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ABSTRACT

In this paper, we address the issue of hyperspectral pan-
sharpening, which consists in fusing a (low spatial resolu-
tion) hyperspectral image HX and a (high spatial resolution)
panchromatic image P to obtain a high spatial resolution hy-
perspectral image. The problem is addressed under a convex
variational constrained formulation. The fit-to-P data term
favors high resolution hyperspectral images with level lines
parallel to those of the panchromatic image. This term is bal-
anced with a total variation term as regularizer. The fit-to-HX
data is a constraint such that depends on the statistics of the
data noise measurements. The developed Alternate Direc-
tion Method of Multipliers (ADMM) optimization scheme
enables us to solve this problem efficiently despite the non
differentiabilities and the huge number of unknowns.

Index Terms— hyperspectral, fusion, pan-sharpening,
ADMM

1. INTRODUCTION

Hyperspectral sensors usually involve a trade-off between
high spatial resolution and high spectral resolution. A com-
mon situation is that panchromatic images have a higher
spatial resolution than hyperspectral images due to op-
tics/photonics and cost considerations. Performing fusion be-
tween a (comparatively) low spatial resolution hyperspectral
image and a (comparatively) high spatial resolution panchro-
matic image is a quite natural issue in order to estimate high
spatial resolution hyperspectral data.

In the last three decades, pan sharpening approaches
were dedicated to multispectral data. The earliest methods
were based on specific spectral-space transforms such as
the Hue-Intensity-Saturation (HIS) transform or the Princi-
pal Component Analysis (PCA) Transform. More recently,
spatial frequency based approaches such as the High Pass
Filter (HPF) method exploiting multiscale spatial analysis [1]
provided improved results. The multiscale spatial analysis
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framework generally offers very time efficient performance
but lacks flexibility to consider some prior knowledge about
“physics of scene and sensor” (the sensors Modulation Trans-
fer Function (MTF), sensor noise or any prior information).
This aspect has been a limitation for application to hyper-
spectral pan sharpening. Thus, recent methods are generally
based on variational [2] or bayesian [3] formulations. In
particular, in [2], the authors have proposed to consider a
term based on the topographic properties of the panchromatic
image. This idea stems from [4] where the authors show that
most geometrical information of an optical image lies in the
set of its gray level-set lines.

The novelties of the proposed algorithm are threefold: 1.
we propose a constrained convex formulation where the con-
straints are the fit-to-data terms. This enables to easily tune
the related parameters which are the (supposed) known noise
variances of the sensors. 2. The proposed minimization algo-
rithm is based on the ADMM. It handles the non differentia-
bilities, constraints and special structures of the linear trans-
forms in an efficient way. 3. The formulation takes the MTF
(Modulation Transfer Function) into account, which helps re-
fining the fit-to-hyperspectral-data constraint. This is favor-
able to high spectral fidelity in pan-sharpened hypersepctral
data.

2. PROBLEM FORMULATION

In this paper, we rearrange (hyperspectral) images into vec-
tors in order to allow writing matrix-vector products. Let

x =

x1

...
xL

 ∈ RLM and u =

u1

...
uL

 ∈ RLN denote the

low spatial resolution (LR) measured hyperspectral image and
the (unknown) high spatial resolution hyperspectral image re-
spectively. The integers L and M represent the number of
spectral bands and the number of spectral pixels respectively.
We let p ∈ RN denote the rearranged panchromatic measured
image, where N = q2 ×M and q ≥ 1 denotes the resolution
factor between the low and high resolution images. The lin-
ear projection operator which returns the lth spectral band is



denoted πl. Then, xl = πlx ∈ RM and ul = πlu ∈ RN are
the lth spectral bands of x and u respectively.

A model formulation for any spectral band l of the hyper-
spectral measurements is given by

xl = DHul + nxl
. (1)

The linear operator H ∈ RN×N respresents the spatial con-
volution with the spatial Point Spread Function of the hy-
perspectral sensor. The linear operator D ∈ RM×N is a
downsampling operator that preserves 1 every q pixels in
the horizontal and vertical directions. Some additive sen-
sor noise is considered in the vector nxl

. We assume that
nxl

∼ N (0, σ2
xl
) where σ2

xl
is the noise variance of the lth

measured hyperspectral band.
A model formulation for the panchromatic image acquisi-

tion process is given by

p = Gu+ np (2)

where G ∈ RN×LN is a linear operator which linearly and
positively combines the spectral bands with weights equal to
the samples of the spectral pattern of the panchromatic image.
The noise of the measured panchromatic image is denoted
np ∼ N (0, σ2

p).
Analogously to [2], we will exploit the fact that the dif-

ferent spectral bands of color images approximately share the
same level lines. Such a knowledge can be integrated by com-
paring the gradient of the panchromatic data with the gradi-
ent of each hyperspectral image channel. A simple way to
measure the discrepancy between the normal fields consist of
using the function f below

f(u) =
L∑

l=1

N∑
i=1

∣∣∣∣〈∇ul(i),
∇⊥p(i)

‖∇p(i)‖2

〉
R2

∣∣∣∣ (3)

where ∇ =
[
∂ᵀ
h , ∂

ᵀ
v

]ᵀ
: RN → RN × RN is the standard

discrete gradient operator, ∂h and ∂v are the horizontal and
vertical gradient operators respectively, 〈·, ·〉R2 is the standard
Euclidian dot product in R2 and ‖·‖2 the associated L2 norm.
The operator ∇⊥ =

[
−∂ᵀ

v , ∂
ᵀ
h

]ᵀ
: RN → RN × RN re-

turns for each pixel a vector orthogonal to the gradient. Func-
tional f has many attractive properties: it is convex in u and
it can be shown to have a meaning in the continuous setting
for bounded variation functions.

In natural scenes, the gradient can be very low in image
areas corresponding to homogeneous radiometry of the scene.
In such a case, f does not provide much information and
an additional regularizing term should be added in the varia-
tional formulation. In this work, we use a standard total varia-
tion regularization [5], commonly used for such purposes and
adapted in Eq. 4 to multiband images

TV (u) =

L∑
l=1

N∑
i=1

‖(∇ul)(i)‖2 (4)

where ‖·‖2 is L2-norm in R2. Note that we simply use total
variation separately on each channel since the spectral infor-
mation is accounted for using functional f . The proposed
variational formulation for the hyperspectral pan-sharpening
problem is as follows:

û = argmin
u

γf(u) + (1− γ)TV (u) (5)

s.t. ‖xl − DsHsul‖22 ≤ Mσ2
xl
,∀l ∈ [1, . . . , L]

‖p− Gu‖22 ≤ Nσ2
p

where ‖·‖2 denotes the L2 norm in RM . In this formulation,
γ ∈ [0, 1] fixes a balance between the two terms f and TV .
The fit-to-data terms are constraints deriving from the physi-
cal models (Eq. 1 and 2). The parameters (σxl

)l∈{1,...,L} and
σp can be a priori given or estimated, which is a strong asset
of the variational constrained formulation.

3. ADMM BASED OPTIMIZATION

Problem (5) is non differentiable, constrained and lives in
very large dimensions. It can be solved using splitting tech-
niques such as Arrow-Hurwicz or extragradient like methods
[6] or ADMM based methods [7, 8]. There is recent theo-
retical and experimental evidence that ADMM like methods
perform much better on some problem classes [9] and we thus
decided to develop this method. Due to space limitations, we
do not provide the details of the implementation. They fol-
low closely the ideas suggested in [7, 8] and make use of:
i) the simple structure of the linear transforms Ds and G, ii)
the fact that H and ∇ can be diagonalized using the discrete
Fourier transform and iii) the fact that the functions involved
in equation 5 are l1 or l2-norms for which we can easily com-
pute proximal operators. The proposed algorithm is called
TVLCSP (for Total Variation iso-gray Level-set Curves Spec-
tral Pattern).

4. EXPERIMENTAL RESULTS

We present here results of TVLCSP on AVIRIS [10] and sim-
ulated HypXim [11] data. We have first extracted a selec-
tion of the Cuprite scene (AVIRIS) which represents a mineral
area. The 224−spectral band data has been preprocessed and
simulated as follows. 1 - Absorption spectral bands have been
removed (bands: 1− 6, 106− 114, 152− 170 and 215− 224)
to get a reference high resolution hyperspectral image uref. 2
- A convex combination of the spectral bands of uref gives the
simulated panchromatic data p. The weights are the coeffi-
cients of the vector g =

[
1
80 . . .

1
80

]
. 3 - The low resolution

hyperspectral image x has been obtained from Eq. 1 without
noise.

The chosen algorithm parameters are given in Table 1.
Visual results are presented in Fig. 1.



(a) HX LR (b) Panchromatic HR

(c) Wavelet HR estimation (d) TVLCSP HR estimation

Fig. 1. Cuprite scene and processing with wavelet and
TVLCSP, for a resolution ratio q = 4

q β γ σp σũ #iter
4 1000 0.01 0.0001 0.0001 300 & 3000

Table 1. Parameters of TVLCSP for the tests on the Cuprite
scene.

In Table 2 we present quantitative evaluation and compar-
ison with a wavelet-based pan-sharpening method [1] using
usual performance metrics: 1 - global quality metrics RMSE
and ERGAS, 2 - spectral quality metrics SAM and the spec-
tral dispersion the spatial dispersion Dλ [12]), and 3 - spatial
quality metrics FCC [13] and spatial dispersion Ds [12]. Note
that Dλ and Ds are metrics without reference (ground truth
high resolution hyperspectral image) requirement, which is
relevant where no reference is available or when the refer-
ence is likely to introduce error in comparison (case of our
HypXim data) due to noise.

Additionally, TVLCSP has been tested on simulated
HypXim data. They have been simulated from data ac-

TVLCSP Wavelet#300 #3000
RMSE (×100) 0.48 0.59 0.91
ERGAS 5.45 6.68 10.3
SAM 0.61 0.70 0.88
FCC (×100) 99.3 99.0 99.1
Ds (×100) 1.15 0.89 2.35
Dλ (×100) 1.82 1.22 4.43

Table 2. Performances of pan-sharpening algorithms on the
Cuprite subimage.

(a) Panchromatic spectral pattern (b) Panchro

(c) LR HSI - q=2 (d) TVLCSP - q=2

(e) LR HSI - q=4 (f) TVLCSP - q=4

(g) LR HSI - q=6 (h) TVLCSP - q=6

Fig. 2. HypXim scene and processing with TVLCSP, for res-
olution ratios q = 2 and q = 6.



q
Spatial Sumulated sensorresolution (m)

1 4.80 Panchromatic sensor
1 4.80 Reference
2 9.60 HypXim P (Performance concept)
4 19.20 HypXim C (Challenging concept)
6 28.80 ENMAP

Table 3. Characteristics of the simulated HypXim and
panchromatic data.

q = 2 q = 4 q = 6
RMSE ×100 1.73 2.08 2.29
ERGAS 11.5 28.5 47.0
SAM 1.57 1.50 1.64
FCC ×100 97.6 97.3 97.2
Ds ×100 3.05 4.28 4.59
Dλ ×100 3.41 2.30 1.82

Table 4. Performances of TVLCSP on the HypXim sub-
image

.

quired in the framework of the Pléiades program. The scene
is located in Namibia and a sub-scene has been extracted.
The characteristics of the considered data are given in Table
3. The considered sensitivity spectral pattern is shown in
Fig. 2(a). We see that only some (20) of the spectral bands
contribute to the panchromatic data thus only 20 non-zero
coefficients in g and the presented result only concerns these
bands. Note that the hyperspectral sensor spatial Point Spread
Functions (PSF) has been supposed Gaussian spectrally and
spatially invariant, with a parameter tuned experimentally.
The visual results are presented in Fig. 2 and the correspond-
ing performance metrics are given in 4. Results on HypXim
are not as good as those on AVIRIS, probably due to our
approximation hypotheses on the sensor parameters and to
the presence of noise. Note that the simulated reference im-
age is corrupted by sensor noise whereas TVLCSP provides
relatively denoised data estimations, which introduces lack of
confidence in the performance metrics values.

5. CONCLUSION

We have tackled the pan-sharpening problem using a con-
strained viariationnal approach with an objective based on
the conservation of iso-gray level set lines among spectral
bands and total variation. The fit-to-data constraints have
been mathematically considered as such and are based on
the signal model and the sensor parameters, including noise
statistics. An ADMM scheme has been developped, called
TVLCSP and evaluated on AVIRIS and HypXim simulated
data.
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