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Sparse Wavelet Representations of Spatially Varying Blurring Operators∗

Paul Escande† and Pierre Weiss‡

Abstract. Restoring images degraded by spatially varying blur is a problem encountered in many disciplines
such as astrophysics, computer vision, and biomedical imaging. One of the main challenges in
performing this task is to design efficient numerical algorithms to approximate integral operators.
We introduce a new method based on a sparse approximation of the blurring operator in the wavelet
domain. This method requires O(Nε−d/M ) operations to provide ε-approximations, where N is the
number of pixels of a d-dimensional image and M ≥ 1 is a scalar describing the regularity of
the blur kernel. In addition, we propose original methods to define sparsity patterns when only the
operator regularity is known. Numerical experiments reveal that our algorithm provides a significant
improvement compared to standard methods based on windowed convolutions.
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1. Introduction. The problem of image restoration in the presence of spatially varying
blur appears in many domains. Examples of applications in computer vision, biomedical imag-
ing, and astronomy are shown in Figures 1 and 2, respectively. In this paper, we propose new
solutions to address one of the main difficulties associated to this problem: the computational
evaluation of matrix-vector products.

A spatially variant blurring operator can be modeled as a linear operator and can therefore
be represented by a matrix H of size N × N , where N represents the number of pixels of a
d-dimensional image. Sizes of typical images range from N = 106 for small two-dimensional
(2D) images to N = 1010 for large 2D or three-dimensional (3D) images. Storing matrices
and computing matrix-vector products using the standard representation is impossible for
such sizes: it amounts to tera or exabytes of data/operations. In cases where the point
spread function (PSF) supports are sufficiently small in average over the image domain, the
operator can be coded as a sparse matrix and applied using traditional approaches. However,
in many practical applications this method turns out to be too intensive and cannot be
applied with decent computing times. This may be due to (i) large PSF supports or (ii)

∗Received by the editors January 12, 2015; accepted for publication (in revised form) October 7, 2015; published
electronically December 17, 2015. The research of the authors was supported by ANR SPH-IM-3D (ANR-12-BSV5-
0008).

http://www.siam.org/journals/siims/8-4/100346.html
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the need for superresolution applications where the PSF sizes increase with the resolution.
Spatially varying blurring matrices therefore require the development of computational tools
to compress them and evaluate them in an efficient way.

Existing approaches. To the best of our knowledge, the first attempts to address this
issue appeared in the early 1970s (see, e.g., [41]). Since then, many techniques have been
proposed. We describe them briefly below.

Composition of diffeomorphisms and convolutions. One of the first methods proposed to
reduce the computational complexity is based on first applying a diffeomorphism to the image
domain [41, 42, 33, 45, 19], followed by a convolution using FFTs and an inverse diffeomor-
phism. The diffeomorphism is chosen in order to transform the spatially varying blur into an
invariant one. This approach suffers from two important drawbacks:

• First, it was shown that not all spatially varying kernels can be approximated by this
approach [33].

• Second, this method requires good interpolation methods and the use of Euclidean
grids with small grid size in order to correctly estimate integrals.

Separable approximations. Another common idea is to approximate the kernel of the oper-
ator by a separable one that operates in only one dimension. The computational complexity
of a product is thus reduced to d applications of one-dimensional operators. It drastically
improves the performance of algorithms. For instance, in 3D fluorescence microscopy, the au-
thors of [39, 31, 4, 50] proposed approximating PSFs by anisotropic Gaussians and assumed
that the Gaussian variances vary only along one direction (e.g., the direction of light propaga-
tion). The separability assumption implies that both the PSF and its variations are separable.
Unfortunately, most physically realistic PSFs are not separable and do not vary in a separable
manner (see, e.g., Figure 3). This method is therefore usually too crude.

Wavelet or Gabor multipliers. Some works [9, 18, 20, 28] proposed approximating blurring
operators H using operators diagonal in wavelet bases, wavelet packets, or Gabor frames.
This idea consists of defining an approximation H̃ of the kind H̃ = ΨΣΨ∗, where Ψ∗ and Ψ
are wavelet or Gabor transforms and Σ is a diagonal matrix. These diagonal approximations
mimic the fact that shift-invariant operators are diagonal in the Fourier domain. These
approaches lead to fast O(N) or O(N log(N)) algorithms to compute matrix-vector products.
In [18], we proposed deblurring images using diagonal approximations of the blurring operators
in redundant wavelet packet bases. This approximation was shown to be fast and efficient
in deblurring images when the exact operator was scarcely known or in high noise levels. It
is, however, too coarse for applications with low noise levels. This approach, however, seems
promising. Gabor multipliers are considered the state-of-the-art for one-dimensional (1D)
signals in orthogonal frequency-division multiplexing (OFDM) systems, for instance (slowly
varying smoothing operators).

Weighted convolutions. Probably the most commonly used approaches consist of approx-
imating the integral kernel by the spatially weighted sum of convolutions. Among these
approaches, two different ideas have been explored. The first will be called windowed convo-
lutions (WC) in this paper and appeared in [36, 37, 24, 27, 15]. The second was proposed in
[21] and consists of expanding the PSFs in a common basis of small dimensionality.

WC consists of locally stationary approximations of the kernel. We advise the reading of
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[15] for an up-to-date description of this approach and its numerous refinements. The main
idea is to decompose the image domain into subregions and perform a convolution on each
subregion. The results are then gathered together to obtain the blurred image. In its simplest
form, this approach consists in partitioning the domain Ω into squares of equal size. More
advanced strategies consist in decomposing the domain with overlapping subregions. The
blurred image can then be obtained by using windowing functions that interpolate the kernel
between subregions (see, e.g., [36, 27, 15]). Various methods have been proposed to interpolate
the PSF. In [27], a linear interpolation is performed, and in [15] higher order interpolation of
the PSF is handled.

Sparse wavelet approximations. The approach studied in this paper was proposed recently
and independently in [48, 49, 17]. The main idea is to represent the operator in the wavelet
domain by using a change of basis. This change of basis, followed by a thresholding operation,
allows sparsifying the operator and the use of sparse matrix-vector products. The main
objective of this work is to provide solid theoretical foundations to these approaches.

1.1. Contributions of the paper. Our first contribution is the design of a new approach
based on sparse approximation of H in the wavelet domain. Using techniques initially de-
veloped for pseudodifferential operators [5, 34], we show that approximations H̃ satisfying
‖H − H̃‖2→2 ≤ ε can be obtained with this new technique, in no more than O(Nε−d/M )
operations. In this complexity bound, M ≥ 1 is an integer that describes the smoothness of
the blur kernel.

Controlling the spectral norm is usually of little relevance in image processing. Our second
contribution is the design of algorithms that iteratively construct sparse matrix patterns
adapted to the structure of images. These algorithms rely on the fact that both natural
images and operators can be compressed simultaneously in the same wavelet basis.

As a third contribution, we propose an algorithm to design a generic sparsity structure
when only the operator regularity is known. This paves the way for the use of wavelet based
approaches in blind deblurring problems where operators need to be inferred from the data.

We finish the paper with numerical experiments. We show that the proposed algorithms
allow significant speed-ups compared to some WC based methods.

Let us emphasize that the present paper is a continuation of our recent contribution [17].
The main evolution is that (i) we provide all the theoretical foundations of the approach with
precise hypotheses, (ii) we propose a method to automatically generate adequate sparsity
patterns, and (iii) we conduct a thorough numerical analysis of the method.

1.2. Outline of the paper. The outline of this paper is as follows. We introduce the nota-
tion used throughout the paper in section 2. We propose an original mathematical description
of blurring operators appearing in image processing in section 3. We introduce the proposed
method and analyze its theoretical efficiency section 4. We then propose various algorithms
to design good sparsity patterns in section 5. Finally, we perform numerical tests to analyze
the proposed method and compare it to the standard WC based methods in section 6.

2. Notation. In this paper, we consider d-dimensional images defined on a domain Ω =
[0, 1]d. The space L

2(Ω) will denote the space of squared integrable functions defined on Ω.

Let α = (α1, . . . , αd) denote a multi-index. The sum of its components is denoted |α| =
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(a) Sharp image (b) Blurred image and the associated PSF

Figure 1. An example in computer vision. Image degraded by spatially varying blur due to a camera
shake. Images are from [26], c© 2011 IEEE. Reprinted with permission, from [M. Hirsch, C. J. Schuler,
S. Harmeling, and B. Scholkopf, Fast removal of non-uniform camera shake, in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), IEEE, Washington, DC, 2011, pp. 463–470].

Figure 2. An example in biology. Image of a multicellular tumor spheroid imaged in three dimensions using
Selective Plane Illumination Microscope (SPIM). Fluorescence beads (in green) are inserted in the tumor model
and allow the observation of the PSF at different locations. Nuclei are stained in red. On the left-hand side,
3D PSFs outside the sample are observed. On the right-hand side, 3D PSFs inside the sample are observed.
This image is from [29] and is used here courtesy of Corinne Lorenzo.

∑d
i=1 αi. The Sobolev spaces WM,p are defined as the set of functions f ∈ L

p with partial
derivatives up to order M in L

p, where p ∈ [1,+∞] and M ∈ N. These spaces, equipped with
the following norm, are Banach spaces:

(1) ‖f‖WM,p = ‖f‖
Lp + |f |WM,p , where |f |WM,p =

∑
|α|=M

‖∂αf‖
Lp .

In this notation, ∂αf = ∂α1

∂x
α1
1

· · · ∂αd

∂x
αd
d

f .
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Figure 3. Three PSFs displayed in an XZ plan at different z depths: −20µm , 0µm, and 20µm. PSFs are
generated using Gibson and Lanni’s 3D optical model from the PSF Generator [30]. The parameters used are
ni = 1.5, ns = 1.33, ti = 150µm, NA = 1.4, and a wavelength of 610nm.

Let X and Y denote two metric spaces endowed with their respective norms ‖ · ‖X and
‖ · ‖Y . Throughout the paper H : X → Y will denote a linear operator and H∗ its adjoint
operator. The subordinate operator norm is defined by

‖H‖X→Y = sup
x∈X,‖x‖X=1

‖Hx‖Y .

The notation ‖H‖p→q corresponds to the case where X and Y are endowed with the stan-
dard L

p and L
q norms. Throughout the paper, operators acting in a continuous domain are

written in plain text format H. Finite dimensional matrices are written in bold fonts H.
Approximation operators will be denoted H̃ in the continuous domain and H̃ in the discrete
domain.

In this paper we consider a compactly supported wavelet basis of L2(Ω). We first introduce
the wavelet basis of L2([0, 1]). We let φ and ψ denote the scaling and mother wavelets. We
assume that the mother wavelet ψ has M vanishing moments, i.e.,

∀ 0 ≤ m < M,

∫
[0,1]

tmψ(t)dt = 0.

We assume that supp(ψ) = [−c(M)/2, c(M)/2]. Note that c(M) ≥ 2M − 1, with equality for
Daubechies wavelets; see, e.g., [32, Theorem 7.9, p. 294].

We define translated and dilated versions of the wavelets for j ≥ 0 as follows:

φj,l = 2j/2φ
(
2j · − l

)
,

(2) ψj,l = 2j/2ψ
(
2j · − l

)
,

with l ∈ Tj and Tj = {0, . . . , 2j − 1}.
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In dimension d, we use separable wavelet bases; see, e.g., [32, Theorem 7.26, p. 348]. Let
m = (m1, . . . ,md). Define ρ0j,l = φj,l and ρ

1
j,l = ψj,l. Let e = (e1, . . . , ed) ∈ {0, 1}d. For ease

of reading, we will use the shorthand notation λ = (j,m, e). We also denote

Λ0 =
{
(j,m, e) | j ∈ Z, m ∈ Tj, e ∈ {0, 1}d

}
and

Λ =
{
(j,m, e) | j ∈ Z, m ∈ Tj, e ∈ {0, 1}d \ {0}

}
.

Wavelet ψλ is defined by ψλ(x1, . . . , xd) = ψe
j,m(x1, . . . , xd) = ρe1j,m1

(x1) . . . ρ
ed
j,md

(xd). Ele-
ments of the separable wavelet basis consist of tensor products of scaling and mother wavelets
at the same scale. Note that if e 	= 0, wavelet ψe

j,m has M vanishing moments in R
d. We let

Ij,m = ∪e suppψ
e
j,m and Iλ = suppψλ.

We assume that every function f ∈ L
2(Ω) can be written as

u =
〈
u, ψ0

0,0

〉
ψ0
0,0 +

∑
e∈{0,1}d\{0}

+∞∑
j=0

∑
m∈Tj

〈
u, ψe

j,m

〉
ψe
j,m

=
〈
u, ψ0

0,0

〉
ψ0
0,0 +

∑
λ∈Λ

〈u, ψλ〉ψλ

=
∑
λ∈Λ0

〈u, ψλ〉ψλ.

This is a slight abuse since wavelets defined in (2) do not define a Hilbert basis of L2([0, 1]d).
There are various ways to define wavelet bases on the interval [12], and wavelets having a
support intersecting the boundary should be given a different definition. We stick to these
definitions to keep the proofs simple.

We let Ψ∗ : L2(Ω) → l2(Z) denote the wavelet decomposition operator and Ψ : l2(Z) →
L
2(Ω) its associated reconstruction operator. The discrete wavelet transform is denoted Ψ :

R
N → R

N . We refer the reader to [32, 14, 12] for more details on the construction of wavelet
bases.

3. Blurring operators and their mathematical properties.

3.1. A mathematical description of blurring operators. In this paper, we consider d-
dimensional real-valued images defined on a domain Ω = [0, 1]d, where d denotes the space
dimension. We consider a blurring operator H : L2(Ω) → L

2(Ω) defined for any u ∈ L
2(Ω) by

the following integral operator:

(3) ∀x ∈ Ω, Hu(x) =

∫
y∈Ω

K(x, y)u(y)dy.

The function K : Ω×Ω → R is a kernel that defines the point spread function (PSF) K( · , y)
at each location y ∈ Ω. The image Hu is the blurred version of u. By the Schwartz kernel
theorem, a linear operator of kind (3) can represent any linear operator if K is a generalized
function. We thus need to determine properties of K specific to blurring operators that will
allow us to design efficient numerical algorithms to approximate the integral (3).
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We propose a definition of the class of blurring operators below.
Definition 3.1 (blurring operators). Let M ∈ N and f : [0, 1] → R+ denote a nonincreasing

bounded function. An integral operator is called a blurring operator in the class A(M,f) if it
satisfies the following properties:

1. Its kernel K ∈WM,∞(Ω× Ω).
2. The partial derivatives of K satisfy

(a)

(4) ∀ |α| ≤M, ∀(x, y) ∈ Ω× Ω, |∂αxK(x, y)| ≤ f (‖x− y‖∞) ,

(b)

(5) ∀ |α| ≤M, ∀(x, y) ∈ Ω× Ω,
∣∣∂αyK(x, y)

∣∣ ≤ f (‖x− y‖∞) .

Let us justify this model from a physical point of view. Most imaging systems satisfy the
following properties.
Spatial decay.

The PSFs usually have a bounded support (e.g., motion blurs, convolution with the
CCD sensors support) or at least a fast spatial decay (Airy pattern, Gaussian blurs,
etc.). This property can be modeled as property 2a. For instance, the 2D Airy disk
describing the PSF due to diffraction of light in a circular aperture satisfies property
2a with f(r) = 1

(1+r)4
(see, e.g., [6]).

PSF smoothness.
In most imaging applications, the PSF at y ∈ Ω, K( · , y) is smooth. Indeed, it is the
result of a convolution with the acquisition device impulse response which is smooth
(e.g., Airy disk). This assumption motivates inequality (4).

PSFs variations are smooth.
We assume that the PSF does not vary abruptly on the image domain. This property
can be modeled by inequality (5). It does not hold true in all applications. For
instance, when sharp discontinuities occur in the depth maps, the PSFs can only be
considered as piecewise regular. This assumption simplifies the analysis of numerical
procedures to approximate H. Moreover, it seems reasonable in many settings. For
instance, in fluorescence microscopy, the PSF width (or Strehl ratio) mostly depends
on the optical thickness, i.e., the quantity of matter laser light has to go through, and
this quantity is intrinsically continuous. Even in cases where the PSF variations are
not smooth, the discontinuities’ locations are usually known only approximately, and
it seems important to smooth the transitions in order to avoid reconstruction artifacts
[2].

Remark 1. A standard assumption in image processing is that the constant functions are
preserved by the operatorH. This hypothesis ensures that brightness is preserved on the image
domain. In this paper we do not make this assumption and thus encompass image formation
models comprising blur and attenuation. Handling attenuation is crucial in domains such as
fluorescence microscopy.

Remark 2. The above properties are important to derive mathematical theories but only
represent an approximation of real systems. The methods proposed in this paper may be
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applied, even if the above properties are not satisfied, and these methods are likely to perform
well. It is notably possible to relax the boundedness assumption.

4. Wavelet representation of the blurring operator. In this section, we show that blur-
ring operators can be well approximated by sparse representations in the wavelet domain.
Since H is a linear operator in a Hilbert space, it can be written as H = ΨΘΨ∗, where
Θ : l2(Z) → l2(Z) is the (infinite dimensional) matrix representation of the blur operator in
the wavelet domain. Matrix Θ is characterized by the coefficients

(6) θλ,μ = 〈Hψλ, ψμ〉 ∀λ, μ ∈ Λ.

In their seminal papers [34, 35, 5], Meyer, Coifman, Beylkin, and Rokhlin prove that the
coefficients of Θ decrease rapidly away from its diagonal for a large class of pseudodifferential
operators. They also show that this property allows the design of fast numerical algorithms
to approximate H, by thresholding Θ to obtain a sparse matrix. In this section, we detail this
approach precisely and adapt it to the class of blurring operators.

This section is organized as follows: first, we discuss the interest of approximating H in a
wavelet basis rather than using the standard discretization. Second, we provide various the-
oretical results concerning the number of coefficients necessary to obtain an ε-approximation
of H.

4.1. Discretization of the operator by projection. The proposed method relies on a
Galerkin discretization of H. The main idea is to use a projection on a finite dimensional
linear subspace Vq = Span(ϕ1, . . . , ϕq) of L

2(Ω), where (ϕ1, ϕ2, . . .) is an orthonormal basis of
L
2(Ω). We define a projected operator Hq by Hqu = PVqHPVqu, where PVq is the projector

on Vq. We can associate a q× q matrix Θ to this operator defined by Θ = (〈Hϕi, ϕj〉)1≤i,j≤q.
It is very common in image processing to assume that natural images belong to functional

spaces containing functions with some degree of regularity. For instance, images are often
assumed to be of bounded total variation [40]. This hypothesis implies that

(7) ‖u− PVqu‖2 = O(q−α)

for a certain α > 0. For instance, in one dimension, if (ϕ1, ϕ2, . . .) is a wavelet or a Fourier
basis and u ∈ H1(Ω), then α = 2. For u ∈ BV (Ω) (the space of bounded variation (BV)
functions), α = 1 in one dimension and α = 1/2 in two dimensions [32, 38].

Moreover, if we assume that H is a regularizing operator, meaning that ‖Hu−PVqHu‖2 =
O(q−β) with β ≥ α for all u satisfying (7), then we have

‖Hu−Hqu‖2
= ‖Hu− PVqH(u+ PVqu− u)‖2
≤ ‖Hu− PVqHu‖2 + ‖PVqH‖2→2‖PVqu− u‖2
= O(q−α).

This simple analysis shows that under mild assumptions, the Galerkin approximation of
the operator converges and that the convergence rate can be controlled. The situation is not
as easy for standard discretization using finite elements, for instance (see, e.g., [47, 3], where
a value α = 1/6 is obtained in two dimensions for BV functions, while the simple analysis
above leads to α = 1/2).
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4.2. Discretization by projection on a wavelet basis. In order to get a representation
of the operator in a finite dimensional setting, we truncate the wavelet representation at
scale J . This way, we obtain an operator H̃ acting on a space of dimension N , where N =
1 +

∑J−1
j=0 (2

d − 1)2dj denotes the numbers of wavelets kept to represent images.
After discretization, it can be written in the following convenient form:

(8) H = ΨΘΨ∗,

where Ψ : RN → R
N is the discrete separable wavelet transform. Matrix Θ is an N × N

matrix which corresponds to a truncated version (also called finite section) of the matrix Θ
defined in (6).

4.3. Theoretical guarantees with sparse approximations. Sparse approximations of in-
tegral operators have been studied theoretically in [5, 34]. They then have been successfully
used in the numerical analysis of PDEs [13, 11, 10]. Surprisingly, they have been scarcely
applied to image processing. The two exceptions we are aware of are the paper [9], where the
authors show that wavelet multipliers can be useful to approximate foveation operators, and,
more recently, [48] proposed an approach that is very much related to that of our paper.

Let us provide a typical result that motivates the proposed approach.
Lemma 4.1 (decay of θλ,μ). Assume that H is a blurring operator (see Definition 3.1) in

the class A(M,f). Assume that the mother wavelet is compactly supported with M vanishing
moments.

Then, the coefficients of Θ satisfy the following inequality for all λ = (j,m, e) ∈ Λ and
μ = (k, n, e′) ∈ Λ:

(9) |θλ,μ| ≤ CM2−(M+ d
2)|j−k|2−min(j,k)(M+d)fλ,μ,

where fλ,μ = f (dist (Iλ, Iμ)), CM is a constant that does not depend on λ and μ, and

dist (Iλ, Iμ) = inf
x∈Iλ, y∈Iμ

‖x− y‖∞

= max

(
0,
∥∥∥2−jm− 2−kn

∥∥∥
∞

− (2−j + 2−k)
c(M)

2

)
.(10)

Proof. See Appendix A.
Lemma 4.1 is the key to obtaining all subsequent complexity estimates.
Theorem 4.2. Let Θη be the matrix obtained by zeroing all coefficients in Θ such that

2−min(j,k)(M+d)fλ,μ ≤ η,

with λ = (j,m, e) ∈ Λ and μ = (k, n, e′) ∈ Λ.
Let H̃η = ΨΘηΨ

∗ denote the resulting operator. Suppose that f is compactly supported
in [0, κ] and that η ≤ log2(N)−(M+d)/d. Then the following hold.

(i) The number of nonzero coefficients in Θη is bounded above by

(11) C ′
MNκ

d η−
d

M+d ,

where C ′
M > 0 is independent of N .
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(ii) The approximation H̃η satisfies ‖H− H̃η‖2→2 � η
M

M+d .

(iii) The number of coefficients needed to satisfy ‖H− H̃η‖2→2 ≤ ε is bounded above by

(12) C ′′
MNκ

d ε−
d
M ,

where C ′′
M > 0 is independent of N .

Proof. See Appendix B.

Let us summarize the main conclusions drawn from this section:

• A discretization in the wavelet domain provides better theoretical guarantees than the
standard quadrature rules (see section 4.1).

• The method is capable of handling automatically the degree of smoothness of the

integral kernel K since there is a dependency in ε−
d
M where M is the smoothness of

the integral operator.
• We will see in the next section that the method is quite versatile since different sparsity

patterns can be chosen depending on the knowledge of the blur kernel and on the
regularity of the signals that are to be processed.

• The method can also handle more general singular operators, as was shown in the
seminal papers [34, 35, 5].

Remark 3. Similar bounds as those in (9) can be derived with less stringent assumptions.
First, the domain can be unbounded, given that kernels have a sufficiently fast decay at
infinity. Second, the kernel can blow up on its diagonal, which is the key to studying Calderon–
Zygmund operators (see [34, 35, 5] for more details). We stick to this simpler setting to simplify
the proofs.

5. Identification of sparsity patterns. A key step in controlling the approximation quality
is the selection of the coefficients in the matrix Θ that should be kept. For instance, a simple
thresholding of Θ leads to suboptimal and somewhat disappointing results. In this section we
propose algorithms to select the most relevant coefficients for images belonging to functional
spaces such as that of BV functions. We study the case where Θ is known completely and
the case where only an upper-bound such as (9) is available.

5.1. Problem formalization. Let H be the Nd × Nd matrix defined in (8). We wish to
approximate H by a matrix H̃K of kind ΨSKΨ∗, where SK is a matrix with at most K
nonzero coefficients. Let SK denote the space of N × N matrices with at most K nonzero
coefficients. The problem we address in this paragraph reads

min
SK∈SK

∥∥∥H− H̃K

∥∥∥
X→2

= min
SK∈SK

max
‖u‖X≤1

‖Hu−ΨSKΨ∗u‖2 .

The solution of this problem provides the best K-sparse matrix SK , in the sense that no
other choice provides a better signal-to-noise ratio (SNR) uniformly on the unit-ball {u ∈
R
N , ‖u‖X ≤ 1}.
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5.1.1. Theoretical choice of the space X. The norm ‖ · ‖X should be chosen depending
on the type of images that have to be blurred. For instance, it is well known that natu-
ral images are highly compressible in the wavelet domain [32, 43]. This observation is the
basis of the JPEG2000 compression standard. Therefore, a natural choice could be to set
‖u‖X = ‖Ψ∗u‖1. This choice will ensure a good reconstruction of images that have a wavelet
decomposition with a low �1-norm.

Another very common assumption in image processing is that images have a bounded
total variation. The space of functions with bounded total variation [1] contains images
discontinuous along edges with finite length. Total variation is one of the most successful tools
for image processing tasks such as denoising, segmentation, and reconstruction. Functions in
BV (Ω) can be characterized by their wavelet coefficients [38, 32]. For instance, if u ∈ BV (Ω),
then

(13)
∑
λ∈Λ0

2j(1−
d
2
) |〈u, ψλ〉| < +∞

for all wavelet bases. This result is due to embeddings of BV space in Besov spaces which are
characterized by their wavelet coefficients (see [10] for more details on Besov spaces). This
result motivated us to consider norms defined by

‖u‖X = ‖ΣΨ∗u‖1 ,

where Σ = diag(σ1, . . . , σN ) is a diagonal matrix. Depending on the regularity level of the
images considered, different diagonal coefficients can be used. For instance, for BV signals in
one dimension, one could set σi = 2j(i)/2, where j(i) is the scale of the ith wavelet, owing to
(13).

5.1.2. Practical choice of the space X. More generally, it is possible to adapt the
weights σi depending on the images to recover. Most images exhibit a similar decay of wavelet
coefficients across subbands. This decay is a characteristic of the functions’ regularity (see, e.g.,
[25]). To illustrate this fact, we conducted a simple experiment in Figure 4. We evaluate the
maximal value of the amplitude of wavelet coefficients of three images with different contents
across scales. The wavelet transform is decomposed at level 4, and we normalize the images
so that their maximum wavelet coefficient is 1. As can be seen, even though the maximal
values differ from one image to the next, their overall behavior is the same: amplitudes decay
nearly dyadically from one scale to the next. The same phenomenon can be observed with
the mean value.

This experiment suggests setting σi = 2j(i) in order to normalize the wavelet coefficients’
amplitude in each subband. Once again, the same idea was explored in [48].

5.1.3. An optimization problem. We can now take advantage of the fact that images and
operators are sparse in the same wavelet basis. Let z = Ψ∗u and Δ = Θ − SK . Since we
consider orthogonal wavelet transforms, we have ‖Ψu‖2 = ‖u‖2 for any u ∈ R

N , and therefore∥∥∥H− H̃K

∥∥∥
X→2

= max
‖u‖X≤1

‖Ψ(Θ− SK)Ψ∗u‖2
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(a) Boat
(1−0.02−0.02−0.009−0.004)

(b) Drosophila
(1−0.04−0.02−0.007−0.004)

(c) Pattern
(1−0.02−0.02−0.009−0.004)

Figure 4. Three pictures and the mean amplitude of their wavelet coefficients at each scale of the wavelet
transform.

= max
‖Σz‖1≤1

‖(Θ− SK)z‖2

= max
‖z‖1≤1

∥∥ΔΣ−1z
∥∥
2
.

Since the operator norm ‖A‖1→2 = max1≤i≤N

∥∥A(i)
∥∥
2
, where A(i) denotes the ith column

of the N × N matrix A, and noting that (ΔΣ−1)(i) = Δ(i)σ−1
i , we finally get the following

simple expression for the operator norm:

(14)
∥∥∥H− H̃

∥∥∥
X→2

= max
1≤i≤N

1

σi

∥∥∥Δ(i)
∥∥∥
2
.

Our goal is thus to find the solution of

(15) min
SK∈SK

max
1≤i≤N

1

σi

∥∥∥Δ(i)
∥∥∥
2
.

5.2. Link with the approach in [48]. In this section, we show that the method proposed in
[49, 48] can be interpreted with the formalism given above. In those papers,Θ is approximated
by Θ̃ using the following rule:

(16) Θ̃i,j =

{
Θi,j if

Θi,j

wj
is in the K largest values of ΘW−1,

0 otherwise.

The weights wi are set as constant by subbands and learned as described in section 5.1.2.

The thresholding rule (16) can be interpreted as the solution of the following problem:

min
˜Θ∈SK

∥∥∥Θ− Θ̃
∥∥∥
W→∞

,
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where here ‖x‖W = ‖Wx‖1 with W = diag(wi) a diagonal matrix. Indeed, the above problem
is equivalent to

min
˜Θ∈SK

max
1≤i,j≤N

∣∣∣∣ 1wj

(
Θ− Θ̃

)
i,j

∣∣∣∣ .
In other words, the method proposed in [49, 48] constructs a K best-term approximation of
Θ in the metric ‖ · ‖W→∞.

Overall, the problem is very similar to (15), except that the image quality is evaluated
through an infinite norm in the wavelet domain, while we propose using a Euclidean norm in
the spatial domain. We believe that this choice is more relevant for image processing since the
SNR is the most common measure of image quality. In practice, we will see in the numerical
experiments that both methods lead to very similar practical results.

Finally, let us mention that the authors in [48] have the additional concern of storing the
matrix representation with the least memory. They therefore quantize the coefficients in Θ.
Since the main goal in this paper is the design of fast algorithms for matrix-vector products,
we do not consider this extra refinement.

5.3. An algorithm when Θ is known. Finding the minimizer of problem (15) can be
achieved using a simple greedy algorithm: the matrix Sk+1 is obtained by adding the largest
coefficient of the column Δi with largest Euclidean norm to Sk. This procedure can be im-
plemented efficiently by using quick sort algorithms. The complete procedure is described
in Algorithm 1. The overall complexity of this algorithm is O(N2 log(N)). The most com-
putationally intensive step is the sorting procedure in the initialization. The loop on k can
be accelerated by first sorting the set (γj)1≤j≤N , but the algorithm’s complexity remains
essentially unchanged.

5.4. An algorithm when Θ is unknown. In the previous paragraph, we assumed that
the full matrix Θ was known. There are at least two reasons that make this assumption
irrelevant. First, computing Θ is very computationally intensive, and it is not even possible
to store this matrix in RAM for medium-sized images (e.g., 512 × 512). Second, in blind
deblurring problems, the operator H needs to be inferred from the data, and adding priors on
the sparsity pattern of SK might be an efficient choice to improve the problem identifiability.

When Θ is unknown, we may take advantage of (9) to define sparsity patterns. A naive
approach would consist in applying Algorithm (1) directly on the upper-bound (9). However,
this matrix cannot be stored, and this approach is applicable only for small images. In order
to reduce the computational burden, one may take advantage of the special structure of the
upper-bound: (9) indicates that the coefficients θλ,μ can be discarded for sufficiently large
|j − k| and sufficiently large distance between the wavelet supports. Equation (9) thus means
that for a given wavelet ψλ, only its spatial neighbors in neighboring scales have significant
correlation coefficients 〈Hψλ, ψμ〉. We may thus construct sparsity patterns using the notion
of multiscale neighborhoods defined below.

Definition 5.1 (multiscale shift). The multiscale shift sλ,μ ∈ Z
d between two wavelets ψλ and

ψμ is defined by

(17) sλ,μ =
⌊ n

2max(k−j,0)

⌋
−

⌊ m

2max(j−k,0)

⌋
.
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Algorithm 1: An algorithm to find the minimizer of (15).

Input:
Θ: N ×N matrix;
Σ: Diagonal matrix;
K: the number of elements in the thresholded matrix;
Output:
SK : Matrix minimizing (15)
Initialization:
Set SK = 0 ∈ R

N×N ;
Sort the coefficients of each column Θ(j) of Θ in decreasing order;
Obtain A(j), the sorted columns Θ(j), and index sets Ij;
The sorted columns A(j) and index sets Ij satisfy A(j)(i) = Θ(j)(Ij(i));

Compute the norms γj =
‖Θ(j)‖22

σ2
j

;

Define O = (1, . . . , 1) ∈ R
N ;

O(j) is the index of the largest coefficient in A(j) not yet added to SK ;
begin

for k = 1 to K do
Find l = argmaxj=1...N γj ;
(Find the column l with largest Euclidean norm)
Set SK(Il(O(l)), l) = Θ(Il(O(l)), l) ;
(Add the coefficient in the lth column at index Il(O(l))

Update γl = γl − (A
(l)(O(l))

σl
)2 ;

(Update norms vector)
Set O(l) = O(l) + 1 ;
(The next value to add in the lth column will be at index O(l) + 1)

end

end

We recall that λ = (j,m, e) ∈ Λ and μ = (k, n, e′) ∈ Λ. Note that for k = j, the multiscale
shift is just sλ,μ = n −m and corresponds to the standard shift between wavelets, measured
as a multiple of the characteristic size 2−j . The divisions by 2max(k−j,0) and 2max(j−k,0) allow
rescaling the shifts at the coarsest level. This definition is illustrated in Figure 5.

Definition 5.2 (multiscale neighborhood). Let

NNN =
{
(j, (k, s)), (j, k) ∈ {0, . . . , log2(N)− 1}2, s ∈ {0, . . . , 2min(j,k) − 1}d

}
denote the set of all neighborhood relationships, i.e., the set of all possible couples of type
(scale, (scale,shift)). A multiscale neigborhood N is an element of the powerset P(NNN ).

Definition 5.3 (multiscale neighbors). Given a multiscale neigborhood N , two wavelets ψλ

and ψμ will be said to be N -neighbors if (j, (k, sλ,μ)) ∈ N , where sλ,μ is defined in (17).
The problem of finding a sparsity pattern is now reduced to finding a good multiscale

neighborhood. In what follows, we let NNN (j) = {(k, s), (j, (k, s)) ∈ NNN} denote the set of all
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j=0

j=1

j=2

s=0s=-1

s=0

Figure 5. Illustration of a multiscale shift on a 1D signal of size 8 with the Haar basis. The shifts are
computed with respect to wavelet ψ1,1. Wavelets ψ0,0, ψ2,2, and ψ2,3 have a multiscale shift s = 0 with ψ1,1

since their support intersects that of ψ1,1. Wavelets ψ1,0, ψ2,0, and ψ2,1 have a multiscale shift s = −1 with
ψ1,1 since their support intersects that of ψ1,0.

possible neighborhood relationships at scale j. This is illustrated in Figure 6. Let N ∈ P(NNN )
denote a multiscale neighborhood. We define the matrix SN as follows:

SN (λ, μ) =

{
θλ,μ if ψλ is an N -neighbor of ψμ,
0 otherwise.

Equation (9) indicates that
|θλ,μ| ≤ u(j, k, s)

with

(18) u(j, k, s) = CM2−(M+ d
2)|j−k|−(M+d)min(j,k)fj,k,s

and fj,k,s = f(max(0, 2−min(j,k) ‖s‖∞ − (2−j + 2−k) c(M)
2 )). Let U be the matrix defined by

U(λ, μ) = u(j, k, sλ,μ). Finding a good sparsity pattern can now be achieved by solving the
following problem:

(19) min
N∈P(NNN )
|N |=K

max
1≤i≤N

1

σi

∥∥∥(U− SN )(i)
∥∥∥
2
,
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scales
Figure 6. Illustration of a multiscale neighborhood on a 1D signal. In this example, the neighborhood at

scale 1 is N (1) = {(−1, 0), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1), (2, 0)}. Notice that the two red wavelets at
scale 2 are neighbors of the orange wavelet at scale 1 and that this relationship is described through only one
shift.

where (U− SN )(i) denotes the ith column of (U− SN ).
In what follows, we assume that σi depends only on the scale j(i) of the ith wavelet.

Similarly to the previous section, finding the optimal sparsity pattern can be performed using
a greedy algorithm. A multiscale neighborhood is constructed by iteratively adding the couple
(scale, (scale,shift)) that minimizes a residual. This technique is described in Algorithm 2.

Note that the norms γk depend only on the scale j(k), so that the initialization step
requires only O(N log2(N)) operations. Similarly to Algorithm 1, this algorithm can be
accelerated by first sorting the elements of u(j, k, s) in decreasing order. The overall complexity
for this algorithm is O(N log(N)2) operations.

6. Numerical experiments. In this section we perform various numerical experiments in
order to illustrate the theory proposed in the previous sections and to compare the practical
efficiency of wavelet based methods against WC based approaches. We first describe the
operators and images used in our experiments. Second, we provide numerical experiments for
the direct problems. Finally, we provide numerical comparisons for the inverse problem.

6.1. Preliminaries.

6.1.1. Test images. We consider a set of 16 images of different natures: standard im-
age processing images (the boat, the house, Lena, Mandrill (see Figure 7a), peppers, and
cameraman), two satellite images, three medical images, three building images, and two test
pattern images (see Figure 7b). Due to memory limitations, we consider only images of size
N = 256×256. Note that a full matrix of size N×N stored in double precision weighs around
32 gigabytes.

6.1.2. Test operators. Three different blur kernels of different complexities are consid-
ered; see Figure 8. The PSFs in Figures 8a and 8b are modeled for all x ∈ [0, 1]2 by 2D
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Algorithm 2: An algorithm to find the minimizer of (19).

Input:
u: Upper-bound defined in (18);
Σ: Diagonal matrix;
K: The number of elements of the neighborhood;
Output:
N : Multiscale neighborhood minimizing (19)
Initialization:
Set N = ∅;
Compute the norms γk =

‖U(k)‖22
σ2
k

using the upper-bound u;

begin
for k = 1 to K do

Find j∗ = argmaxj=1...N γj ;
(The column with the largest norm)
Find (k∗, s∗) = argmax(k,s)∈NNN (j∗) u

2(j∗, k, s)2max(j∗−k,0) ;
(The best scale and shift for this column is (k∗, s∗).)
(The number of elements in the neighborhood relationship (j∗, (k, s)) is
2max(j∗−k,0).)
Update N = N ∪ {(j∗, (k∗, s∗))} ;
Set γk = γk − u2(j∗, k∗, s∗) · 2max(j∗−k,0)

end

end

Gaussians. Therefore, the associated kernel is defined for all (x, y) ∈ [0, 1]2 × [0, 1]2 by

K(x, y) =
1

2π |C(y)| exp
[
1

2
(y − x)TC−1(y)(y − x)

]
.

The covariance matrices C are defined as follows:
• In Figure 8a, C(y) = (f(y1)0

0
f(y1)

) with f(t) = 2t, for t ∈ [0, 1]. The PSFs are truncated
out of an 11× 11 support.

• In Figure 8b, C(y) = R(y)TD(y)R(y), where R(y) is a rotation matrix of angle θ =
arctan (y1−0.5

y2−0.5) and D(y) = (g(y)0
0

h(y)) with g(y) = 10
∥∥y − (0.5, 0.5)T

∥∥
2
and h(y) =

2
∥∥y − (0.5, 0.5)T

∥∥
2
. The PSFs are truncated out of a 21× 21 support.

The PSFs in Figure 8c were proposed in [44] as an approximation of real spatially optical
blurs.
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(a) Mandrill (b) Letters

Figure 7. The two images of size 256× 256 used in these numerical experiments.

(a) (b) (c)

Figure 8. PSF maps used in the paper. The PSFs in Figure 8a are Gaussians with equal variances
increasing in the vertical direction. The PSFs in Figure 8b are anisotropic Gaussians with covariance matrices
that depend on the polar coordinates. The PSFs in Figure 8c are based on paper [44].

6.1.3. Computation of the full Θ matrix. Before applying our approximation methods,
matrix Θ needs to be computed explicitly. The coefficients 〈Hψλ, ψμ〉 are approximated by
their discrete counterparts. If ψλ and ψμ denote discrete wavelets, we simply compute the
wavelet transform of Hψλ and store it in the λth column of Θ. This computation scheme is
summarized in Algorithm 3. This algorithm corresponds to the use of rectangle methods to
evaluate the dot-products:

(20)

∫
Ω

∫
Ω
K(x, y)ψλ(y)ψμ(x)dydx � 1

N2d

∑
x∈X

∑
y∈X

K(x, y)ψλ(y)ψμ(x).



2994 PAUL ESCANDE AND PIERRE WEISS

Algorithm 3: An algorithm to compute Θ.

Output:
Θ: the full matrix of H
begin

forall the λ do
Compute the wavelet ψλ using an inverse wavelet transform
Compute the blurred wavelet Hψλ

Compute
(〈
Hψλ,ψμ

〉)
μ
using one forward wavelet transform

Set
(〈
Hψλ,ψμ

〉)
μ
in the λth column of Θ.

end

end

6.2. Application to direct problems. In this section, we investigate the approximation
properties of the proposed approaches with the aim of computing matrix-vector products. In
all numerical experiments, we use an orthogonal wavelet transform with four decomposition
levels. We always use Daubechies wavelets.

6.2.1. Influence of vanishing moments. First we demonstrate the influence of vanishing
moments on the quality of approximations. For each number of vanishing moments M ∈
{1, 2, 4, 6, 10}, a sparse approximation H̃ is constructed by thresholding Θ, keeping the K =
l × N largest coefficients with l ∈ {0 . . . 40}. Then for each u in the set of 16 images, we
compare H̃u to Hu, computing the peak SNR (pSNR). We then plot the average of pSNRs
over the set of images with respect to the number of operations needed for a matrix-vector
product. The results of this experiment are displayed in Figure 9. It appears that for the
considered operators, using as many vanishing moments as possible was preferable. Using more
than 10 vanishing moments, however, led to insignificant performance increase while making
the numerical complexity higher. Therefore, in all of the following numerical experiments we
will use Daubechies wavelets with 10 vanishing moments. Note that paper [48] only explored
the use of Haar wavelets. This experiment shows that very significant improvements can be
obtained by leveraging the regularity of the integral kernel using vanishing moments. The
behavior was predicted by Theorem 4.2.

6.2.2. Comparison of different methods.

Wavelets versus windowed convolutions. In this first numerical experiment, we evaluate
‖H− H̃‖2→2, where H̃ is obtained by the WC method or sparse approximations in the wavelet
domain.

The sparse approximation of the operator is constructed by thresholding the matrix Θ in
order to keep the K largest coefficients. We have set K = 2l × N with l ∈ {0 . . . 2 log2N}.
This way K is a multiple of the number of pixels in the image. The WC method is constructed
by partitioning the image into 2l × 2l subimages where l ∈ {1 . . . log2N}. We also studied
the case where subimages overlap and linearly interpolated the blur between subimages as
proposed in [36, 27]. The overlap has been fixed to 50% of the subimages’ sizes.

For each subimage size, and each overlap, the norm ‖H− H̃‖2→2 is approximated using a
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Figure 9. pSNR of the blurred image using the approximated operator ˜Hu with respect to the blurred image
using the exact operator Hu. pSNRs have been averaged over the set of test images. Daubechies wavelets have
been used with different number vanishing moments M ∈ {1, 2, 4, 6, 10}. The case M = 1 corresponds to Haar
wavelets.

power method [22]. We stop the iterative process when the difference between the eigenvalues
of two successive iterations is smaller than 10−8‖H‖2→2. The number of operations associ-
ated to each type of approximation is computed using theoretical complexities. For sparse
matrix-vector products the number of operations is proportional to the number of nonzero
coefficients in the matrix. For WC methods, the number of operations is proportional to the
number of windows (2l × 2l) multiplied by the cost of a discrete convolution over a window(
N
2l

+Nκ
)2

log2
(
N
2l

+Nκ
)
.

Figure 10 shows the results of this experiment. The wavelet based method seems to
perform much better than WC methods for both operators. The gap is however significantly
larger for the rotation blur in Figure 8b. This experiment therefore suggests that the advantage
of wavelet based approaches will depend on the type of blur considered.

The influence of sparsity patterns. In this numerical experiment, we obtain a K-sparse
matrixΘK using a simple thresholding strategy, Algorithm 1, or Algorithm 2. We evaluate the
error ‖H− H̃‖X→2 defined in (14) for each method. We set σi = 2j(i), where j(i) corresponds
to the scale of the ith wavelet. As can be seen from Figure 11, Algorithm 1 provides a much
better error decay for each operator than the simple thresholding strategy. This fact will
be verified for real images in next section. Algorithm 2 has a much slower decay than both
thresholding algorithms. Notice that this algorithm is essentially blind, in the sense that it
does not require knowing the exact matrix Θ to select the pattern. It would therefore work
for a whole class of blur kernels, whereas the simple thresholding strategy and Algorithm 1
work only for a specific matrix.

Figure 12 shows the sparsity patterns of matrices obtained with Algorithms 1 and 2 for
K = 30N and K = 128N coefficients. The sparsity patterns look quite similar. However,
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Figure 10. The operator norms ‖H− ˜H‖2→2 are displayed for the three proposed kernels. (Left: kernel
in Figure 8a; middle: kernel in Figure 8b; right: kernel in Figure 8c). Norms are plotted with respect to the

number of operations needed to compute ˜Hu. The abscissas are in log scale.

Algorithm 1 selects subbands that are not selected by Algorithm 2, which might explain
the significant performance differences. Similarly, Algorithm 2 select subbands that would
probably be crucial for some blur kernels, but which are not significant for this particular blur
kernel.
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Figure 11. The operator norms ‖H− ˜H‖X→2 are displayed for kernels Figure 8a (left) and Figure 8b

(right), and with respect to the number of operations needed to compute ˜Hu. The abscissas are in log scale.
Daubechies wavelets with 10 vanishing moments have been used.
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(a) Algorithm 1 – K = 30N (b) Algorithm 2 – K = 30N

(c) Algorithm 1 – K = 128N (d) Algorithm 2 – K = 128N

Figure 12. The structures of the wavelet matrices of ΘK are displayed for Algorithms 1 and 2 and for
K = 30N and K = 128N coefficients. Algorithm 1 has been applied using the second Σ = diag(2j(i))i matrix.
This experiment corresponds to the blur in Figure 8b.
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6.2.3. Quality of matrix-vector products for real images. In this section, we evaluate
the performance of wavelet based methods for matrix-vector products with real images.

Quality versus complexity. We compare H̃u to Hu, where u is the image in Figure 7b and
where H̃ is obtained either by WC methods or by sparse wavelet approximations. We plot the
pSNR between the exact blurred image Hu and the blurred image using the approximated
operator H̃u in Figure 13. Different approximation methods are tested:

Thresholded matrix : This corresponds to a simple thresholding of the wavelet matrix Θ.
Σ n◦1: This corresponds to applying Algorithm 1 with σi = 1 for all i, where j(i) corresponds

to the scale of the ith wavelet.
Σ n◦2: This corresponds to applying Algorithm 1 with σi = 2j(i) for all i.
[48]: The method presented in [48] with K = l × N coefficients in the matrix, with l ∈

{1, . . . , 100}.
WC, Overlap 50%: This corresponds to the windowed convolution with 50% overlap. We use

this overlap since it produces better pSNRs.
Algorithm 2: The algorithm finds multiscale neighborhoods until K = l×N coefficients pop-

ulate the matrix, with l ∈ {1, . . . , 100}. In this experiment, we set M = 1, f(t) = 1
1+t ,

and σi = 2j(i) for all i.

The pSNRs are averaged over the set of 16 images. The results of this experiment are
displayed in Figure 13 for the two kernels from Figures 8b and 8a. Let us summarize the
conclusions from this experiment:

• A clear fact is that WC methods are significantly outperformed by wavelet based
methods for all blur kernels. Moreover, the differences between wavelet and WC
based methods get larger as the blur regularity decreases.

• A second result is that wavelet based methods with fixed sparsity patterns (Algorithm
2) are quite satisfactory for very sparse patterns (i.e., fewer than 20N operations)
and kernels in Figures 8a and 8b. We believe that the most important regime for
applications is in the range [N, 20N ], so that this result is rather positive. However,
Algorithm 2 suffers from two important drawbacks: first, the increase in SNR after a
certain value becomes very slow. Second, this algorithm provides very disappointing
results for the last blur map in Figure 8c. These results suggest that this method
should be used with caution if one aims at obtaining very good approximations. In
particular, the algorithm is dependent on the bound (9), which itself depends on user-
given parameters such as function f in (2a). Modifying those parameters might result
in better results but is usually hard to do manually.

• The methods Σ n◦ 1, Σ n◦ 2, and Thresholded matrix all behave similarly. Method Σ
n◦ 1 is, however, significantly better, showing the importance of choosing the weights
σi in (15) carefully.

• The methodsΣ n◦ 1, Σ n◦ 2, and Thresholded matrix outperform the method proposed
in [48] for very sparse patterns (< 20N) and get outperformed for midrange sparisfi-
cation > 40N . The main difference between algorithm [48] and the methods proposed
in this paper is the number of vanishing moments. In [48], the authors propose using
the Haar wavelet (i.e., one vanishing moment), while we use Daubechies wavelets with
10 vanishing moments. In practice, this results in better approximation properties
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in the very sparse regime, which might be the most important in applications. For
midrange sparsification, the Haar wavelet provides better results. Two reasons might
explain this phenomenon. First, Haar wavelets have a small spatial support; there-
fore, matrix Θ contains fewer nonzero coefficients when expressed with Haar wavelets
than Daubechies wavelets. Second, the constants C ′

M and C ′′
M in Theorem (4.2) are

increasing functions of the number of vanishing moments.
Illustration of artifacts. Figure 14 provides a comparison of the WC methods and the

wavelet based approach in terms of approximation quality and computing times. The following
conclusions can be drawn from this experiment:

• The residual artifacts appearing in the WC approach and wavelet based approach are
different. They are localized at the interfaces between subimages for the WC approach,
while they span the whole image domain for the wavelet based approach. It is likely
that using translation and/or rotation invariant wavelets would improve the result
substantially.

• The approximation using the second Σ matrix produces the best results and should
be preferred over more simple approaches.

• In our implementation, the WC approach (implemented in C) is outperformed by the
wavelet based method (implemented in MATLAB with C-mex files). For instance, for
a precision of 45dBs, the wavelet based approach is about 10 times faster.

• The computing time of 1.21 seconds for the WC approach with a 2×2 partition might
look awkward since the computing times are significantly lower for finer partitions.
This is because the efficiency of FFT methods depend greatly on the image size. The
time needed to compute an FFT is usually lower for sizes that have a prime factoriza-
tion comprising only small primes (e.g., less than 7). This phenomenon explains the
fact that the practical complexity of WC algorithms may increase in a chaotic manner
with respect to m.
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Figure 13. pSNR of the blurred image using the approximated operators ˜Hu with respect to the blurred
image using the exact operator Hu. The results have been obtained with blur Figure 8a for the top-left graph,
blur Figure 8b for the top-right graph, and blur Figure 8c for the bottom. pSNRs are averaged over the set of
16 images.
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Piece. Conv. Difference Algorithm 1 Difference l =

2× 2 31.90 dB 36.66 dB 5

1.21 sec 0.039 sec

4× 4 38.49 dB 45.87 dB 30

0.17 sec 0.040 sec

8× 8 44.51 dB 50.26 dB 50

0.36 sec 0.048 sec

16 × 16 53.75 dB 57.79 dB 100

0.39 sec 0.058 sec

Figure 14. Blurred images and the differences Hu− ˜Hu for the kernel Figure 8b. Results on the left are
obtained using WC approximations with 2 × 2, 4 × 4, 8 × 8, and 16 × 16 partitionings all with 50% overlap.
Results on the right are obtained using Algorithm 1 with the second Σ = diag(2j(i))i matrix keeping K = lN
coefficients. The pSNR and the time needed for the computation for the matrix-vector product are shown.
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6.3. Application to inverse problems. In this experiment we compare the methods’ effi-
ciency in deblurring problems. We assume the following classical image degradation model:

(21) v = Hu+ η, η ∼ N
(
0, σ2Id

)
,

where v is the degraded image observed, u is the image to restore, H is the blurring operator,
and σ2 is the noise variance. A standard TV-L2 optimization problem is solved to restore the
image u:

(22) Find u∗ ∈ argmin
u∈RN ,‖˜Hu−v‖2

2
≤α

TV (u),

where H̃ is an approximating operator and TV is the isotropic total variation of u. The
optimization problem is solved using the primal-dual algorithm proposed in [8]. We do not
detail the resolution method since it is now well documented in the literature.

An important remark is that the interest of the total variation term is not only to regularize
the ill-posed inverse problem but also to handle the errors in the operator approximation. In
practice we found that setting α = (1 + ε)σ2N , where ε > 0 is a small parameter, provides
good experimental results.

In Figures 15 and 16, we present deblurring results using Figure 7b with the kernel in
Figure 8b.

In both the noisy and noiseless cases, the 4×4 WC method performs worse reconstructions
than wavelet approaches with 30N . Moreover, they are between 4 and 6 times significantly
slower. Surprisingly, even the implementation in the space domain is faster. The reason for
that is probably a difference in the quality of implementation: we use MATLAB sparse matrix-
vector products for space and wavelet methods. This routine is cautiously optimized, while
our C implementation of WC can probably be improved. In addition, let us mention that two
wavelet transforms need to be computed at each iteration with the wavelet based methods,
while this is not necessary with the space implementation. It is likely that the acceleration
factor would have been significantly higher if wavelet based regularizations had been used.

In the noiseless case, the simple thresholding approach provides significantly better SNRs
than the more advanced method proposed in this paper and in [48]. Note, however, that it
produces more significant visual artifacts. This result might come as a surprise at first sight.
However, as was explained in section 5, our aim to design sparsity patterns was to minimize
an operator norm ‖H− H̃‖X→2. When dealing with an inverse problem, approximating the
direct operator is not as relevant as approximating its inverse. This calls for new methods
specific to inverse problems.

In the noisy case, all three thresholding strategies produce results of a similar quality.
The Haar wavelet transform is, however, about twice as fast since the Haar wavelet support
is smaller. Moreover, the results obtained with the approximated matrices are nearly as
good as those obtained with the true operator. This suggests that it is not necessary to
construct accurate approximations of the operators in practical problems. This observation
is also supported by the experiment in Figure 17. In this experiment, we plot the pSNR of
the deblurred image in the presence of noise with respect to the number of elements in ΘK .
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Interestingly, a matrix containing only 20N coefficients leads to deblurred images close to the
results obtained with the exact operator. In this experiment, a total of K = 5N coefficients
in ΘK is enough to retrieve satisfactory results. This is a very encouraging result for blind
deblurring problems.

7. Conclusion.

7.1. Brief summary. In this paper, we introduced an original method to represent spa-
tially varying blur operators in the wavelet domain. We showed that this new technique has
a great adaptivity to the smoothness of the operator and exhibit an O(Nε−d/M ) complexity,
where M denotes the kernel regularity. This method is versatile since it is possible to adapt
it to the kind of images that have to be treated. We showed that much better performance in
approximating the direct operator can be obtained by leveraging the fact that natural signals
exhibit some structure in the wavelet domain. Moreover, we proposed a original method to
design sparsity patterns for a class of blurring operators when only the operator regularity
is known. These theoretical results were confirmed by practical experiments on real images.
Even though our conclusions are still preliminary since we tested only small 256×256 images,
the wavelet based methods seem to significantly outperform standard WC based approaches.
Moreover, they seem to provide satisfactory deblurring results on practical problems with a
complexity no greater than 5N operations, where N denotes the pixels number.

7.2. Outlook. We provided a simple complexity analysis based solely on the global reg-
ularity of the kernel function. It is well known that wavelets are able to adapt locally to the
structures of images or operators [11]. The method should thus provide an efficient tool for
piecewise regular blurs appearing in computer vision, for instance. It could be interesting to
precisely evaluate the complexity of wavelet based approximations for piecewise regular blurs.

A key problem of the wavelet based approach is the need to project the operator on a
wavelet basis. In this paper we performed this operation using the computationally intensive
Algorithm 3. It could be interesting to derive fast projection methods. Let us note that
such methods already exist in the literature [5]. A similar procedure was used in the specific
context of spatially varying blur in [48].

Moreover, the proposed method can already be applied to situations where the blur mostly
depends on the instrument: the wavelet representation has to be computed once and for all
off-line, and then all deblurring operations can be handled much faster. This situation occurs
in satellite imaging and for some fluorescence microscopes (see, e.g., [23, 46, 31]).

The design of good sparsity patterns is an open and promising research avenue. In par-
ticular, designing patterns adapted to specific inverse problems could have some impact, as
was illustrated in section 6.3.

Another exciting research perspective is the problem of blind deconvolution. Expressing
the unknown operator as a sparse matrix in the wavelet domain is a good way to improve
the problem identifiability. This is, however, far from sufficient since the blind deconvolution
problem has far more unknowns (a full operator and an image) than data (a single image).
Further assumptions should thus be made on the wavelet coefficients’ regularity, and we plan
to study this problem in a forthcoming work.

Finally, let us mention that we observed some artifacts when using the wavelet based
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(a) Degraded image
21.85dB

(b) Exact operator
34.53dB – 64.87 sec

(c) Simple thresh.
31.68dB – 21.68 sec

(d) Algorithm 1
30.57dB – 21.16 sec

(e) WC 4× 4
28.37dB – 85.60 sec

(f) [48]
30.53dB – 14.12 sec

Figure 15. Deblurring results for kernel Figure 8b and without noise. Top-left: Degraded image. Top-
right: Deblurred using the exact operator. Middle-left: Deblurred by the wavelet based method and a simple
thresholding. Middle-right: Deblurred by the wavelet based method and Algorithm 2 with the second Σ =
diag(2j(i))i matrix. Bottom: Deblurred using a 4 × 4 WC algorithm with 50% overlap. For wavelet methods
K = 30N coefficients are kept in matrices. pSNRs are displayed for each restoration.
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(a) Degraded image
21.62dB

(b) Exact operator
29.09dB – 64.87 sec

(c) Simple thresh.
28.64dB – 21.68 sec

(d) Algorithm 1
28.24dB – 21.16 sec

(e) WC 4× 4
27.62dB – 85.60 sec

(f) [48]
28.37dB – 14.12 sec

Figure 16. Deblurring results for kernel Figure 8b and with σ = 0.02 noise. Top-left: Degraded image.
Top-right: Deblurred using the exact operator. Middle-left: Deblurred by the wavelet based method and a
simple thresholding. Middle-right: Deblurred by the wavelet based method and Algorithm 2 with the second
Σ = diag(2j(i))i matrix. Bottom: Deblurred using a 4 × 4 WC algorithm with 50% overlap. For wavelet
methods K = 30N coefficients are kept in matrices. pSNRs are displayed for each restoration.
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Exact Operator

Figure 17. pSNR of the deblurred image with respect to the number of coefficients in the matrix divided
by N for the image Figure 7a and the kernel Figure 8a. The matrix is constructed using Algorithm 1 with
the second Σ = diag(2j(i))i matrix with K = lN coefficients for l from 1 to 30. Deblurred images using these
matrices are compared with the one obtained with the exact operator.

methods with high sparsity levels. This is probably due to their nontranslation and rotation
invariance. It could be interesting to study sparse approximations in redundant wavelet bases
or other time-frequency bases. It was shown, for instance, in [7] that curvelets are nearly
optimal to represent Fourier integral operators. Similarly, Gabor frames are known to be very
efficient to describe smoothly varying integral operators in the 1D setting [28].

Appendix A. Proof of Lemma 4.1.
We let ΠM denote the set of polynomials of degree less than or equal to M .
Lemma A.1 below is a common result in numerical analysis [16] (see also Theorem 3.2.1

in [10]). It ensures that the approximation error of a function by a polynomial of degree M
is bounded by the Sobolev seminorm WM,p.

Lemma A.1 (polynomial approximation). For 1 ≤ p ≤ +∞, M ∈ N
∗, and Ω ⊂ R

d a bounded
domain, the following bound holds:

(23) inf
g∈ΠM

‖f − g‖
Lp(Ω) ≤ C |f |WM+1,p(Ω) ,

where C is a constant that depends on d, M , p, and Ω only.
Moreover, if Ih ⊂ Ω ⊂ R

d is a cube of sidelength h, the following estimate holds:

(24) inf
g∈ΠM

‖f − g‖
Lp(Ih)

≤ ChM+1 |f |WM+1,p(Ih)
,

where C is a constant depending only on d, M , p, and Ω.
Let Iλ = supp(ψλ). From the wavelet definition, we get

Iλ = 2−j(m+ [−c(M)/2, c(M)/2]d);

therefore, |Iλ| = c(M)d · 2−jd. We will now prove Lemma 4.1.
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Proof of Lemma 4.1. Since the mapping (x, y) �→ K(x, y)ψλ(y)ψμ(x) is bounded, it is also
absolutely integrable on compact domains. Therefore, 〈Hψλ, ψμ〉 is well defined for all (λ, μ).
Recall that λ = (j,m, e) ∈ Λ and μ = (k, n, e′) ∈ Λ. Moreover, Fubini’s theorem can be
applied, and we get

〈Hψλ, ψμ〉 =
∫
Iμ

∫
Iλ

K(x, y)ψλ(y)ψμ(x)dydx

=

∫
Iλ

∫
Iμ

K(x, y)ψλ(y)ψλ(x)dxdy.

To prove the result, we distinguish the cases j ≤ k and j > k. In this proof, we focus
on the case j ≤ k. The other case can be obtained by symmetry, using the facts that
〈Hψλ, ψμ〉 = 〈ψλ,H

∗ψμ〉 and H and H∗ are both blurring operators in the same class.
To exploit the regularity of K and ψ, note that for all g ∈ ΠM−1,

∫
Iμ
g(x)ψμ(x)dx = 0

since ψ has M vanishing moments. Therefore,

〈Hψλ, ψμ〉 =
∫
Iλ

inf
g∈ΠM−1

∫
Iμ

(K(x, y)− g(x))ψλ(y)ψμ(x)dxdy,

and

|〈Hψλ, ψμ〉| ≤
∫
Iλ

inf
g∈ΠM−1

∫
Iμ

|K(x, y)− g(x)| |ψλ(y)| |ψμ(x)| dxdy

≤
∫
Iλ

inf
g∈ΠM−1

‖K( · , y)− g‖
L∞(Iμ)

‖ψμ‖L1(Iμ)
|ψλ(y)| dy.

By Lemma A.1, infg∈ΠM−1
‖K( · , y)− g‖

L∞(Iμ)
� 2−kM |K( · , y)|WM,∞(Iμ)

since Iμ is a cube

of sidelength c(M) · 2−k. We thus obtain

|〈Hψλ, ψμ〉| � 2−kM ‖ψμ‖L1(Iμ)
‖ψλ‖L1(Iλ)

ess sup
y∈Ij,m

|K( · , y)|WM,∞(Iμ)

� 2−kM2−
dj
2 2−

dk
2 ess sup

y∈Iλ
|K( · , y)|WM,∞(Iμ)

since ‖ψλ‖L1 = 2−
dj
2 ‖ψ‖

L1 .
Since H ∈ A(M,f),

ess sup
y∈Iλ

|K( · , y)|WM,∞(Iμ)
= ess sup

y∈Iλ

∑
|α|=M

ess sup
x∈Iμ

|∂αxK(x, y)|

≤
∑

|α|=M

ess sup
(x,y)∈Iλ×Iμ

f (‖x− y‖∞)

� ess sup
(x,y)∈Iλ×Iμ

f (‖x− y‖∞) .

Because f is a nonincreasing function, f (‖x− y‖∞) ≤ f (dist (Iλ, Iμ)) since dist (Iλ, Iμ) =
inf(x,y)∈Iλ×Iμ ‖x− y‖∞. Therefore,

|〈Hψλ, ψμ〉| � 2−kM2−
dj
2 2−

dk
2 f (dist (Iλ, Iμ))
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= 2−(M+ d
2
)|j−k|2−j(M+d)f (dist (Iλ, Iμ)) .

The case k < j gives

|〈Hψλ, ψμ〉| � 2−(M+ d
2
)|j−k|2−k(M+d)f (dist (Iλ, Iμ)) ,

which allows us to conclude that

|〈Hψλ, ψμ〉| � 2−(M+ d
2
)|j−k|2−min(j,k)(M+d)f (dist (Iλ, Iμ)) .

Appendix B. Proof of Theorem 4.2. Let us begin with some preliminary results. Recall
that λ = (j,m, e) ∈ Λ and μ = (k, n, e′) ∈ Λ. Since f is compactly supported on [0, κ] and
bounded by cf , we have fλ,μ = f (dist (Iλ, Iμ)) ≤ cf1dist(Iλ,Iμ)≤κ. By (10), dist (Iμ, Iλ) ≤ κ if

‖2−jm− 2−kn‖∞ ≤ Rκ
j,k, where R

κ
j,k = (2−j + 2−k)c(M)/2 + κ.

Lemma B.1. Define

Ge,e′
j,k =

{
(m,n) ∈ Tj × Tk |1dist(Iλ,Iμ)≤κ = 1

}
.

Then |Ge,e′
j,k | ≤ (2j2k+1Rκ

j,k)
d.

Proof. First note that

Ge,e′
j,k =

{
(m,n) ∈ Tj × Tk|

∣∣∣2−jmi − 2−kni

∣∣∣ ≤ Rκ
j,k ∀i ∈ {1, . . . , d}

}
.

Now, define Ge,e′
j,k,m = {n ∈ Tk |(m,n) ∈ Ge,e′

j,k }. For a fixed (j, k,m, e, e′) the set Ge,e′
j,k,m is a

discrete hypercube of sidelength bounded above by 2k+1Rκ
j,k. Therefore, |G

e,e′
j,k,m| ≤ (2k+1Rκ

j,k)
d

coefficients. Moreover, |Tj| = 2jd; hence the number of coefficients in Ge,e′
j,k is bounded above

by (2j2kRκ
j,k)

d.
Proof of (i). We denote Jmax = log2(N)/d the highest scale of decomposition. First

note that a sufficient condition for 2−min(j,k)(M+d)fλ,μ ≤ η is that min(j, k) ≥ J(η) with

J(η) =
− log2(η/cf )

M+d . In the following, we let J̃(η) = min(J(η), Jmax) and define

G =
⋃

min(j,k)<J(η)

⋃
e,e′∈{0,1}d\{0}

Ge,e′
j,k .

The overall number of nonzero coefficients |G| in Θη satisfies

#G =

Jmax−1∑
j=0

Jmax−1∑
k=0

∑
e,e′∈{0,1}d

#Ge,e′
j,k 1min(j,k)<J(η)

� (2d − 1)2
Jmax−1∑
j=0

Jmax−1∑
k=0

1min(j,k)<J(η)2
jd2kd

(
c(M)

2
(2−j + 2−k) + κ

)d

�
Jmax−1∑
j=0

Jmax−1∑
k=0

1min(j,k)<J(η)2
jd2kd

(
c(M)d

2d
2−dj +

c(M)d

2d
2−dk + κd

)
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�
Jmax−1∑
j=0

Jmax−1∑
k=0

1min(j,k)<J(η)2
kd +

Jmax−1∑
j=0

Jmax−1∑
k=0

1min(j,k)<J(η)2
jd

+

Jmax−1∑
j=0

Jmax−1∑
k=0

1min(j,k)<J(η)2
kd2jdκd.

The first sum yields

Jmax−1∑
j=0

Jmax−1∑
k=0

1min(j,k)<J(η)2
kd

=

⎛⎝ ˜J(η)−1∑
j=0

Jmax−1∑
k=j

2kd +

˜J(η)−1∑
k=0

2kd
Jmax−1∑
j=k

1

⎞⎠
� J̃(η)N + 2d

˜J(η) log2(N) � log2(N)N.

The second sum is handled similarly, and the third sum gives

Jmax−1∑
j=0

Jmax−1∑
k=0

1min(j,k)<J(η)2
kd2kdκd

= κd
˜J(η)−1∑
j=0

2jd
Jmax−1∑
k=j

2kd +

˜J(η)−1∑
k=0

2kd
Jmax−1∑
j=k

2jd

� κdN2d
˜J(η).

Overall |G| � log2(N)N + η−
d

M+dN . For η ≤ log2(N)−(M+d)/d, the dominating terms are

of kind η−
d

M+d ; hence |G| � η−
d

M+dNκd.
Proof of (ii). Since Ψ is an orthogonal wavelet transform,∥∥∥H− H̃η

∥∥∥
2→2

= ‖Θ−Θη‖2→2 .

Let Δη = Θ−Θη. We will make use of the following version of the Shur inequality:

(25) ‖Δη‖22→2 ≤ ‖Δη‖1→1‖Δη‖∞→∞.

Since the upper-bound (9) is symmetric,

‖Δη‖∞→∞ = ‖Δη‖1→1 = max
λ∈Λ

∑
μ∈Λ

|Δλ,μ| .

By definition of Θη we get that

∑
μ∈Λ

|Δλ,μ| =
Jmax−1∑
k=0

∑
e′∈{0,1}d\{0}

∑
n∈Ge,e′

j,k,m

|θλ,μ|1min(j,k)>J(η)
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�
Jmax−1∑
k=0

∑
e′∈{0,1}d\{0}

∑
n∈Ge,e′

j,k,m

2−(M+ d
2
)|j−k|2−min(j,k)(M+d)1min(j,k)>J(η).

Then

∑
μ∈Λ

|Δλ,μ| �
Jmax−1∑
k=0

2−(M+ d
2
)|j−k|2−min(j,k)(M+d)1min(j,k)>J(η)

∣∣∣Ge,e′
j,k

∣∣∣
�

j−1∑
k=0

(2kRκ
j,k)

d2(k−j)(M+d/2)2−k(M+d)1k>J(η)

+

Jmax−1∑
k=j

(2kRκ
j,k)

d2(j−k)(M+d/2)2−j(M+d)1j>J(η).

The first sum on k < j is equal to

A1 = 2−jM2−jd/2
j−1∑
k=0

(2k/2Rκ
j,k)

d1k>J(η)

= 2−jM2−jd/21j>J(η)

j−1∑
k=J(η)

(2k/2Rκ
j,k)

d.

The second sum on k ≥ j is

A2 = 1j>J(η)2
−jd/2

Jmax−1∑
k=j

(Rκ
j,k)

d2−k(M−d/2).

Now, notice that (Rκ
j,k)

d � 2−jd + 2−kd + κd. Thus

A1 � 2−jM2−jd/21j>J(η)

j−1∑
k=J(η)

(
2dk/22−jd + 2−dk/2 + 2kd/2κd

)
� 2−jM2−jd/21j>J(η)

(
2−jd2jd/2 + 2−

d
2
J(η) + κd2jd/2

)
= 2−jM1j>J(η)

(
2−jd + 2−

d
2
(J(η)+j) + κd

)
.

And

A2 � 1j>J(η)2
−jd/2

Jmax−1∑
k=j

(
2−jd + 2−kd + κd

)
2−k(M−d/2)

� 1j>J(η)2
−jd/2

(
2−jd2−j(M−d/2) + 2−j(M+d/2) + κd2−j(M−d/2)

)
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� 1j>J(η)2
−jM

(
2−jd + κd

)
.

Hence ∑
μ∈Λ

|Δλ,μ| � 1j>J(η)2
−jM

(
2−jd + κd + 2−

d
2
(J(η)+j)

)
.

Therefore,

‖Δη‖1→1 � 2−J(η)M
(
2−J(η)d + κd + 2−dJ(η)

)
� 2−J(η)M

(
2−J(η)d + κd

)
� η + κdη

M
M+d

� κdη
M

M+d for small η.

Finally, we can see that there exists a constant CM independent of N such that

‖Δη‖1→1 ≤ CMκ
dη

M
M+d and ‖Δη‖∞→∞ ≤ CMκ

dη
M

M+d .

It suffices to use inequality (25) to conclude.
Proof of (iii). This is a direct consequence of points (i) and (ii).
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