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ABSTRACT

Both parallel Magnetic Resonance Imaging (pMRI) and Compressed
Sensing (CS) are emerging techniques to accelerate conventional
MRI by reducing the number of acquired data in the k-space. So
far, first attempts to combine sensitivity encoding (SENSE) imaging
in pMRI with CS have been proposed in the context of Cartesian
trajectories. Here, we extend these approaches to non-Cartesian tra-
jectories by jointly formulating the CS and SENSE recovery in a hy-
brid Fourier/wavelet framework and optimizing a convex but nons-
mooth criterion. On anatomical MRI data, we show that HYR2PICS
outperforms wavelet-based regularized SENSE reconstruction. Our
results are also in agreement with the Transform Point Spread Func-
tion (TPSF) criterion that measures the degree of incoherence of k-
space undersampling schemes.

Index Terms— MRI, parallel imaging, Compressive sensing,
wavelets, nonsmooth optimization.

1. INTRODUCTION

Reducing scanning time in MRI exams remains a worldwide chal-
lenging issue. The expected benefits of a faster acquisition can be
summarized as follows: i.) limit patient’s exposure to the MRI en-
vironment for safety reasons, ii.) maintain a strong robustness in the
acquisition with respect to subject’s motion, iii.) limit geometric dis-
tortions. The basic idea to make MRI acquisitions faster consists of
reducing the amount of acquired samples in the k-space and to de-
velop dedicated reconstruction pipelines. To this end, both parallel
imaging (pMRI) and compressed sensing (CS) have been proposed.
pMRI relies on a geometrical principle involving multiple receiver
coils with complementary sensitivity profiles that makes the recon-
struction of MR images from multichannel k-space data sampled
below the Nyquist sampling rate feasible. Standard reconstruction
methods include SENSE [1], SMASH [2], GRAPPA [3], ... The-
oretically, the reduction or acceleration factor R is upper bounded
by the number of channels under ideal conditions. In practice this
bound is never achieved due the amount of noise and imperfect coil
geometry.

CS-MRI relies on the Compressed Sensing theory [4,5] that pro-
poses a new framework for data sampling and signal recovery. It
has generated significant interest because it enables exact signal re-
construction from much fewer data samples than suggested by Shan-
non’s theorem. CS-MRI has been popularized because MR images
meet the two key assumptions underlying the CS reconstruction: a.)
MRI images are sparse in a given linear transform domain and b.)
the Fourier encoding is incoherent with this sparse transformation.
CS-MRI methods include SparseMRI for Cartesian trajectories [6]
and other approaches for alternative sampling schemes [7].

The idea of combining CS and pMRI has been proposed recently
in an attempt of further accelerating SENSE imaging because pMRI
and CS-MRI reduce sampling according to different ancillary infor-
mation (channel sensitivity vs. image sparsity). The SparseSENSE
method and its equivalence [8] have been developed as a straightfor-
ward combination method that reconstructs images from multichan-
nel data using the nonlinear SparseMRI solver, except that Fourier
encoding is replaced by the sensitivity encoding comprising Fourier
encoding and sensitivity weighting. In [9], a more efficient method
with guaranteed incoherence, called CS-SENSE, was proposed for
Cartesian trajectories only. Its principle is based on a two-step pro-
cedure, where CS reconstruction is first carried out by SparseMRI
for the aliased image of each channel and second, Cartesian SENSE
reconstruction is performed in the image domain. Here, we extend
the CS-SENSE approach to non Cartesian trajectories. Our method
named HYR2PICS is hybrid in several respects: i.) it jointly for-
mulates CS and pMRI in the Fourier space (see Section 2) so as to
address the reconstruction of full Field Of View (FOV) images in the
wavelet domain from uncoherent multichannel Fourier samples. ii.)
It combines regularization in the wavelet and image domains so as to
promote sparsity while avoiding ringing artefacts. iii.) It makes use
of recent optimal primal-dual convex but non-smooth minimization
algorithm (see Section 3). In section 4, the TPSF criterion expressed
in the pMRI context demonstrates the gain induced by incoherent
sampling. Section 5 is devoted to validation on anatomical data,
where it is shown that the HYR2PICS method outperforms wavelet-
based regularized SENSE reconstruction: the most accurate results
are obtained for 2D random point or chessboard sampling schemes,
thus departing from conventional pMRI undersampling.

2. PROBLEM STATEMENT

In this work, we consider discrete complex spin densities ρ ∈ Cn,
where n = nx · ny is the pixels number. ρ(x) denotes the value of
ρ at pixel x ∈ {1, · · · , n}. All the theory developed in this paper
also applies to 3D densities, and then n = nx ·ny ·nz . The standard
inner product is denoted 〈·, ·〉. The associated norm is denoted ‖ · ‖.

The canonical basis of Rn is composed of the vectors e1, · · · , en.
Let A and B be two matrices [A,B] and [A;B] respectively de-
note a horizontal and a vertical concatenation of A and B (as in
Matlab). Idn = [e1, . . . , en] denotes the identity operator in Rn or
Cn. LetA be a linear application. A∗ denotes its adjoint (conjugate
transpose). F denotes the discrete Fourier Transform. It is a unitary
transform so that F ∗ = F−1. ∂1 : Cn → Cn and ∂2 : Cn → Cn
are linear applications. They design the discretized derivatives in
the x, y directions respectively. ∇ = [∂1;∂2] denotes the discrete
gradient.

Let F : Rn → R ∪ {+∞} be a convex, closed function with



non-empty domain. F† refers to the Fenchel conjugate of F defined
by: F†(u) = sup

v∈Rn
〈u, v〉 − F(v). The sub-differential of F at u is

the set defined by: ∂F(u) = {η ∈ Rn,F(v) ≥ F(u) + 〈η, v −
u〉, ∀v ∈ Rn}. The resolvent (or proximal operator) of F at point u
is defined by: (Id+∂F)−1(u) = arg minv∈Rn F(v)+‖v−u‖2/2.
We refer to [10] for a complete introduction to convex analysis.

2.1. Parallel imaging

In parallel MRI, an array of L coils is employed to measure the spin
density ρ into the object under investigation. The signal d` ∈ Cm
received by each coil ` (1 ≤ ` ≤ L) is the Fourier transform of the
desired 2D field ρ on the specified FOV weighted by the coil sensi-
tivity profile, evaluated at some location. This signal is deteriorated
by an additive Gaussian white noise n` of variance σ`.

In this work, we consider the problem in the discrete setting.
We assume that the spin densities ρ are defined on a Euclidean grid
which is a discretization of the FOV. Under this assumption, the ac-
quisition process can be written in the condensed form:

d` = ΣsFS`ρ+ n` (1)

where S` : Cn → Cn denotes a sensitivity operator. It is a diagonal
matrix the i-th diagonal element of which indicates the attenuation at
pixel i. Σs : Cn → Cm represents the sampling operator. This ma-
trix reads Σs = [ei1 , · · · , eim ]∗ where each ij indicates the index
of the j-th measure on the Cartesian grid.

Eq. (1) presents the advantage to unify pMRI and compressive
sampling by considering different structures for matrix Σs: i.) A full
k-space sampling would correspond to Σs = Idn. ii.) Compressive
sensing would lead to a random choice of m indices {i1, · · · , im}
in the set {1, · · · , n}.

2.2. Combining CS and pMRI reconstructions

Since the between-channel covariance is assumed diagonal Λ =
diag

[
σ2

1Id, · · · , σ2
LId

]
, considering all incomplete data (d`)`=1:L,

the SENSE solution amounts to minimizing the following criterion:

H(ρ) =

L∑
`=1

σ−1
` ‖d` −ΣsFS`ρ‖2. (2)

This minimization boils down to the resolution of a linear system
which can be solved in O(n log(n)) operations using Fourier trans-
forms. However, the operator ΣsFS` is usually rank defficient or
has small singular values since the sensitivities have a fast spatial
decay. Minimizing (2) thus yields unstable results.

An appropriate remedy consists in regularizing the problem by
imposing sparsity constraints. As pointed out in [6], MR images are
usually sparse in certain transform domains, such as wavelets repre-
sentations. Let Ψi ∈ Cn design an atom and Ψ = [Ψ1, . . . , Ψp] ∈
C
n×p, p ≥ n design a dictionary. In the following, we assume

that Ψ is surjective. A spin density ρ is said to be sparse in Ψ if
it can be written ρ =

∑p
i=1 ζ(i)Ψi = Ψζ where ζ ∈ Cn has

only a few non-zero entries. In the following, we employ a dyadic
2D orthonormal wavelet transformation over jmax resolution levels.
Hence, the coefficient field is defined as ζ = (ζa, ζo,j)o∈O,j=1:jmax ,
where O = {0, 1}2 \ {(0, 0)} ζa = (ζa,k) represents the vector of
approximation coefficients and ζo,j = (ζo,j,k)k=1:Kj

denotes the
vector of detail coefficients at resolution level j and orientation o,
with Kj = n2−2j . Note that in the dyadic case, there are three

orientations corresponding to the horizontal (h), vertical (v), and di-
agonal (d) directions.

The compressive sensing theory ensures that ρ can be recovered
precisely with only few observations d(k), with k ∈ {1, . . . ,m}
and m� n, by computing ρ̂ = Ψζ̂ where

ζ̂ ∈ arg min
ζ∈Cp

‖ζ‖1 s.t. d(k) = 〈ρ,φk〉 , ∀k=1:m. (3)

In SparseMRI [6] where single coil acquisition is addressed, the ac-
quisition basis Φ = [φ1, . . . ,φn] identifies with F . In more recent
contributions [9] where parallel imaging is involved, the basis be-
comes channel-specific i.e., Φ` = FS`. In the presence of noise,
the constraint d(k) = 〈ρ,φk〉 is relaxed. Moreover, regularizations
based solely on sparsity (synthesis) lead to spurious oscillations that
can be avoided using regularization in the spatial domain (analysis).
Hence, following [11], we look for the decomposition ζ of ρ in the
dictionary Ψ by minimizing the following criterion that embodies
hybrid regularization (in the wavelet and image domains):

ζ̂ ∈ arg min
ζ∈Cn

[JWLS(ΦΨζ)+JS(ζ)+λAJA(∇Ψζ)] . (4)

We then reconstruct the image solution as ρ̂ = Ψζ̂. In equation (4),
Φ = [ΣsFS1; . . . ; ΣsFSL] is the observation operator.
JWLS(Φρ) =

∑L
`=1 σ

−1
` ‖d` − (Φρ)`‖2. JS is the penalization in

the wavelet domain that ensures sparsity of ζ:

JS(ζ) =

Kjmax∑
k=1

ϕa(ζa,k) +
∑
o∈O

jmax∑
j=1

Kj∑
k=1

ϕo,j(ζo,j,k), (5)

where we have ∀o ∈ O and j ∈ {1, . . . , jmax}, ϕo,j(ξ) = ϕRe
o,j(ξ)+

ϕIm
o,j(ξ) ∀ξ ∈ C, with ϕ�o,j(ξ) = α�o,j |�(ξ − µo,j)| + β�o,j |�(ξ −

µo,j)|2 and (� = Re) or (� = Im), µo,j = µRe
o,j + ıµIm

o,j ∈ C and
α�o,j , β

�
o,j are some positive real constants. Hereabove, Re(·) and

Im(·) (or ·Re and ·Im) stand for the real and imaginary parts, respec-
tively. A quadratic penalty term ϕa is adopted for ζa.
In eq. (4),JA(∇ρ) =

∑n
i=1 ϕA

(√
(∂1ρ)(i)2 + (∂2ρ)(i)2

)
where

ϕA is a Huber function and λA a non-negative regularization param-
eter. JA(∇ρ) is thus a smooth approximation of the total varia-
tion, allowing to avoid staircase effect. As regards hyper-parameter
estimation, we used a Maximum Likelihood (ML) estimation strat-
egy on a reference image, typically the SENSE reconstruction, that
provides fair estimates for λA and (α�,β�) in a reasonable com-
putation time. As proposed in [12], more accurate but more costly
estimates can be achieved using stochastic sampling.

3. PRIMAL-DUAL OPTIMIZATION

3.1. A review of optimization methods

Minimizing criterion (4) is a hard task since the problem is convex,
but large scale, non differentiable and non strongly convex. Many
first order schemes were recently proposed or rediscovered by the
signal processing community to solve such problems.

Among them, let us cite proximal gradient descents (also called
Forward-Backward splitting) and their acceleration [13], Douglas-
Rachford algorithms, ADMM and their extension to more compo-
nents such as Parallel ProXimal Algorithm (PPXA) [14], or extra-
gradient Like methods [15]. All these methods rely on the ability to
compute resolvents of a part of the problem explicitely. Among the
above methods it seems that only Extra-gradient like methods can be



applied directly to problem (2). Indeed :

• Proximal gradient descents would require the computation of
the resolvents of JA(ρ) which cannot be done explicitely.

• ADM or Douglas-Rachford like methods rely on the ability to
solve linear systems of kind (S∗`F

∗Σ∗sΣsFS` + Id)x = b,
which is an open topic in linear algebra.

We thus decided to use extra-gradient like methods and more partic-
ularly the Chambolle-Pock (CP) primal-dual method, which has an
“optimal” O

(
1
k

)
convergence rate for the problem under consider-

ation and only requires matrix-vector multiplications. In contrast to
most contributions (e.g. [16]), this scheme is not composed of two
nested iterative algorithms. Such methods usually have no conver-
gence proof due to the approximations made in the inner iteration.

3.2. The Chambolle-Pock implementation

Problem (4) can be rewritten as:

min
x∈Cp

F(Ax) + G(x). (6)

whereF(y) = JWLS(y1)+λAJA(y2) with y = [y1; y2] ∈ CmL×
C2n, G(x) = JS(x) and A = [ΦΨ;∇Ψ]. This formulation has
the nice property that both G andF are separable pixel-wise, making
their resolvent computation very easy. The primal-dual optimality
conditions of this problem write Ax̂ ∈ ∂F†(ŷ) and −(A∗ŷ) ∈
∂G(x̂). These conditions amount to say that (x̂, ŷ) is a saddle-point.
Such equilibrium can be reached by iterating primal descents and
dual ascents sequentially. The CP implementation of this idea writes: yk+1 = (I + σ∂F†)−1(yk + σAx̄k+1)

xk+1 = (I + τ∂G)−1(xk − τA∗yk+1)
x̄k+1 = 2xk+1 − xk

(7)

where the last step is a correction term (extra-gradient) and the pa-
rameters σ and τ should satisfy στ = L2 where L is the highest
singular value ofA. In practice, this algorithm requires less than 50
iterations to give a solution precise enough for the visual system.

4. OPTIMIZING THE UNDERSAMPLING SCHEME

Once the acceleration factor R has been chosen, the remaining de-
grees of freedom lie in the k-space samples we really pick up for data
acquisition. In the pMRI context, the undersampling scheme is fixed
and consists of choosing one out of R phase encoding lines as illus-
trated in Fig. 1(a). In order to consider pseudo-random schemes (see
Fig. 1(b)-(f)) while allowing exact reconstruction in the CS context,
the concept of incoherence has been introduced in [4, 5].

4.1. Incoherent sampling

Incoherence extends the duality between time and frequency and ex-
presses the idea that objects with a sparse representation must be
spread out in the domain in which they are acquired. There exists
different measures of coherence including restricted isometry prop-
erties [4] or mutual incoherence [5]. In this work we use mutual
incoherence first introduced in [6].

The coherence between the sensing basis Φ and the representa-

tion basis Ψ can be measured by γ (Ψ,Φ) = max
1≤k,j≤n

|〈Φk,Ψj〉|
‖Φk‖·‖Ψj‖

,

where Φ = [Φ1, . . . ,ΦmL]∗. In other words, coherence measures
the largest correlation between the lines of Ψ and columns of Φ.
This notion of coherence can also be captured by a variant called

(a) (b) (c)

(d) (e) (f)

Fig. 1. Various k-space sampling schemes for R = 4: selected
points appear in white color. (a) pMRI line undersampling. (b)-
(c): Pseudo-random line undersampling with uniform (b) and Gaus-
sian (c) distributions. (d): Radial scheme with uniformly random
angles. (e): 2D random points. (f): chessboard scheme.

mutual coherence that reads:

µ = µ(ΦΨ) = max
1≤i,j≤p,i6=j

|〈ΦΨei,ΦΨej〉|
‖ΦΨei‖ · ‖ΦΨej‖

One of the typical results relating coherence to sparsity states
that if ρ = Ψζ is s-sparse and s ≤ 1+1/µ

2
then the exact recovery of

ρ can be achieved by solving Eq. (3). As a consequence, the smaller
the coherence, the fewer samples are needed. To reduce the number
of MRI samples, we can either play with Ψ so as to decrease S or
minimize the mutual coherence µ by varying the sampling scheme.

4.2. Coherence in parallel imaging

In this work, we distinguished different undersampling schemes like
those appearing in Fig. 1. As shown in Tab. 1, the trajectory that
presents the best coherence (lowest µ) is the random-points pattern
irrespective of R, while the worst one remains the Normally Dis-
tributed (ND) random rows pattern. This is quite surprising since
the k-space center contains most of the signal energy. As the random
point scheme is not physically feasible, we will select the closest one
i.e., the chessboard downsampling, which consists in picking one
pixel over R per row, and shifting rows of one pixel one to another.
Results for radial schemes seem conflicting: for R = 2, the Uni-
formly Distributed (UD) angled scheme brings a lower µ value than
the equi-angled one, while the converse holds for R = 4. Finally,
whatever the scheme we look at in Tab. 1, the mutual coherence crite-
rion increases with R so that incoherence decreases illustratring the
negative impact of increasing R while keeping the sampling scheme
in a 2D setting (see [6] for more general 3D schemes).

Table 1. Mutual coherence µ in pMRI for R = 2 and R = 4.
Undersampling scheme µ (R = 2) µ (R = 4).

Regular rows 0.2770 0.6774
ND rows 0.4850 0.7471
UD rows 0.3336 0.4602

Random points 0.1040 0.1739
Chessboard 02373 0.4020

UD angled radial 0.2526 0.6233
Equi-angled radial 0.2637 0.4234

Spiral scheme 0.3214 0.3499



5. RESULTS

5.1. Experimental data

For validation purpose, we acquired anatomical MRI data on a 3T
Siemens Trio magnet using a L = 32 channel head coil and parallel
imaging.We used a 3D T1-weighted MP-RAGE pulse sequence at a
1×1×1.1 mm3 spatial resolution (TE = 2.98 ms, TR = 2300 ms,
slice thickness = 1.1 mm, FOV = 256×240×176 mm3). To get a
ground truth and enable valid comparison, we considered the full
FOV dataset (R= 1) that was downsampled a posteriori to simulate
different sampling schemes and assess their performance.

5.2. Reconstruction results: a comparative study

We first compared SENSE reconstruction (no regularization) with
the HYR2PICS method on a convential pMRI undersampling scheme
so as to emphasize the impact of hybrid regularization. As illus-
trated in Fig. 2, SENSE reconstruction shows strong and repeated
artifacts along the phase encoding direction (y-axis) that are per-
fectly removed using the HYR2PICS procedure. On this slice, our
approach coupled with conventional pMRI undersampling also en-
hances the cerebellum and brain stem. However, on other slices in-
coherent sampling schemes may appear more powerful. This point is
illustrated in Fig. 3 where 2D random points and chessboard under-
sampling schemes provide more accurate reconstructions than any
line-based undersampling alternative.

(a) (b) (c)

Fig. 2. Reconstruction results for R = 4 (slice 82): (a) Reference
image. (b)SENSE imaging. (c): ND random line undersampling.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Reconstruction results for R = 4: (a) Reference image.
(b): pMRI line undersampling. (c): ND random line undersampling.
(d): Radial scheme with uniformly random angles. (e): 2D random
points. (f): chessboard scheme.

6. CONCLUSION

We proposed to unify CS and parallel imaging in a joint reconstruc-
tion framework that amounts to solving a large scale ill-posed in-
verse problem. Our HYR2PICS approach therefore embodied hy-
brid penalization in the wavelet and image domains to regularize
this problem. The ensuing convex but unsmooth criterion was min-
imized by the CP primal-dual algorithm. We illustrated the impact
of regularization and then demonstrated the interest of k-space un-
dersampling schemes that depart from selecting one phase encoding
line out of R in pMRI. Interestingly, our reconstruction results ap-
peared in agreement with the coherence assessment performed prior
to the reconstruction.
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