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ABSTRACT

Many compression algorithms consist of quantizing the coeffi-
cients of an image in a linear basis. This introduces compression
noise that often look like ringing. Recently some authors proposed
variational methods to reduce those artifacts. They consists of mini-
mizing a regularizing functional in the set of antecedents of the com-
pressed image. In this paper we propose a fast algorithm to solve
that problem. Our experiments lead us to the conclusion that these
algorithms effectively reduce oscillations but also reduce contrasts
locally. To handle that problem, we propose a fast contrast enhance-
ment procedure. Experiments on a large dataset suggest that this
procedure effectively improves the image quality at low bitrates.

Index Terms— Image coding, Image restoration, Variational
methods, Convex optimization

1. INTRODUCTION

State-of-the-art image compression algorithms share the same gen-
eral principle : transform the image in a linear space where its rep-
resentation is sparse, quantize the coefficients in this space, perform
a lossless compression on the quantized coefficients. The first ba-
sis used were the local cosine transform in JPEG. The new com-
pression standard uses a wavelet transform in JPEG2000. More re-
cently wedgelets, bandlets and contourlets were proposed and seem
to show better compression performances at low bitrates.

At high bitrate, there is almost no perceptible difference between
the original image and the compressed image. At low bitrate, some
details of the image disappear, and noticeable compression artifacts
appear. Most bases for coding are constructed using smooth oscilla-
tory functions, and thus induce artifacts similar to gibbs effect (os-
cillations localized near edges).

It seems difficult to recover lost details, but the compression ar-
tifacts can be reduced. Some authors proposed to minimize regular-
izing functionals - like the total variation - in the set of antecedents
of the compressed image [1, 2, 3]. In the following, we call this
procedure decompression. The first contribution of this paper is to
propose a new convergent and fast algorithm to solve this problem.

Our experiments led us to the conclusion that this decompres-
sion removes the oscillations, but also strongly reduces the contrast
of small details, annihilating the interest of the method. We thus in-
troduce a fast contrast enhancement procedure. This is the second
contribution of this paper.

The outline of the paper is as follows: first we formalize the
problem of image decompression. Second, we detail the proposed
algorithm, give its convergence rate and show that it outperforms
classical schemes. Third, we introduce the contrast enhancement
procedure. Finally, we give some results for grayscale images.

2. THE DECOMPRESSION MODEL

Let fex ∈ R
n be an image composed of n pixels.

Let A : R
n → R

n be some linear invertible transform.
Let q : R → {a1, a2, ..., an} be a quantizer defined by

q(x) = aj if x ∈ [aj − aj − aj−1

2
, aj +

aj+1 − aj

2
[ (1)

Let Q = (q1, q2, ..., qn) be a set of n different quantizers. Using
these notations, a compressed image f can be expressed as

f = A−1(Q(Afex)) (2)
Suppose now that we have a compressed image f and that the

quantizers qi are known or can be estimated. This hypothesis is not
too restrictive as in many compression schemes, the quantizers are
defined only by one parameter: the quantization step.

Under these conditions, we can determine the set of antecedents
of f , denoted K.

K = {u ∈ R
n, Q(Au) = Af} (3)

= {u ∈ R
n, αi ≤ (Au)i − (Af)i < βi ∀i} (4)

where αi and βi can be easily determined given the expressions of
(Af)i and qi. The closure K̄ of this set is

K̄ = {u ∈ R
n, αi ≤ (Au)i − (Af)i ≤ βi ∀i} (5)

In order to remove the compression artifacts, we can look for the
image in the set K̄ which minimizes some regularizing criterion J
[1, 2, 3] . Examples of such criterion include total variation (J(u) =
Pn

i=1 |(∇u)i|) or any other convex, edge preserving energy of the
form

J(u) =

n
X

i=1

φ(|(∇u)i|) (6)

where φ is convex, grows linearly at infinity and is preferably dif-
ferentiable at 0 (for numerical purposes). Finally, the problem of
decompression by variational methods consists of determining



inf
u∈K̄

(J(u)) (7)

where J is a convex criterion, and K̄ is convex, closed and bounded.
In the next section, we propose an algorithm to solve this problem
efficiently.

3. A FAST DECOMPRESSION ALGORITHM

Recently, Y. Nesterov [4] introduced an algorithm that allows to min-
imize any convex, Lipschitz differentiable functional under convex
constraints. The interesting fact about this scheme is that it is op-
timal. No scheme can achieve a better rate of convergence than it,
only using the gradient of the functional. We detail it in this section.

Let us introduce some notations :
< ·, · > is the canonical scalar product of R

n.
For x ∈ R

n, |x|2 :=
√

< x,x >.
Let A be a linear operator, ||A||2 := max{x,|x|2≤1} |Ax|2.
A∗ is the complex transpose of A. Note that ||A∗||2 = ||A||2.
∇ : R

n → R
2n is any consistant linear approximation of the gradi-

ent (see for instance [5]).
−div : R

2n → R
n is the dual (transpose) of ∇, uniquely defined by

the relation

< ∇u, g >= − < u, divg > ∀u ∈ R
n and ∀g ∈ R

2n (8)

Finally, let us denote J ′(u) the gradient of J at point u. In the
case of the functional (6) - for differentiable φ - classical calculus of
variations gives

J ′(u) = −div(φ′(|∇u|) ∇u

|∇u| ) (9)

Let us turn to the optimization problem (7)

inf
u∈K̄={u∈Rn,αi≤(Au)i−(Af)i≤βi}

(J(u)) (10)

As the projection on the set K̄ might be cumbersome to compute
for non orthonormal transforms A, we use the change of variable
y = Au. This leads to the problem

inf
y∈Rn,αi≤yi−(Af)i≤βi

`

J(A−1y)
´

(11)

The interest of that formulation is that the set

K̃ = {y ∈ R
n, αi ≤ yi − (Af)i ≤ βi} (12)

simply is an hyperrectangle. The Euclidean projection on that poly-
tope writes in closed form

(ΠK̃(x))i =

8

<

:

(Af)i − αi if xi < (Af)i − αi

xi if αi ≤ xi − (Af)i ≤ βi

(Af)i + βi if xi > (Af)i + βi

(13)

This allows the use of projected gradient descent like algorithms to
solve problem (11). In [6], the authors applied a Nesterov algorithm
to imaging problems and showed that for both differentiable and non
differentiable functionals J , this method outperforms classical first
order schemes like gradient or subgradient descents.

After some calculations, we show that if φ satisfies |φ′′|∞ < 1
µ

for
some µ > 0, applying Nesterov ideas to problem (11) leads to the
following algorithm

0 - Set k = −1, G0 = 0, x0 ∈ K̃, L = 1
µ
||A−1||22||div||22,

1 - Set k = k + 1,
2 - Compute ηk = −A−∗div(φ′(|∇A−1xk|) ∇A−1xk

|∇A−1xk| ),
3 - Set yk = ΠK̃(xk − ηk

L
)

4 - Set Gk = Gk−1 + k+1
2

ηk

5 - Set zk = ΠK̃(−Gk

L
)

6 - Set xk+1 = 2
k+3

zk + k+1
k+2

yk, go back to 1 until k = N .

Let D =
Pn

i=1 ∆2
i (this is the square of the radius of K̃). Let ȳ

be a solution of (11). At iteration N this scheme ensures that

0 ≤ J(yN ) − J(y∗) ≤ 2LD

(N + 1)(N + 2)
(14)

In view of (14), getting a solution of precision ε with this scheme
requires no more than O( 1√

ε
) iterations. The projected gradient de-

scent can be shown to be an O( 1
ε
) algorithm [7]. We thus gain one

order in the convergence rate. Roughly speaking, the variable G at
step 4 aggregates the information brought by the gradients computed
at the previous iterations. This avoids exploring unuseful directions
and explains the efficiency of this scheme.

A surprising remark (see [6] for further details) is that even in
the case of total variation which is non differentiable, this scheme
applied to a smooth approximation of the l1-norm remains more ef-
ficient than classical first order algorithms. For total variation, this
scheme can be shown to require O( 1

ε
) iterations to get a solution of

precision ε, while to our knowledge, all first order schemes in the
litterature require at least O( 1

ε2
) iterations. Both for differentiable

and non differentiable regularizing criterions, this scheme is very ef-
ficient.

In all coming experiments, we use the regularization function φ
defined as

φ(x) =

(

|x| if |x| ≥ µ
x2

2µ
+ µ

2
otherwise (15)

which is edge preserving and can be shown to be a good approxima-
tion of the total variation. It satisfies

|φ′′|∞ ≤ 1

µ
(16)

The parameter µ controls the degree of smoothing in flat regions.
For a discussion on the choice of this parameter, we refer the reader
to section 5.

4. AN ALGORITHM FOR CONTRAST ENHANCEMENT

Looking at Figure 3, we see that image (b) has a good contrast but
oscillates, while image (d) is fewly contrasted with no spurious os-
cillations. It would be enjoyable to create an image that shares the
best of both images.

We propose the following approach: find the image v closest
(in the Euclidean metric) to f (the compressed image) which has
the same level lines as u (the restored image). For this procedure to
be efficient, it is necessary that the compression algorithm preserves
locally the mean of the original image. This hypothesis holds in
the case of wavelet compression. Low frequency bands are fewly
quantized which ensures contrast preservation.

The algorithm we use on a discrete image is described as fol-
lows:



1. Set uQ = b u
∆
c∆ (uniform quantization). In the experiments,

we use ∆ = max(u)−min(u)
N

with N = 256.
2. For each level i∆ (i ∈ Z) :

(a) Separate the connected components Ωi,j of the set :

Ωi = {x ∈ R
n, uQ(x) = i∆}

In the experiments, we use the 8-neighbourood to de-
fine the notion of connected component.

(b) On each component Ωi,j , set v|Ωi,j
= mean(f |Ωi,j

).

This kind of algorithm has already been used with a different
motivation in [8]. The authors prove that in the continuous setting,
this algorithm converges as ∆ goes to 0 to the projection of f on the
set of functions that have the same topographic map as u. We let the
reader refer to [8] for more details.

This is a fast algorithm. Our C implementation takes less than
0.1 second a 2GHz computer.

5. RESULTS

In all the following experiments, we use a simple image coder which
consists of a 5-levels 2D wavelet transform using the 9/7 filters [9],
a uniform quantizer which optimizes the mean square error of the
reconstructed image, and an arithmetic coder. This coder has about
the same efficiency as JPEG2000.

5.1. Number of iterations and smoothing parameter µ

The error estimate (14) brings a good information on how to chose
the number of iterations for a Nesterov scheme to converge. This
number should grow proportionnaly to D and to 1

µ
. On Fig. 1,

we compare the efficiency of this scheme with a classical projected
gradient descent with optimal step. Computational effort is greatly
reduced.
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Fig. 1. Evolution of the cost function w.r.t. the number of iterations
for a Nesterov algorithm VS a Projected Gradient Descent (PGD)
with optimal constant step. For µ = 1, Nesterov’s scheme stabilizes
after 80 iterations while PGD requires 400 iterations.

On figure (2), we analyse the effect of the regularization param-
eter µ. The curve shows the mean PSNR using 3 different images. It
indicates that the best results are obtained for µ = 1.5. A perceptual
analysis of the results gives the same conclusion.
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Fig. 2. PSNR w.r.t µ at a fixed compression rate (0.13 bpp)

For µ = 0.01, we obtain a solution that is perceptually identical
to the solution of the minimization of the total variation. The oscil-
lations are removed, thin details are preserved. The main problems
are staircase effect and contrast reduction (notably on small details).
Moreover, it can be shown that the number of iterations before con-
vergence is proportional to 1

µ
. For such a parameter, we need 1000

iterations to get a satisfactory accuracy.
With µ = 1.5 we get more satisfactory results. Staircase effect

disappears and the Nesterov algorithm only requires 60 iterations to
converge. With a greater µ, the model tends to Tikhonov regular-
ization, oscillations are not removed, and the image is blurred. In
all further experiments we take µ = 1.5 which shows to be a good
compromise for images of amplitude 255. However even with that
parameter, the contrast of small objects is reduced.

5.2. What can be expected from our algorithm?
In document [10], we lead a series of decompression experiments
with various images and various compression rates. It appears that
for the tested coder, the proposed algorithm improves image quality
at low bitrates, and is not useful at high bitrates. For smooth by
piece images, we gain up to 1dB at low bitrates. For oscillating and
textured images, the image quality remains the same with or without
post-processing.

We assess the image quality using 3 different measures. The
classical PSNR, the SSIM measure (Structural Similarity Index)
described in [11] and the NQM measure (Noise Quality Mesure),
described in [12]. For instance, with image Lena (see Fig. 3) the
image quality is neatly improved and we get the following results

Decoded Denoised Denoised + Enhanced
PSNR 27.787 27.915 27.942
SSIM 0.870 0.870 0.879
NQM 22.965 22.185 23.301

Note that the thin details like hair are preserved, that the oscillations
are removed, and that the blurr is reduced.



(a) (b) (c)
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Fig. 3. a: original image - b: decoded image (0.085bpp) - c: detail of b - d: denoised using µ = 1.5 - e: denoised and enhanced - f: detail of e

5.3. Conclusion
In this work we analysed the efficiency of variational methods to
remove compression artifacts. From a computational aspect the al-
gorithm we proposed is quite fast (comparable to 100 wavelet trans-
forms), and completely automated. Numerical quality measures as
well as perceptual inspection show that its efficiency strongly de-
pends on the compression rates and on the image contents. The al-
gorithm is very efficient at low bitrates on piecewise smooth images.
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