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Variable Density Sampling with Continuous Trajectories∗

Nicolas Chauffert†, Philippe Ciuciu†, Jonas Kahn‡, and Pierre Weiss§

Abstract. Reducing acquisition time is a crucial challenge for many imaging techniques. Compressed sensing
(CS) theory offers an appealing framework to address this issue since it provides theoretical guar-
antees on the reconstruction of sparse signals by projection on a low-dimensional linear subspace.
In this paper, we focus on a setting where the imaging device allows us to sense a fixed set of
measurements. We first discuss the choice of an optimal sampling subspace allowing perfect recon-
struction of sparse signals. Its design relies on the random drawing of independent measurements.
We discuss how to select the drawing distribution and show that a mixed strategy involving partial
deterministic sampling and independent drawings can help in breaking the so-called coherence bar-
rier. Unfortunately, independent random sampling is irrelevant for many acquisition devices owing
to acquisition constraints. To overcome this limitation, the notion of a variable density sampler
(VDS) is introduced and defined as a stochastic process with a prescribed limit empirical measure.
It encompasses samplers based on independent measurements or continuous curves. The latter are
crucial to extend CS results to actual applications. We propose two original approaches to designing
a continuous VDS, one based on random walks over the acquisition space and one based on the trav-
elling salesman problem. Following theoretical considerations and retrospective CS simulations in
magnetic resonance imaging, we intend to highlight the key properties of a VDS to ensure accurate
sparse reconstructions, namely its limit empirical measure and its mixing time.
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1. Introduction. Variable density sampling is a technique that is extensively used in var-
ious sensing devices, such as magnetic resonance imaging (MRI), in order to shorten scanning
time. It consists in measuring only a small number of random projections of a signal/image on
elements of a basis drawn according to a given density. For instance, in MRI where measure-
ments consist of Fourier (or more generally k-space) coefficients, it is common to sample the
Fourier plane center more densely than the high frequencies. The image is then reconstructed
from this incomplete information by dedicated signal processing methods. To the best of our
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knowledge, variable density sampling was first proposed in the MRI context in [45], where
spiral trajectories were pushed forward. Thereafter, it was used in this application (see, e.g.,
[49, 27, 35] to quote a few), but also in other applications, such as holography [43, 34]. This
technique can hardly be avoided in specific imaging techniques such as radio interferometry
or tomographic modalities (e.g., X-ray) where sensing is made along fixed sets of measure-
ments [51, 44].

In the early days of its development, variable density sampling was merely an efficient
heuristic to shorten acquisition time. It has recently found a partial justification in the
compressed sensing (CS) literature. Even though this theory is not yet mature enough to fully
explain the practical success of variable density sampling, CS provides good hints on how to
choose the measurements (i.e., the density), how the signal/image should be reconstructed,
and why it works. Let us now recall a typical result emanating from the CS literature for
orthogonal systems. A vector x ∈ Cn is said to be s-sparse if it contains at most s nonzero
entries. Denote by ai, i ∈ {1, . . . , n}, the sensing vectors and by yi = 〈ai, x〉 the possible
measurements. Typical CS results state that if the signal (or image) x is s-sparse and if

A =

⎛
⎜⎝
a∗1
...
a∗n

⎞
⎟⎠

satisfies an incoherence property (defined in what follows), then m = O(s log(n)α) measure-
ments chosen randomly among the elements of y = Ax are enough to ensure perfect recon-
struction of x. The constant α > 0 depends on additional properties on x and A. The set of
actual measurements is denoted by Ω ⊆ {1, . . . , n}, and AΩ is the matrix formed by selecting
a subset of rows of A in Ω. The reconstruction of x knowing yΩ = AΩx is guaranteed if it
results from solving the following �1 minimization problem:

min
z∈Cn

‖z‖1 subject to AΩz = yΩ.(1.1)

Until recent works [42, 24, 9], no general theory for selecting the rows was available. In
the last one, the authors have proposed constructing AΩ by drawing m rows of A at random
according to a discrete probability distribution or density p = (p1, . . . , pn). The choice of an
optimal distribution p is an active field of research (see, e.g., [12, 29, 1]) that remains open in
many regards.

Drawing independent rows of A is interesting from a theoretical perspective; however,
it has little practical relevance since standard acquisition devices come with acquisition con-
straints. For instance, in MRI, the coefficients are acquired along piecewise continuous curves
on the k-space. The first paper performing variable density sampling in MRI [45] has fulfilled
this constraint by considering spiral sampling trajectories. The standard reference about CS-
MRI [32] has proposed sampling the MRI signal along parallel lines in the three-dimensional
(3D) k-space. Though spirals and lines can be implemented easily on a scanner, it is likely that
more general trajectories could provide better reconstruction results or save more scanning
time.

The main objective of this paper is to propose new strategies for sampling a signal along
more general continuous curves. Although continuity is often not sufficient for practical im-
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plementation on an actual scanner, we believe that it is a first important step towards more
physically plausible compressed sampling paradigms. As far as we know, this research avenue
is relatively new. The problem was first discussed in [52], and some heuristics were proposed.
The recent contributions [38, 4] have provided theoretical guarantees when sampling is per-
formed along fixed sets of measurements (e.g., straight lines in the Fourier plane) but have
not yet addressed generic continuous sampling curves.

The contributions of this paper are threefold. First, we bring a well mathematically
grounded definition of variable density samplers and provide various examples. Second, we
discuss how the sampling density should be chosen in practice. This discussion mostly relies on
variations around the theorems provided in [42, 9]. In particular, we justify the deterministic
sampling of a set of highly coherent vectors to overcome the so-called “coherence barrier.”
In the MRI case, this amounts to deterministically sampling the k-space center. Our third
and maybe most impacting contribution is providing practical examples of variable density
samplers (VDSs) along continuous curves and to derive some of their theoretical properties.
These samplers are defined as parameterized random curves that asymptotically fit a target
distribution (e.g., the one shown in Figure 1(a)). More specifically, we first propose a local
sampler based on random walks over the acquisition space (see Figure 1(b)). Second, we
introduce a global sampler based on the solution of a travelling salesman problem (TSP)
amongst randomly drawn “cities” (see Figure 1(c)). In both cases, we investigate the resulting
density. To finish with, we illustrate the proposed sampling schemes on two-dimensional (2D)
and 3D MRI simulations. The reconstruction results provided by the proposed techniques
show that the PSNR can be substantially improved compared to existing strategies proposed,
e.g., in [32]. Our theoretical results and numerical experiments on retrospective CS show that
two key features of VDSs are the limit of their empirical measure and their mixing properties.

(a) (b) (c)

Figure 1. (a) Target distribution π. Continuous random trajectories reaching distribution π based on
Markov chains (b) and on a TSP solution (c).

The rest of this paper is organized as follows. First, we introduce a precise definition of a
VDS and recall CS results in the special case of independent drawings. Then, we give a closed
form expression for the optimal distribution depending on the sensing matrix A and justify
that a partial deterministic sampling may provide better reconstruction guarantees. There-
after, in sections 3 and 4, we introduce two strategies for designing continuous trajectories
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over the acquisition space. We show that the corresponding sampling distributions converge
to a target distribution when the curve length tends to infinity. Finally, we demonstrate on
simulation results that our TSP-based approach is promising in the MRI context (section 5)
since it outperforms its competing alternatives either in terms of PSNR at fixed sampling rate
or in terms of acceleration factor at fixed PSNR.

Notation. The main definitions used throughout the paper are defined in Table 1.

Table 1
General notation used in the paper.

Notation Definition Domain

C
o
m
p
re
ss
ed

se
n
si
n
g

n Acquisition and signal space dimensions N

m Number of measurements N

R = n/m Sampling ratio Q

A Full orthogonal acquisition matrix Cn×n

Ω Set of measurements {1, . . . , n}m
AΩ Matrix formed with the rows of A corresponding to indexes belonging to Ω Cm×n

x Sparse signal Cn

s Number of nonzero coefficients of x N

Δn

⎧⎪⎨
⎪⎩p =

⎛
⎜⎝
p1
...
pn

⎞
⎟⎠ , 0 � pi � 1,

∑n
i=1 pi = 1

⎫⎪⎬
⎪⎭ Rn

‖ ‖1 �1 norm defined for z ∈ Cn by ‖z‖1 =
∑n

i=1 |zi|
‖ ‖∞ �∞ norm defined for z ∈ Cn by ‖z‖∞ = max1�i�n |zi|

M
R
I
a
p
p
li
ca
ti
o
n k =

(
kx
ky

)
or

⎛
⎝kx
ky
kz

⎞
⎠ Fourier frequencies R2 or R3

F∗
n d-dimensional discrete Fourier transform on an image of n pixels Cn×n

Ψn d-dimensional inverse discrete Wavelet transform on an image of n pixels Cn×n

F∗
n and Ψn are denoted by F∗ and Ψ if no ambiguity

V
D
S

Ξ A measurable space which is typically {1, . . . , n} or [0, 1]d

H The unit cube [0, 1]d

p A probability measure defined on Ξ

p(f) =
∫
x∈Ξ f(x) dp(x) for f continuous and bounded R

λ[0,1] The Lebesgue measure on the interval [0, 1]

X = (Xn)n∈N∗ A time-homogeneous Markov chain on the state space {1, . . . , n} {1, . . . n}N∗

P := (Pij)1�i,j�n the transition matrix: Pij := P(Xk = j|Xk−1 = i)∀k > 1 Rn×n

λi(P) The ordered eigenvalues of P: 1 = λ1(P) � · · · � λn(P) � −1 [−1, 1]

ε(P) = 1− λ2(P), the spectral gap of P [−1, 1]

F A set of points ⊂ H HN

C(F ) The shortest Hamiltonian path (TSP) amongst points of set F ⊂ H
T (F,H) The length of C(F ) R+

T (F,R) For any set R ⊆ H, T (F,R) := T (F ∩ R,H) R+

2. Variable density sampling and its theoretical foundations. To the best of our knowl-
edge, there is currently no rigorous definition of variable density sampling. Hence, to fill this
gap, we provide a precise definition below.

Definition 2.1. Let p be a probability measure defined on a measurable space Ξ. A stochastic
process X = {Xi}i∈N or X = {Xt}t∈R+ on state space Ξ is called a p-VDS if its empirical
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measure (or occupation measure) weakly converges to p almost surely, that is,

1

N

N∑
i=1

f(Xi) → p(f) a.s.

or

1

T

∫ T

t=0
f(Xt)dt → p(f) a.s.

for all continuous bounded f .
Example 1. In the case where X = (Xi)i∈N is a discrete time stochastic process with

discrete state space Ξ = {1, . . . , n}, Definition 2.1 can be slightly simplified. Let us set
ZN
j = 1

N

∑N
i=1 1Xi=j. The random variable ZN

j represents the proportion of points that fall
on position j. Let p denote a discrete probability distribution function. Using these notations,
X is a p-variable density sampler if

lim
N→+∞

ZN
j = pj a.s.

In particular, if (Xi)i∈N are independent and identically distributed (i.i.d.) samples drawn
from p, then X is a p-VDP. This simple example is the most commonly encountered in the
compressed sensing literature, and we will review its properties in section 2.1.

Example 2. More generally, drawing independent random variables according to distribu-
tion p is a VDS if the space Ξ is second countable, owing to the strong law of large numbers.

Example 3. An irreducible aperiodic Markov chain on a finite sample space is a VDS for
its stationary distribution (or invariant measure); see section 3.3.

Example 4. In the deterministic case, for a dynamical system, Definition 2.1 closely corre-
sponds to the ergodic hypothesis; that is, time averages are equal to expectations over space.
We discuss an example that makes use of the TSP solution in section 4.

The following proposition directly relates the VDS concept to the time spent by the process
in a part of the space, as an immediate consequence of the portmanteau lemma (see, e.g., [5]).

Proposition 2.2. Let p denote a Borel measure defined on a set Ξ. Let B ⊆ Ξ be a measur-
able set. Let X : R+ → Ξ (resp., X : N → Ξ) be a stochastic process. Let μ denote the Lebesgue
measure on R. Define μt

X(B) = 1
tμ({s ∈ [0, t], X(s) ∈ B}) (resp., μn

X(B) = 1
n

∑n
i=1 1X(i)∈B).

Then, the following two propositions are equivalent:

(i) X is a p-VDS.

(ii) Almost surely, ∀B ⊆ Ξ a Borel set with p(∂B) = 0,

lim
t→+∞μt

X(B) = p(B) a.s.

(resp., lim
n→+∞μn

X(B) = p(B) a.s.).

Remark 1. Definition 2.1 is a generic definition that encompasses both discrete and con-
tinuous time and discrete and continuous state space since Ξ can be any measurable space. In
particular, the recent CS framework on orthogonal systems [42, 9] falls within this definition.
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Definition 2.1 does not encompass some useful sampling strategies. We propose a definition
of a generalized VDS, which encompasses stochastic processes indexed over a bounded time
set.

Definition 2.3. A sequence {{X(n)
t }0�t�Tn}n∈N is a generalized p-VDS if the sequence of

occupation measures converges to p almost surely, that is,

1

Tn

∫ Tn

t=0
f(X

(n)
t )dt → p(f) a.s.

Remark 2. Let (Xt)t∈R be a VDS, and let (Tn)n∈N be any positive sequence such that

Tn → ∞. Then the sequence defined by X
(n)
t = Xt for 0 � t � Tn is a generalized VDS.

Example 5. Let Ξ = R2, and consider r : [0, 1] 
→ R+ a strictly increasing smooth function.

We denote by r−1 : [r(0), r(1)] → R its inverse function and by ˙r−1 the derivative of r−1.

Consider a sequence of spiral trajectories sN : [0, N ] → R2 defined by sN (t) = r( t
N )
( cos(2πt)
sin(2πt)

)
.

Then sN is a generalized VDS for the distribution p defined by

p(x, y) =

⎧⎨
⎩

˙r−1
(√

x2+y2
)

2π
∫ r(1)
ρ=r(0)

˙r−1(ρ)ρdρ
if r(0) �

√
x2 + y2 � r(1),

0 otherwise.

A simple justification is that the time spent by the spiral in the infinitesimal ring {(x, y) ∈
R2, ρ �

√
x2 + y2 � ρ+ dρ} is

∫ r−1(ρ+dρ)
r−1(ρ)

dt ∝ ˙r−1(ρ).

2.1. Theoretical foundations—Independent VDS. CS theories provide strong theoreti-
cal foundations of VDSs based on independent drawings. In this section, we recall a typical
result that motivates independent drawing in the �1 recovery context [42, 17, 9, 29, 12, 4, 1].
Using the notation defined in the introduction, let us give a slightly modified version of [42,
Theorem 4.2].

Theorem 2.4. Let p = (p1, . . . , pn) denote a probability distribution on {1, . . . , n} and Ω ⊂
{1, . . . , n} denote a random set obtained by m independent drawings with respect to distribution
p. Let S ∈ {1, . . . , n} be an arbitrary set of cardinality s. Let x be an s-sparse vector with
support S such that the signs of its nonzero entries is a Rademacher or Steinhaus sequence.1

Define

K(A, p) := max
k∈{1,...,n}

‖ak‖2∞
pk

.(2.1)

Assume that

m � CK(A, p)s ln2
(
6n

η

)
,(2.2)

where C ≈ 26.25 is a constant. Then, with probability 1 − η, vector x is the unique solution
of the �1 minimization problem (1.1).

1A Rademacher (resp., Steinhaus) random variable is uniformly distributed on {−1; 1} (resp., on the torus
{z ∈ C; |z| = 1}).
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Remark 3. Candès and Plan have stated stronger results in the case of real matrices in [9].
Namely, the number of necessary measurements was decreased to O(s log(n)), with lower
constants and without any assumption on the vector signs. Their results have been derived
using the so-called golfing scheme proposed in [19]. It is likely that these results could be
extended to the complex case; however, it would not change the optimal distribution, which
is the main point of this paper. We thus decided to stick to Theorem 2.4.

The choice of an accurate distribution p is crucial since it directly impacts the number
of measurements required. In the MRI community, a lot of heuristics have been proposed so
far to identify the best sampling distribution. In the seminal paper on CS-MRI [32], Lustig,
Donoho, and Pauly have proposed sampling the k-space using a density that polynomially
decays towards high frequencies. More recently, Knoll et al. have generalized this approach
by inferring the best exponent from MRI image databases [28]. It is actually easy to derive
the theoretically optimal distribution, i.e., the one that minimizes the right-hand side in (2.2),
as shown in Proposition 2.5, introduced in [12].

Proposition 2.5. Denote K∗(A) := minp∈Δn K(A, p):

(i) The optimal distribution π ∈ Δn that minimizes K(A, p) is

πi =
‖ai‖2∞∑n
i=1 ‖ai‖2∞

.(2.3)

(ii) K∗(A) = K(A, π) =
∑n

i=1 ‖ai‖2∞.

Proof.

(i) Taking p = π, we get K(A, π) =
∑n

i=1 ‖ai‖2∞. Now assume that q �= π; since
∑n

k=1 qk =∑n
k=1 πk = 1, there exists j ∈ {1, . . . , n} such that qj < πj. Then K(A, q) � ‖aj‖2∞/qj >

‖aj‖2∞/πj =
∑n

i=1 ‖ai‖2∞ = K(A, π). So, π is the distribution that minimizes K(A, p).
(ii) This equality is a consequence of π’s definition.

The theoretical optimal distribution depends only on the acquisition matrix, i.e., on the
acquisition and sparsifying bases. For instance, if we measure some Fourier frequencies of a
sparse signal in the time domain (a sum of Diracs), we should sample the frequencies according
to a uniform distribution since ‖ai‖∞ = 1/

√
n for all 1 � i � n. In this case, K∗(F) = 1 and

the number of measurements m is proportional to s, which is in accordance with the seminal
paper by Candès, Romberg, and Tao [10].

Independent drawings in MRI. In the MRI case, the images are usually assumed sparse (or
at least compressible) in a wavelet basis, while the acquisition is performed in the Fourier space.
In this setting, the acquisition matrix can be written as A = F∗Ψ. In that case, the optimal
distribution depends only on the choice of the wavelet basis. The optimal distributions in
two and three dimensions are depicted in Figures 2(a)–(b), respectively, if we assume that the
MR images are sparse in the Symmlet basis with three decomposition levels in the wavelet
transform.

Let us mention that similar distributions have been proposed in the literature. First, an
alternative to independent drawing was proposed by Puy, Vandergheynst, and Wiaux [41].
Their approach consists in selecting or not a frequency by drawing a Bernoulli random variable.
Its parameter is determined by minimizing a quantity that slightly differs from K(A, p).
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(a) (b)

Figure 2. Optimal distribution π for a Symmlet-10 transform in two dimensions (a) and a maximal
projection of the optimal distribution in three dimensions (b).

Second, Krahmer and Ward [29] tried to unify theoretical results and empirical observations
in the MRI framework. For Haar wavelets, they have shown that a polynomial distribution
on the 2D k-space which varies as 1/(k2x + k2y) is close to the optimal solution since it verifies
K(A, p) = O(log(n)). Our numerical experiments have confirmed that a decay as a power of
2 is near optimal in two dimensions.

In the next section, we improve the existing theories by showing that a deterministic
sampling of highly coherent vectors (i.e., those satisfying ‖ai‖2∞ � 1

n) may decrease the total
number of required measurements. In MRI, this amounts to fully sampling the low frequencies,
which exactly matches what has been done heuristically hitherto.

2.2. Mixing deterministic and independent samplings. In a recent work [12], we ob-
served and partially justified the fact that a deterministic sampling of the low frequencies
in MRI could drastically improve reconstruction quality. The following theorem proven in
Appendix A provides a theoretical justification to this approach.

Theorem 2.6. Let S ∈ {1, . . . , n} be a set of cardinality s. Let x be an s-sparse vector with
support S such that the signs of its nonzero entries is a Rademacher or Steinhaus sequence.
Define the acquisition set Ω ⊆ {1, . . . , n} as the union of

(i) a deterministic set Ω1 of cardinality m1 and
(ii) a random set Ω2 obtained by m2 independent drawings according to distribution p defined

on {1, . . . , n} \ Ω1.

Denote m = m1 +m2, let Ω
c
1 = {1, . . . , n} \ Ω1, and let Ω = Ω1 ∪ Ω2. Assume that

m � m1 + CK(AΩc
1
, p)s ln2

(
6n

η

)
,(2.4)
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where C = 7/3 is a constant, and K(AΩc
1
, p) = maxi∈{1,...,n}\Ω1

‖ai‖2∞
pi

. Then, with probability
1− η, vector x is the unique solution of the �1 minimization problem (1.1).

This result implies that there exists an optimal partition between deterministically and
randomly selected samples, which is, moreover, easy to compute. For example, consider the
optimal distribution pi ∝ ‖ai‖2∞; then K∗(AΩc

1
) =

∑
i∈{1,...,n}\Ω1

‖ai‖2∞. If the measurement
matrix contains rows with large values of ‖ai‖∞, we notice from inequality (2.4) that these
frequencies should be sampled deterministically, whereas the rest of the measurements should
be obtained from independent drawings. This simple idea is another way of overcoming the
so-called coherence barrier [29, 1].

A striking example raised in [4] is the following. Assume that A =
( 1 0
0 F∗

n−1

)
. The assumed

optimal independent sampling strategy would consist in independently drawing the rows with
distribution p1 = 1/2 and pk = 1/

√
n− 1 for k � 2. According to Theorem 2.4, the number

of required measurements is 2Cs ln2
(
6n
η

)
. The alternative approach proposed in Theorem 2.6

basically performs a deterministic drawing of the first row combined with an independent
uniform drawing over the remaining rows. In total, this scheme requires 1 + Cs ln2

(
6n
η

)
measurements and thus reduces the number of measurements by almost a factor 2. Note that
the same gain would be obtained by using independent drawings with rejection.

Mixed deterministic and independent sampling in MRI. In our experiments, we will
consider wavelet transforms with three decomposition levels and the Symmlet basis with
10 vanishing moments. Figures 3(a)–(b) show the modulus of A’s entries with a specific
reordering in (b) according to decaying values of ‖ai‖∞. This decay is illustrated in Figure
3(c). We observe that a typical acquisition matrix in MRI shows large differences between
its ‖ai‖∞ values. More precisely, there is a small number of rows with a large infinite norm,
sticking perfectly to the framework of Theorem 2.6. This observation justifies the use of a
partial deterministic k-space sampling, which had already been used in [32, 12]. In Figure
3(d), the set Ω1 is depicted for a fixed number of deterministic samples m1 by selecting the
rows with the largest infinite norms.

(a) (b) (c) (d)

Figure 3. (a) Absolute magnitudes of A for a 2D Symmlet basis with 10 vanishing moments and three
levels of decomposition. (b) Same quantities as in (a) but sorted by decaying ‖ai‖∞ (i.e., by decreasing order).
(c) Decay of ‖ai‖∞. (d) Set Ω1 depicted in the 2D k-space.

Hereafter, the strategy we adopt is driven by the previous remarks. All our sampling
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schemes are performed according to Theorem 2.6: a deterministic part is sampled, and a VDS
is performed on the rest of the acquisition space (e.g., the high frequencies in MRI).

3. VDSs along continuous curves.

3.1. Why independent drawing can be irrelevant. In many imaging applications, the
number of samples is of secondary importance compared to the time spent collecting the
samples. A typical example is MRI, where the important variable to control is the scanning
time. It depends on the total length of the pathway used to visit the k-space rather than the
number of collected samples. MRI is not an exception, and many other acquisition devices have
to meet such physical constraints, amongst which are scanning probe microscopes, ultrasound
imaging, ecosystem monitoring, radio-interferometry, or sampling using vehicles subject to
kinematic constraints [52]. In these conditions, measuring isolated points is not relevant
and existing practical CS approaches consist in designing parameterized curves performing a
variable density sampling. In what follows, we first review existing variable density sampling
approaches based on continuous curves. Then, we propose two original contributions and
analyze some of their theoretical properties. We mostly concentrate on continuity of the
trajectory, which is not sufficient for implementability in many applications. For instance, in
MRI the actual requirement for a trajectory to be implementable is piecewise smoothness.
More realistic constraints are discussed in section 6.

3.2. A short review of samplers along continuous trajectories. The prototypical VDSs
in MRI were based on spiral trajectories [45]. Similar works investigating different shapes and
densities from a heuristic point of view were proposed in [49, 27, 35]. The first reference to CS
appeared in the seminal paper [32]. In this work, Lustig, Donoho, and Pauly have proposed
performing independent drawings in a 2D plane (defined by the partition and phase encoding
directions) and sampling continuously along the orthogonal direction to design piecewise con-
tinuous schemes in the 3D k-space (see Figure 4). These authors have also suggested making
use of randomly perturbed spirals. The main advantage of these schemes lies in their simplic-
ity of practical implementation since they require only minor modifications of classical MRI
acquisition sequences.

Recent papers [37, 4, 7] have generalized CS results from independent drawings of isolated
measurements to independent drawings of blocks of measurements. In these contributions, the
blocks can be chosen arbitrarily and may thus represent continuous trajectories. Interestingly,
these authors have provided closed form expressions for the optimal distribution on the block
set. Nevertheless, this distribution is very challenging to compute in large scale problems.
Moreover, the restriction to sets of admissible blocks reduces the versatility of many devices
such as MRI and can therefore impact the image reconstruction quality.

In many applications the length of the sampling trajectory is more critical than the number
of acquired samples; therefore, finding the shortest pathway amongst random points drawn
independently has been studied as a way of designing continuous trajectories [52, 50]. Since
this problem is NP-hard, one usually resorts to a TSP solver to get a reasonable suboptimal
trajectory. To the best of our knowledge, the only practical results obtained using the TSP
were given by Wang et al. [50]. In this work, the authors did not investigate the relationship
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(a) (b)

Figure 4. Classical CS-MRI strategy. (a) 2D independent sampling according to a distribution π. (b)
Measurements performed in the orthogonal readout direction.

between the initial sample locations and the empirical measure of the TSP curve. In section 4,
it is shown that this relationship is crucial to make efficient TSP-based sampling schemes.

In what follows, we first introduce an original sampler based on random walks on the
acquisition space and then analyze its asymptotic properties. Our theoretical investigations
together with practical experiments allow us to show that the VDS mixing properties play a
central role in controlling its efficiency. This then motivates the need for more global VDS
schemes.

3.3. Random walks on the acquisition space. Perhaps the simplest way to transform
independent random drawings into continuous random curves consists in performing random
walks on the acquisition space. Here, we discuss this approach and provide a brief analysis of
its practical performance in the discrete setting. Through both experimental and theoretical
results, we show that this technique is doomed to fail. However, we believe that this theoretical
analysis provides a deep insight into what VDS properties characterize its performance.

Let us consider a time-homogeneous Markov chain X = (Xn)n∈N on the set {1, . . . , n}
and its transition matrix, denoted by P ∈ Rn×n. If X possesses a stationary distribution, i.e.,
a row vector p ∈ Rn such that p = pP, then, by definition, X is a p-VDS.

3.3.1. Construction of the transition matrix P. A classical way to design a transition
kernel ensuring that (i) p is the stationary distribution of the chain and (ii) the trajectory
defined by the chain is continuous is the Metropolis algorithm [21]. For a pixel/voxel position
i in the 2D/3D acquisition space, let us define by N (i) ⊆ {1, . . . , n} its neighborhood, i.e.,
the set of possible measurement locations allowed when staying on position i. Let |N (i)|
denote the cardinal of N (i), and define the proposal kernel P∗ as P∗

i,j = |N (i)|−1δj∈N (i). The
Metropolis algorithm proceeds as follows:

1. From state i, draw a state i∗ with respect to the distribution P∗
i,:.
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2. Accept the new state i∗ with probability:

(3.1) q(i, i∗) = min

(
1,

p(i∗)P∗
i∗,i

p(i)P∗
i,i∗

)
.

Otherwise stay in state i.

The transition matrix P can then be defined by Pi,j = q(i, j)P∗
i,j for i �= j. The diagonal is

defined in a such a way that P is a stochastic matrix. It is easy to check that p is an invariant
distribution for this chain.2 It is worth noticing that if the chain is irreducible positive
recurrent (which is fulfilled if the graph is connected and the distribution p is positive), the
ergodic theorem ensures that X is a p-VDS.

Unfortunately, trajectories designed by this technique leave huge parts of the acquisition
space unexplored (see Figure 5(a)). To circumvent this problem, we may allow the chain
to jump to independent locations over the acquisition space. Let P̃ be the Markov kernel
corresponding to independent drawing with respect to p, i.e., P̃i,j = pj for all 1 � i, j � n.
Define

(3.2) P(α) = (1− α)P + αP̃ ∀ 0 � α � 1.

Then the Markov chain associated with P(0) corresponds to a continuous random walk, while
the Markov chain associated with P(α), α > 0, has a nonzero jump probability. This means
that the trajectory is composed of continuous parts of average length 1/α.

3.3.2. Example. In Figure 5, we show illustrations in the 2D MRI context where the
discrete k-space is of size 64 × 64. On this domain, we set a distribution p which matches
distribution π in Figure 2(a). We perform a random walk on the acquisition space until 10%
of the coefficients are selected. In Figure 5(a), we set α = 0, whereas we set α = 0.1 in Figure
5(b). As expected, α = 0 leads to a sampling pattern where large parts of the k-space are left
unvisited. The phenomenon is partially corrected using a nonzero value of α.

Remark 4. Performing N iterations of the Metropolis algorithm requires O(N) computa-
tions leading to a fast sampling scheme design procedure. In our experiments, we iterate the
algorithm until m different measurements are probed. Therefore, the number of iterations N
required increases nonlinearly with respect to m and can be time consuming, especially when
R = m/n is close to 1. This is not a tough limitation of the method since the sampling scheme
is computed off-line.

3.3.3. CS results. Let us assume3 that P(X1 = i) = pi and that Xi is drawn using P as a
transition matrix. The following result provides theoretical guarantees about the performance
of the VDS X.

Proposition 3.1 (see [13]). Let Ω := X1, . . . ,Xm ⊂ {1, . . . , n} denote a set of m indexes
selected using the Markov chain X.

2If the neighboring system is such that the corresponding graph is connected, then the invariant distribution
is unique.

3By making this assumption, there is no burn-in period and the chain X converges more rapidly to its
stationary distribution p.
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(a) (b)

Figure 5. Example of sampling trajectories in 2D MRI. (a) (resp., (b)) 2D sampling scheme of the k-space
with α = 0 (resp., α = 0.1). Drawings are performed until 10% of the coefficients are selected (m = 0.1n).

Then, with probability 1− η, if

(3.3) m � 12

ε(P)
K2(A, p)s2 log(2n2/η),

every s-sparse signal x is the unique solution of the �1 minimization problem.
The proof of this proposition is given in Appendix B. Before going further, some remarks

may be useful for explaining this theoretical result.
Remark 5. Since the constantK2(A, p) appears in (3.3), the optimal sampling distribution

using Markov chains is also distribution π, as proven in Proposition 2.5.
Remark 6. In contrast to Theorem 2.4, Proposition 3.1 provides uniform results, i.e.,

results that hold for all s-sparse vectors.
Remark 7. (3.3) suffers from the so-called quadratic bottleneck (i.e., anO(s2 log(n)) bound).

It is likely that this bound can be improved to O(s log(n)) by developing new concentration
inequalities on matrix-valued Markov chains.

Remark 8. More importantly, it seems, however, unlikely to avoid the spectral gap
O(1/ε(P )) using the standard mechanisms for proving CS results. Indeed, all concentra-
tion inequalities obtained so far on Markov chains (see, e.g., [31, 26, 36]) depend on 1/ε(P ).
The spectral gap satisfies 0 < ε(P ) � 1 and corresponds to mixing properties of the chain.
The closer the spectral gap to 1, the faster the ergodicity is achieved. Roughly speaking, if
|i − j| > 1/ε(P ), then Xi and Xj are almost independent random variables. Unfortunately,
the spectral gap usually depends on the dimension n [15]. In our example, it can be shown

using Cheeger’s inequality that ε(P ) = O
(
n− 1

d

)
if the stationary distribution π is uniform (see

Appendix C). This basically means that the number of measurements necessary to accurately
reconstruct x could be as large as O(sn1/d log(n)), which strongly limits the interest of this
CS approach. The only way to lower this number consists in frequently jumping since Weyl’s
theorem [22] ensures that ε(P (α)) > α.

To sum up, the main drawback of random walks lies in their inability to cover the ac-
quisition space quickly since they are based on local considerations. Keeping this in mind, it
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makes sense to focus on more global displacement strategies that allow a faster exploration
of the whole acquisition domain. In the next section, we thus introduce this global sampling
alternative based on a TSP solver. Our main contribution is the derivation of the link be-
tween a prescribed a priori sampling density and the distribution of samples located on the
TSP solution so as to eventually get a VDS.

4. Travelling salesman–based VDS. In order to design continuous trajectories, we may
think of picking points at random and join them using a TSP solver. Hereafter, we show
how to draw the initial points in order to reach a target distribution p. In this section, the
probability distribution p is assumed to be a density.

4.1. Introduction. The naive idea would consist in drawing some points according to
the distribution p and joining them using a TSP solver. Unfortunately, the trajectory which
results from joining all samples does not fit the distribution p, as shown in Figures 6(b)–(d).
To bring evidence to this observation, we performed a Monte Carlo study, where we drew one
thousand sampling schemes, each one designed by solving the TSP on a set of independent
random samples. We notice in Figure 6(d) that the empirical distribution of the points along
the TSP curve, hereafter termed the final distribution, departs from the original distribution
p. A simple intuition can be given to explain this discrepancy between the initial and final
distributions in a d-dimensional acquisition space. Consider a small subset of the acquisition
space ω. In ω, the number of points is proportional to p. The typical distance between two
neighbors in ω is then proportional to p−1/d. Therefore, the local length of the trajectory in
ω is proportional to pp−1/d = p1−1/d �= p. In what follows, we will show that the empirical
measure of the TSP solution converges to a measure proportional to p1−1/d.

4.2. Definitions. We shall work on the hypercube H = [0, 1]d with d � 2. In what
follows, {xi}i∈N∗ denotes a sequence of points in the hypercube H, independently drawn from
a density p : H 
→ R+. The set of the first N points is denoted by XN = {xi}i�N .

Using the definitions introduced in Table 1, we introduce γN : [0, 1] → H, the function
that parameterizes C(XN ) by moving along it at constant speed T (XN ,H). Then, the
distribution of the TSP solution reads as follows.

Definition 4.1.The distribution of the TSP solution is denoted by P̃N and defined, for any
Borelian B in H, by

P̃N (B) = λ[0,1]

(
γ−1
N (B)

)
.

Remark 9. The distribution P̃N is defined for fixed XN . It makes no reference to the
stochastic component of XN .

Remark 10. A more intuitive definition of P̃N can be given if we introduce other tools.
For a subset ω ⊆ H, we denote the length of C(XN ) ∩ ω as T|ω(XN ,H) = T (XN ,H)P̃N (ω).
Using this definition, it follows that

(4.1) P̃N (ω) =
T|ω(XN ,H)

T (XN ,H)
∀ω.

Then P̃N (ω) is the relative length of the curve inside ω.
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4.3. Main results. Our main theoretical result introduced in [11] reads as follows.

Theorem 4.2. Define the density p̃ = p(d−1)/d∫
H p(d−1)/d(x)dx

, where p is a density defined on H.

Then almost surely with respect to the law p⊗N of the random points sequence {xi}i∈N∗ in H,
the distribution P̃N converges in distribution to p̃:

P̃N
(d)→ p̃ p⊗N-a.s.(4.2)

The proof of the theorem is given in Appendix D.

Remark 11. The TSP solution does not define, as such, a VDS since the underlying process
is finite in time. Nevertheless, since P̃N is the occupation measure of γN , the following result
holds.

Corollary 4.3.(γN )N∈N is a generalized p̃-VDS.

Remark 12. The theorem indicates that if we want to reach distribution p in two dimen-
sions, we have to draw the initial points with respect to a distribution proportional to p2, and
to p3/2 in three dimensions. Akin to the previous Monte Carlo study illustrating the behavior
of the naive approach in Figure 6(top row), we repeated the same procedure after having
taken this result into account. The results are presented in Figures 6(e)–(g), in which it is
shown that the final distribution now closely matches the original one (compare Figure 6(g)
with Figure 6(a)).

(b) (c) (d)

(a)

(e) (f) (g)

Figure 6. Illustration of the TSP-based sampling scheme to reach distribution π. (a) Distribution π. (b)
(resp., (e)) Independent drawing of points from distribution π (resp., ∝ π2). (c) (resp., (f)) Solution of the
TSP amongst points of (b) (resp., (e)). (d) and (g) Monte Carlo study: average scheme over one thousand
drawings of sampling schemes, with the same color scale as in (a).

Remark 13. Contrarily to the Markov chain approach for which we derived CS results in
Proposition 3.1, the TSP approach proposed here is mostly heuristic and based on the idea
that the TSP solution curve covers the space rapidly. An argument supporting this idea is
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the fact that in two dimensions, the TSP curve C(XN ) does not self-intersect. This property
is clearly lacking for random walks.

Remark 14. One of the drawbacks of this approach is the TSP’s NP-hardness. We believe
that this is not a real problem. Indeed, there now exist very efficient approximate solvers, such
as the Concorde solver [2]. It finds an approximate solution with 105 cities from a few seconds
to a few hours depending on the required accuracy of the solution. The computational time
of the approximate solution is not a real limitation since the computation is done off-line from
the acquisition procedure. Moreover, many solvers are actually designed in such a way that
their solution also fulfils Theorem 4.2. For example, in two dimensions, to reach a sampling
factor of R = 5 on a 256× 256 image, one needs N � 104 cities, and an approximate solution
is obtained in 142 seconds. In three dimensions, for a 256× 256 × 256 image, N � 9 105 and
an approximate solution is obtained in about 4 hours. In each case the solutions seem to be
correctly approximated. In particular they do not self-intersect in two dimensions.

5. Experimental results in MRI. In this section, we focus on the reconstruction results
by minimizing the �1 problem (1.1) with a simple MRI model: A = F∗Ψ, where Ψ denotes
the inverse Symmlet-10 transform.4 The solution is computed using the Douglas–Rachford
algorithm [14]. We consider an MR image of size 256× 256× 256 as a reference and perform
reconstruction for different discrete sampling strategies. Every sampling scheme was regridded
using a nearest neighbor approach to avoid data interpolation.5

5.1. 2D-MRI. In two dimensions, we focused on a single slice of the MR image and
considered its discrete Fourier transform as the set of possible measurements. First, we found
the best made a comparison of independent drawings with respect to various distributions in
order to find heuristically the best sampling density. Then we explored the performance of
the two proposed methods for designing continuous schemes: random walks and the TSP. We
also compared our solution to classical MRI sampling schemes. In every sampling scheme,
the number of measurements is the same and equals 20% of the number of pixels in the
image, so that the sampling factor R is equal to 5. In cases where the sampling strategy is
based on randomness (VDS, random walks, TSP, etc.), we performed a Monte Carlo study by
generating 100 sampling patterns for each VDS.

5.1.1. Variable density sampling using independent drawings. Here, we assessed the
impact of changing the sampling distribution using independent drawings. In all experiments,
we sampled the Fourier space center deterministically, as shown in Figure 7.

Table 2 shows that the theoretically driven optimal distribution π is outperformed by the
best heuristics. Amongst the latter, the distribution leading to the best reconstruction quality
decays as 1/|k|2, which is the distribution used by Krahmer and Ward [29] as an approximation
of π for Haar wavelets. The standard deviation of the PSNR is negligible compared to the
mean values, and for a given distribution, each reconstruction PSNR equals its average value
at the precision used in Table 2.

4We focused on �1 reconstruction since it is central in the CS theory. The reconstruction quality can be
improved by considering more a priori knowledge on the image. Moreover, we considered a simple MRI model,
but our method can be extended to parallel MRI [39] or spread-spectrum techniques [20, 40].

5We provide MATLAB codes to reproduce the proposed experiments here: http://chauffertn.free.fr/codes.
html.

http://chauffertn.free.fr/codes.html
http://chauffertn.free.fr/codes.html
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. 2D continuous sampling schemes based on random walks with α = .1 (a), α = .01 (b), and
α = .001 (c) and based on TSP solutions with distributions proportional to π (d) and to 1/|k|2 (e). Classical
sampling schemes: spiral (f), radial (g), and radial with random angles (h).

Table 2
Quality of reconstruction results in terms of PSNR for 2D sampling with variable density independent

drawings.

π
Polynomial decay: (k2

x + k2
y)

−d/2

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

Mean PSNR (dB) 35.6 36.4 36.4 36.3 36.0 35.5 35.2

Std dev. < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

5.1.2. Continuous VDS. In this part we compared various VDSs:

• random walks with a stationary distribution proportional to 1/|k|2 and different aver-
age chain lengths of 1/α,

• TSP-based sampling with distributions proportional to 1/|k|2 and π,
• classical MRI sampling strategies such as spiral, radial, and radial with random angles.

The choice of the spiral follows Example 5: the spiral is parameterized by s : [0, T ] →
R2, θ 
→ r(θ/T )

(
cos θ
sin θ

)
, where r(t) := r(0)r(1)

r(1)−t(r(1)−r(0)) , so the spiral density decays as

1/|k|2.
The sampling schemes are presented in Figure 7 and the reconstruction results in Table 3.

As predicted by the theory, the shorter the chains, the better the reconstructions. The
optimal case corresponds to chains of length 1 (α = 1), i.e., corresponding to an independent
VDS. When the chain is too long, large k-space areas are left unexplored, and the reconstruc-
tion quality decreases.

Besides, the use of a target distribution proportional to 1/|k|2 instead of π for TSP-based
schemes provides slightly better reconstruction results.
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Table 3
Quality of reconstruction results in terms of PSNR for continuous sampling trajectories.

Markovian drawing (α) TSP sampling
Spiral Radial

Radial

0.1 0.01 0.001 ∝ π ∝ 1/|k|2 random

Mean PSNR 35.7 34.6 33.5 35.6 36.1 35.6 34.1 33.1

Std dev. 0.1 0.3 0.6 0.1 0.1 0.4

Max value 36.0 35.1 34.8 35.9 36.2 34.0

in Figure 7: (a) (b) (c) (d) (e) (f) (g) (h)

We also considered more classical sampling schemes. We observe that the spiral scheme
and the proposed ones provide more accurate reconstruction results than radial schemes. We
believe that the main reason underlying these different behaviors is closely related to the
sampling rate decay from low to high frequencies, which is proportional to 1/|k| for radial
schemes.

5.2. 3D-MRI. Since VDSs based on Markov chains have shown rather poor reconstruction
results compared to the TSP-based sampling schemes in 2D simulations, we focus only on
comparing TSP-based sampling schemes to classical CS sampling schemes. Moreover, the
computational load of treating 3D images being much higher than in two dimensions, we
perform only one drawing per sampling scheme in the following experiments. Experiments in
two dimensions suggest that the reconstruction quality is not really impacted by the realization
of a particular sampling scheme, except for drawing with Markov chains or with radial with
random angles, which are not considered in our 3D experiments.

5.2.1. Variable density sampling using independent drawings. The first step of the
TSP-based approach is to identify a relevant target distribution. For doing so, we consider
independent drawings as already done in two dimensions. The results are summarized in
Table 4. In this experiment, we still use a number of measurements equal to 20% of the total
amount (R = 5).

Table 4
Quality of reconstruction results in terms of PSNR for sampling schemes based on 3D variable density

independent drawings, with densities ∝ 1/kd and π, and with 20% of measured samples.

d 1 2 3 4 π

PSNR (dB) 44.78 45.01 44.56 44.03 42.94

The best reconstruction result is achieved with d = 2 and not the theoretically optimal
distribution π. This illustrates the importance of departing from the sole sparsity hypothesis
under which we constructed π. Natural signals have a much richer structure. For instance,
wavelet coefficients tend to become sparser as the resolution levels increase, and this feature
should be accounted for to derive optimal sampling densities for natural images (see section 6).

5.2.2. Efficiency of the TSP sampling–based strategy. Let us now compare the re-
construction results using the TSP-based method and the method proposed in the original
CS-MRI paper [32]. These two sampling strategies are depicted in Figure 8. For 2D inde-
pendent drawings, we used the distribution providing the best reconstruction results in two
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(a) (b)

(c) (d)

Figure 8. Compared sampling strategies in 3D-MRI. Top: 2D independent drawing sampling schemes de-
signed by a planar independent drawing and measurements in the orthogonal readout direction. Bottom: 3D
TSP-based sampling scheme. Left: Schematic representation of the 3D sampling scheme. Right: Representa-
tions of 4 parallel slices.

dimensions, i.e., proportional to 1/|k|2. The TSP-based schemes were designed by drawing

city locations independently with respect to a distribution proportional to p
3
2 . According

to Theorem 4.2 this is the correct way to reach distribution p after joining the cities with
constant speed along the TSP solution path. The experiments were performed with p = π
(see Figure 2(b)) and p ∝ 1/|k|2 since the latter yielded the best reconstruction results in
the 3D independent VDS framework. We also compared these two continuous schemes to 3D
independent drawings with respect to a distribution proportional to 1/|k|2.
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(a) (b)

(c) (d)

Figure 9. Reconstruction results for R = 8.8 for various sampling strategies. Top row: TSP-based
sampling schemes (PSNR=42.1 dB). Bottom row: 2D random drawing and acquisitions along parallel lines
(PSNR=40.1 dB). Sagital view (left) and zoom on the cerebellum (right).

Reconstruction results with a sampling rate R = 8.8 are presented in Figure 9, with a
zoom on the cerebellum. The reconstruction quality using the proposed sampling scheme is
better than the one obtained from classical CS acquisition and contains fewer artifacts. In
particular, the branches of the cerebellum are observable with our proposed sampling scheme
only. At higher sampling rates, we still observe fewer artifacts with the proposed schemes,
as depicted in Figure 10 with a sampling rate R = 14.9. Moreover, Figure 11 shows that
our proposed method outperforms the method proposed in [32] by up to 2dB. If one aims at
reaching a fixed PSNR, we can increase r by more than 50% using the TSP-based strategy. In
other words, we could expect a substantial decrease of scanning time by using more advanced
sampling strategies than those proposed until now.
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(a) (b)

Figure 10. Reconstruction results for R = 14.9 for various sampling strategies. Left: TSP-based sampling
schemes (PSNR=39.8 dB). Right: 2D random drawing and acquisitions along parallel lines (PSNR=38.3 dB).

The two different choices of the target density π and ∝ 1/|k|2 provide similar results. This
is a bit surprising since 3D independent VDSs with these two probability distributions provide
very different reconstruction results (see Table 4). A potential explanation for that behavior is
that the TSP tends to “smooth out” the target distribution. An independent drawing would
collect very few Fourier coefficients in the blue zones of Figure 2, notably the vertical and
horizontal lines crossing the Fourier plane center. Sampling these zones seems to be of utmost
importance since they contain high energy coefficients. The TSP approach tends to sample
these zones by crossing the lines.

Perhaps the most interesting fact is that Figure 11 shows that the TSP-based sampling
schemes provide results that are similar to independent drawings up to important sampling
rates such as 20. We thus believe that the TSP solution proposed in this paper is near optimal
since it provides results similar to unconstrained acquisition schemes. The price to be paid
by integrating continuity constraints is thus almost null.

6. Discussion and perspectives. In this paper, we investigated the use of variable density
sampling along continuous trajectories. Our first contribution was to provide a well-grounded
mathematical definition of p-variable density samplers (VDSs) as stochastic processes with a
prescribed limit empirical measure p. We identified through both theoretical and experimental
results two key features characterizing their efficiency: their empirical measure as well as their
mixing properties. We showed that VDSs based on random walks were doomed to fail since
they were unable to quickly cover the whole acquisition space. This led us to propose a two-
step alternative that consists first in drawing random points independently and then joining
them using a travelling salesman problem (TSP) solver. In contrast to what has been proposed
in the literature so far, we paid attention to the manner in which the points have to be drawn
so as to reach a prescribed empirical measure. Strikingly, our numerical results suggest that
the proposed approach yields reconstruction results that are nearly equivalent to independent
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Figure 11. Quality of 3D reconstructed images in terms of PSNR as a function of sampling rates R
for various sampling strategies: independent drawings with respect to distribution ∝ 1/|k|2 (dashed blue line),
TSP-based sampling with target densities π (black line) and ∝ 1/|k|2 (red line), and parallel lines with 2D
independent drawing with respect to ∝ 1/|k|2 distribution (green line) as depicted in Figure 8(top row).

drawings. This suggests that adding continuity constraints to the sampling schemes might
not be so harmful for deriving CS results.

We believe that the proposed work opens many perspectives as outlined in what follows.

How is the target density selected?. We recalled existing theoretical results to address
this point in section 2 and showed that deterministic sampling could reduce the total number
of required measurements. The analysis we performed closely followed the proofs proposed
in [42, 9] and was based solely on sparsity hypotheses on the signal/image to be reconstructed.
The numerical experiments we performed indicate that heuristic densities still outperform the
theoretical optimal ones. This suggests that the optimality criteria used so far to derive
target sampling densities do not account for the whole structure of the sought signal/image.
Although sparsity is a key feature that characterizes natural signals/images, we believe that
introducing stronger knowledge like structured sparsity might contribute to deriving a new
class of optimal densities that would compete with heuristic densities.

To the best of our knowledge, the recent paper [1] is the first contribution that addresses
the design of sampling schemes by accounting for a simple structured sparsity hypothesis.
The latter assumes that wavelet coefficients become sparser as the resolution increases. The
main conclusion of the authors is the same as that of Theorem 2.6, even though it is based
on different arguments: the low frequencies of a signal should be sampled deterministically.

Finally, let us notice that the best empirical convex reconstruction techniques do not rely
on the resolution of a simple �1 problem such as (1.1). They are based on regularization
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with redundant frames and total variation, for instance [6]. The signal model, the target
density, and the reconstruction algorithm should clearly be considered simultaneously to make
a substantial leap on reconstruction guarantees.

What VDS properties govern their practical efficiency?. In section 3, it was shown
that the key feature characterizing random walk efficiency was the mixing properties of the
associated stochastic transition matrix. In order to derive CS results using generic random sets
rather than point processes or random walks, it seems important to us to find an equivalent
notion of mixing properties.

How are VDSs with higher degrees of regularity generated?. This is probably the
most important question from a practical point of view. We showed that the TSP-based
VDS outperforms more conventional sampling strategies by substantial acceleration factors
for a given PSNR value or recovers 3D images at an improved PSNR for a given acceleration
factor. However, this approach may not really be appealing for many applications: continuity
is actually not a sufficient condition for making acquisition sequences implementable on devices
like MRI scanners or robot motion where additional kinematic constraints such as bounded
first (gradients) and second (slew rate) derivatives should be taken into account. Papers such
as [33] derive time-optimal waveforms to cross a given curve using optimal control. By using
this approach, it can be shown that the angular points on the TSP trajectory have to be
visited with a zero speed. This strongly impacts the scanning time and the distribution of
the parameterized curve. The simplest strategy to reduce scanning time would thus consist
in smoothing the TSP trajectory; however, this approach dramatically changes the target
distribution, which was shown to be a key feature of the method. The key element to prove our
TSP theorem (Theorem 4.2) was the famous Beardwood, Halton, and Hammersley theorem [3].
To the best of our knowledge, extending this result to smooth trajectories remains an open
question.6 Recent progress in that direction was obtained in recent papers such as [30], but
they do not provide sufficient guarantees to extend Theorem 4.2. Answering this question
is beyond the scope of this paper. We believe that the work [47] based on attraction and
repulsion potentials opens an appealing research avenue for solving this issue.

Appendix A. Proof of Theorem 2.6. For a symmetric matrix M , we denote by λmax(M)
its largest eigenvalue and by ‖M‖ the largest eigenvalue modulus. The crucial step for ob-
taining Theorem 2.6 is Proposition A.1 below. The rest of the proof is the same as the one
proposed in [42], and we refer the interested reader to [42, section 7.3] for further details.

Proposition A.1. Let Ω = Ω1 ∪ Ω2 ⊆ {1, . . . , n} be a set constructed as in Theorem 2.6.
Define

ãi =

{
ai if i ∈ Ω1,
ai/

√
pi if i ∈ {1, . . . , n} \Ω1

6To be precise, many crucial properties of the length of the shortest path used to derive asymptotic results
are lost. The most important one is subadditivity [46].
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and

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ãΩ1(1)
...

ãΩ1(m1)
1√
m2

ãΩ2(1)

...
1√
m2

ãΩ2(m2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Cm×n.(A.1)

Then, for all δ ∈ [0, 12 ],

P

(∥∥∥ÃS∗ÃS − Is

∥∥∥ � δ
)
� 2s exp

(
− m2δ

2

CK2
2s

)
,

where ÃS ∈ Cm×s is the matrix composed of the s columns of Ã belonging to S. C = 7/3 is
a constant.

The proof of this proposition relies heavily on the matrix Bernstein inequality below [48].
Proposition A.2 (matrix Bernstein inequality). Let Zk be a finite sequence of independent,

random, self-adjoint matrices in Cd×d. Assume that each random matrix satisfies

E(Zk) = 0 and λmax(Zk) � R a.s.

Denote σ2 = ‖∑k E(Z
2
k)‖. Then, for all t � 0,

P

(∥∥∥∥∥
∑
k

Zk

∥∥∥∥∥ � t

)
� 2d exp

(
− t2/2

σ2 +Rt/3

)
.

We are now ready to prove Proposition A.1.
Proof. For any vector v ∈ Cn, denote by vS ∈ Cs the vector composed of the entries

of v belonging to S ⊆ {1, . . . , n}. Consider the random sequence X1, . . . ,Xm2 , where Xi =
j ∈ {1, . . . , n} \ Ω1 with probability pj , and denote by Ω2 the set {X1, . . . ,Xm2}. Denote
M1 :=

∑
i∈Ω1

aSi a
S
i
∗
. Consider the matrices Zj := M1 + ãSj ã

S∗
j − Is. According to (A.1), we

get, by construction,

ÃS∗ÃS − Is =
1

m2

∑
j∈Ω2

Zj .

Since Is =
∑n

i=1 a
S
i a

S
i
∗
, we notice that for all i ∈ {1, . . . ,m2}, (i) E(ZXi) = 0, and (ii)

E(ãSXi
ãS∗Xi

) = Is −M1. Moreover, we have (iii) 0 � Is −M1 � Is and (iv) 0 � M1 � Is.

Using the identity (ãSj ã
S∗
j )2 = ‖ãSj ‖2ãSj ãS∗j and the fact that ‖ãSi ‖ � √

s‖ãSi ‖∞, we get

E((ãSXi
ãS∗Xi

)2) � K2
2s(Is − M1) using (ii). We can then proceed as follows using points (iii)

and (iv):

E(Z2
Xi
) = M2

1 − 2M1 + Is + E((ãSXi
ãS∗Xi

)2) + 2M1E(ã
S
Xi
ãS∗Xi

)− 2E(ãSXi
ãS∗Xi

)

≤ M2
1 − 2M1 + Is +K2

2s(Is −M1) + 2M1(Is −M1)− 2(Is −M1)

= −(Is −M1)
2 +K2

2s(Is −M1)

� K2
2sIs.
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Then ‖∑m2
i=1 E(Z

2
Xi
)‖ � m2K

2
2s.

By noticing that ãSXi
ãS∗Xi

− Is � ZXi � ãSXi
ãS∗Xi

, we obtain ‖ZXi‖ � K2
2s. Finally, by

applying the Bernstein inequality to the sequence of matrices ZX1 , . . . ,ZXm2
, we derive, for

all t � 0,

P

(∥∥∥∥∥
∑
j∈Ω2

Zj

∥∥∥∥∥ � t

)
� 2s exp

(
− t2/2

m2K2
2s+K2

2st/3

)
.

Plugging δ := t/m2 and noticing that δ � 1/2 ⇒ 2(1+δ/3) � 2(1+δ/3) � 7/3, the announced
result is shown.

Appendix B. Proof of Proposition 3.1. Our approach relies on the following perfect
recovery condition introduced in [25].

Proposition B.1 (see [25]). If AΩ ∈ Rm×n satisfies

γ(AΩ) = min
Y∈Rm×n

‖In −YTAΩ‖∞ <
1

2s
,

all s-sparse signals x ∈ Rn are recovered exactly by solving the �1 minimization problem (1.1).
We denoted ‖A‖∞ the maximal modulus of all the entries of A. This can be seen as an

alternative to the mutual coherence [16]. We limit our proof to the real case, but it could be
extended to the complex case using a slightly different proof.

We aim at finding Y ∈ Rm×n, such that ‖In−YTAΩ‖∞ < 1
2s , for a given positive integer

s, where AΩ is the sensing matrix defined in Proposition 3.1. Following [24], we set Θi =
aia

T
i

pi

and use the decomposition In = ATA =
∑n

i=1 piΘi. We consider a realization of the Markov
chain X1, . . . ,Xm, withX1 ∼ p andXi ∼ PXi−1,: for i > 1. Let us denoteWm = 1

m

∑m
l=1ΘXl

.
Then Wm may be written as YTAΩ.

Lemma B.2. For all 0 < t � 1,

(B.1) P (‖In −Wm‖∞� t)�n(n+ 1)e
ε(P)
5 exp

(
− mt2ε(P)

12K2(A, p)

)
.

Before proving the lemma, let us first recall a concentration inequality for finite-state
Markov chains [31].

Proposition B.3. Let (P, p) be an irreducible and reversible Markov chain on a finite set G
of size n with transition matrix P and stationary distribution p. Let f : G → R be such that∑n

i=1 pifi = 0, ‖f‖∞ � 1, and 0 <
∑n

i=1 f
2
i pi � b2. Then, for any initial distribution q, any

positive integer m, and all 0 < t � 1,

P

(
1

m

m∑
i=1

f(Xi) � t

)
� e

ε(P)
5 Nq exp

(
− mt2ε(P)

4b2(1 + g(5t/b2))

)
,

where Nq = (
∑n

i=1(
qi
pi
)2pi)

1/2 and g is given by g(x) = 1
2(
√
1 + x− (1− x/2)).

Now, we can prove Lemma B.2.
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Proof. By applying Proposition B.3 to a function f and then to its opposite −f , we get

P

(∣∣∣∣∣ 1m
m∑
i=1

f(Xi)

∣∣∣∣∣ � t

)
� 2e

ε(P)
5 Nq exp

(
− mt2ε(P)

4b2(1 + g(5t/b2))

)
.

Then we set f(Xi) = (In−ΘXi)
(a,b)/K(A, p) as a real-valued function. Recall that p satisfies∑n

i=1 pif(Xi) = 0. Since ‖f‖∞ � 1, b = 1, and t � 1, we deduce 1 + g(5t) < 3. Moreover,
since the initial distribution is p, qi = pi for all i, and thus Nq = 1. Finally, resorting to a
union bound enables us to extend our result for the (a, b)th entry to the whole infinite norm
of the n× n matrix In −Wm (B.1).

Finally, set s ∈ N∗ and η ∈ (0, 1). If m satisfies inequality (3.3), then

P

(
‖In −Wm‖∞ � 1

2s

)
< η .

In other words, with probability at least 1 − η, every s-sparse signal can be recovered by �1
minimization (1.1).

Remark 15. It is straightforward to derive a result similar to Theorem 2.6 and thus to jus-
tify that a partial deterministic sampling reduces the total number of measurements required
for perfect recovery.

Appendix C. Proof of Remark 8. In this part, we prove that for a random walk with

uniform stationary distribution p, ε(P) = O(n− 1
d ). We use geometric bounds known as

Cheeger’s inequality in [15] and conductance bounds in [23, 8]. Let us recall a useful result
concerning finite state space irreducible reversible transition matrices P.

The capacity of a set B ⊂ {1, . . . , n} is defined as p(B) :=
∑

i∈B p(i), and the ergodic flow
out of B is defined by F (B) :=

∑
i∈B,j∈Bc p(i)Pi,j . The conductance of the pair (P, p) is

ϕ(P) := inf
B

(
F (B)

p(B)
; 0 < |B| < n, p(B) � 1

2

)
.

Then the following result holds (see [23] and [8, Theorem 4.3]).
Proposition C.1.

ϕ(P)2

2
� ε(P) � 2ϕ(P).

Now, assume that n1/d ∈ N is even, and construct a finite graph with n nodes representing
a Euclidean grid of the unit hypercube of dimension d. Assume that the vertices of the graph
at one grid point are the 2d nearest nodes, with periodic boundary conditions (the graph can
be seen as a d-dimensional torus). Assume that the transition probability is uniform over the
neighbors; thus the stationary distribution is also the uniform one. This graph is depicted in
Figure 12(left), with d = 2.

Let B be the halved graph defined by the hyperplane parallel to an axis of the grid and
including its center, so that p(B) = 1/2. An illustration is given in two dimensions in Figure
12(right). Since we assumed periodic boundary conditions, the number of nodes belonging
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Figure 12. Illustration of the proof of Remark 8 in two dimension. Left: Regular grid with n =
√
n×√

n
nodes. Right: Graph partitioning in B and Bc with p(B) = 1/2.

to B and having a neighbor in Bc is 2n(d−1)/d. Each of these nodes have 2d neighbors but
only one belonging to Bc. Since the stationary distribution is equal to 1/n on each node, the

ergodic flow is 2n(d−1)/d( 1n
1
2d). It follows that ε(P) � 4

dn
− 1

d .

Appendix D. Proof of Theorem 4.2. Let h ∈ N. The set H = [0, 1]d will be partitioned
in hd congruent hypercubes (ωi)i∈I of edge length 1/h. The following proposition is central
to obtaining the proof.

Proposition D.1. Almost surely, for all ωi in {ωi}1≤i≤hd,

lim
N→∞

P̃N (ωi) = p̃(ωi)(D.1)

=

∫
ωi
p(d−1)/d(x)dx∫

H p(d−1)/d(x)dx
p⊗N-a.s.(D.2)

The strategy consists in proving that T|ωi
(XN ,H) tends asymptotically to T (XN , ωi). The

estimation of each term can then be obtained by applying the asymptotic result of Beardwood,
Halton, and Hammersley (see [3, 46]).

Theorem D.2. If R is a Lebesgue-measurable set in Rd such that the boundary ∂R has zero
measure and {yi}i∈N∗, with YN = {yi}i�N , is a sequence of i.i.d. points from a density p
supported on R, then, almost surely,

lim
N→∞

T (YN , R)

N (d−1)/d
= β(d)

∫
R
p(d−1)/d(x)dx,(D.3)

where β(d) depends on the dimension d only.
To show Proposition D.1, we need to introduce the boundary TSP. For a set of points F

and an area R, we denote by TB(F,R) its length on the set F ∩ R. The boundary TSP is
defined as the shortest Hamiltonian tour on F ∩R for the metric obtained from the Euclidean
metric by the quotient of the boundary of R; that is, d(a, b) = 0 if a, b ∈ ∂R. Informally, it
matches the original TSP while being allowed to travel along the boundary for free. We refer
the reader to [18] for a complete description of this concept.
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We shall use a set of classical results on the TSP and boundary TSP that may be found
in the survey books [18, 53].

Lemma D.3. Let F denote a set of n points in H:
1. The boundary TSP is superadditive; that is, if R1 and R2 have disjoint interiors,

TB(F,R1 ∪R2) � TB(F,R1) + TB(F,R2).(D.4)

2. The boundary TSP is a lower bound on the TSP, both globally and on subsets. If
R2 ⊂ R1,

T (F,R) � TB(F,R),(D.5)

T|R2
(F,R1) � TB(F,R2).(D.6)

3. The boundary TSP approximates well the TSP [53, Lemma 3.7]):

|T (F,H)− TB(F,H)| = O(n(d−2)/(d−1)).(D.7)

4. The TSP in H is well approximated by the sum of TSPs in a grid of hd congruent
hypercubes [18, equation (33)].∣∣∣∣∣T (F,H)−

hd∑
i=1

T (F, ωi)

∣∣∣∣∣ = O(n(d−2)/(d−1)).(D.8)

We now have all the ingredients to prove the main results.
Proof of Proposition D.1.

∑
i∈I

TB(XN , ωi)
(D.4)

� TB(XN ,H)

(D.5)

� T (XN ,H) =

hd∑
i=1

T |ωi(XN ,H)

(D.8)

�
hd∑
i=1

T (XN , ωi) +O(N (d−1)/(d−2)).

Let Ni be the number of points of XN in ωi.
Since Ni � N , we may use the bound (D.7) to get

(D.9) lim
N→∞

T (XN , ωi)

N (d−1)/d
= lim

N→∞
TB(XN , ωi)

N (d−1)/d
.

Using the fact that there are only finitely many ωi, the following equalities hold almost surely:

lim
N→∞

∑hd

i=1 TB(XN , ωi)

N (d−1)/d
= lim

N→∞

∑hd

i=1 T (XN , ωi)

N (d−1)/d

(D.8)
= lim

N→∞

∑hd

i=1 T|ωi
(XN ,H)

N (d−1)/d
.
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Since the boundary TSP is a lower bound (cf. (D.6)–(D.5)) to both local and global TSPs,
the above equality ensures that

lim
N→∞

TB(XN , ωi)

N (d−1)/d
= lim

N→∞
T (XN , ωi)

N (d−1)/d
(D.10)

= lim
N→∞

T|ωi
(XN ,H)

N (d−1)/d
p⊗N-a.s. ∀i.

Finally, by the law of large numbers, almost surely Ni/N → p(ωi) =
∫
ωi
p(x)dx. The law of

any point xj conditioned on being in ωi has density p/p(ωi). By applying Theorem D.2 to
the hypercubes ωi and H we thus get

lim
N→+∞

T (XN , ωi)

N (d−1)/d
= β(d)

∫
ωi

p(x)(d−1)/ddx p⊗N-a.s. ∀i

and

lim
N→+∞

T (XN ,H)

N (d−1)/d
= β(d)

∫
H
p(x)(d−1)/ddx p⊗N-a.s. ∀i.

Combining this result with (D.10) and (4.1) yields Proposition D.1.
Proof of Theorem 4.2. Let ε > 0, and let h be an integer such that

√
dh−d < ε. Then any

two points in ωi are at distance less than ε.
Using Proposition D.1 and the fact that there is a finite number of ωi, almost surely, we

get limN→+∞
∑hd

i=1

∣∣∣P̃N (ωi)− p̃(ωi)
∣∣∣ = 0. Hence, for any N large enough, there is a coupling

K of P̃N and p̃ such that both corresponding random variables are in the same ωi with
probability 1 − ε. Let A ⊆ H be a Borelian. The coupling satisfies P̃N (A) = K(A⊗ H) and
p̃(A) = K(H ⊗ A). Define the ε-neighborhood by Aε = {X ∈ H | ∃Y ∈ A, ‖X − Y ‖ < ε}.
Then, we have P̃N (A) = K(A⊗H) = K({A⊗H}∩{|X−Y | < ε})+K({A⊗H}∩{|X−Y | � ε}).
It follows that

P̃N (A) � K(A⊗Aε) +K(|X − Y | � ε)

� K(H⊗Aε) + ε = p̃(Aε) + ε.

This exactly matches the definition of convergence in the Prokhorov metric, which implies
convergence in distribution.
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[8] P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues, Texts Appl. Math. 31,
Springer, New York, 1999.

[9] E. Candès and Y. Plan, A probabilistic and ripless theory of compressed sensing, IEEE Trans. Inform.
Theory, 57 (2011), pp. 7235–7254,.

[10] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from
highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489–509.

[11] N. Chauffert, P. Ciuciu, J. Kahn, and P. Weiss, Travelling salesman-based variable density sampling,
in Proceedings of the 10th SampTA Conference, Bremen, Germany, 2013, pp. 509–512.

[12] N. Chauffert, P. Ciuciu, and P. Weiss, Variable density compressed sensing in MRI. Theoretical vs.
heuristic sampling strategies, in Proceedings of the 10th IEEE ISBI Conference, San Francisco, 2013,
pp. 298–301.

[13] N. Chauffert, P. Ciuciu, P. Weiss, and F. Gamboa, From variable density sampling to continuous
sampling using Markov chains, in Proceedings of the 10th SampTA Conference, Bremen, Germany,
2013, pp. 200–203.

[14] P. L. Combettes and J.-C Pesquet, Proximal splitting methods in signal processing, in Fixed-Point
Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011, pp. 185–212.

[15] P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains, Ann. Appl. Probab.,
1 (1991), pp. 36–61.

[16] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306.
[17] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Appl. Numer.
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