OnRs

Numerical approximation of spatially varying blur operators.

P. Weiss and P. Escande
S. Anthoine, C. Chaux, C. Mélot

```
CNRS - ITAV - IMT
```

Winter School on Computational Harmonic Analysis with Applications to Signal and Image Processing, CIRM, 23/10/2014

Disclaimer

\times We are newcomers to the field of computational harmonic analysis and we are still living in the previous millenium!
\checkmark Do not hesitate to ask further questions to the pillars of time-frequency analysis present in the room.

\checkmark A rich and open topic!

Main references for this presentation

Beylkin, G. (1992). "On the representation of operators in bases of compactly supported wavelets". In: SIAM Journal on Numerical Analysis 29.6, pp. 1716-1740.

Beylkin, G., R. Coifman, and V. Rokhlin (1991). "Fast Wavelet Transform and Numerical Algorithm". In: Commun. Pure and Applied Math. 44, pp. 141-183.

Cohen, A. (2003). Numerical analysis of wavelet methods. Vol. 32. Elsevier.

Cohen, Albert et al. (2003). "Harmonic analysis of the space BV". In: Revista Matematica Iberoamericana 19.1, pp. 235-263.

Coifman, R. and Y. Meyer (1997). Wavelets, Calderón-Zygmund and multilinear operators. Vol. 48.
Escande, P. and P. Weiss (2014). "Numerical Computation of Spatially Varying Blur Operators A Review of Existing Approaches with a New One". In: arXiv preprint arXiv:1404.1023.

Wahba, G. (1990). Spline models for observational data. Vol. 59. Siam.

- Part I: Spatially varying blur operators.
(1) Examples and definitions.
(2) Challenges.
(3) Existing computational methods.
- Part II: Sparse representations in wavelet bases.
(1) Meyer's and Beylkin-Coifman-Rokhlin's results.
(2) Finding good sparsity patterns.
(3) Numerical results.
- Part III: Estimation/interpolation.
(1) An inverse problem on operators.
(2) A tractable numerical scheme using wavelets.
(3) Numerical results.

Part I: Spatially varying blur operators.

Stars in astronomy. How to improve the resolution of galaxies? Sloan Digital Sky Survey http://www. sdss.org/.

VARIATIONS OF REFRACTIVE INDICES DUE TO AIR HEAT VARIABILITY.

A real camera shake. How to remove blur? (by courtesy of M. Hirsch, ICCV 2011)

Fluorescence microscopy. Micro-beads are inserted in the sample.
(Biological images we are working with).

Other potential applications

- ODFM (orthogonal frequency-division multiplexing) systems (see Hans Feichtinger).
- Geophysics and seismic data analysis (see Caroline Chaux).
- Solutions of PDE's $\operatorname{div}(c \nabla u)=f$ (see Philipp Grohs).

A standard inverse problem?

In all the imaging examples, we observe:

$$
u_{0}=H u+b
$$

where H is a blur operator, b is some noise and u is a clean image.

What makes it more difficult?

(1) Few studies for such operators (compared to the huge amount dedicated to convolutions).
(2) Images are large vectors. How to store an operator?
(3) How to numerically evaluate products $H u$ and $H^{T} u$?
(9) In practice, H is partially or completely unknown. How to retrieve the operator H ?

Notation

- We work on $\Omega=[0,1]^{d}, d \in \mathbb{N}$ is the space dimension.
- A grayscale image $u: \Omega \rightarrow \mathbb{R}$ is viewed as an element of $L^{2}(\Omega)$.
- Operators are in capital letters (e.g. H), functions in lower-case (e.g. u), bold is used for matrices (e.g. H).

Spatially varying blur operators

In this talk, we model the spatially varying blur operator H as a linear integral operator:

$$
H u(x)=\int_{\Omega} K(x, y) u(y) d y
$$

The function $K: \Omega \times \Omega \rightarrow \mathbb{R}$ is called kernel.

Important note

By the Schwartz (Laurent) kernel theorem, H can be any linear operator if K is a generalized function.

Definition of the PSF

The point spread function or impulse response at point $y \in \Omega$ is defined by

$$
H \delta_{y}=K(\cdot, y), \quad \text { (if } K \text { is continuous) }
$$

where δ_{y} denotes the Dirac at $y \in \Omega$.

An example

Assume that $K(x, y)=k(x-y)$.
Then H is a convolution operator.
The PSF at y is the function $k(\cdot-y)$.

Examples of 2D PSF fields (H applied to the dirac comb).
LEFT: CONVOLUTION OPERATOR (STATIONARY). RIGHT: SPATIALLY VARYING OPERATOR (UNSTATIONARY).

Properties of blurring operators

- Boundedness of the operator:

$$
H: L^{2}(\Omega) \rightarrow L^{2}(\Omega)
$$

is a bounded operator (the energy stays finite).

- Spatial decay: In most systems, PSFs satisfy:

$$
|K(x, y)| \leq \frac{C}{\|x-y\|_{2}^{\alpha}}
$$

for a certain $\alpha>0$.
Examples: Motion blurs, Gaussian blurs, Airy patterns.

The Airy pattern

The most "standard" PSF is the Airy pattern (diffraction of light in a circular pinhole):

$$
k(x) \simeq I_{0}\left(\frac{2 J_{1}\left(\|x\|_{2}\right)}{\|x\|_{2}}\right)^{2}
$$

where J_{1} is the Bessel function of the first kind.

Axial and longitudinal views of an Airy pattern.

3D RENDERING OF MICROBEADS.

3D RENDERING OF MICROBEADS.

More properties of blurring operators

- PSF smoothness: $\forall y \in \Omega, x \mapsto K(x, y)$ is C^{M} and

$$
\left|\partial_{x}^{m} K(x, y)\right| \leq \frac{C}{\|x-y\|_{2}^{\beta}}, \forall m \leq M
$$

for some $\beta>0$.

- PSF varies smoothly:
$\forall x \in \Omega, y \mapsto K(x, y)$ is C^{M} and

$$
\left|\partial_{x}^{m} K(x, y)\right| \leq \frac{C}{\|x-y\|_{2}^{\gamma}}, \forall m \leq M
$$

for some $\gamma>0$.

Other potential hypotheses (not assumed in this talk)

- Positivity: $K(x, y) \geq 0, \forall x, y$ (not necessarily true, e.g. echography).
- Mass conservation: $\forall y \in \Omega, \int_{\Omega} K(x, y) d x=1$ (not necessarily true when attenuation occurs, e.g. microscopy).

Discretization

Let $\boldsymbol{\Omega}=\{k / N\}_{1 \leq k \leq N}^{d}$ denote a Euclidean discretization of Ω. We can define a discretized operator \mathbf{H} by:

$$
\mathbf{H}(i, j)=\frac{1}{N^{d}} K\left(x_{i}, y_{j}\right)
$$

where $\left(x_{i}, y_{j}\right) \in \boldsymbol{\Omega}^{2}$. By the rectange rule $\forall x_{i} \in \boldsymbol{\Omega}$:

$$
H u\left(x_{i}\right) \approx(\mathbf{H u})(i)
$$

Typical sizes

For an image of size $1000 \times 1000, \mathbf{H}$ contains $10^{6} \times 10^{6}=8$ TeraBytes. For an image of size $1000 \times 1000 \times 1000, \mathbf{H}$ contains $10^{9} \times 10^{9}=8$ ExaBytes. The total amount of data of Google is estimated at 10 ExaBytes in 2013.
\mathbf{H} can be viewed either as a $N^{d} \times N^{d}$ matrix, or as a $\underbrace{N \times N \times \ldots \times N}_{d \text { times }} \times \underbrace{N \times N \times \ldots \times N}_{d \text { times }}$ array.

Complexity of a matrix vector product

A matrix-vector multiplication is an $O\left(N^{2 d}\right)$ algorithm.
With a 1 GHz computer (if the matrix was storable in RAM), a matrix-vector product would take:
$\times 18$ minutes for a 1000×1000 image.
$\times 33$ years for a $1000 \times 1000 \times 1000$ image.

Bounded supports of PSFs help?

\checkmark Might work for very specific applications (astronomy).
$\checkmark 0.4$ seconds $20 \times 20 \mathrm{PSF}$ and 1000×1000 images.
$\times 2$ hours for $20 \times 20 \times 20$ PSFs and $1000 \times 1000 \times 1000$ images.
\times If the diameter of the largest PSF is $\kappa \in(0,1]$, matrix \mathbf{H} contains $O\left(\kappa^{d} N^{2 d}\right)$ non-zero elements.
\times Whenever super-resolution is targeted, this approach is doomed.

The mainstream approach: piecewise convolutions

Main idea: approximate H by an operator H_{m} defined by the following process:
(1) Partition Ω in squares $\omega_{1}, \ldots, \omega_{m}$.
(2) On each subdomain ω_{k}, approximate the blur by a spatially invariant operator.

Theorem (A complexity result (1D) Escande and Weiss 2014)

Let K denote a Lipschitz kernel that is not a convolution. Then:

- The complexity of an evaluation $\mathbf{H}_{m} \mathbf{u}$ using FFTs is

$$
(N+\kappa N m) \log (N / m+\kappa N)
$$

- For $1 \ll m<N$, there exists constants $0<c_{1} \leq c_{2}$ s.t.

$$
\begin{aligned}
& \left\|\mathbf{H}-\mathbf{H}_{m}\right\|_{2 \rightarrow 2} \leq \frac{c_{2}}{m} \\
& \left\|\mathbf{H}-\mathbf{H}_{m}\right\|_{2 \rightarrow 2} \geq \frac{c_{1}}{m}
\end{aligned}
$$

- For sufficiently large N and sufficiently small $\epsilon>0$ the number of operations necessary to obtain $\left\|\mathbf{H}-\mathbf{H}_{m}\right\|_{2 \rightarrow 2} \leq \epsilon$ is proportional to

$$
\frac{L \kappa N \log (\kappa N)}{\epsilon}
$$

Definition of the spectral norm $\|\mathbf{H}\|_{2 \rightarrow 2}:=\sup _{\|\mathbf{u}\|_{2} \leq 1}\|\mathbf{H u}\|_{2}$.

Pros and cons

\checkmark Very simple conceptually.
\checkmark Simple to implement with FFTs.
\checkmark More than 100 papers using this technique (or slightly modified).
\times The method is insensitive to higher degrees of regularity of the kernel.
\times The dependency in ϵ is not appealing.

Part II: Sparse representations in wavelets bases.

Notation (1D)

We work on the interval $\Omega=[0,1]$.
The Sobolev space $W^{M, p}(\Omega)$ is defined by

$$
W^{M, p}(\Omega)=\left\{f^{(m)} \in L^{p}(\Omega), \forall 0 \leq m \leq M\right\}
$$

We define the semi-norm $|f|_{W^{M, p}}=\left\|f^{(M)}\right\|_{L^{p}}$.
Let ϕ and ψ denote the scaling function and mother wavelet.
We assume that $\psi \in W^{M, \infty}$ has M vanishing moments:

$$
\forall 0 \leq m \leq M, \quad \int_{[0,1]} t^{m} \psi(t) d t=0
$$

Every $u \in L^{2}(\Omega)$ can be decomposed as

$$
u=\sum_{j \geq 0} \sum_{0 \leq m<2^{j}}\left\langle u, \psi_{j, m}\right\rangle \psi_{j, m}+\langle u, \phi\rangle \phi
$$

where (apart from the boundaries of $[0,1]$)

$$
\psi_{j, m}=2^{j / 2} \psi\left(2^{j} \cdot-m\right)
$$

Shorthand notation

$$
u=\sum_{\lambda}\left\langle u, \psi_{\lambda}\right\rangle \psi_{\lambda}
$$

with $\lambda=(j, m), j \geq 0,0 \leq m<2^{j}$ and $|\lambda|=j$. The scalar product with ϕ is included in the sum.

Decomposition/Reconstruction operators

We let $\Psi: \ell^{2} \rightarrow L^{2}([0,1])$ and $\Psi^{*}: L^{2}([0,1]) \rightarrow \ell^{2}$ denote the reconstruction/decomposition transforms:
Given a sequence in $\alpha \in \ell^{2}$,

$$
\Psi u=\sum_{\lambda} \alpha_{\lambda} \psi_{\lambda}
$$

Given a function $u \in L^{2}([0,1])$,

$$
\Psi^{*} u=\left(u_{\lambda}\right)_{\lambda}
$$

with

$$
u_{\lambda}=\left\langle u, \psi_{\lambda}\right\rangle
$$

Decomposition of the operator on a wavelet basis

Let $u \in L^{2}(\Omega)$ and $v=H u$.

$$
\begin{aligned}
v & =\sum_{\lambda}\left\langle H u, \psi_{\lambda}\right\rangle \psi_{\lambda} \\
& =\sum_{\lambda}\left\langle H\left(\sum_{\lambda^{\prime}}\left\langle u, \psi_{\lambda^{\prime}}\right\rangle \psi_{\lambda^{\prime}}\right), \psi_{\lambda}\right\rangle \psi_{\lambda} \\
& =\sum_{\lambda} \sum_{\lambda^{\prime}}\left\langle u, \psi_{\lambda^{\prime}}\right\rangle\left\langle H \psi_{\lambda^{\prime}}, \psi_{\lambda}\right\rangle \psi_{\lambda}
\end{aligned}
$$

The action of H is completely described by the (infinite) matrix

$$
\Theta=\left(\theta_{\lambda, \lambda^{\prime}}\right)_{\lambda, \lambda^{\prime}}=\left(\left\langle H \psi_{\lambda^{\prime}}, \psi_{\lambda}\right\rangle\right)_{\lambda, \lambda^{\prime}}
$$

With these notation

$$
H=\Psi \Theta \Psi^{*}
$$

Definition - (Nonsingular) Calderón-Zygmund operators

An integral operator $H: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ with a kernel $K \in W^{M, \infty}(\Omega \times \Omega)$ is a Calderón-Zygmund operator of regularity $M \geq 1$ if

$$
|K(x, y)| \leq \frac{C}{\|x-y\|_{2}^{d}}
$$

and

$$
\left|\partial_{x}^{m} K(x, y)\right|+\left|\partial_{y}^{m} K(x, y)\right| \leq \frac{C}{\|x-y\|_{2}^{d+m}}, \forall m \leq M
$$

Important notes

The above definition is simplified.
Calderón-Zygmund operators may be singular on the diagonal $x=y$. For instance, the Hilbert transform corresponds to $K(x, y)=\frac{1}{x-y}$.

Take home message

Our blurring operators are simple Calderón-Zygmund operators.

Theorem (Decrease of $\theta_{\lambda, \lambda^{\prime}}$ in 1D)

Assume that H belongs to the Calderón-Zygmund class and that the mother wavelet ψ is compactly supported with M vanishing moments. Set $\lambda=(j, m)$ and $\lambda^{\prime}=(k, n)$. Then

$$
\left|\theta_{\lambda, \lambda^{\prime}}\right| \leq C_{M} 2^{-(M+1 / 2)|j-k|}\left(\frac{2^{-k}+2^{-j}}{2^{-k}+2^{-j}+\left|2^{-j} m-2^{-k} n\right|}\right)^{M+1}
$$

where C_{M} is a constant independent of j, k, n, m.

Take home message

\checkmark The coefficients decrease exponentialy with scales differences $2^{-(M+1 / 2)|j-k|}$.
\checkmark The coefficients decrease polynomialy with shift differences $\left(\frac{2^{-k}+2^{-j}}{2^{-k}+2^{-j}+\left|2^{-j} m-2^{-k} n\right|}\right)^{M+1}$.
The kernel regularity M plays a key role.

Polynomial approximation - Annales de l'institut Fourier, Deny-Lions 1954

Let $f \in W^{M, p}([0,1])$. For $1 \leq p \leq+\infty, M \in \mathbb{N}^{*}$ and $I_{h} \subset[0,1]$ an interval of length h :

$$
\begin{equation*}
\inf _{g \in \Pi_{M-1}}\|f-g\|_{L^{p}\left(I_{h}\right)} \leq C h^{M}|f|_{W^{M, p}\left(I_{h}\right)} \tag{1}
\end{equation*}
$$

where C is a constant that depends on M and p only.
Let $I_{j, m}=\operatorname{supp}\left(\psi_{j, m}\right)=\left[2^{-j}(m-1), 2^{-j}(m+1)\right]$. Assume that $j \leq k$:

$$
\left|\left\langle H \psi_{j, m}, \psi_{k, n}\right\rangle\right|
$$

$$
\begin{aligned}
& =\left|\int_{I_{k, n}} \int_{I_{j, m}} K(x, y) \psi_{j, m}(y) \psi_{k, n}(x) d y d x\right| \\
& =\left|\int_{I_{j, m}} \int_{I_{k, n}} K(x, y) \psi_{j, m}(y) \psi_{k, n}(x) d x d y\right|
\end{aligned}
$$

(Fubini)

$$
=\left|\int_{I_{j, m}} \inf _{g \in \Pi_{M-1}} \int_{I_{k, n}}(K(x, y)-g(x)) \psi_{j, m}(y) \psi_{k, n}(x) d x d y\right|
$$

$$
\begin{equation*}
\leq \int_{I_{j, m}} \inf _{g \in \Pi_{M-1}}\|K(\cdot, y)-g\|_{L^{\infty}\left(I_{k, n}\right)}\left\|\psi_{k, n}\right\|_{L^{1}\left(I_{k, n}\right)}\left|\psi_{j, m}(y)\right| d y \tag{Hölder}
\end{equation*}
$$

Therefore:

$$
\begin{aligned}
& \left|\left\langle H \psi_{j, m}, \psi_{k, n}\right\rangle\right| \\
& \lesssim 2^{-k M}\left\|\psi_{k, n}\right\|_{L^{1}\left(I_{k, n}\right)}\left\|\psi_{j, m}\right\|_{L^{1}\left(I_{j, m}\right)} \underset{y \in I_{j, m}}{\operatorname{esssup}}|K(\cdot, y)|_{W^{M, \infty\left(I_{k, n}\right)}} \quad \text { (Hölder again) } \\
& \lesssim 2^{-k M} 2^{-\frac{j}{2}} 2^{-\frac{k}{2}} \underset{y \in I_{j, m}}{\operatorname{esssup}}|K(\cdot, y)|_{W^{M, \infty}\left(I_{k, n}\right)} .
\end{aligned}
$$

Controlling esssup $y_{y \in I_{j, m}}|K(\cdot, y)|_{W^{M, \infty}\left(I_{k, n}\right)}$ can be achieved using the fact that derivatives of Calderón-Zygmund operator decay polynomially away from the diagonal. We obtain (not direct):

$$
\underset{y \in I_{j, m}}{\operatorname{esssup}}|K(\cdot, y)|_{W^{M, \infty}\left(I_{k, n}\right)} \lesssim\left(\frac{1+2^{j-k}}{2^{-j}+2^{-k}+\left|2^{-j} m-2^{-k} n\right|}\right)^{M+1}
$$

Theorem (Decrease of $\theta_{\lambda, \lambda^{\prime}}$ in d-dimensions)

Assume that H belongs to the Calderón-Zygmund class and that the mother wavelet ψ is compactly supported with M vanishing moments. Set $\lambda=(j, m)$ and $\lambda^{\prime}=(k, n)$. Then

$$
\left|\theta_{\lambda, \lambda^{\prime}}\right| \leq C_{M} 2^{-(M+d / 2)|j-k|}\left(\frac{2^{-k}+2^{-j}}{2^{-k}+2^{-j}+\left|2^{-j} m-2^{-k} n\right|}\right)^{M+d}
$$

where C_{M} is a constant independent of j, k, n, m.

A practical example (1D)

We set:

$$
K(x, y)=\frac{1}{\sigma(y) \sqrt{2 \pi}} \exp \left(-\frac{(x-y)^{2}}{2 \sigma(y)^{2}}\right)
$$

with

$$
\sigma(y)=4+10 y
$$

A field of PSFs and the discretized matrix H with $N=256$.

The matrix Θ (usual scale).

The matrix $\Theta\left(\log _{10}\right.$-SCALE $)$.

Summary

Calderón-Zygmund operators are compressible in the wavelet domain !
Question
Can these results be used for fast computations?

A word on Galerkin approximations

Numerically, it is impossible to use infinite dimensional matrices.
We can therefore truncate the matrix Θ by setting a maximum scale J :

$$
\boldsymbol{\Theta}=\left(\theta_{\lambda, \lambda^{\prime}}\right)_{0 \leq \lambda, \lambda^{\prime} \leq J}
$$

Let

$$
\begin{aligned}
& \Psi_{J}: \begin{cases}\mathbb{R}^{2^{J+1}} & \rightarrow L^{2}(\Omega) \\
\alpha & \mapsto \sum_{|\lambda| \leq J} \alpha_{\lambda} \psi_{\lambda}\end{cases} \\
& \Psi_{J}^{*}: \begin{cases}L^{2}(\Omega) & \rightarrow \mathbb{R}^{2^{J+1}} \\
u & \mapsto\left(\left\langle u, \psi_{\lambda}\right\rangle\right)_{|\lambda| \leq J}\end{cases}
\end{aligned}
$$

We obtain an approximation H_{J} of H defined by:

$$
H_{J}=\Psi_{J} \Theta \Psi_{J}^{*}=\Pi_{J} H \Pi_{J}
$$

where the operator $\Pi_{J}=\Psi_{J} \Psi_{J}^{*}$ is a projector on $\operatorname{span}\left(\left\{\psi_{\lambda},|\lambda| \leq J\right\}\right)$.

A word on Galerkin approximation

Standard results in approximation theory state that if u belong to some Banach space \mathcal{B}

$$
\begin{equation*}
\left\|u-\Pi_{J}(u)\right\|_{2}=O\left(N^{-\alpha}\right) \tag{2}
\end{equation*}
$$

where α depends on \mathcal{B} and $N=2^{J+1}$.
If we assume that H is regularizing, meaning that for any u satisfying (2)

$$
\left\|H u-\Pi_{J}(H u)\right\|_{2}=O\left(N^{-\beta}\right), \quad \text { with } \beta \geq \alpha
$$

Then:

$$
\begin{array}{r}
\left\|H u-H_{J} u\right\|_{2}=\left\|H u-\Pi_{J} H\left(u-\Pi_{J} u-u\right)\right\|_{2} \\
\leq\left\|H u-\Pi_{J} H u\right\|_{2}+\left\|\Pi_{J} H\left(\Pi_{J} u-u\right)\right\|_{2}=O\left(N^{-\alpha}\right)
\end{array}
$$

Examples

- For $u \in H^{1}([0,1]), \alpha=2$.
- For $u \in W^{1,1}([0,1])$ or $u \in B V([0,1]), \alpha=1$.
- For $u \in W^{1,1}\left([0,1]^{2}\right)$ or $u \in B V\left([0,1]^{2}\right), \alpha=1 / 2$.

The main idea

Most coefficients in $\boldsymbol{\Theta}$ are small.
One can "threshold" it to obtain a sparse approximation $\boldsymbol{\Theta}_{P}$, where P denotes the number of nonzero coefficients.

We get an approximation $\mathbf{H}_{P}=\boldsymbol{\Psi} \boldsymbol{\Theta}_{P} \boldsymbol{\Psi}^{*}$.

Numerical complexity

A product $\mathbf{H}_{P} \mathbf{u}$ costs:

- 2 wavelet transforms of complexity $O(N)$.
- A matrix-vector product with $\boldsymbol{\Theta}_{P}$ of complexity $O(P)$.

The overall complexity for is $O(\max (P, N))$.
This is to be compared to the usual $O\left(N^{2}\right)$ complexity.

Theorem (theoretical foundations Beylkin, Coifman, and Rokhlin 1991)

Let $\boldsymbol{\Theta}_{\eta}$ be the matrix obtained by zeroing all coefficients in $\boldsymbol{\Theta}$ such that

$$
\left(\frac{2^{-j}+2^{-k}}{2^{-j}+2^{-k}+\left|2^{-j} m-2^{-k} n\right|}\right)^{M+1} \leq \eta .
$$

Let $\mathbf{H}_{\eta}=\boldsymbol{\Psi} \Theta_{\eta} \Psi^{*}$ denote the resulting operator. Then:
i) The number of non zero coefficients in $\boldsymbol{\Theta}_{\eta}$ is bounded above by

$$
C_{M}^{\prime} N \log _{2}(N) \eta^{-\frac{1}{M+1}}
$$

ii) The approximation \mathbf{H}_{η} satisfies $\left\|\mathbf{H}-\mathbf{H}_{\eta}\right\|_{2 \rightarrow 2} \lesssim \eta^{\frac{M}{M+1}}$.
iii) The complexity to obtain an ϵ-approximation $\left\|\mathbf{H}-\mathbf{H}_{\eta}\right\|_{2 \rightarrow 2} \leq \epsilon$ is bounded above by $C_{M}^{\prime \prime} N \log _{2}(N) \epsilon^{-\frac{1}{M}}$.

Proof outline

(1) Since $\boldsymbol{\Psi}$ is orthogonal,

$$
\left\|\mathbf{H}_{\eta}-\mathbf{H}\right\|_{2 \rightarrow 2}=\left\|\boldsymbol{\Theta}-\boldsymbol{\Theta}_{\eta}\right\|_{2 \rightarrow 2}
$$

(2) Let $\boldsymbol{\Delta}_{\eta}=\boldsymbol{\Theta}-\boldsymbol{\Theta}_{\eta}$. Use the Schur test

$$
\left\|\boldsymbol{\Delta}_{\eta}\right\|_{2 \rightarrow 2}^{2} \leq\left\|\boldsymbol{\Delta}_{\eta}\right\|_{1 \rightarrow 1}\left\|\boldsymbol{\Delta}_{\eta}\right\|_{\infty \rightarrow \infty}
$$

(3) Majorize $\left\|\boldsymbol{\Delta}_{\eta}\right\|_{1 \rightarrow 1}$ using Meyer's upper-bound.

Note: the 1-norm has a simple explicit expression contrarily to the 2-norm.

Piecewise convolutions VS wavelet sparsity

	Piecewise convolutions	Wavelet sparsity
Simple theory	Yes	No
Simple implementation	Yes	No
Complexity	$O\left(N \log _{2}(N) \epsilon^{-1}\right)$	$O\left(N \log _{2}(N) \epsilon^{-\frac{1}{M}}\right)$
Adaptivity/universality	No	Yes

Link with the SVD

Let $\boldsymbol{\Psi}=\left(\boldsymbol{\psi}_{1}, \ldots, \boldsymbol{\psi}_{N}\right) \in \mathbb{R}^{N \times N}$ denote a discrete wavelet transform.
The change of basis $\mathbf{H}=\boldsymbol{\Psi} \Theta \boldsymbol{\Psi}^{*}$ can be rewritten as:

$$
\mathbf{H}=\sum_{\lambda, \lambda^{\prime}} \theta_{\lambda, \lambda^{\prime}} \boldsymbol{\psi}_{\lambda} \boldsymbol{\psi}_{\lambda^{\prime}}^{T}
$$

The $N \times N$ matrix $\psi_{\lambda} \boldsymbol{\psi}_{\lambda^{\prime}}^{T}$ is rank-1.
Matrix \mathbf{H} is therefore decomposed as the sum of N^{2} rank-1 matrices.
By "thresholding" $\boldsymbol{\Theta}$ one can obtain an ϵ-approximation with $O\left(N \log _{2}(N) \epsilon^{-\frac{1}{M}}\right)$ rank-1 matrices.

The SVD is a sum of N rank-1 matrices (which can also be compressed for compact operators).

Take home message

Tensor products of wavelets can be used to produce approximations of regularizing operators by sums of rank- 1 matrices.

ILLUSTRATION OF THE SPACE DECOMPOSITION WITH A NAIVE THRESHOLDING.

First reflex - Hard thresholding

Construct Θ_{P} by keeping the P largest coefficients of Θ.
This choice is optimal in the sense that it minimizes

$$
\min _{\boldsymbol{\Theta}_{P} \in \mathbb{S}_{P}}\left\|\boldsymbol{\Theta}-\boldsymbol{\Theta}_{P}\right\|_{F}^{2}=\left\|\mathbf{H}-\mathbf{H}_{P}\right\|_{F}^{2}
$$

where \mathbb{S}_{P} is the set of $N \times N$ matrices with at most P nonzero coefficients.
Problem: the Frobenius norm is not an operator norm.

Second reflex - Optimizing the $\|\cdot\|_{2 \rightarrow 2}$-norm
In most (if not all) publications on wavelet compression of operators:

$$
\min _{\boldsymbol{\Theta}_{P} \in \mathbb{S}_{P}}\left\|\boldsymbol{\Theta}-\boldsymbol{\Theta}_{P}\right\|_{2 \rightarrow 2}
$$

This problem has no easily computable solution.
Approximate solutions lead to unsatisfactory approximation results.

A (much) better strategy Escande and Weiss 2014

Main idea: minimize an operator norm adapted to images.
Most signals/images are in $B V(\Omega)$ (or $\left.B_{1}^{1,1}(\Omega)\right)$, therefore (in 1D)
Cohen et al. 2003:

$$
\sum_{j \geq 0} \sum_{m=0}^{2^{j}-1} 2^{j}\left|\left\langle u, \psi_{j, m}\right\rangle\right|<+\infty
$$

This motivates to define a norm $\|\cdot\|_{X}$ on vectors:

$$
\|\mathbf{u}\|_{X}=\left\|\boldsymbol{\Sigma} \boldsymbol{\Psi}^{*} \mathbf{u}\right\|_{1}
$$

where $\boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{N}\right)$ and $\sigma_{i}=2^{j(i)}$ where $j(i)$ is the scale of the i-th wavelet.

It leads to the following variational problem:

$$
\min _{\mathbf{S}_{P} \in \mathbb{S}_{P}} \sup _{\|\mathbf{u}\|_{X} \leq 1}\left\|\left(\mathbf{H}-\mathbf{H}_{P}\right) \mathbf{u}\right\|_{2}=\left\|\mathbf{H}-\mathbf{H}_{P}\right\|_{X \rightarrow 2}
$$

Optimization algorithm

Main trick: use the fact that signals and operators are sparse in the same wavelet basis. Let $\boldsymbol{\Delta}_{P}=\boldsymbol{\Theta}-\boldsymbol{\Theta}_{P}$. Then

$$
\begin{aligned}
\max _{\|\mathbf{u}\|_{X} \leq 1}\left\|\left(\mathbf{H}-\mathbf{H}_{P}\right) \mathbf{u}\right\|_{2} & =\max _{\|\mathbf{u}\|_{X} \leq 1}\left\|\left(\mathbf{\Psi}\left(\boldsymbol{\Theta}-\boldsymbol{\Theta}_{P}\right) \mathbf{\Psi}^{*}\right) \mathbf{u}\right\|_{2} \\
& =\max _{\|\mathbf{\Sigma z}\|_{1} \leq 1}\left\|\boldsymbol{\Delta}_{P} \mathbf{z}\right\|_{2} \\
& =\max _{\|\mathbf{z}\|_{1} \leq 1}\left\|\boldsymbol{\Delta}_{P} \boldsymbol{\Sigma}^{-1} \mathbf{z}\right\|_{2} \\
& =\max _{1 \leq i \leq N} \frac{1}{\sigma_{i}}\left\|\boldsymbol{\Delta}_{P}^{(i)}\right\|_{2}
\end{aligned}
$$

This problem can be solved exactly using a greedy algorithm with quicksort.

Complexity

- If $\boldsymbol{\Theta}$ is known: $O\left(N^{2} \log (N)\right)$.
- If only Meyer's bound is known: $O(N \log (N))$.

Optimal space decomposition minimizing $\left\|\mathbf{H}-\mathbf{H}_{P}\right\|_{X \rightarrow 2}$.

Optimal space decomposition minimizing $\left\|\mathbf{H}-\mathbf{H}_{P}\right\|_{X \rightarrow 2}$ when only an UPPER-BOUND ON Θ IS KNOWN.

Test case image

Rotational Blur

	Piece. Conv.	Difference	Algorithm	Difference	$l=$
4×4					30
		\%			
8×8					50
0.36 s					0.048 s

BLURRED IMAGES USING APPROXIMATING OPERATORS AND DIFFERENCES WITH THE exact blurred image. We set the sparsity $P=l N^{2}$.

TV-L2 based deblurring

Degraded Image

Exact Operator $28.97 \mathrm{DB}-2$ HOURS

Wavelet
28.02DB - 8 SECONDS

Piece. Conv.
27.12DB - 35 SECONDS
\checkmark Calderón-Zygmund operators are highly compressible in the wavelet domain.
\checkmark Evaluation of Calderón-Zygmund operators can be handled efficiently numerically in the wavelet domain.
\checkmark Wavelet compression outperforms piecewise convolution both theoretically and experimentally.
\checkmark Calderón-Zygmund operators are highly compressible in the wavelet domain.
\checkmark Evaluation of Calderón-Zygmund operators can be handled efficiently numerically in the wavelet domain.
\checkmark Wavelet compression outperforms piecewise convolution both theoretically and experimentally.

The devil was hidden!

Until now, we assumed that Θ was known.
In 1 D , the change of basis $\boldsymbol{\Theta}=\boldsymbol{\Psi}^{*} \mathbf{H} \boldsymbol{\Psi}$ has complexity $O\left(N^{3}\right)$! We had to use 12 cores and 8 hours to compute $\boldsymbol{\Theta}$ and obtain the previous 2 D results.

A dead end?

Part III: Operator reconstruction (ongoing work).

The setting

Assume we only know a few PSFs at points $\left(y_{i}\right)_{1 \leq i \leq n} \in \Omega^{n}$.
The "inverse problem" we want to solve is:
Reconstruct K knowing $k_{i}=K\left(\cdot, y_{i}\right)+\eta_{i}$, where η_{i} is noise.

> Severely ill-posed!

A variational formulation:

$$
\inf _{K \in \mathcal{K}} \frac{1}{2} \sum_{i=1}^{n}\left\|k_{i}-K\left(\cdot, y_{i}\right)\right\|_{2}^{2}+\lambda R(K)
$$

How can we choose the regularization functional R and the space \mathcal{K} ?

Problem illustration: some known PSFs and the associated matrix.

The first regularizer

From the first part of the talk, we know that blur operators can be approximated by matrices of type:

$$
\begin{equation*}
\mathbf{H}_{P}=\boldsymbol{\Psi} \boldsymbol{\Theta}_{P} \boldsymbol{\Psi} \tag{3}
\end{equation*}
$$

where $\boldsymbol{\Theta}_{P}$ is a P sparse matrix with a known sparsity pattern \mathbb{P}.
We let \mathbb{H} denote the space of matrices of type (3).
This is a first natural regularizer.
\checkmark Reduces the number of degrees of freedom.
\checkmark Compresses the matrix.
\checkmark Allow fast matrix-vector multiplication.
\times Not sufficient to regularize the problem: we still have to find $O(N \log (N))$ coefficients.

Assumption: two neighboring PSFs are similar

From a formal point of view:

$$
K(\cdot, y) \approx \tau_{-h} K(\cdot, y+h)
$$

for sufficiently small h, where τ_{-h} denotes the translation operator.
Alternative formulation: the mappings

$$
y \mapsto K(x+y, y)
$$

should be smooth for all $x \in \Omega$.

Interpolation/approximation of scattered data

Some known PSFs and the associated matrix.

Spline-based approximation of functions $\Omega=[0,1]$

Let $f:[0,1] \rightarrow \mathbb{R}$ denote a function such that $f\left(y_{i}\right)=\gamma_{i}+\eta_{i}, 1 \leq i \leq n$.
A variational formulation to obtain piecewise linear approximations:

$$
\inf _{g \in H^{1}([0,1])} \frac{1}{2} \sum_{i=1}^{n}\left\|g\left(y_{i}\right)-\gamma_{i}\right\|_{2}^{2}+\frac{\lambda}{2} \int_{[0,1]}\left(g^{\prime}(x)\right)^{2} d x
$$

From functions to operators $\Omega=[0,1]$
This motivates us to consider the problem

$$
\inf _{K \in \mathcal{K}} \frac{1}{2} \sum_{i=1}^{n}\left\|k_{i}-K\left(\cdot, y_{i}\right)\right\|_{2}^{2}+\frac{\lambda}{2} \underbrace{\int_{\Omega} \int_{\Omega}\langle\nabla K(x, y),(1 ; 1)\rangle^{2} d y d x}_{R(K)}
$$

Discretization

Let $\mathbf{k}_{i} \in \mathbb{R}^{N}$ denote the discretization of $K\left(\cdot, y_{i}\right)$. The discretized variational problem can be rewritten:

$$
\inf _{\mathbf{H} \in \mathbb{H}} \frac{1}{2} \sum_{i=1}^{n}\left\|\mathbf{k}_{i}-\mathbf{H}\left(\cdot, y_{i}\right)\right\|_{2}^{2}+\frac{\lambda}{2} \sum_{i=1}^{N} \sum_{j=1}^{N}(\mathbf{H}(i+1, j+1)-\mathbf{H}(i, j))^{2}
$$

The devil is still there!

This is an optimization problem over the space of $N \times N$ matrices!

Bad news...

We are now working with HUGE operators:

- A matrix $\mathbf{H} \in \mathbb{R}^{N \times N}$ can be thought of as a vector of size N^{2}.
- We need the translation operator $\mathbf{T}_{1,1}: \mathbb{R}^{N \times N} \rightarrow \mathbb{R}^{N \times N}$ that maps $\mathbf{H}(i, j)$ to $\mathbf{H}(i+1, j+1)$.
- This way

$$
\begin{aligned}
R(\mathbf{H}) & =\sum_{i=1}^{N} \sum_{j=1}^{N}(\mathbf{H}(i+1, j+1)-\mathbf{H}(i, j))^{2} \\
& =\left\|\left(\boldsymbol{\Gamma}_{1,1}-\mathbf{I}\right)(\mathbf{H})\right\|_{F}^{2} .
\end{aligned}
$$

A first trick

Main observation: the shift operator $\mathbf{T}_{1,1}=\mathbf{T}_{1,0} \circ \mathbf{T}_{0,1}$.

- the shift in the vertical direction can be encoded by an $N \times N$ matrix:

$$
\mathbf{T}_{1,0}(\mathbf{H})=\mathbf{T}_{1} \cdot \mathbf{H}
$$

where $\mathbf{T}_{1} \in \mathbb{R}^{N \times N}$ is N-sparse.

- Similarly:

$$
\mathbf{T}_{0,1}(\mathbf{H})=\left(\mathbf{T}_{1} \cdot \mathbf{H}^{T}\right)^{T}=\mathbf{H} \cdot \mathbf{T}_{-1}
$$

Note that \mathbf{T}_{1} is orthogonal, therefore $\mathbf{T}_{1}^{T}=\mathbf{T}_{1}^{-1}=\mathbf{T}_{-1}$.

- Overall $\mathbf{T}_{1,1}(\mathbf{H})=\mathbf{T}_{1} \cdot \mathbf{H} \cdot \mathbf{T}_{-1}$.

Theorem Beylkin 1992

The shift matrix $\mathbf{S}_{1}=\mathbf{\Psi}^{*} \mathbf{T}_{1} \boldsymbol{\Psi}$ contains $O(N \log N)$ non-zero coefficients. Moreover, \mathbf{S}_{1} can be computed efficiently with an $O(N \log N)$ algorithm.

Consequences for numerical analysis

The regularization term can be computed efficiently in the wavelet domain:

$$
\begin{aligned}
R(\mathbf{H}) & =\left\|\mathbf{T}_{1} \mathbf{H} \mathbf{T}_{-1}-\mathbf{H}\right\|_{F}^{2} \\
& =\left\|\mathbf{\Psi} \mathbf{S}_{1} \mathbf{\Psi}^{*} \mathbf{H} \boldsymbol{\Psi} \mathbf{S}_{-1} \mathbf{\Psi}^{*}-\mathbf{H}\right\|_{F}^{2} \\
& =\left\|\mathbf{S}_{1} \boldsymbol{\Theta} \mathbf{S}_{-1}-\boldsymbol{\Theta}\right\|_{F}^{2}
\end{aligned}
$$

The overall problem is now formulated only in the wonderful sparse world:

$$
\min _{\boldsymbol{\Theta}_{P} \in \Xi} \frac{1}{2} \sum_{i=1}^{n}\left\|\mathbf{k}_{i}-\boldsymbol{\Psi} \boldsymbol{\Theta}_{P} \boldsymbol{\Psi}^{*} \boldsymbol{\delta}_{y_{i}}\right\|_{2}^{2}+\frac{\lambda}{2}\left\|\mathbf{S}_{1} \boldsymbol{\Theta}_{P} \mathbf{S}_{-1}-\boldsymbol{\Theta}_{P}\right\|_{F}^{2}
$$

where $\boldsymbol{\Xi}$ is the space of $N \times N$ matrices with fixed sparsity pattern \mathbb{P}.
Can be solved using a projected conjugate gradient descent.

Approximated PSF field at shifted known locations.

Spline approximation in higher dimensions

Scattered data in \mathbb{R}^{d} can be interpolated or approximated using higher-order variational problems.
For instance one can use biharmonic splines:

$$
\inf _{g \in H^{2}\left([0,1]^{2}\right)} \frac{1}{2} \sum_{i=1}^{n}\left\|g\left(y_{i}\right)-\gamma_{i}\right\|_{2}^{2}+\frac{\lambda}{2} \int_{[0,1]^{2}}(\Delta g(y))^{2} d x .
$$

A basic reference: Wahba 1990.

Why use higher orders?

Let $B=\left\{(x, y) \in \mathbb{R}^{2}, x^{2}+y^{2} \leq 1\right\}$. The function

$$
u(x, y)=\log \left(\left|\log \left(\sqrt{x^{2}+y^{2}}\right)\right|\right)
$$

belongs to $H^{1}(B)=W^{1,2}(B)$ and is unbounded at 0 .

Illustration

Left: know surface $(x, y) \mapsto x^{2}+y^{2}$. Right: know values.

Illustration

Left: H_{1} Reconstruction. Right: biharmonic reconstruction.

The case $\Omega=[0,1]^{2}$

In 2D, one can solve the following variational problem:

$$
\inf _{K \in H^{1}(\Omega \times \Omega)} \frac{1}{2} \sum_{i=1}^{n}\left\|k_{i}-K\left(\cdot, y_{i}\right)\right\|_{2}^{2}+\frac{\lambda}{2} \underbrace{\int_{\Omega} \int_{\Omega} \Delta_{y}(L)^{2}(x, y) d y d x}_{R(K)}
$$

where $L(x, y):=R(x+y, y)$.
Using similar tricks as in the previous part, this problem can be entirely reformulated in the space of sparse matrices.

Reconstruction of an operator

True operator (applied to the Dirac comb).

Reconstruction of an operator

Operator reconstruction.

A complete deconvolution example

Original image.

A complete deconvolution example

Blurry and noisy image (with the exact operator).

A complete deconvolution example

Restored image (with the reconstructed operator). Operator RECONSTRUCTION $=40$ minutes. Image RECONSTRUCTION $=3$ SECONDS $(100$ ITERATIONS OF A DESCENT ALGORITHM).

Main facts

\checkmark Operators are highly compressible in wavelet domain.
\checkmark Operators can be computed efficiently in the wavelet domain.
\checkmark Possibility to formulate inverse problems on operator spaces.
\checkmark Regarding spatially varying deblurring:
\checkmark numerical results are promising.
\checkmark versatile method allowing to handle PSFs on non cartesian grids.
\times Results are preliminary. Operator reconstruction takes too long.

A nice research topic

\checkmark Not much has been done.
\checkmark Plenty of work in theory.
\checkmark Plenty of work in implementation.
\checkmark Plenty of potential applications.

Beylkin, G. (1992). "On the representation of operators in bases of compactly supported wavelets". In: SIAM Journal on Numerical Analysis 29.6, pp. 1716-1740.

Beylkin, G., R. Coifman, and V. Rokhlin (1991). "Fast Wavelet Transform and Numerical Algorithm". In: Commun. Pure and Applied Math. 44, pp. 141-183.

Cohen, A. (2003). Numerical analysis of wavelet methods. Vol. 32. Elsevier.

Cohen, Albert et al. (2003). "Harmonic analysis of the space BV". In: Revista Matematica Iberoamericana 19.1, pp. 235-263.

Coifman, R. and Y. Meyer (1997). Wavelets, Calderón-Zygmund and multilinear operators. Vol. 48.

Escande, P. and P. Weiss (2014). "Numerical Computation of Spatially Varying Blur Operators A Review of Existing Approaches with a New One". In: arXiv preprint arXiv:1404.1023.

Wahba, G. (1990). Spline models for observational data. Vol. 59. Siam.

