

Numerical approximation of spatially varying blur operators.

P. Weiss and P. Escande S. Anthoine, C. Chaux, C. Mélot

CNRS - ITAV - IMT

Winter School on Computational Harmonic Analysis with Applications to Signal and Image Processing, CIRM, 23/10/2014

Disclaimer

- × We are newcomers to the field of computational harmonic analysis and we are still living in the previous millenium!
- ✓ Do not hesitate to ask further questions to the pillars of time-frequency analysis present in the room.
- \checkmark A rich and open topic!

Main references for this presentation

- Beylkin, G. (1992). "On the representation of operators in bases of compactly supported wavelets". In: SIAM Journal on Numerical Analysis 29.6, pp. 1716-1740.
- Beylkin, G., R. Coifman, and V. Rokhlin (1991). "Fast Wavelet Transform and Numerical Algorithm". In: Commun. Pure and Applied Math. 44, pp. 141-183.
- Cohen, A. (2003). Numerical analysis of wavelet methods. Vol. 32. Elsevier.
- Cohen, Albert et al. (2003). "Harmonic analysis of the space BV". In: Revista Matematica Iberoamericana 19.1, pp. 235-263.
- Coifman, R. and Y. Meyer (1997). Wavelets, Calderón-Zygmund and multilinear operators. Vol. 48.
- Escande, P. and P. Weiss (2014). "Numerical Computation of Spatially Varying Blur Operators A Review of Existing Approaches with a New One". In: arXiv preprint arXiv:1404.1023.

Wahba, G. (1990). Spline models for observational data. Vol. 59. Siam.

Outline

- Part I: Spatially varying blur operators.
 - Examples and definitions.
 - 2 Challenges.
 - **③** Existing computational methods.
- Part II: Sparse representations in wavelet bases.
 - Meyer's and Beylkin-Coifman-Rokhlin's results.
 - 2 Finding good sparsity patterns.
 - Numerical results.
- Part III: Estimation/interpolation.
 - An inverse problem on operators.
 - A tractable numerical scheme using wavelets.
 - Numerical results.

Part I: Spatially varying blur operators.

STARS IN ASTRONOMY. HOW TO IMPROVE THE RESOLUTION OF GALAXIES? SLOAN DIGITAL SKY SURVEY HTTP://www.sdss.org/.

Motivating examples - Imaging under turbulence (2D)

VARIATIONS OF REFRACTIVE INDICES DUE TO AIR HEAT VARIABILITY.

Motivating examples - Computer vision (2D)

A REAL CAMERA SHAKE. HOW TO REMOVE BLUR? (BY COURTESY OF M. HIRSCH, ICCV 2011)

Fluorescence microscopy. Micro-beads are inserted in the sample. (Biological images we are working with).

Other potential applications

- ODFM (orthogonal frequency-division multiplexing) systems (see Hans Feichtinger).
- Geophysics and seismic data analysis (see Caroline Chaux).
- Solutions of PDE's $\operatorname{div}(c\nabla u) = f$ (see Philipp Grohs).
- ...

A standard inverse problem?

In all the imaging examples, we observe:

$$u_0 = Hu + b$$

where H is a blur operator, b is some noise and u is a clean image.

What makes it more difficult?

- Few studies for such operators (compared to the huge amount dedicated to convolutions).
- Images are large vectors. How to store an operator?
- **③** How to numerically evaluate products Hu and $H^T u$?
- In practice, H is partially or completely unknown. How to retrieve the operator H?

Notation

- We work on $\Omega = [0, 1]^d$, $d \in \mathbb{N}$ is the space dimension.
- A grayscale image $u: \Omega \to \mathbb{R}$ is viewed as an element of $L^2(\Omega)$.
- Operators are in capital letters (e.g. H), functions in lower-case (e.g. u), bold is used for matrices (e.g. H).

Spatially varying blur operators

In this talk, we model the spatially varying blur operator H as a linear integral operator:

$$Hu(x) = \int_{\Omega} K(x, y)u(y) \, dy$$

The function $K: \Omega \times \Omega \to \mathbb{R}$ is called kernel.

Important note

By the Schwartz (Laurent) kernel theorem, H can be any linear operator if K is a generalized function.

Definition of the PSF

The point spread function or impulse response at point $y \in \Omega$ is defined by

 $H\delta_y = K(\cdot, y),$ (if K is continuous)

where δ_y denotes the Dirac at $y \in \Omega$.

An example

Assume that K(x, y) = k(x - y). Then *H* is a convolution operator. The PSF at *y* is the function $k(\cdot - y)$.

Examples of 2D PSF fields (H applied to the dirac comb). Left: convolution operator (stationary). Right: spatially varying operator (unstationary).

Properties of blurring operators

• Boundedness of the operator:

$$H: L^2(\Omega) \to L^2(\Omega)$$

is a bounded operator (the energy stays finite).

• Spatial decay: In most systems, PSFs satisfy:

$$|K(x,y)| \le \frac{C}{\|x-y\|_2^{\alpha}}$$

for a certain $\alpha > 0$. Examples: Motion blurs, Gaussian blurs, Airy patterns.

The Airy pattern

The most "standard" PSF is the Airy pattern (diffraction of light in a circular pinhole):

$$k(x) \simeq I_0 \left(\frac{2J_1(\|x\|_2)}{\|x\|_2} \right)^2,$$

where J_1 is the Bessel function of the first kind.

AXIAL AND LONGITUDINAL VIEWS OF AN AIRY PATTERN.

Some PSF examples - Real life microscopy (3D)

3D RENDERING OF MICROBEADS.

Motivating examples - Microscopy (3D)

3D RENDERING OF MICROBEADS.

More properties of blurring operators

• **PSF** smoothness: $\forall y \in \Omega, x \mapsto K(x, y)$ is C^M and

$$|\partial_x^m K(x,y)| \le \frac{C}{\|x-y\|_2^\beta}, \ \forall m \le M.$$

for some $\beta > 0$.

• PSF varies smoothly: $\forall x \in \Omega, \ y \mapsto K(x, y) \text{ is } C^M \text{ and }$

$$|\partial_x^m K(x,y)| \le \frac{C}{\|x-y\|_2^{\gamma}}, \ \forall m \le M.$$

for some $\gamma > 0$.

Other potential hypotheses (not assumed in this talk)

- Positivity: $K(x, y) \ge 0, \forall x, y$ (not necessarily true, e.g. echography).
- Mass conservation: $\forall y \in \Omega$, $\int_{\Omega} K(x, y) dx = 1$ (not necessarily true when attenuation occurs, e.g. microscopy).

Discretization

Let $\Omega = \{k/N\}_{1 \le k \le N}^d$ denote a Euclidean discretization of Ω . We can define a discretized operator **H** by:

$$\mathbf{H}(i,j) = \frac{1}{N^d} K(x_i, y_j)$$

where $(x_i, y_j) \in \mathbf{\Omega}^2$. By the rectange rule $\forall x_i \in \mathbf{\Omega}$:

 $Hu(x_i) \approx (\mathbf{Hu})(i).$

Typical sizes

For an image of size 1000×1000 , **H** contains $10^6 \times 10^6 = 8$ TeraBytes. For an image of size $1000 \times 1000 \times 1000$, **H** contains $10^9 \times 10^9 = 8$ ExaBytes. The total amount of data of Google is estimated at 10 ExaBytes in 2013.

Complexity of a matrix vector product

A matrix-vector multiplication is an $O(N^{2d})$ algorithm. With a 1GHz computer (if the matrix was storable in RAM), a matrix-vector product would take:

- \times 18 minutes for a 1000 \times 1000 image.
- \times 33 years for a 1000 \times 1000 \times 1000 image.

Bounded supports of PSFs help?

- ✓ Might work for very specific applications (astronomy).
- $\checkmark~0.4$ seconds 20 \times 20 PSF and 1000 \times 1000 images.
- \times 2 hours for 20 \times 20 \times 20 PSFs and 1000 \times 1000 \times 1000 images.
- × If the diameter of the largest PSF is $\kappa \in (0, 1]$, matrix **H** contains $O(\kappa^d N^{2d})$ non-zero elements.
- \times Whenever super-resolution is targeted, this approach is doomed.

The mainstream approach: piecewise convolutions

Main idea: approximate H by an operator H_m defined by the following process:

- Partition Ω in squares $\omega_1, \ldots, \omega_m$.
- **②** On each subdomain ω_k , approximate the blur by a spatially invariant operator.

Piecewise convolutions

Theorem (A complexity result (1D)

Escande and Weiss 2014)

Let K denote a Lipschitz kernel that is not a convolution. Then:

• The complexity of an evaluation $\mathbf{H}_m \mathbf{u}$ using FFTs is

 $(N + \kappa Nm) \log (N/m + \kappa N).$

• For $1 \ll m < N$, there exists constants $0 < c_1 \leq c_2$ s.t.

$$\|\mathbf{H} - \mathbf{H}_m\|_{2 \to 2} \le \frac{c_2}{m}$$
$$\|\mathbf{H} - \mathbf{H}_m\|_{2 \to 2} \ge \frac{c_1}{m}$$

For sufficiently large N and sufficiently small ε > 0 the number of operations necessary to obtain ||**H** − **H**_m||_{2→2} ≤ ε is proportional to

$$\frac{L\kappa N\log(\kappa N)}{\epsilon}$$

Definition of the spectral norm $\|\mathbf{H}\|_{2\to 2} := \sup_{\|\mathbf{u}\|_2 \leq 1} \|\mathbf{H}\mathbf{u}\|_2.$

Pros and cons

- \checkmark Very simple conceptually.
- \checkmark Simple to implement with FFTs.
- ✓ More than 100 papers using this technique (or slightly modified).
- \times The method is insensitive to higher degrees of regularity of the kernel.
- × The dependency in ϵ is not appealing.

Part II: Sparse representations in wavelets bases.

Notation (1D)

We work on the interval $\Omega = [0, 1]$. The Sobolev space $W^{M, p}(\Omega)$ is defined by

$$W^{M,p}(\Omega) = \{ f^{(m)} \in L^p(\Omega), \ \forall \ 0 \le m \le M \}.$$

We define the semi-norm $|f|_{W^{M,p}} = ||f^{(M)}||_{L^p}$.

Let ϕ and ψ denote the scaling function and mother wavelet. We assume that $\psi \in W^{M,\infty}$ has M vanishing moments:

$$\forall 0 \leq m \leq M, \quad \int_{[0,1]} t^m \psi(t) \, dt = 0.$$

Every $u \in L^2(\Omega)$ can be decomposed as

$$u = \sum_{j \ge 0} \sum_{0 \le m < 2^j} \langle u, \psi_{j,m} \rangle \psi_{j,m} + \langle u, \phi \rangle \phi.$$

where (apart from the boundaries of [0, 1])

$$\psi_{j,m} = 2^{j/2} \psi(2^j \cdot -m).$$

Shorthand notation

$$u = \sum_{\lambda} \langle u, \psi_{\lambda} \rangle \psi_{\lambda}.$$

with $\lambda = (j, m), j \ge 0, 0 \le m < 2^j$ and $|\lambda| = j$. The scalar product with ϕ is included in the sum.

Decomposition/Reconstruction operators

We let $\Psi: \ell^2 \to L^2([0,1])$ and $\Psi^*: L^2([0,1]) \to \ell^2$ denote the reconstruction/decomposition transforms: Given a sequence in $\alpha \in \ell^2$,

$$\Psi u = \sum_{\lambda} \alpha_{\lambda} \psi_{\lambda}$$

Given a function $u \in L^2([0,1])$,

$$\Psi^* u = (u_\lambda)_\lambda$$

with

$$u_{\lambda} = \langle u, \psi_{\lambda} \rangle.$$

Decomposition of the operator on a wavelet basis

Let $u \in L^2(\Omega)$ and v = Hu.

$$\begin{split} v &= \sum_{\lambda} \langle Hu, \psi_{\lambda} \rangle \psi_{\lambda} \\ &= \sum_{\lambda} \left\langle H\left(\sum_{\lambda'} \langle u, \psi_{\lambda'} \rangle \psi_{\lambda'}\right), \psi_{\lambda} \right\rangle \psi_{\lambda} \\ &= \sum_{\lambda} \sum_{\lambda'} \langle u, \psi_{\lambda'} \rangle \langle H\psi_{\lambda'}, \psi_{\lambda} \rangle \psi_{\lambda}. \end{split}$$

The action of H is completely described by the (infinite) matrix

$$\Theta = (\theta_{\lambda,\lambda'})_{\lambda,\lambda'} = (\langle H\psi_{\lambda'},\psi_{\lambda}\rangle)_{\lambda,\lambda'}.$$

With these notation

$$H = \Psi \Theta \Psi^*.$$

Definition - (Nonsingular) Calderón-Zygmund operators

An integral operator $H: L^2(\Omega) \to L^2(\Omega)$ with a kernel $K \in W^{M,\infty}(\Omega \times \Omega)$ is a Calderón-Zygmund operator of regularity $M \ge 1$ if

$$|K(x,y)| \le \frac{C}{\|x-y\|_2^d}$$

and

$$|\partial_x^m K(x,y)| + |\partial_y^m K(x,y)| \le \frac{C}{\|x-y\|_2^{d+m}}, \ \forall m \le M.$$

Important notes

The above definition is simplified.

Calderón-Zygmund operators may be singular on the diagonal x = y. For instance, the Hilbert transform corresponds to $K(x, y) = \frac{1}{x-y}$.

Take home message

Our blurring operators are simple Calderón-Zygmund operators.

Theorem (Decrease of $\theta_{\lambda,\lambda'}$ in 1D)

Assume that H belongs to the Calderón-Zygmund class and that the mother wavelet ψ is compactly supported with M vanishing moments. Set $\lambda = (j, m)$ and $\lambda' = (k, n)$. Then

$$|\theta_{\lambda,\lambda'}| \le C_M 2^{-(M+1/2)|j-k|} \left(\frac{2^{-k} + 2^{-j}}{2^{-k} + 2^{-j} + |2^{-j}m - 2^{-k}n|}\right)^{M+1}$$

where C_M is a constant independent of j, k, n, m.

Take home message

- ✓ The coefficients decrease exponentially with scales differences $2^{-(M+1/2)|j-k|}$.
- ✓ The coefficients decrease polynomialy with shift differences $\left(\frac{2^{-k}+2^{-j}}{2^{-k}+2^{-j}+|2^{-j}m-2^{-k}n|}\right)^{M+1}$.
- \checkmark The kernel regularity M plays a key role.

Polynomial approximation - Annales de l'institut Fourier, Deny-Lions 1954

Let $f \in W^{M,p}([0,1])$. For $1 \leq p \leq +\infty$, $M \in \mathbb{N}^*$ and $I_h \subset [0,1]$ an interval of length h:

$$\inf_{g \in \Pi_{M-1}} \|f - g\|_{L^p(I_h)} \le Ch^M |f|_{W^{M,p}(I_h)},\tag{1}$$

where C is a constant that depends on M and p only.

Let
$$I_{j,m} = \operatorname{supp}(\psi_{j,m}) = [2^{-j}(m-1), 2^{-j}(m+1)].$$
 Assume that $j \le k$:
 $|\langle H\psi_{j,m}, \psi_{k,n} \rangle|$

$$= \left| \int_{I_{k,n}} \int_{I_{j,m}} K(x, y)\psi_{j,m}(y)\psi_{k,n}(x) \, dy \, dx \right|$$

$$= \left| \int_{I_{j,m}} \int_{I_{k,n}} K(x, y)\psi_{j,m}(y)\psi_{k,n}(x) \, dx \, dy \right| \quad (\text{Fubini})$$

$$= \left| \int_{I_{j,m}} \inf_{g \in \Pi_{M-1}} \int_{I_{k,n}} (K(x, y) - g(x))\psi_{j,m}(y)\psi_{k,n}(x) \, dx \, dy \right| \quad (\text{Vanishing moments})$$

$$\leq \int_{I_{j,m}} \inf_{g \in \Pi_{M-1}} \| K(\cdot, y) - g \|_{L^{\infty}(I_{k,n})} \| \psi_{k,n} \|_{L^{1}(I_{k,n})} | \psi_{j,m}(y)| \, dy \quad (\text{Hölder})$$

Therefore:

$$\begin{split} &|\langle H\psi_{j,m},\psi_{k,n}\rangle| \\ &\lesssim 2^{-kM} \|\psi_{k,n}\|_{L^{1}(I_{k,n})} \|\psi_{j,m}\|_{L^{1}(I_{j,m})} \operatorname{esssup}_{y \in I_{j,m}} |K(\cdot,y)|_{W^{M,\infty}(I_{k,n})} \quad (\text{H\"older again}) \\ &\lesssim 2^{-kM} 2^{-\frac{j}{2}} 2^{-\frac{k}{2}} \operatorname{esssup}_{y \in I_{j,m}} |K(\cdot,y)|_{W^{M,\infty}(I_{k,n})} \,. \end{split}$$

Controlling $\operatorname{esssup}_{y \in I_{j,m}} |K(\cdot, y)|_{W^{M,\infty}(I_{k,n})}$ can be achieved using the fact that derivatives of Calderón-Zygmund operator decay polynomially away from the diagonal. We obtain (not direct):

$$\operatorname{esssup}_{y \in I_{j,m}} |K(\cdot, y)|_{W^{M,\infty}(I_{k,n})} \lesssim \left(\frac{1+2^{j-k}}{2^{-j}+2^{-k}+|2^{-j}m-2^{-k}n|}\right)^{M+1} \square$$

Theorem (Decrease of $\theta_{\lambda,\lambda'}$ in d-dimensions)

Assume that H belongs to the Calderón-Zygmund class and that the mother wavelet ψ is compactly supported with M vanishing moments. Set $\lambda = (j, m)$ and $\lambda' = (k, n)$. Then

$$|\theta_{\lambda,\lambda'}| \le C_M 2^{-(M+d/2)|j-k|} \left(\frac{2^{-k} + 2^{-j}}{2^{-k} + 2^{-j} + |2^{-j}m - 2^{-k}n|}\right)^{M+d}$$

where C_M is a constant independent of j, k, n, m.

Geometrical intuition

A practical example (1D)

We set:

$$K(x,y) = \frac{1}{\sigma(y)\sqrt{2\pi}} \exp\left(-\frac{(x-y)^2}{2\sigma(y)^2}\right)$$

with

 $\sigma(y) = 4 + 10y.$

A field of PSFs and the discretized matrix \mathbf{H} with N = 256.

Pierre Weiss & Paul Escande Numerical approximation of blurring operators

Compression of Caderón-Zygmund operators

The matrix Θ (usual scale).

Compression of Caderón-Zygmund operators

The matrix Θ (log₁₀-scale).

Summary

Calderón-Zygmund operators are compressible in the wavelet domain !

Question

Can these results be used for fast computations?
A word on Galerkin approximations

Numerically, it is impossible to use infinite dimensional matrices. We can therefore truncate the matrix Θ by setting a maximum scale J:

$$\boldsymbol{\Theta} = (\theta_{\lambda,\lambda'})_{0 \leq \lambda,\lambda' \leq J}$$

Let

$$\Psi_{J}: \begin{cases} \mathbb{R}^{2^{J+1}} & \to L^{2}(\Omega) \\ \alpha & \mapsto \sum_{|\lambda| \leq J} \alpha_{\lambda} \psi_{\lambda} \end{cases}$$
$$\Psi_{J}^{*}: \begin{cases} L^{2}(\Omega) & \to \mathbb{R}^{2^{J+1}} \\ u & \mapsto (\langle u, \psi_{\lambda} \rangle)_{|\lambda| \leq J} \end{cases}$$

We obtain an approximation H_J of H defined by:

$$H_J = \Psi_J \Theta \Psi_J^* = \Pi_J H \Pi_J,$$

where the operator $\Pi_J = \Psi_J \Psi_J^*$ is a projector on span $(\{\psi_\lambda, |\lambda| \leq J\})$.

A word on Galerkin approximation

Standard results in approximation theory state that if u belong to some Banach space $\mathcal B$

$$|u - \Pi_J(u)||_2 = O(N^{-\alpha}),$$
(2)

where α depends on \mathcal{B} and $N = 2^{J+1}$.

If we assume that H is regularizing, meaning that for any u satisfying (2)

$$||Hu - \Pi_J(Hu)||_2 = O(N^{-\beta}), \text{ with } \beta \ge \alpha.$$

Then:

$$\|Hu - H_J u\|_2 = \|Hu - \Pi_J H(u - \Pi_J u - u)\|_2$$

$$\leq \|Hu - \Pi_J Hu\|_2 + \|\Pi_J H(\Pi_J u - u)\|_2 = O(N^{-\alpha}).$$

Examples

- For $u \in H^1([0,1]), \alpha = 2$.
- For $u \in W^{1,1}([0,1])$ or $u \in BV([0,1])$, $\alpha = 1$.
- For $u \in W^{1,1}([0,1]^2)$ or $u \in BV([0,1]^2)$, $\alpha = 1/2$.

The main idea

Most coefficients in Θ are small.

One can "threshold" it to obtain a sparse approximation Θ_P , where P denotes the number of nonzero coefficients.

We get an approximation $\mathbf{H}_P = \mathbf{\Psi} \mathbf{\Theta}_P \mathbf{\Psi}^*$.

Numerical complexity

A product $\mathbf{H}_{P}\mathbf{u}$ costs:

- 2 wavelet transforms of complexity O(N).
- A matrix-vector product with Θ_P of complexity O(P).

The overall complexity for is $O(\max(P, N))$.

This is to be compared to the usual $O(N^2)$ complexity.

Theorem (theoretical foundations

Beylkin, Coifman, and Rokhlin 1991)

Let Θ_{η} be the matrix obtained by zeroing all coefficients in Θ such that

$$\left(\frac{2^{-j}+2^{-k}}{2^{-j}+2^{-k}+|2^{-j}m-2^{-k}n|}\right)^{M+1} \le \eta$$

Let $\mathbf{H}_{\eta} = \mathbf{\Psi} \mathbf{\Theta}_{\eta} \mathbf{\Psi}^*$ denote the resulting operator. Then:

i) The number of non zero coefficients in Θ_{η} is bounded above by

$$C'_M N \log_2(N) \eta^{-\frac{1}{M+1}}$$

- ii) The approximation \mathbf{H}_{η} satisfies $\|\mathbf{H} \mathbf{H}_{\eta}\|_{2 \to 2} \lesssim \eta^{\frac{M}{M+1}}$.
- iii) The complexity to obtain an ϵ -approximation $\|\mathbf{H} \mathbf{H}_{\eta}\|_{2\to 2} \leq \epsilon$ is bounded above by $C''_{M}N\log_{2}(N) \ \epsilon^{-\frac{1}{M}}$.

Proof outline

4 Since Ψ is orthogonal,

$$\|\mathbf{H}_{\eta} - \mathbf{H}\|_{2 \to 2} = \|\mathbf{\Theta} - \mathbf{\Theta}_{\eta}\|_{2 \to 2}.$$

2 Let $\Delta_{\eta} = \Theta - \Theta_{\eta}$. Use the Schur test

$$\|\boldsymbol{\Delta}_{\eta}\|_{2\to 2}^2 \leq \|\boldsymbol{\Delta}_{\eta}\|_{1\to 1} \|\boldsymbol{\Delta}_{\eta}\|_{\infty\to\infty}.$$

3 Majorize $\|\Delta_{\eta}\|_{1\to 1}$ using Meyer's upper-bound. Note : the 1-norm has a simple explicit expression contrarily to the 2-norm.

Piecewise convolutions VS wavelet sparsity

	Piecewise convolutions	Wavelet sparsity	
Simple theory	Yes	No	
Simple implementation	Yes	No	
Complexity	$O\left(N\log_2(N)\epsilon^{-1} ight)$	$O\left(N\log_2(N)\epsilon^{-\frac{1}{M}} ight)$	
Adaptivity/universality	No	Yes	

Link with the SVD

Let $\Psi = (\psi_1, \dots, \psi_N) \in \mathbb{R}^{N \times N}$ denote a discrete wavelet transform. The change of basis $\mathbf{H} = \Psi \Theta \Psi^*$ can be rewritten as:

$$\mathbf{H} = \sum_{\lambda,\lambda'} heta_{\lambda,\lambda'} \boldsymbol{\psi}_{\lambda} \boldsymbol{\psi}_{\lambda'}^T.$$

The $N \times N$ matrix $\psi_{\lambda} \psi_{\lambda'}^T$ is rank-1. Matrix **H** is therefore decomposed as the sum of N^2 rank-1 matrices.

By "thresholding" Θ one can obtain an ϵ -approximation with $O(N \log_2(N) \epsilon^{-\frac{1}{M}})$ rank-1 matrices.

The SVD is a sum of N rank-1 matrices (which can also be compressed for compact operators).

Take home message

Tensor products of wavelets can be used to produce approximations of regularizing operators by sums of rank-1 matrices.

Geometrical intuition of the method

ILLUSTRATION OF THE SPACE DECOMPOSITION WITH A NAIVE THRESHOLDING.

First reflex - Hard thresholding

Construct Θ_P by keeping the *P* largest coefficients of Θ .

This choice is optimal in the sense that it minimizes

$$\min_{\mathbf{\Theta}_P \in \mathbb{S}_P} \|\mathbf{\Theta} - \mathbf{\Theta}_P\|_F^2 = \|\mathbf{H} - \mathbf{H}_P\|_F^2$$

where \mathbb{S}_P is the set of $N \times N$ matrices with at most P nonzero coefficients.

Problem: the Frobenius norm is not an operator norm.

Second reflex - Optimizing the $\|\cdot\|_{2\to 2}\text{-norm}$

In most (if not all) publications on wavelet compression of operators:

$$\min_{\boldsymbol{\Theta}_P \in \mathbb{S}_P} \|\boldsymbol{\Theta} - \boldsymbol{\Theta}_P\|_{2 \to 2}.$$

This problem has no easily computable solution.

Approximate solutions lead to unsatisfactory approximation results.

A (much) better strategy

Escande and Weiss 2014

Main idea: minimize an operator norm adapted to images.

Most signals/images are in $BV(\Omega)$ (or $B_1^{1,1}(\Omega)$), therefore (in 1D) Cohen et al. 2003:

$$\sum_{j\geq 0}\sum_{m=0}^{2^j-1}2^j|\langle u,\psi_{j,m}\rangle|<+\infty.$$

This motivates to define a norm $\|\cdot\|_X$ on vectors:

$$\|\mathbf{u}\|_X = \|\mathbf{\Sigma} \mathbf{\Psi}^* \mathbf{u}\|_1$$

where $\Sigma = diag(\sigma_1, \ldots, \sigma_N)$ and $\sigma_i = 2^{j(i)}$ where j(i) is the scale of the *i*-th wavelet.

It leads to the following variational problem:

$$\min_{\mathbf{S}_P \in \mathbb{S}_P} \sup_{\|\mathbf{u}\|_X \leq 1} \| (\mathbf{H} - \mathbf{H}_P) \mathbf{u} \|_2 = \| \mathbf{H} - \mathbf{H}_P \|_{X \to 2}.$$

Optimization algorithm

Main trick : use the fact that signals and operators are sparse in the same wavelet basis. Let $\Delta_P = \Theta - \Theta_P$. Then

$$\begin{split} \max_{\|\mathbf{u}\|_X \leq 1} \| (\mathbf{H} - \mathbf{H}_P) \mathbf{u} \|_2 &= \max_{\|\mathbf{u}\|_X \leq 1} \| (\mathbf{\Psi}(\mathbf{\Theta} - \mathbf{\Theta}_P) \mathbf{\Psi}^*) \mathbf{u} \|_2 \\ &= \max_{\|\mathbf{\Sigma}\mathbf{z}\|_1 \leq 1} \| \mathbf{\Delta}_P \mathbf{z} \|_2 \\ &= \max_{\|\mathbf{z}\|_1 \leq 1} \| \mathbf{\Delta}_P \mathbf{\Sigma}^{-1} \mathbf{z} \|_2 \\ &= \max_{1 \leq i \leq N} \frac{1}{\sigma_i} \| \mathbf{\Delta}_P^{(i)} \|_2. \end{split}$$

This problem can be solved exactly using a greedy algorithm with quicksort.

Complexity

- If Θ is known: $O(N^2 \log(N))$.
- If only Meyer's bound is known: $O(N \log(N))$.

Geometrical intuition of the method

Optimal space decomposition minimizing $\|\mathbf{H} - \mathbf{H}_P\|_{X \to 2}$.

Geometrical intuition of the method

Optimal space decomposition minimizing $\|\mathbf{H}-\mathbf{H}_P\|_{X\to 2}$ when only an upper-bound on $\boldsymbol{\Theta}$ is known.

Experimental validation

TEST CASE IMAGE

ROTATIONAL BLUR

	Piece. Conv.	Difference	Algorithm	Difference	l =
4×4	38.49 dB		45.87 dB		30
0.17 s	T B B V S K J O O A H H F Z K U V A H S Y L Z N		T B B V S K ADONAT 0 H F Z K ADONAT 0 S Y U V A H N Z N Z		0.040s
8×8	44.51 dB		50.26 dB		50
0.36 s	T H S N L Z		T H F Z Y L Z N Z Y L Z		0.048s

Blurred images using approximating operators and differences with the exact blurred image. We set the sparsity $P = lN^2$.

Deblurring results

TV-L2 based deblurring

WAVELET28.02DB - 8 SECONDS PIECE. CONV. 27.12DB – 35 SECONDS

Pierre Weiss & Paul Escande Numerical approximation of blurring operators

Conclusion of the 2nd part

- ✓ Calderón-Zygmund operators are highly compressible in the wavelet domain.
- ✓ Evaluation of Calderón-Zygmund operators can be handled efficiently numerically in the wavelet domain.
- ✓ Wavelet compression outperforms piecewise convolution both theoretically and experimentally.

Conclusion of the 2nd part

- ✓ Calderón-Zygmund operators are highly compressible in the wavelet domain.
- ✓ Evaluation of Calderón-Zygmund operators can be handled efficiently numerically in the wavelet domain.
- ✓ Wavelet compression outperforms piecewise convolution both theoretically and experimentally.

The devil was hidden!

Until now, we assumed that Θ was known. In 1D, the change of basis $\Theta = \Psi^* H \Psi$ has complexity $O(N^3)$! We had to use 12 cores and 8 hours to compute Θ and obtain the previous 2D results.

A dead end?

Part III: Operator reconstruction (ongoing work).

The setting

Assume we only know a few PSFs at points $(y_i)_{1 \le i \le n} \in \Omega^n$.

The "inverse problem" we want to solve is:

Reconstruct K knowing $k_i = K(\cdot, y_i) + \eta_i$, where η_i is noise.

Severely ill-posed!

A variational formulation:

$$\inf_{K \in \mathcal{K}} \frac{1}{2} \sum_{i=1}^{n} \|k_i - K(\cdot, y_i)\|_2^2 + \lambda R(K).$$

How can we choose the regularization functional R and the space \mathcal{K} ?

PROBLEM ILLUSTRATION: SOME KNOWN PSFs and the associated matrix.

The first regularizer

From the first part of the talk, we know that blur operators can be approximated by matrices of type:

$$\mathbf{H}_{P} = \mathbf{\Psi} \mathbf{\Theta}_{P} \mathbf{\Psi} \tag{3}$$

where Θ_P is a *P* sparse matrix with a known sparsity pattern \mathbb{P} . We let \mathbb{H} denote the space of matrices of type (3). This is a first natural regularizer.

- ✓ Reduces the number of degrees of freedom.
- ✓ Compresses the matrix.
- ✓ Allow fast matrix-vector multiplication.
- × Not sufficient to regularize the problem: we still have to find $O(N \log(N))$ coefficients.

Assumption: two neighboring PSFs are similar

From a formal point of view:

$$K(\cdot, y) \approx \tau_{-h} K(\cdot, y+h),$$

for sufficiently small h, where τ_{-h} denotes the translation operator.

Alternative formulation: the mappings

$$y \mapsto K(x+y,y)$$

should be smooth for all $x \in \Omega$.

Interpolation/approximation of scattered data

Some known PSFs and the associated matrix.

Pierre Weiss & Paul Escande Numerical approximation of blurring operators

Spline-based approximation of functions $\Omega = [0, 1]$

Let $f : [0,1] \to \mathbb{R}$ denote a function such that $f(y_i) = \gamma_i + \eta_i$, $1 \le i \le n$. A variational formulation to obtain piecewise linear approximations:

$$\inf_{g \in H^1([0,1])} \frac{1}{2} \sum_{i=1}^n \|g(y_i) - \gamma_i\|_2^2 + \frac{\lambda}{2} \int_{[0,1]} (g'(x))^2 \, dx.$$

From functions to operators $\Omega = [0, 1]$

This motivates us to consider the problem

$$\inf_{K \in \mathcal{K}} \frac{1}{2} \sum_{i=1}^{n} \|k_i - K(\cdot, y_i)\|_2^2 + \frac{\lambda}{2} \underbrace{\int_{\Omega} \int_{\Omega} \langle \nabla K(x, y), (1; 1) \rangle^2 \, dy \, dx}_{R(K)}$$

Discretization

Let $\mathbf{k}_i \in \mathbb{R}^N$ denote the discretization of $K(\cdot, y_i)$. The discretized variational problem can be rewritten:

$$\inf_{\mathbf{H}\in\mathbb{H}}\frac{1}{2}\sum_{i=1}^{n}\|\mathbf{k}_{i}-\mathbf{H}(\cdot,y_{i})\|_{2}^{2}+\frac{\lambda}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}(\mathbf{H}(i+1,j+1)-\mathbf{H}(i,j))^{2}.$$

The devil is still there!

This is an optimization problem over the space of $N \times N$ matrices!

Bad news...

We are now working with **HUGE** operators:

- A matrix $\mathbf{H} \in \mathbb{R}^{N \times N}$ can be thought of as a vector of size N^2 .
- We need the translation operator $\mathbf{T}_{1,1} : \mathbb{R}^{N \times N} \to \mathbb{R}^{N \times N}$ that maps $\mathbf{H}(i,j)$ to $\mathbf{H}(i+1,j+1)$.
- This way

$$R(\mathbf{H}) = \sum_{i=1}^{N} \sum_{j=1}^{N} (\mathbf{H}(i+1,j+1) - \mathbf{H}(i,j))^{2}$$
$$= \left\| \left(\mathbf{T}_{1,1} - \mathbf{I} \right) (\mathbf{H}) \right\|_{F}^{2}.$$

A first trick

Main observation: the shift operator $\mathbf{T}_{1,1} = \mathbf{T}_{1,0} \circ \mathbf{T}_{0,1}$.

• the shift in the vertical direction can be encoded by an $N \times N$ matrix:

$$T_{1,0}(\mathbf{H}) = \mathbf{T}_1 \cdot \mathbf{H}$$

where $\mathbf{T}_1 \in \mathbb{R}^{N \times N}$ is N-sparse.

• Similarly:

$$\mathbf{T}_{0,1}(\mathbf{H}) = (\mathbf{T}_1 \cdot \mathbf{H}^T)^T = \mathbf{H} \cdot \mathbf{T}_{-1}.$$

Note that \mathbf{T}_1 is orthogonal, therefore $\mathbf{T}_1^T = \mathbf{T}_1^{-1} = \mathbf{T}_{-1}$.

• Overall $\mathbf{T}_{1,1}(\mathbf{H}) = \mathbf{T}_1 \cdot \mathbf{H} \cdot \mathbf{T}_{-1}$.

Theorem Beylkin 1992

The shift matrix $\mathbf{S}_1 = \mathbf{\Psi}^* \mathbf{T}_1 \mathbf{\Psi}$ contains $O(N \log N)$ non-zero coefficients. Moreover, \mathbf{S}_1 can be computed efficiently with an $O(N \log N)$ algorithm.

Consequences for numerical analysis

The regularization term can be computed efficiently in the wavelet domain:

$$R(\mathbf{H}) = \|\mathbf{T}_{1}\mathbf{H}\mathbf{T}_{-1} - \mathbf{H}\|_{F}^{2}$$

= $\|\mathbf{\Psi}\mathbf{S}_{1}\mathbf{\Psi}^{*}\mathbf{H}\mathbf{\Psi}\mathbf{S}_{-1}\mathbf{\Psi}^{*} - \mathbf{H}\|_{F}^{2}$
= $\|\mathbf{S}_{1}\mathbf{\Theta}\mathbf{S}_{-1} - \mathbf{\Theta}\|_{F}^{2}$.

The overall problem is now formulated only in the wonderful sparse world:

$$\min_{\boldsymbol{\Theta}_{P} \in \boldsymbol{\Xi}} \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{k}_{i} - \boldsymbol{\Psi} \boldsymbol{\Theta}_{P} \boldsymbol{\Psi}^{*} \boldsymbol{\delta}_{y_{i}} \|_{2}^{2} + \frac{\lambda}{2} \|\mathbf{S}_{1} \boldsymbol{\Theta}_{P} \mathbf{S}_{-1} - \boldsymbol{\Theta}_{P} \|_{F}^{2}.$$

where Ξ is the space of $N \times N$ matrices with fixed sparsity pattern \mathbb{P} . Can be solved using a projected conjugate gradient descent.

LEFT: KNOWN MATRIX. RIGHT: RECONSTRUCTED MATRIX.

Approximated PSF field at known locations.

Approximated PSF field at shifted known locations.

Spline approximation in higher dimensions

А

Scattered data in \mathbb{R}^d can be interpolated or approximated using higher-order variational problems. For instance one can use biharmonic splines:

$$\inf_{g \in H^2([0,1]^2)} \frac{1}{2} \sum_{i=1}^n \|g(y_i) - \gamma_i\|_2^2 + \frac{\lambda}{2} \int_{[0,1]^2} (\Delta g(y))^2 \, dx.$$

basic reference: Wahba 1990.

A word on the interpolation of scattered data

Why use higher orders?

Let
$$B = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 \le 1\}$$
. The function

$$u(x,y) = \log(|\log(\sqrt{x^2 + y^2})|)$$

belongs to $H^1(B) = W^{1,2}(B)$ and is unbounded at 0.

Illustration

Left: know surface $(x, y) \mapsto x^2 + y^2$. Right: know values.

A word on the interpolation of scattered data

Left: H_1 reconstruction. Right: Biharmonic reconstruction.

The case $\Omega = [0, 1]^2$

In 2D, one can solve the following variational problem:

$$\inf_{K \in H^{1}(\Omega \times \Omega)} \frac{1}{2} \sum_{i=1}^{n} \|k_{i} - K(\cdot, y_{i})\|_{2}^{2} + \frac{\lambda}{2} \underbrace{\int_{\Omega} \int_{\Omega} \Delta_{y}(L)^{2}(x, y) \, dy \, dx}_{R(K)}$$

where L(x, y) := R(x + y, y).

Using similar tricks as in the previous part, this problem can be entirely reformulated in the space of sparse matrices.

A complete deconvolution example

Reconstruction of an operator

TRUE OPERATOR (APPLIED TO THE DIRAC COMB).

Pierre Weiss & Paul Escande Numerical approximation of blurring operators
A complete deconvolution example

Reconstruction of an operator

			-	-	-			

OPERATOR RECONSTRUCTION.

Pierre Weiss & Paul Escande Numerical approximation of blurring operators

Examples

A complete deconvolution example

ORIGINAL IMAGE.

Examples

A complete deconvolution example

BLURRY AND NOISY IMAGE (WITH THE EXACT OPERATOR).

Pierre Weiss & Paul Escande Numerical approximation of blurring operators

Examples

A complete deconvolution example

Restored image (with the reconstructed operator). Operator reconstruction = 40 minutes. Image reconstruction = 3 seconds (100 iterations of a descent algorithm).

Pierre Weiss & Paul Escande Numerical approximation of blurring operators

Main facts

- \checkmark Operators are highly compressible in wavelet domain.
- \checkmark Operators can be computed efficiently in the wavelet domain.
- \checkmark Possibility to formulate inverse problems on operator spaces.
- $\checkmark\,$ Regarding spatially varying deblurring:
 - ✓ numerical results are promising.
 - \checkmark versatile method allowing to handle PSFs on non cartesian grids.
- × Results are preliminary. Operator reconstruction takes too long.

A nice research topic

- \checkmark Not much has been done.
- \checkmark Plenty of work in theory.
- \checkmark Plenty of work in implementation.
- \checkmark Plenty of potential applications.

- Beylkin, G. (1992). "On the representation of operators in bases of compactly supported wavelets". In: SIAM Journal on Numerical Analysis 29.6, pp. 1716-1740.
- Beylkin, G., R. Coifman, and V. Rokhlin (1991). "Fast Wavelet Transform and Numerical Algorithm". In: Commun. Pure and Applied Math. 44, pp. 141–183.

Cohen, A. (2003). Numerical analysis of wavelet methods. Vol. 32. Elsevier.

Cohen, Albert et al. (2003). "Harmonic analysis of the space BV". In: Revista Matematica Iberoamericana 19.1, pp. 235-263.

Coifman, R. and Y. Meyer (1997). Wavelets, Calderón-Zygmund and multilinear operators. Vol. 48.

Escande, P. and P. Weiss (2014). "Numerical Computation of Spatially Varying Blur Operators A Review of Existing Approaches with a New One". In: arXiv preprint arXiv:1404.1023.

Wahba, G. (1990). Spline models for observational data. Vol. 59. Siam.