of (1). Notice however that in general, the two
approaches should be studied separately [16].

On the theoretical side, we provide a theorem characterizing the structure
of the solutions of problem (1) under certain assumptions on the operator L.
Roughly speaking, this theorem states that there always exist m-sparse solu-
tions. The precise meaning of this claim will be clari�ed in Theorem 1. This
result is strongly related and was actually motivated by [33]. In there, the au-
thors restrict their study to certain stationary operators L over spaces of func-
tions de�ned on Ω = Rd. Their main result states that in that case, generalized
splines with m knots actually describe the whole set of solutions. Similar results
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[18] were actually obtained much earlier on bounded domains and seem to have
remained widely ignored until they were revitalised by Unser-Fageot-Ward. In
the same line, such results were also derived in [25] in a discrete setting. The
value of our result lies in the fact that it holds for more general classes of oper-
ators L, spaces B, domains Ω and functions fb. In particular, we treat the case
of in�nite dimensional kernels and nonconvex data terms. Overall our theory
generalizes and uni�es existing results. Furthermore, we propose a new proof
technique based on the construction of a sequence of discrete measures.

On the numerical side, let us �rst emphasize that in an overwhelming num-
ber of works, problem (1) is solved by �rst discretizing the problem to make
it �nite dimensional and then approximate solutions are found with standard
procedures from convex programming. Theories such as Γ-convergence [5] then
sometimes allow showing that as the discretization parameter goes to 0, solu-
tions of the discretized problem converge (in a weak sense) to the solutions of
the continuous problem. In this paper, we show that under some assumptions
on the measurement functions (ai), the in�nite dimensional problem (1) can be
attacked directly without discretization: the resolution of one or two consecutive
�nite dimensional convex programs allows recovering exact solutions to problem
(1) or (2). The structure of the convex programs depend on the structure of
the measurement vectors. Once again, this result is strongly related to recent
advances. For instance, it is shown in [7, 28] that a speci�c instance of (2)
with L = Id can be solved exactly thanks to semi-de�nite relaxation or Prony
type methods when the signal domain is the torus Ω = T and the functions (ai)
are trigonometric polynomials. Similar results were obtained in [11] for more
general semi-algebraic domains using Lasserre hierarchies [22]. Once again, the
value of our paper lies in the fact that it holds for near arbitrary convex func-
tions fb and for a large class of operators L such as the derivative. To the best of
our knowledge, the only case considered until now was L = Id. In addition, our
results provide some insight on the standard minimization strategy: we show
that it corresponds to solving an in�nite dimensional problem exactly, where the
sampling functions are piecewise linear. We also show that the solution of the
standard discretization can be made sparser by merging Dirac masses located on
neighboring grid points. This provides a theoretical basis to a method proposed
in [27] coined as an �exceptional heuristic�.

2 Main results

2.1 Notation

In all of the paper, Ω ⊆ Rd denotes an open subset, either bounded or un-
bounded. The space of distributions on Ω is denoted D′(Ω). We let M(Ω)
denote the set of �nite Radon measures on Ω, i.e. the dual C0(Ω)∗ of C0(Ω), the
space of continuous functions on Ω vanishing at in�nity:

C0(Ω) =

{
f : Ω→ R, f continuous,

∀ε > 0,∃C ⊂ Ω compact ,∀x /∈ C, |f(x)| < ε

}
.

To lighten the notation, we will sometimes skip the dependency on Ω and write
e.g. D′ instead of D′(Ω).
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We will throughout the whole paper view (M(Ω), ‖ ·‖M) as a Banach space,
and not, as often is done, as a locally convex space equipped with the weak-∗-
topology. When we do this, C0(Ω) is a subset, and not the whole of, the dual
M∗ ofM.

Let J : B → R ∪ {+∞} denote a convex lower-semicontinuous function.
We let J∗ denote its Fenchel conjugate and ∂J(u) denote its subdi�erential at
u ∈ B. Let X ⊂ E be a subset of some vector space E . The indicator function
of X is de�ned for all e ∈ E by:

ιX(e) =

{
0 if e ∈ X
+∞ otherwise.

We refer the reader to [15] for more insight on convex analysis in vector spaces.

Remark 1. All the results in our paper hold when Ω is a separable, locally
compact topological space such as the torus T = R\N. The proofs require minor
technical amendments related to the way the space is discretized. We chose to
keep a simpler presentation in this paper.

2.2 Assumptions

Let us describe the setting in which we will prove the main result in some detail.
Let L : D′(Ω)→ D′(Ω) be a continuous linear operator de�ned on the space of
distributions D′(Ω). Consider the following linear subspace of D′(Ω)

B◦ = {u ∈ D′(Ω) |Lu ∈M(Ω)} .

Now, let ‖·‖K be a semi-norm on B◦, which restricted to kerL is a norm. We
de�ne a function space B as follows

B = {u ∈ D′(Ω) |Lu ∈M(Ω), ‖u‖K <∞} ,

and equip it with the norm ‖u‖ = ‖Lu‖M + ‖u‖K . We will assume that

Assumption 1 (Assumption on B). B is a Banach space.

We will make the following additional structural assumptions on the map L:

Assumption 2 (Assumptions on L).

• The kernel of L has a complementary subspace, i.e. a closed subspace V
such that kerL⊕ V = B.

• L is surjective, i.e., ranL =M.

An important special case of operators satisfying the assumption 2 are sur-
jective Fredholm operators, for which kerL is �nite dimensional, see e.g. [24,
Lemma 4.21].

The restriction L|V of L : V →M is a bijective operator, and therefore has
a continuous inverse (L|V )−1, by the continuous inverse theorem. With the help
of this inverse, we can de�ne a pseudoinverse L+ :M→ B through

L+ = jV (L|V )−1,

4



where jV denotes the injection V ↪→ B. Since both jV as well as (L|V )−1 are
continuous, L+ is continuous.

We will furthermore have to restrict the functionals ai used to probe the
signals slightly.

Assumption 3 (Assumption on ai).
The functionals ai belong to the dual B∗ of B and have the property that

(L+)∗ai ∈ C0(Ω). That is, there exist functions ρi ∈ C0(Ω) with

∀µ ∈M :
〈
(L+)∗ai, µ

〉
=

∫
Ω

ρi(x)dµ(x).

This assumption may seem a bit arti�cial, but we will see that it is crucial,
both in the more theoretical �rst part of the paper, as well as in the second
one dealing with the numerical resolution of the problem. Furthermore, it is
equivalent to an assumption in the main result of [33], as will be made explicit
in the sequel.

Until now, we have not touched upon the properties of the function fb. We
do this implicitly with the following condition:

Assumption 4 (Solvability Assumption). The problem (1) has at least one
solution.

This assumption is of course necessary in order to make questions about the
structure of the solutions of (1) to make sense at all. A myriad of problems
have this property, as the following simple proposition shows:

Proposition 1. Assume that fb is lower semi-continuous and coercive (i.e.
lim‖x‖2→∞ f(x) = ∞), and that fb ◦ A has a non-empty domain. Then, under
assumptions 1, 2 and 3, the problem (1) has a solution.

The proof, which relies on standard arguments, can be found in Section 4.4.
Let us here instead argue that the assumptions in Proposition 1 are quite light
and cover many common data �delity terms as exempli�ed below.

Equality constraints This case corresponds to

fb(x) = ι{b}(x) =

{
0 if x = b

+∞ otherwise.
(3)

This data �delity term is commonly used when the data is not corrupted.
A solution exists if b ∈ ran (A). The two super-resolution papers [7, 28]
use this assumption.

Quadratic The case fb(x) = λ
2 ‖C

−1(x − b)‖22, where λ > 0 is a data �t pa-
rameter, is commonly used when the data su�ers from additive Gaussian
noise with a covariance matrix C.

`1-norm When data su�ers from outliers, it is common to set fb(x) = λ‖x−b‖1,
with λ > 0.
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Box constraints When the data is quantized, a natural data �delity term is
a box constraint of the following type

fb(x) =

{
0 if ‖C(x− b)‖∞ ≤ 1

+∞ otherwise,

where C ∈ Rm×m is a diagonal matrix with positive entries.

Phase Retrieval Many non-convex functions fb ful�ll our assumptions. In
particular, any of the above �delity terms can be combined with the (point-
wise) absolute value to yield a feasible function fb, i.e. for instance

fb(x) = ι{b}(|x|) =

{
0 if |x| = b

+∞ otherwise.
.

Such functions appear in the phase retrieval problem, where one tries to
reconstruct a signal u from absolute values of type |Au|.

2.3 Structure of the solutions

We are now ready to state the �rst important result of this paper.

Theorem 1. Under assumptions 1, 2, 3 and 4, problem (1) has a solution of
the form

û = uK +

p∑
k=1

dkL
+δxk

,

with p ≤ m = m − dim(A(kerL)), uK ∈ kerL, d = (dk)1≤k≤p in Rp and
X = (xk)1≤k≤p in Ωp.

The proof of this theorem consists of three main steps. We provide the �rst
two below, since they are elementary and provide some insight on the theorem.
The last step appears in many works. We provide an original proof in the
appendix.

Proof.
Step 1: In this step, we transform the data �tting term fb into a linear equality
constraint. To see why this is possible, let u be a solution of the problem (1).
Then any solution of the problem

min
u∈B
‖Lu‖M subject to Au = Au =: y

will also be a solution û of (1), since it satis�es fb(Aû) = fb(Au) and ‖Lu‖M =
‖Lû‖M. Those two equalities are required, otherwise, u would not be a solution
since J(û) < J(u).
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Step 2: In this step, we show that it is possible to discard the operator L.
To see this, notice that every u ∈ B can be written as L+µ + uK with µ ∈ M
and uK ∈ kerL and due to the surjectivity of L, L(L+µ + uK) = LL+µ = µ.
Therefore, we have(

min
u∈B
‖Lu‖M subject to Au = y

)
=

(
min

uK∈ker (L),µ∈M
‖µ‖M subject to A(uK + L+µ) = y

)
Now, set X = Aker (L). Since X is a �nite-dimensional subspace of Rm, we

may decompose y = yX + yX⊥ , with yX ∈ X and yX⊥ ∈ X⊥, the orthogonal
complement of X in Rm. Notice that for every µ ∈M, there exists a uK ∈ kerL
with A(uK + L+µ) = y if and only if ΠX⊥AL

+µ = yX⊥ . Hence, the above
problems can be simpli�ed as follows

min ‖µ‖M subject to Hµ = yX⊥ , (4)

with H :M→ X⊥, H = ΠX⊥AL
+, with dimX⊥ = m.

Step 3: The last step consists in proving that the problem (4) has a solution of
the form

∑p
k=1 dkδxk

. This result has actually been proven a number of times.
The case of Ω being countable is treated in e.g. [32]. There are also proofs for
more 'continuous' domains available. We refer to [18] for instance, for an early
proof, based on the Krein-Milmann theorem.

In this paper, we will present a new proof, based on a discretization proce-
dure.

Remark 2. In [18, 33], the authors further show that the extremal points of the
solution set are of the form given in Theorem 1, if fb is the indicator function
of a closed convex set. Their argument is based on a proof by contradiction.
Following this approach, it is possible to prove the same result in our setting.
We choose not to carry out the details about this since we also wish to cover
nonconvex problems.

Before going further, let us show some consequences of this theorem.

2.3.1 Example 1: Super-resolution (L = Id and the space M)

Probably the easiest case consists in choosing an arbitrary open domain Ω ⊆ Rd,
to set B =M(Ω) and L = Id. In this case, all the assumptions on L are trivially
met. We have ran Id =M(Ω), ker Id = {0} and Id+ = Id. Therefore, Theorem
1 in this speci�c case guarantees the existence of a minimizer of (1) of the form

µ̂ =

p∑
k=1

dkδxk
,

with p ≤ m. The assumption 3 in this case simply means that the functionals
ai can be identi�ed with continuous operators vanishing at in�nity.
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Note that the synthesis formulation (2) can be seen as a subcase of this
setting. The structure of the minimizing measure in Theorem 1 implies that the
signal estimate û has the following form

û = Dµ̂ =

p∑
k=1

dkDδxk
.

The vectors (Dδx)x∈Ω can naturally be interpreted as the atoms of a dictio-
nary. Hence, Theorem 1 states that there will always exist at least one estimate
from the synthesis formulation which is sparsely representable in the dictionary
(Dδx)x∈Ω.

2.3.2 Example 2: Bounded variation functions (L = D and the space
BV (]0, 1[))

An important operator for applications is the univariate derivative D. We set
Ω =]0, 1[. The space BV (Ω) of bounded variation functions is de�ned by (see
[3]):

BV (Ω) = {u ∈ L1(Ω), Du is a Radon measure, ‖Du‖M < +∞}, (5)

where D is the distributional derivative. Using our notation, it amounts to
taking L = D and B = BV (Ω). For this space, we have kerL = span(1),
the vector space of constant functions on Ω. (Note that in fact, the norm
‖u‖BV = ‖u‖1 + ‖Du‖M is of the general form described in the introduction).

Lemma 1. For L = D we have ranL =M, and for all µ ∈M and all s ∈ [0, 1],

(L+µ)(s) = µ([0, s])−
∫ 1

0

µ([0, t]) dt. (6)

In addition, for a functional ξ ∈ BV (]0, 1[)∗ of the form

〈ξ, u〉 =

∫ 1

0

ξ(t)u(t) dt,

with ξ ∈ L1(Ω), we have (L+)∗ξ ∈ C0(Ω) and letting ξ̄ =
∫ 1

0
ξ(t) dt, we have

((L+)∗ξ)(s) =

∫ s

0

(ξ̄ − ξ(t)) dt. (7)

As can be seen, L+ is simply a primitive operator. The elementary functions
L+δx are Heavyside functions translated at a distance x from the origin. Hence,
Theorem 1 states that there always exist total variation minimizers in 1D that
can be written as staircase functions with at most m jumps. Note that the
Heavyside functions coincide with the general splines introduced in [33], but by
taking the boundaries into account correctly, there is no reason to restrict our
attention to bounded domains.
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2.3.3 Example 3: Space varying regularization

In the previous paragraph, we assumed that the operator L was stationary. This
simpli�es the analysis and allows using convolutions, but in some applications,
it can be useful to consider space variations. An example arises in the �eld of
signal restoration: assume that a signal contains smooth components at some
known locations in space and oscillatory components at other places. Then it
may be desirable to consider linear operators of the form pD, where p : Ω→ R
is large on the smooth parts and small elsewhere. This type of ideas is used in
image restoration for instance [26].

If p is Borel-measureable and there exists constants α, β > 0 so that α ≤ p ≤
β, pD : BV (]0, 1[)→M(Ω) is a well-de�ned operator obeying the assumptions
2. One can by an argument very similar to above check that L+δx is equal to
a Heavyside function with a jump at x of height p(x)−1. Hence, the smaller
the value of p(x), the smaller the cost of a unit jump at x, meaning that the
algorithm will tend to put discontinuities in regions where p is small.

2.3.4 Example 4: Spline-admissible operators and their native spaces

The authors of [33] consider a generic operator L de�ned on the space of tem-
pered distributions S ′(Rd), obeying the following conditions:

• L is shift-invariant,

• There exists a function ρL (a generalized spline) of polynomial growth,
say

esssupx∈Rd |ρL(x)| (1 + ‖x‖)−r < +∞, (8)

obeying LρL = δ0.

• The space of functions in the kernel of L obeying the growth estimate (8)
is �nite dimensional.

The authors call such operators spline-admissible. A typical example is the
distributional derivative D on Ω = R. For each such operator L, they de�ne
a space ML(Rd) as the set of functions f obeying the growth estimate (8)
while still having the property Lf ∈ M(Rd). The norm on ML is as in our
formulation, whereby ‖·‖K is de�ned through a dual basis of a (�nite) basis of
kerL.

They go on to prove thatML(Rd) is a Banach space, which has a separable
predual CL(Rd), and (in our notation) assume that the functionals ai ∈M∗L(Rd)
can be identi�ed with elements of CL(Rd).

It turns out that using this construction, the operator L and functionals (ai)
obey the assumptions 2 and 3, respectively.

Proposition 2.

• The operator L :ML(Rd)→M(Rd) is a surjective Fredholm operator.

• The functionals ai ∈M∗L(Rd) obey assumption 3. In fact, we even have

(L+)∗a ∈ C0(Rd) ⇐⇒ a ∈ CL(Rd).
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Hence, the results in [33] can be reinterpreted in the proposed setting.
As a concrete example, let us consider the case of L being the Laplacian

operator L = −∆ on Rd. It is well-known that the Green function for this
operator is given by

ρ∆(x) =

{
− 1

2π log(‖x‖) d = 2

− 1
(d−2)ωd

‖x‖2−d d ≥ 3,
(9)

where for d ∈ N, ωd denotes the surface area of the d-dimensional sphere.
The following proposition describes a large class of functionals a for which

the condition (L+)∗a ∈ C0(Rd) is satis�ed.

Proposition 3. Consider a functional of the form

a :ML → R, u 7→
∫
Rd

φa(x)u(x)dx,

where φa : Rd → R is a function. If there exists an ε > 0 so that the Fourier

transform φ̂a of φa obeys the following vanishing moment/smoothness condition:∣∣∣φ̂a(ξ)
∣∣∣ . min(|ξ| , |ξ|−1

)2−d+ε, (10)

a obeys the condition (L+)∗a ∈ C0(Rd).

Proof. Let us begin by assuming that φ̂a has compact support in Rd\ {0}. Then
φ̂a is a Schwarz function, so that Fourier duality relations from distribution
theory imply

〈(L+)∗a, µ〉 =
〈
a, L+µ

〉
=

∫
Rd

φa(x)(ρ∆ ∗ µ)(x)dx =

∫
Rd

φ̂a(ξ)ρ̂∆(ξ)µ̂(ξ)dξ

=

∫
Rd

(φ̂a(ξ)ρ̂∆)∨(x)dµ(x).

Hence, (L+)∗a can be identi�ed with the function (φ̂a(ξ)ρ̂∆)∨, which is a mem-

ber of C0(Rd) as soon as φ̂a(ξ)ρ̂∆ is integrable (this is the Riemann-Lebesgue

Lemma). We have ρ̂∆(ξ) ∼ |ξ|−2
, so that the latter is the case provided φa

satis�es (10). We obtain the same result using a density argument, when φ̂a
does not have compact support in Rd\ {0}.

Remark 3. In [33] the authors propose a systematic way to de�ne generalized
inverses of L, allowing to consider larger classes of measurement functionals.
These ideas were exploited in [31] to include the Dirac masses for L being the
second order derivative.

Remark 4. The proof of the last proposition shows that under conditions sim-
ilar to (10) on the measurement functionals, we can also include many other
elliptical di�erential operators into the framework.
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2.3.5 Example 5: Scattered data approximation

Assume that we sample an unknown, but smooth function u : Rd → R. Given
a set of locations zi ∈ Rd and a set of values yi = u(zi), possibly corrupted
by noise, it is well known in the �elds of approximation/sampling theory that
solving a problem of the form

inf
u∈Hd(Ω)

λ

2

m∑
i=1

(u(zi)− yi)2 +

∫
Ω

|Ddu(x)|2 dx, (11)

is a nice way to �nd a continuous approximation of u. The solution then has
the form

û(x) =

p∑
k=1

αiρ(‖x− zi‖) + uK , (12)

where the vector α ∈ Rm and the kernel element uK ∈ ker (Dd) can be found
by solving an (m + d + 1) × (m + d + 1) linear system. The function ρ is the
polyharmonic spline [35] de�ned by

ρ(t) =

{
td for odd d,

td log(|t|) for even d.
(13)

It is the Green's function of the operator L = (−∆)d, satisfying ρ(‖· − y‖) =
L+δy. The above approach is commonly introduced in the frame of reproducible
kernel Hilbert spaces. One of its important properties is that the knot points of
the polyharmonic splines are �xed and equal the sampling locations.

Intuitively, it should be possible to get an even better approximation if we let
the knot points vary. Hence, it is very tempting to solve the following problem:

inf
u∈ML(Rd)

λ

2

m∑
i=1

(u(xi)− yi)2 + ‖∆du‖M. (14)

By our previous theorems, we could expect that the solutions also have the
structure (12). Unfortunately, in order to apply Theorem 1 (or the Theorem
of [33]), we need to ensure that the measurement functionals ai = δzi obey
assumption 3, i.e. that (L+)∗δzi ∈ C0(Rd). Since L+ is self-adjoint, this would
mean that (L+)∗δzi = ρ(‖x− zi‖) ∈ C0(Rd). This is however not the case, since
the function ρ is growing at in�nity. Note that we in particular cannot hope
that a statement of the form of Proposition 3 could be used, since δxi is singular
and has no vanishing moments.

In the next section however, we will prove that if we consider a minimization
on a bounded domain Ω:

inf
u∈ML(Ω)

λ

2

m∑
i=1

(u(xi)− yi)2 + ‖∆du‖M, (15)

we are guaranteed to get solutions of the form

m∑
k=1

αiρ̃(x, xi) + uK ,
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where ρ̃(·, xi) is a solution to (−∆)ku = δxi
vanishing on the boundary. By

choosing Ω = BR(0), we can even calculate ρ̃(x, xi) explicitly (see [17, p.51]),
and easily argue that if R is large and x, xi are far away from the boundary,
ρ̃(x, xi) ≈ ρ(‖x− xi‖). Hence, assuming that the minimizing measure is concen-
trated near the sampling points, we can argue that the solution of the problem
(15) will at least be very well approximated by a function of the form (12).

Remark 5. We conjecture that the reformulation on bounded domains can be
avoided. Following the ideas proposed in [33], it may be possible to prove that
the minimizer of the problem on an unbounded domain will have the form (12).
We leave this problem for future work.

2.3.6 Example 6: More general di�erential operators and associated
spaces

The inclusion of operators with in�nite dimensional kernel allows us to treat
di�erential operators by removing the restricted growth conditions. Let Ω be a
bounded subset of Rd with Lipschitz boundary, and P (D) a di�erential operator
on Ω of the following form

P (D) =
∑
|α|=k

∑
|β|=k

Dβ(pα,β(x)Dα) (16)

where k > d/2, Dα = ∂α1
· ∂αj

is a partial derivative operator and pα,β is

bounded and smooth on Ω. Note that P (D) does not need to be shift invariant
(since Ω 6= Rd, shift-invariance is not even possible to de�ne). We will assume
that P (D) is strongly elliptic, i.e. that there exists a constant C > 0 with

inf
x∈Ω

inf
‖ξ‖2=1

∑
|α|=k

∑
|β|=k

pα,β(x)ξα+β =: C > 0. (17)

An important class of such operators are the already mentioned poly-Laplacians
∆k, k ∈ N.

We now de�ne, inspired by the native spacesML from above, a space BP ,
which is naturally sent toM(Ω) by P (D):

BP = {u ∈ D′(Ω) |P (D)u ∈M(Ω), u ∈M(Ω)} . (18)

Lemma 2. The expression

‖u‖BP
= ‖P (D)u‖M + ‖u‖M

de�nes a norm on BP . BP equipped with this norm is a Banach space, i.e.,
satis�es assumption 1. BP is continuously embedded in C(Ω).

When BP is equipped with the norm de�ned in 2, L = P (D) is an operator
which �ts in our framework.

Proposition 4. L = P (D) as de�ned in (16) satis�es assumptions 2. In
particular, the operator L+ is given by

(L+µ)(x) =

∫
Ω

uy(x)dµ(y), (19)
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where uy is a solution to P (D)u = δy. Furthermore, if a is a functional of the
type

〈a, u〉 =

∫
Ω

u(x)da(x), (20)

for an a ∈M(Ω), we have

((L+)∗a)(x) =

∫
Ω

ux(y)dai(y),

and (L+)∗a obeys the assumption 3.

Remark 6. Since we have not imposed any growth restrictions on the elements
of kerP (D), in general, not every measure a ∈ M(Ω) will cause (20) to de�ne
a functional on BP . However, if this is the case for a speci�c a, (L+)∗a will be
well-de�ned and have the claimed form.

An example of an additional assumption which will make (20) actually de�ne
a functional on BP is that a has a �nite total variation and compact support K,
since then

|〈a, u〉| ≤ ‖a‖M ‖u‖∞ ≤ ‖a‖∞ ‖u‖BP
.

Remark 7. The assumption k > d/2 is crucial if we want to include measure-
ment functionals given through singular measures, in particular δ-peaks, since
only then, we can guarantee that the solutions ux of (43) are continuous. Con-
sider for instance the Laplacian operator ∆ on Rd for d ≥ 2. Then k = 1 ≤ d/2
and (9) shows that ux = ρ∆(· − x) is not continuous. The same is true for ∆
de�ned on a bounded domain. This should not be confused with Proposition (3),
which makes statement about more regular measurement functionals.

Remark 8. It may be very di�cult to handle the case of an in�nite-dimensional
kernel numerically. A way to circumvent this is to restrict L in order for its
kernel to be �nite-dimensional as follows. Let V be a �nite-dimensional subspace
of kerL. Then

B̃P = ranL+ ⊕ V

is a closed subspace of BP , and hence itself a Banach space. It is clear that

L̃ : B̃P →M(Ω), u 7→ Lu

still satis�es Assumption 2. If we can accept that the minimization takes place
over this smaller space instead over the whole of BP , we may hence use this map
instead of L.

2.3.7 An uncovered case: L = ∇ and the space BV (]0, 1[2)

It is very tempting to use Theorem 1 on the space B = BV (]0, 1[2). As men-
tioned in the introduction, this space is crucial in image processing since its
introduction in [23]. Unfortunately, this case is not covered by Theorem 1, since
LB is then a space of vector valued Radon measures, and our assumptions only
cover the case of scalar measures.
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2.4 Numerical resolution

In this section, we show how the in�nite dimensional problem (1) can be solved
using standard optimization approaches. We will make the following additional
assumption:

Assumption 5 (Additional assumption on fb). fb is convex and lower semi-
continuous. Furthermore, either of the two following conditions hold:

1. ranA intersects the relative interior of domfb = {q ∈ Rm : fb(q) <∞},

2. fb is polyhedral (i.e. has a convex polyhedral epigraph) and ranA intersects
domfb,

Remark 9. The additional assumption 5 is made to ensure strong duality for
the optimization problem (1), and is conceptually the same as Slater's condition.
They are furthermore in fact quite mild: For all of the convex examples discussed
in Section 2.2, the existence of a u ∈ B with Au = b is su�cient for at least one
of them to hold.

Depending on the structure of the measurement functions (ai), we will pro-
pose to solve the primal problem (1) directly, or to solve two consecutive convex
problems: the dual and the primal. We �rst recollect a few properties of the
dual to shed some light on the solutions properties.

2.4.1 The dual problem and its relationship to the primal

A natural way to turn (1) into a �nite dimensional problem is to use duality as
shown in the following proposition.

Proposition 5 (Dual of problem (1)). The following duality relationship holds:

min
u∈B

J(u) = sup
q∈Rm,A∗q∈ranL∗,‖(L+)∗A∗q‖∞≤1

−f∗b (q). (21)

In addition, let (û, q̂) denote any primal-dual pair of problem (1). The fol-
lowing duality relationships hold:

A∗q̂ ∈ L∗∂(‖ · ‖M)(Lû) and − q̂ ∈ ∂fb(Aû). (22)

Solving the dual problem (21) does not directly provide a solution for the
primal problem (1). The following proposition shows that it however yields in-
formation about the support of Lû, which is the critical information to retrieve.

Proposition 6. Let (û, q̂) denote a primal-dual pair of problem (21). Let I(q̂) =
{x ∈ Ω, |(L+)∗(A∗q̂)|(x) = 1}. Then

supp(Lû) ⊆ I(q̂). (23)

In particular, if I(q̂) = {x1, . . . , xp}, then û can be written as:

û = uK +

p∑
k=1

dkL
+δxk

(24)

with uK ∈ kerL and (dk) ∈ Rp. If problem (1) admits a unique solution, then
p ≤ m and û is the solution in Theorem 1.
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In the case where I(q̂) is a �nite set, Proposition 6 can be used to recover a
solution û from q̂, by injecting the speci�c structure (24) into (1). Let (λi)1≤i≤r
denote a basis of kerL and de�ne the matrix

M =
[
(〈ai, λk〉)1≤i≤m,1≤k≤r, (〈(L+)∗ai, δxj 〉)1≤i≤m,1≤j≤p

]
(25)

Then problem (1) becomes a �nite dimensional convex program which can be
solved with o�-the-shelf algorithms:

min
c∈Rr,d∈Rp

fb

(
M

[
c
d

])
+ ‖d‖1. (26)

Overall, this section suggests the following strategy to recover û:

1. Find a solution q̂ of the �nite dimensional dual problem (21).

2. Identify the support I(q̂) = {x ∈ Ω, |(L+)∗(A∗q̂)|(x) = 1}.

3. If I(q̂) is �nitely supported, solve the �nite dimensional primal problem
(26) to construct û.

Each step within this algorithmic framework however su�ers from serious issues:

Problem 1 the dual problem (21) is �nite dimensional but involves convex
constraints sets

Q1 = {q ∈ Rm, A∗q ∈ ranL∗} (27)

and
Q2 = {q ∈ Rm,

∥∥(L+)∗A∗q
∥∥
∞ ≤ 1}, (28)

encompassing in�nitely many constraints, which need to be handled with
a computer.

Problem 2 �nding I(q̂) again consists of a possibly nontrivial maximization
problem.

Problem 3 the set I(q̂) may not be �nitely supported.

To the best of our knowledge, �nding general conditions on the functions

ρi = (L+)∗ai (29)

allowing to overcome those hurdles is an open problem. It is however known that
certain family of functions including polynomials and trigonometric polynomials
[22] allow for a numerical resolution. In the following two sections, we study
two speci�c cases useful for applications in details: the piecewise linear functions
and trigonometric polynomials.

2.4.2 Piecewise linear functions in arbitrary dimensions

In this section, we assume that Ω is a bounded polyhedral subset of Rd and that
each ρi = (L+)∗ai is a piecewise linear function, with �nitely many regions,
all being polyhedral. This class of functions is commonly used in the �nite
element method. Its interest lies in the fact that any smooth function can be
approximated with an arbitrary precision by using mesh re�nements.
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Figure 1: A graphical depiction of the three types of solutions for piecewise
linear measurements.

Solving the primal For this class, notice that the function (L+)∗A∗q =∑m
i=1 qiρi is still a piecewise linear function with �nitely many polyhedral pieces.

The maximum of the function has to be attained in at least one of the �nitely
many vertices (vj)j∈J of the pieces. This is a key observation from a numerical
viewpoint since it simultaneously allows to resolve problems 1 and 2. First, the
constraint set Q2 can be described by a �nite set of linear inequalities:

−1 ≤ (L+)∗A∗q(vj) ≤ 1, j ∈ J.

Secondly, I(q̂) can be retrieved by evaluating (L+)∗A∗q only on the vertices
(vj)j∈J .

Unfortunately, problem 3 is particularly important for this class: I(q̂) needs
not be �nitely supported since the maximum could be attained on a whole face.
The following proposition however con�rms that there always exists solutions
supported on the vertices.

Proposition 7. Suppose that ranL =M and that the dual problem (21) has a
solution. Then Problem (1) has at least one solution of the form

û =
∑
j∈J

djL
+δvj + uK (30)

with uK ∈ kerL, dj ∈ R and the vj are the vertices of the polyhedral pieces.

Once again, knowing the locations vj of the Dirac masses in advance permits
to solve (26) directly (without solving the dual) in order to obtain an exact
solution of (1).

Sparsifying the solution For piecewise linear measurement functions, it
turns out that the solution is not unique in general and that the form (30)
is not necessarily the sparsest one. A related observation was already formu-
lated in a di�erent setting in [14], where the authors show that in 1D, two Dirac
masses are usually found when only one should be detected. Figure 1 illustrates
di�erent types of possible solutions for a 2D mesh.

The proof of Proposition 7 suggests that one can sparsify a solution found by
solving the primal problem resulting from the discretization through sampling
on the grid of vertices. The basic reason is that piecewise linear measurements
specify the zero-th and �rst order moments of a measure restricted to one piece.
Among the in�nitely many measures having these moments, one can pick the
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sparsest one, consisting of a unique Dirac mass. This principle allows to pass
from the 6-sparse measure µ̃ to the 3-sparse measure µ in Figure 1.

To be precise, a collection of peaks (diδxi
)i∈I , where

1. conv(xi)i∈I is contained in one polyhedral region of G.

2. (di)i∈I have the same sign ε ∈ {−1, 1}

can be combined into one peak dδx, with

d =
∑
i∈I

di, x =
1

d

∑
i∈I

dixi.

We will see in the numerical experiments that this principle allows exact recovery
of u under certain conditions on its initial structure.

Relationship to standard discretization The traditional way to discretize
total variation problems with L = Id consists in imposing the locations of the
Dirac masses on a set of prede�ned points (xi)1≤i≤n ∈ Ωn. Then, one can
look for a solution of the form û =

∑n
i=1 dkδxi

and inject this structure in
problem 1. The idea of subsequently sparsifying the measure has also been
considered previously, for instance in [27]. There, it was however only regarded
as a heuristic.

Proposition (7) sheds a new light on this strategy, by telling that this actually
amounts to solving exactly an in�nite dimensional problem with piecewise linear
measurement functions.

2.4.3 Trigonometric polynomials in 1D

In this section, we assume that Ω = T is the one dimensional torus (see remark
(1)). For j ∈ N, let pj(t) = exp(−2ιπjt). We also assume that the functions ρi
are real trigonometric polynomials:

ρi =

K∑
j=−K

γj,ipj ,

with γj,i = γ∗−j,i. For this problem, the strategy suggested in section 2.4.1 will
be adopted.

Solving the dual The following simple lemma states that in the case of a
�nite dimensional kernel, the constraint set Q1 is just a �nite dimensional linear
constraint.

Lemma 3. Let r = dim(ker (L)) < ∞ and (λi)1≤i≤r denote a basis of kerL.
The set Q1 can be rewritten as

Q1 = {q ∈ Rm,∀1 ≤ i ≤ r, 〈q, Aλi〉 = 0}.

Proof. Since ranL∗ = V (by the closed range theorem), A∗q ∈ ranL∗ if and
only if ∀1 ≤ i ≤ r, 〈A∗q, λi〉 = 0.
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Hence, when kerL is �nite-dimensional the set Q1 can be easily handled by
using numerical integration procedures to compute the mr scalars 〈ak, λi〉. Let
us now turn to the set Q2. The following lemma is a simple variation of [13,
Thm 4.24]. It was used already for super-resolution purposes [7].

Lemma 4. Letting Γ = (γi,j)i,j, the set Q2 can be rewritten as follows:

Q2 =

{
α ∈ Rm,∃Q ∈ C(2K+1)×(2K+1),

[
Q Γα

(Γα)∗ 1

]
� 0,

2K+2−j∑
i=1

Qi,i+j =

{
1, j = 0,

0, 1 ≤ j ≤ 2K + 1.

}
.

With Lemmas 3 and 4 at hand, the dual problem (21) becomes a semide�nite
program that can be solved with a variety of approaches, such as interior point
methods [34].

Note that just as piecewise linear functions, any smooth measurement func-
tion in 1D can be approximate with a trigonometric polynomial through e.g.
Fourier series.

Finding the Dirac mass locations The case of trigonometric polynomi-
als makes Proposition 6 particularly helpful. If the trigonometric polynomial
|(L+)∗A∗q|2 − 1 is not equal to zero, the set I is �nite with cardinality at
most 2K, since |(L+)∗A∗q|2 − 1 is a negative trigonometric polynomial of de-
gree 4K + 2. Retrieving its roots can be expressed as an eigenvalue evaluation
problem [10] and be solved e�ciently.

The case of |(L+)∗A∗q|2 − 1 being equal to the zero polynomial is problem-
atic. In this case, there is no way to draw conclusions about the positions of
the support points of the solution measure. One can however argue that this
does not occur very often in practice, at least when interior point methods are
used to solve the dual problem: In [7], the authors argue that if there exist a

solution q̂ of the dual problem for which |(L+)∗A∗q|2−1 is not equal to the zero
measure, an inner point method will rather �nd that solution than one leading
to |(L+)∗A∗q|2 − 1 being identically equal to zero. We refer to the mentioned
source for details.

3 Numerical Experiments

In this section, we perform a few numerical experiments to illustrate the theory.
In all our experiments, we use the toolbox CVX [20] for solving the resulting
convex minimization problems.

3.1 Piecewise linear functions

3.1.1 Identity in 1D

In this paragraph, we set L = Id and Ω = [0, 1]. We assume that the functions
ai are random piecewise linear functions on a regular grid. The values of the
functions on the vertices are taken as independent random Gaussian realizations
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with standard deviation 1. In this experiment, we set u as a sparse measure
supported on 3 points. We probe it using 12 random measurement functions ai
and do not perturb the resulting measurement vector b, allowing to set fb = ι{b}.
The result is shown on Figure 2. As can be seen, the initially recovered measure
is 7 sparse. Using the sparsi�cation procedure detailed in paragraph 2.4.2 allows
to exactly recover the true 4 sparse measure u. We will provide a detailed
analysis of this phenomenon in a forthcoming paper.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

True

Recovered
Sparsi�ed

Figure 2: Example of recovery with random piecewise linear measurement func-
tions in 1D. The solution recovered by a standard `1 solver is not the sparsest
one. The sparsi�cation procedure proposed in the paper allows recovering the
sparsest solution and recovering exactly the sampled function.

3.1.2 Derivative in 1D

In this section we set Ω = [0, 1] and L = D. We assume that the functions ai are
piecewise constant. In the terminology of [33], this means that we are sampling
splines with splines. By equation (7), we see that the functions ρi = (L+)∗ai
are piecewise linear and satisfy ρi(0) = ρi(1) = 0.

In this example, we set the values of ai on each piece as the realization
of independent normally distributed random variables. We divide the interval
[0, 1] in 10 intervals of identical length. An example of a sampling function is
displayed in Figure 3.

The sensed signal u is de�ned as piecewise constant with jumps occurring
outside the grid points. Its values are comprised in [−1, 1].

The measurements are obtained according to the following model: bi =
〈ai, u〉+ εi, where εi is the realization of a Bernoulli-Gaussian variable. It takes
the value 0 with probability 0.9 and takes a random Gaussian value with variance
3 with probability 0.1. To cope with the fact that the noise is impulsive, we
propose to solve the following problem `1 �tted and total variation regularized
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Figure 3: Sampling function a1 used to probe piecewise constant signals. The
others have a similar structure with other random values on each interval.

problem.
min

u∈BV (]0,1[)
‖Du‖M + α‖Au− b‖1, (31)

where α = 1.
A typical result of the proposed algorithms is shown in Figure 4. Here,

we probe a piecewise constant signal with 3 jumps (there is a small one in the
central plateau) with 42 measurements. Once again, we observe perfect recovery
despite the additive noise. This favorable behavior can be explained by the fact
that the noise is impulsive and by the choice of an `1 data �tting term.

3.1.3 Identity in 2D

In this section, we set Ω = [0, 1]2 and L = Id. We probe a sparse measure
µ ∈ M([0, 1]2) using real trigonometric polynomials up to order 5. We then
solve the problem 1 with fb modeling box-constraints and A being the measure-
ment operator associated with the piecewise functions formed by linearizing the
trigonometric polynomials on a regular grid {0, 0.1, . . . , 1}2. Then, we collapse
the resulting solution into a sparser one. To avoid numerical problems, we dis-
carded all peaks with an amplitude less than 10−8 before the last step. The
results, together with an illustration of the collapsing procedure, are depicted
in Figure 3.1.3.

3.2 Trigonometric polynomials.

We generate m = 35 trigonometric polynomials

ai(t) =

N∑
j=−N

γj,i exp(−2ιπjt)
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Figure 4: Example of recovery of a piecewise linear signal u with measurements
corrupted by Bernoulli-Gaussian noise. Once again, the proposed algorithm
implemented with the proposed sparsi�cation procedure recovers the true signal
exactly, despite noise.

of degree N = 50 as follows: for j ≥ 0, we set the coe�cients γj,i of the i:th
polynomial to be

γj,i =
ξj,i

max(j, 1)
,

where ξj,i are i.i.d. normal distributed. For j < 0, we set γj,i = γ∗−j,i. This
ensures that the functions ai are real, and furthermore have a good approxima-
tion rate with respect to trigonometric polynomials. Seven such functions are
depicted in Figure6. Note that we do not need to worry about ai not vanishing
at ±1/2, since the functions live on the torus, a manifold without boundary.

We then generate b ∈ Rm by measuring a ground truth measure µ0 =∑2
i=−2 ciδxi

, where xi are chosen as

xi =
i

5
+ ni,

where ni are small random displacements, and i.i.d normally distributed ampli-
tudes (ci)

5
i=1. Next, for each K = 10, 11, . . . , 50, we solve the problem 1, with

A being the measurement operator with respect to the functions

ãKi (t) =

K∑
j=−K

γj,i exp(−2ιπjt).

In Figure 7, we plot the results of the minimization (1) with

fb(x) =
100 ‖x‖22

2
,
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Figure 5: Top: The ground truth measure, the solution obtained by sampling
on the vertices, and the sparsi�ed solution. Bottom: Illustration of the spar-
si�cation procedure. The circles represent the initial solution, while the dots
indicate the sparsi�ed solution. A thick trait or a grey region indicates masses
that have been merged.
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Figure 6: Seven randomly generated trigonometric polynomials ai.

depending on K. We see that already for K = 30, the solution is reason-
ably close to the true solution (at N = 50) (the relative error in the input,

‖Ãµ0 − b‖2/ ‖b‖2, for this K is approximately equal to 0.06). The latter is
furthermore essentially equal to the ground truth µ0.
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Figure 7: Minimizers of (1) (∗) together with the ground truth µ0 (◦) for (from
above left to below right) K equal to 15, 20, 25, 30, 35 and 40, respectively.

3.2.1 Scattered data interpolation/approximation

To �nish this section, we provide an example of application to scattered data
approximation with polyharmonic splines in dimension d = 2, as described in
Example 2.3.5. We set ai = δzi and L = ∆2 as the bi-Laplacian. The domain
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of L is thereby de�ned as in Remark 8 in Section 2.3.6 with V being the space
of biharmonic polynomials with degree smaller than or equal to 1, i.e.{

L+µ+ c1 + c2x+ c2y |µ ∈M(Ω), ci ∈ R
}
.

Note that if we do not restrict the dimension of the kernel, the minimizer of
(1) will most probably be a biharmonic function, which may not even be com-
putable.

We generate a Gaussian random process u on a discrete grid of size 100×100
and interpolate it with a bicubic-spline (see Figure 8, left). Then, we sample it
with a uniform Poisson point process (i.e. the sampling locations (zi) are drawn
uniformly at random in space) with m = 150 measurements.

In order to solve problem (1), we propose to use the discretization procedure
described in Section 2.4.2. We mesh the domain [0, 1]2 with a uniform mesh
and construct a piecewise linear approximation of the ρi's, which we assume
to be polyharmonic splines ρi(x) = ‖x − zi‖22 log(‖x − zi‖2). As was discussed
in Example 2.3.5, this choice of ρi is not completely faithful to our theory �
we should really use the Green functions ρ̃(x, zi) = (L+)∗ai of the bi-Laplacian
on the bounded domain. We can however still justify this simpli�cation: If we
imagine that we solve the problem (1) on a ball BR(0) with R � 1, the poly-
harmonic splines ρ(x− zi) will be good approximations of the Green functions
for x and zi in [0, 1]2. Imposing the condition that the solution µ∗ should be
supported in [0, 1]2, we hence do not make a large error when using the poly-
harmonic splines instead of the bounded domain Green functions. By the same
argument, we may use ρ(· − xi) instead of L+δxi when calculating the actual
reconstructed function u∗ = L+µ∗ + uK .

The interpolation results for the standard L2 spline and for the total vari-
ation spline are here of the same quality, see Figure 8 middle and left (we
conducted numerous experiments to reach that conclusion, but do not report
them here for conciseness). What is however remarkable is that the location
and the number of splines used for the total variation solution are disconnected
from the number of measurements. In this example, the algorithm automat-
ically found that 99 splines were enough to reach the equality constraint and
to minimize the total variation after the sparsi�cation procedure. Also notice
that the locations of the splines are disconnected from the sampling locations
and tend to be more evenly distributed. We suspect that this may be useful
from a numerical analysis point of view to reduce conditioning numbers. Similar
observation were already formulated in the discrete setting in [25].

To generate those results, we simply used the CVX toolbox allowing to
conduct only small scale experiments. We leave the design of more e�cient
optimization procedure for future works.

4 Proofs

In this section, we include all proofs left out in the main text.

4.1 Structure of solutions

As was argued already in the main body of the text, the proof of Theorem 1
can be broken down to a treatment of the problem (4). In the following, we will
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Figure 8: Scattered data interpolation with biharmonic splines. Left: function
to interpolate together with the sampling locations. Center: standard L2 re-
construction based on formula (12). Right: TV spline reconstruction. The red
dots indicate the sampling locations zi. The blue stars indicate the locations of
the polyharmonic splines for the total variation solution.

carry out the argument proving that the latter problem has a solution of the
claimed form.

We �rst prove the result in �nite dimensions and then use a limit argument.
The statement is well known in �nite dimension, see e.g. [32, Theorem 6] and
[29]. We provide a proof for completeness. It has a geometrical �avour.

Lemma 5. Let m,n ∈ N, G ∈ Rm,n, b ∈ ranG and m ≤ n. Then a problem of
the form

min
u∈Rn

‖u‖1 subject to Gu = b. (32)

has a solution û of (1) of the form

û =

p∑
k=1

ckeik ,

with (ck)mk=1 some real scalars and p ≤ m.

Proof. Let u be a solution to (32) (its existence easily follows from the coercivity
of the 1-norm and the non-emptiness and closedness of the set G−1({b})). The
image b = Gu then lies on the boundary of the polytope P = G {u | ‖u‖1 ≤ ‖u‖1}
� if it did not, b would be of the form Gũ with ‖ũ‖1 < ‖u‖1. Then ũ would be
a feasible point with smaller objective value than u, which is a contradiction to
the optimality of u.

The polytope P is at most m-dimensional, hence its boundary ∂P consists
of faces of dimension at most m − 1. Having just argued that b lies on that
boundary, it must lie on one of those faces, say F , which then has dimension at
most m − 1. Concretely, b ∈ conv(vert(F )), where vert(F ) denotes the set of
vertices of face F . The vertices of F are the images by G of a subset of the `1-
ball's vertices, so they can be written as ‖u‖1 εkGei, for some i ∈ {1, . . . , n} and
for εk ∈ {−1, 1}. Caratheodory's theorem applied in the (m − 1)-dimensional
space affF implies that b can be written as

b =

m∑
k=1

θk ‖û‖1 εkGeik
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with
∑m
k=1 θk = 1 and ε ∈ {±1}m. The vector ‖u‖1

∑m
k=1 θkεkeik is a solution

of (32) of the stated form.

The strategy will now be to discretize the problem on �ner and �ner grids,
use the previous lemma and pass to the limit.

Lemma 6. De�ne a sequence of discretizations (Ωn)n∈N of Ω as

Ωn =

(
[−2n, 2n]d ∩ Zd

2n

)
∩ Ω. (33)

For k ∈ Ωn, de�ne ωkn to be the hypercube of center k and side-length 2−n

intersected with Ω. Let µ ∈M(Ω) denote a measure and de�ne the sequence:

νn =
∑
k∈Ωn

µ(ωk)δk. (34)

Then νn
∗
⇀ µ and ‖νn‖M ≤ ‖µ‖M.

Proof. First, it follows directly from the de�nition of the total variation that

‖νn‖M =
∑
k∈Ωn

|µ(ωk)| ≤ ‖µ‖M . (35)

We now need to prove that for each φ ∈ C0, 〈νn, φ〉 → 〈µ, φ〉. So �x φ and let
ε > 0. Since φ ∈ C0, there exists a compact set K with the property |φ(x)| < ε
for x /∈ K. Since φ is uniformly continuous on K, there exists a δ > 0 so that if
‖x− x′‖∞ < δ, |φ(x)− φ(x′)| < ε. If we choose n so large so that 2−n < δ, we
will have

|〈µ− νn, φ〉| ≤
∫

Ω\K
|φ| d(|µ|+ |νn|) +

∣∣∣∣∫
K

φdµ−
∫
K

φdνn

∣∣∣∣
≤ ε(‖µ‖M + ‖νn‖M) +

∣∣∣∣∣ ∑
k∈Ωn

∫
ωk

φdµ− φ(k)µ(ωk)

∣∣∣∣∣
≤ 2ε ‖µ‖M +

∑
k∈Ωn

∫
ωk

|φ(`)− φ(k)| dµ(`)

≤ 2ε ‖µ‖M + ε
∑
k∈Ωn

|µ(ωk)|

≤ 3ε ‖µ‖M .

Since ε > 0 was arbitrary, the claim follows.

When passing to the limit in our limit argument, we we will need the fol-
lowing continuity property of the operator AL+:

Lemma 7. The operator AL+ : M → Rm is weak-∗ continuous. That is, if
µn

∗
⇀ µ, AL+µn → AL+µ. The same is true for H = ΠX⊥A.

Proof. We simply need to note that µn
∗
⇀ µ and assumption 3 implies that〈

ai, L
+µn

〉
=
〈
(L+)∗ai, µn

〉
= 〈µn, ρi〉 → 〈µ, ρi〉 =

〈
ai, L

+µ
〉

=
〈
(L+)∗ai, µ

〉
,

(36)
and that ΠX⊥ is continuous.
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Now let us prove that the optimal value of the problem (1) can be found by
solving slightly perturbed discretized problems.

Lemma 8. Let b ∈ ranH. There exists a sequence (bn)n∈N of vectors in Rm
with the following properties

• For each n, bn is in the range of the n-th discretized H-operator, i.e.

bn ∈ Hspan (δω)ω∈Ωn

• bn converges to b.

• For n ∈ N, de�ne Ĵn through

Ĵn := min
c∈R|Ωn|

‖c‖1 subject to HL+

(∑
k∈Ωn

ckδk

)
= bn. (Pn)

Then lim infn→∞ Ĵn ≤ Ĵ , where Ĵ is the optimal value of problem (4).

Proof. First, we note that problem (4) has a solution µ̂. We skip the proof since
it is identical to that of Proposition 1.

Now, according to Lemma 6, there exists a sequence of measures µn of the
form

µn =
∑
k∈Ωn

ckδk

with µn
∗
⇀ µ̂ and ‖µn‖M ≤ ‖µ̂‖M for each n.

Lemma 7 now implies that Hµn → Hµ̂ = b. If we put bn = AL+µn, bn is in
the range of the n-th discretized A-operator, bn → b, and ‖µn‖M ≥ Ĵn. This
implies

lim inf
n→∞

Ĵn = lim inf
n→∞

‖µn‖M ≤ ‖µ̂‖M = Ĵ .

We may now prove the main result of this section.

Proof of Theorem 1. By de�nition b ∈ ranH. We can hence apply Lemma 8
to construct a sequence (bn)n∈N having the properties stated in the mentioned
Lemma.

Now consider the problems (Pn). If we write them down explicitely, we see
that the minimization over the vectors c(n) are exactly as in Lemma 5, with
G = H and m = m. Hence, we can construct a sequence (ĉn) of solutions,
where ĉn containing pn ≤ m nonzero components for n ≥ m. Thus, we may
write

∑
k∈Ωn

ĉn,kδk =

m∑
`=1

dn,`δxn,`
,

for some dn ∈ Rm and Xn = (xn,l)l ∈ Ωm. In case pn < m, we may repeat
positions in the vector Xn.
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Now (dn)n∈N is bounded, since ‖dn‖1 ≤ Ĵn ≤ Ĵ1 for each n. This implies
that there exists a subsequence, which we do not rename, such that dn is con-
verging to d∗ ∈ Rm. By possibly considering a subsequence of this subsequence,
we may assume that Xn converges in Ω

×
, where Ω

×
denotes the one-point-

compacti�cation Ω. This means that each of the component sequences (xn,`)n
either converges to a point x∗` in Ω, or diverges to ∞, meaning that it escapes
every compact subset of Ω.

Consequently, the subsequence µn =
∑m
`=1 dn,`δxn,`

∗
⇀
∑m
`=1 d

∗
`δx∗` =: µ∗,

where we identify δ∞ with the zero measure (note that if xn,` → ∞, then

δxn,`

∗
⇀ 0)).

Lower semi-continuity of the TV -norm implies∥∥∥∥∥
m∑
`=1

d∗`δx∗`

∥∥∥∥∥
M

≤ lim inf
n→∞

∥∥∥∥∥
p∑
`=1

d`δxn,`

∥∥∥∥∥
M

= lim inf
n→∞

Ĵn ≤ Ĵ ,

where we used Lemma 6 in the �nal step. Also, applying Lemma 7 together
with the properties of (bn), we get

Hµ∗ = lim
n→∞

Hµn = lim
n→∞

bn = b.

Hence,
∑m
`=1 d

∗
`δx∗` is a solution of (1), which was exactly what was needed

to be proven. (Note that any x∗` being equal to ∞ will only cause the linear
combination of δ-peaks to be shorter).

4.2 Numerical Resolution

In this section, we prove the propositions stated in Section 2.4. We begin with
the one describing the dual problem of (1).

Proof of Proposition 5. De�ne g : B → M with g(u) := ‖Lu‖M. Then J(u) =
fb(Au) + g(u). Assumption 5 allows us to apply [4, Th. 4.2], which ensures
strong duality:

min
u∈B

J(u) = sup
q∈Rm

−g∗(−A∗q)− f∗b (q), (37)

and solvability of the dual problem. Now, we have:

g∗(z) = sup
u∈B
〈z, u〉 − g(u)

= sup
u∈B
〈z, u〉 − ‖Lu‖M

= sup
v∈V,uK∈kerL

〈z, v + uK〉 − ‖Lv‖M

=

sup
v∈V
〈z, v〉 − ‖Lv‖M if z ∈ (kerL)⊥,

+∞ otherwise

=

sup
v∈V
〈z, L+Lv〉 − ‖Lv‖M if z ∈ ranL∗,

+∞ otherwise

=

 sup
µ∈M
〈(L+)∗z, µ〉 − ‖µ‖M if z ∈ ranL∗,

+∞ otherwise
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We used the closed range theorem, which in particular implies that ranL∗ =
(kerL)⊥ for an operator L with closed range. We also applied the assumption
that L is surjective.

Now we note that for every φ ∈ C0 (i.e. in particular for elements of the
form (L+)∗z)

sup
µ∈M

〈φ, µ〉 − ‖µ‖M =

{
0 if ‖φ‖∞ ≤ 1.

+∞ otherwise,

to conclude the �rst part of the proof.
Note that the subdi�erential of g at every u ∈ B reads ∂g(u) = L∗∂(‖ · ‖M)(Lu)

(see e.g. [15, Prop.5.7]. Having ensured the existence of a dual solution, and
hence a primal-dual pair, the duality relations follows from standard arguments,
see e.g. [15, p.60].

Next, we prove the proposition describing how to construct a primal solution
from a dual one in the case that ranL =M.

Proof of Proposition 6. We have for any operator L obeying assumption 2

(L+)∗L∗ = (LL+)∗ = Π∗ranL = Id, L∗(L+)∗ = (L+L)∗ = j∗V .

By construction, A∗q̂ and L∗∂(‖ · ‖M)(Lû) are elements of ranL∗. Due to the
closed range theorem, ranL∗ is isomorphic to the annihilator V . On that space,
j∗V is injective. Hence, the inclusion (22) is equivalent to

(L+)∗(A∗q̂) ∈ ∂(‖ · ‖M)(Lû). (38)

Now, it is well known (see for instance [14]), that for all µ ∈M,

∂(‖ · ‖M)(µ) =
{
η ∈M∗, ‖η‖(M)∗ ≤ 1, 〈η, µ〉 = ‖µ‖M

}
.

In particular,

∂(‖ · ‖M)(µ) ∩ C0 =

{
η ∈ C0, ‖η‖∞ ≤ 1,

∫
Ω

η(t)dµ(t) = ‖µ‖M
}

(39)

Consequently, (38) tells us that the continuous function (L+)∗(A∗q̂) has modu-
lus 1 Lû-almost everywhere on supp(Lû). In particular, if the set I only consists
of isolated points, we get supp(Lû) ⊆ I. Hence, there exists (dk)1≤k≤p with

Lû =

p∑
k=1

dkδxk
=⇒ û = uK +

p∑
k=1

dkL
+δxk

(40)

for some uK ∈ kerL.

Next, we prove the claim about the structure and possible numerical resolu-
tion of the optimal measure µ̂ in the case of piecewise linear ρi.

Proof of Proposition 7. Let us denote the polyhedral regions on which the ρi
are all simultaneously linear with F`, ` = 1, . . . n. Let q̂ , and L+µ∗ + uK be
any solution of minu∈B J(u) with supp µ∗ ⊆ ∪n`=1F`, where F` are the faces
described above (such a solution exists due to Theorem 1). Standard duality
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arguments (see for instance [15, prop. 4.1]) yield that q̂ and L+µ∗+uK satis�es
the primal-dual conditions 22, i.e. in particular 38, since ranL =M.

It is clear that for any atomic measure µ =
∑n
j=1 djδxj

with 〈ρi, µ∗〉 = 〈ρi, µ〉
for each i and ‖µ‖M = ‖µ∗‖M, L+µ+ uK also is a solution to min J(u). Such
a measure can be constructed as follows: Suppose that there exists a face P of
at least dimension 1 of a polytope Fj such that | µ∗| (relintP ) > 0 (if no such
P exists, µ∗ is already atomic). Since supp(µ∗) ⊆ I(q̂), (L+)∗A∗q has absolute
value 1 in at least one point p ∈ relintP . (L+)∗A∗q being a continuous piecewise
linear function with absolute value bounded by one, it must therefore have a
constant value ε, either equal to +1 or −1, on P . Due to the structure (39) of
the subdi�erential of the TV -norm, this implies that µ∗ (the unimodular part
of the polar decomposition of µ∗ to be exact) must have the same sign as ε
almost everywhere on P . This furthermore implies that not only |µ∗| (P ), but
also µ∗(P ) 6= 0.

On P , each function ρi can be written as ρi(x) = 〈αij , x〉 + βij , for some
vectors αij ∈ Rd and scalars βij ∈ R. If we hence de�ne

d = ε |µ∗| (P ), x =
1

|µ|∗ (P )

∫
P

xd |µ∗| ∈ P,

and µ = dδx + µ∗|Ω\P , we have ‖µ‖M = |d| +
∥∥µ∗|Ω\P∥∥M = ‖µ∗|P ‖M +∥∥µ|Ω\P∥∥M = ‖µ∗‖M, and

〈ρi, µ〉 =

n∑
j=1

(〈αij , xj〉+ βij)µ
∗(Fj) =

n∑
j=1

∫
Fj

(〈αij , x〉+ βij) dµ
∗ = 〈ρi, µ∗〉 .

By iteratively removing all such non-atomic parts of µ∗, we obtain an atomic
solution µ.

We still need to prove that we can �nd a µ∗ = µ̃ which is atomic and
supported on the vertices of Fj . Note that each xj can be represented as a

convex combination
∑tj
k=1 θkvjk of the vertices vjk of Fj . De�ning a measure

µ̃ =

n∑
j=1

tj∑
k=1

θkµ(Fj)δvjk ,

we see that ‖µ‖M = ‖µ̃‖M and

〈ρi, µ̃〉 =

n∑
j=1

tj∑
k=1

θk (〈αij , vjk〉+ βij)µ(Fj) =

n∑
j=1

(〈αij , xj〉+ βij)µ(Fj) = 〈ρi, µ〉 ,

so that µ̃ is also a solution.

Finally, we provide the argument that the constraint of the dual problem
can be rewritten as an inequality on the space of Hermitian matrices in the case
of the functions ρi begin trigonometric polynomials.

Proof of Lemma 4. Note that |
∑m
i=1 αiρi| ≤ 1 is equivalent to

1 ≥

∣∣∣∣∣∣
m∑
i=1

αi

K∑
j=−K

γi,jpj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
K∑

j=−K

m∑
i=1

αiγi,jpj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
K∑

j=−K
(Γα)jpj

∣∣∣∣∣∣ =

∣∣∣∣∣∣p−K
K∑

j=−K
(Γα)jpj

∣∣∣∣∣∣ .
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The function f = p−K
∑K
j=−K(Γα)jpj is a causal trigonometric polynomial.

We know from [13, Cor.4.27] that it obeys the constraint ‖f‖∞ ≤ 1 if and only
if there exists a positive semi-de�nite matrix Q ∈ C(2K+1)×(2K+1) such that[

Q Γα
(Γα)∗ 1

]
� 0 and

2K+2−j∑
i=1

Qi,i+j =

{
1, j = 0,

0, 1 ≤ j ≤ 2K + 1.
(41)

4.3 Di�erential operators of Section 2.3.6

Here, we provide the argument which allows us to include di�erential operators
of the form (16) into our framework. We will in fact �rst prove that an even
more general class of di�erential operators can be included, and subsequently
argue that the elliptic operators (16) belong to that class. The class we will
consider is the one of operators of the form

P (D) =
∑
|α|≤k

pαD
α, (42)

where Ω in fact may be unbounded, and pα : Ω → R smooth and bounded,
obeying the following three assumptions.

Assumption 6 (Continuation property). There exists a bounded subset K ⊆ Ω
such that for each distribution u ∈ D′(K) with P (D)u = 0, there exists exactly
one û ∈ D′(Ω) with P (D)û = 0 in Ω and û = u in K.

Assumption 7 (Green function hypothesis). For each x ∈ Ω, there exists a
solution ux ∈ C(Ω) of the problem

P (D)ux = δx. (43)

We also assume that the map Ω 3 x 7→ ux ∈ C(Ω) is continuous and bounded,
i.e. supx∈Ω ‖ux‖∞ <∞.

Assumption 8 (Smoothness property). Any distribution u obeying P (D)u = 0
in Ω is continuous.

Under these three assumptions, we can prove that the operator L+ de�ned
in (19) is a right inverse of P (D)).

Lemma 9. The operator L+ de�ned by (19) is a continuous operator from
M(Ω) to C(Ω). It has the property P (D)L+ = IdM(Ω).

Proof. Let us begin by showing that L+ maps fromM(Ω) to C(Ω). First, note
that the continuity of x 7→ ux implies that L+µ is pointwise well-de�ned. We
still need to show that for a �xed µ, the map x 7→ (L+µ)(x) is continuous. This
follows from a standard �limits and integrals commute� argument. Let xn → x.
Then uy(xn) → uy(x) pointwise. Furthermore, |uy(xn)| ≤ supy∈Ω ‖uy‖∞ for
all y and xn. Since supy∈Ω ‖uy‖∞ is a µ-integrable function, the theorem of
Lebesgue implies that

lim
n→∞

(L+µ)(xn) = lim
n→∞

∫
Ω

uy(xn)dµ(y) =

∫
Ω

uy(x)dµ(y) = (L+µ)(x).

31



The boundedness of the map now follows from the inequality∣∣∣∣∫
Ω

uy(x)dµ

∣∣∣∣ ≤ ∫
Ω

|uy(x)| d |µ| ≤ sup
y∈Ω
‖uy‖∞ ‖µ‖M , x ∈ Ω.

Now we show that P (D)L+µ = µ. For this, let φ ∈ C∞c (Ω) be arbitrary. We
then have∫

Ω

(L+µ)(y)P (Dy)∗φ(y)dy =

∫
Ω

∫
Ω

ux(y)P (Dy)∗φ(y)dµ(x)dy,

where P (D)∗ denotes the adjoint to P (D). The function (x, y) 7→ ux(y)P (Dy)∗φ(y)
is continuous and supported on a set of the form Ω × C, where C is com-
pact. As such, it is integrable with respect to the measure µ⊗ dy, and we may
apply Fubini's theorem. Subsequently shifting P (Dy) onto ux and utilizing
P (Dy)ux = δx, we obtain that the above is equal to∫

Ω

φ(x)dµ(x).

This exactly means that P (D)L+µ = µ.

Now we may prove a version of Lemma 2 for the slightly more general oper-
ators.

Lemma 10. Under assumptions 6, 7 and 8, BP ⊂ C(Ω). In addition, the
expression

‖u‖BP
= ‖P (D)u‖M + ‖u|K‖∞

de�nes a norm and BP equipped with this norm is a Banach space, i.e., satis�es
assumption 1.

Proof. The only non-trivial step in proving that ‖u‖BP
is a norm is to prove

that ‖u‖BP
= 0 ⇒ u = 0. This follows from the assumption on the set K: If

‖u‖BP
= 0, then in particular P (D)u = 0 and u = 0 in K. Since u = 0 is a

function obeying P (D)u = 0 and u = 0 in K, the uniqueness of the continuation
implies that u must vanish everywhere in Ω.

To prove that BP is a Banach space, notice that we can interpret BP as a
subspace of the Banach spaceM(Ω)×M(K). This space is furthermore closed:
If (P (D)un, un) → (µ, u) in M(Ω) ×M(K), there must be P (D)u = µ on K.
To see this, let φ ∈ C0(K)∞ be arbitrary. We then have P (D)∗φ ∈ C0(K), and
consequently∫

K

uP (D)∗φdx = lim
n→∞

∫
K

unP (D)∗φdx = lim
n→∞

∫
K

φd(P (D)un) =

∫
K

φdµ,

where we used the fact P (D)un → µ in the last step. Since P (D)L+µ = µ,
we conclude that P (D)(u−L+µ) = 0 in K. The continuation property implies
that there exists a û with P (D)û = 0 in Ω and û = u − L+µ in K. We then
have µ = P (D)(û+ L+µ) and (û+ L+µ)|K = u, so that (µ, u) ∈ BP .

The embedding BP (Ω) ↪→ C(Ω) is clear as soon as we have proven the in-
clusion BP (Ω) ⊆ C(Ω), since ‖u|K‖M ≤ |K| ‖u‖∞ for C(Ω). But this inclusion
easily follows from the fact that each function u ∈ BP (Ω) can be decomposed

u = L+(P (D)u) + uK
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with P (D)uK = 0. uK is then continuous by assumption 8, and L+(P (D)u)
due to Lemma 9.

Now let us prove a following general version of Proposition 4. To simplify
the formulation of it slightly, let us introduce the following notion: we say that a
mapping T : Ω→ C(Ω) vanishes at in�nity on compact sets if for each compact
subset C ⊆ Ω, the function x 7→ supy∈C |T (x)(y)| vanishes at in�nity.

Proposition 8. Proposition 4 holds for any di�erential operator obeying as-
sumption 7 and 8. Furthermore, (L+)∗a obeys the assumption 3 provided the
map x 7→ ux vanishes at in�nity on compact sets.

Proof of Proposition 4. In Lemma 9, we showed that P (D)L+ = IdM. This
already proves that ranP (D) =M(Ω). Also, it shows that L+ is a continuous
operator fromM(Ω) to BP (Ω): C(Ω) ↪→M(K) due to the boundedness of K,
and if µn → µ in BP , then P (D)L+µn = µn → µ = P (D)L+µ.

It follows that L+P (D) = IdranL+ . If we can prove that ranL+ is closed,
we have shown that kerP (D) has the closed complementary subspace ranL+.

To show the latter, let un = L+µn in ranL+ converge to an element u ∈ BP .
Then, by de�nition of BP , P (D)L+µn = µn → P (D)u. Consequently, by the
continuity of L+,

un = L+µn = L+P (D)L+µn → L+P (D)u,

so that u = L+P (D)u ∈ ranL+.
It remains to calculate the operator (L+)∗. For a ∈ M(Ω) and µ ∈ M(Ω),

we have 〈
(L+)∗a, µ

〉
=
〈
a, L+µ

〉
=

∫
Ω

∫
Ω

ux(y)dµ(x)da(y)

(x, y)→ ux(y) is bounded due to assumption (7), and therefore in particular in
L1(µ⊗ a). Hence, we may apply Fubini and obtain

〈
(L+)∗a, µ

〉 ∫
Ω

(∫
Ω

ux(y)da(y)

)
dµ(x).

The last assertion about (L+)∗a ∈ C0(Ω) is argued as follows. Let ε > 0. First,
since a is a Radon measure with �nite total variation, there exists a compact
set C such that

∥∥a|Ω\C∥∥M ≤ ε. Further, since the map x 7→ ux is vanishing

at in�nity as a map from Ω to C(C), there exists a compact set C̃ such that if

x /∈ C̃, ‖ux‖C(C) ≤ ε. This implies for such x∣∣(L+)∗a(x)
∣∣ ≤ ‖ux‖∞ ∥∥a|Ω\C∥∥M y + ‖ux‖C(C) ‖a|C‖M
≤ ‖ux‖∞ ε+ ε ‖a‖M ,

so that the theorem is proved.

Now let us �nally argue that the di�erential operators of the form (16) obey
the assumptions 6 and 7.
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Proposition 9. Suppose that k > d
2 , and that Ω ⊆ Rd is a Lipschitz domain.

Under the ellipticity assumption (17), the problem (43) admits for each x ∈ Ω
a solution ux ∈ C(Ω). The map x→ ux is furthermore vanishing at in�nity on
compact sets. Finally, each function u with P (D)u = 0 is continuous. Also, K
in assumption 6 can trivially be chosen equal to Ω.

Proof of Proposition 9. Consider the space Hk0(Ω), de�ned as the closure of
C∞0 (Ω) in the Sobolev norm ‖·‖Hk(Ω). We can formulate the problem P (D)w = f

as an operator equation on Hk0(Ω) as follows:

〈P (D)w, v〉 =

∫
Ω

∑
|α|=k

∑
|β|=k

pα,β(x)Dαu(x)Dβν(x)dx = 〈f, v〉 , v ∈ Hk0(Ω).

By the Lax-Milgram lemma together with the ellipticity condition, this prob-
lem has a unique solution as soon as f ∈ Hk0(Ω). Now, since k > d/2, we
have the continuous Sobolev embedding Hk0(Ω) ↪→ C0(Ω). (For Ω = Rd, this
can be proven with Fourier methods, for a bounded domain, this is a Sobolev
embedding theorem.) This both proves that δx ∈ Hk0(Ω)∗ and that the solution
ux ∈ C0(Ω).

To show that the map x → ux is vanishing at in�nity on compact sets, let
(xn) be an arbitrary sequence vanishing at in�nity. Then, by de�nition of weak-

∗ convergence, δxn

∗
⇀ 0 in M(Ω). Now since k/2 > d, Hk(Ω) ↪→ C(Ω), which

has the consequence that δxn
must weak(−∗) converge towards zero also as a

sequence in the Hilbert space Hk(Ω)∗. Using �continuous dependence on the
data�-part of Lax Milgram, we can conclude that the corresponding sequence of
solutions (uxn) also must weakly converge towards zero in Hk(Ω).

Now let K ⊆ Ω be an arbitrary bounded subset of Ω. We need to show
that the restrictions of the uxn

|K converge strongly to zero in C(K). The weak-
∗ convergence in Hk(K) ⊆ Hk(Ω) is clear. Due to the fact that the Sobolev
embedding Hk(K) ↪→ C(K) in the case of a bounded K even is compact, this
has the consequence that uxn → 0 in Ck(Ω). But this is what we had to prove.

Finally, P (D) obeys assumption 8 due to the elliptic regularity theorem (see
for instance [36, Th. 20.1])

4.4 Miscellaneous

Here, the rest of the left out proofs are given. We start with the simple propo-
sition about existence of solutions to the problem (1).

Proof of Proposition 1. Let (un)n∈N be a minimizing sequence for (1). Let us
write un = L+µn + un,K with µn ∈ M(Ω) and un,K ∈ kerL for each n ∈ N.
We may thereby without loss of generality assume that un,K ∈ span(w`)

m̂
`=1,

where w` are vectors such that (Aw`)
m̂
`=1 spans A(kerL) (any alteration of uK,n

not parallel to this space will neither change the value of ‖Lu‖ or the value of
fb(Au).

Now, due to the minimization property of the sequence,

(µn)n∈N and (fb(A(L+µ∗ + un,K))n∈N

are both bounded. Due to the coercivity of fb together with the fact that
A restricted to the space (w`)

m̂
`=1 is injective, the sequence (un,K)n∈N will be
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bounded in A(kerL). Due to the Banach-Alaoglu theorem and the separability
of C0(Ω) (i.e. the pre-dual ofM(Ω)), (µn)M will contain a subsequence which
converges to, say, µ∗. Similarly, since (un,K) lives in the �nite-dimensional space
span(w`)

m̂
`=1, it will also contain a subsequence convergent to, say u∗. Now,

using the same notation for the convergent subsequences as for the sequences
themselves, we have

‖µ∗‖M + fb(A(L+µ∗ + u∗K)) ≤ lim inf ‖µn‖M + fb(A(L+µn + un,K))

= lim inf ‖Lun‖M + fb(Aun) = min
u∈B
‖Lu‖M + fb(Au).

We used Lemma 7 and the lower semicontinuity of fb and of the TV -norm.
Hence, L+µ∗ + u∗K is the solution whose existence we had to prove.

Now let us include spline-admissible operators in our framework.

Proof of Lemma 2. 1. The �nite-dimensionality of kerL is simply assumption 3
of Theorem 1 of [33]. Theorem 4 and 5 of [33] proves that L has a right inverse
L−1

Φ . This implies that

ranL ⊆ ranLL−1
Φ = ran Id =M.

2. The space CL as de�ned in Theorem 6 of [33] is de�ned as

CL = L∗(C0(Rd)) + span(φi)
r
i=1,

where φi is a system of functionals which restricted to kerL becomes a of the
dual of kerL. Without loss of generality, we can assume that φi|V = 0 for each

i (if not, we could instead consider the operators φ̃i = φiΠkerL).
Then if a ∈ CL, we have

(L+)∗a = (L+)∗L∗ρ+

r∑
i=1

γi(L
+)∗φi

for some ρ ∈ C0(Rd) and γi. Now (L+)∗L∗) = (LL+)∗ = Π∗ranL = Id and
(L+)∗φi = 0, so that (L+)∗a = ρ ∈ C0(Rd).

If on the other (L+)∗a ∈ C0(Rd), we have

L∗C0(Rd) 3 L∗(L+)∗a = (L+L)∗a = Π∗V a.

Since each functional a ∈ M∗L can be written as Π∗V a + Π∗kerLa, and Π∗kerLa ∈
span(φi)

r
i=1, a ∈ CL.

Next, we discuss the case of L being the di�erential operator on BV ((0, 1).

Proof of Lemma 1. Note that we have kerL = span(1), the vector space of
constant functions on Ω, hence the space V can be identi�ed with the space of
functions with zero mean:

V =

{
u ∈ BV (Ω),

∫
Ω

u(t) dt = 0

}
.
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For µ ∈ M, consider the mapping I : µ 7→ u de�ned for s ∈ [0, 1] by
u(s) = µ([0, s]). We only need to prove that DI(µ) = µ in the distributional
sense. Let φ ∈ C∞c (Ω):

〈I(µ), φ′〉 =

∫ 1

0

µ([0, t])φ′(t) dt

=

∫ 1

0

∫ 1

0

1[0,t](s)dµ(s)φ′(t) dt

=

∫ 1

0

∫ 1

0

1[s,1](t)φ
′(t) dtdµ(s)

=

∫ 1

0

−φ(s)dµ(s) = −〈µ, φ〉.

This proves the surjectivity of L. We see that the proposed form of L+ is the

right one, since s 7→ µ([0, s])−
∫ 1

0
µ([0, s])ds is a function of zero mean.

We now calculate〈
(L+)∗ξ, µ

〉
=
〈
ξ, L+µ

〉
=

∫ 1

0

ξ(t)

(∫ 1

0

1[0,t](s)dµ(s)−
∫ 1

0

µ([0, r])dr

)
dt

=

∫ 1

0

(∫ 1

0

1[s,1](t)ξ(t)dt

)
dµ(s)−

∫ 1

0

ξ(t)dt ·
∫ 1

0

1[0,r](s)dµ(s)dr

=

∫ 1

0

(∫ 1

s

ξ(t)dt

)
dµ(s)−

∫ 1

0

ξ(t)dt ·
∫ 1

0

(1− s)dµ(s)

In particular, the action of (L+)∗ξ is given by a continuous function, which is
vanishing on the boundary of (0, 1)

5 Conclusion & Outlook

In this paper we have studied the properties of total variation regularized prob-
lems, where total-variation should be understood as a term of form ‖Lu‖M,
with L a linear operator. We have shown that under a convexity assumption on
the data-�t term, some of the solutions û of total-variation regularized inverse
problems are m-sparse, where m denotes the number of measurements. This
precisely means that Lû is an atomic measure supported on at most m points.
This result extends recent advances [33], by relaxing some hypotheses on the
linear operator L and on the domain of the functions.

The second contribution of this paper is to show that solutions of this in�nite
dimensional problem can be obtained by solving one or two consecutive �nite
dimensional problems, given that the measurements belong to some function
spaces such as the trigonometric polynomials or the set of piecewise linear func-
tions on polyhedral domains. Once again, this result extends signi�cantly recent
results on super-resolution [7, 28]. The analysis provided for piecewise linear
functions is novel and we believe that it might have important consequences
in the numerical analysis of in�nite dimensional inverse problems: the scaling
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with respect to the number of grid points is just linear, contrarily to approaches
based on semi-de�nite relaxations or Lasserre hierarchies.

As an outlook, we want to stress out that the hypotheses formulated on the
linear operator L rule out a number of interesting applications, such as total
variation regularization in image processing. We plan to study how the results
and the proof techniques in this paper could apply to more general cases.
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