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Disclaimer

5 We are newcomers to the field of computational harmonic analysis and
we are still living in the previous millenium!

4 Do not hesitate to ask further questions to the pillars of time-frequency
analysis present in the room.

4 A rich and open topic!
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Part I: Spatially varying blur operators.
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Motivating examples - Astronomy (2D)

Stars in astronomy. How to improve the resolution of galaxies?
Sloan Digital Sky Survey http://www.sdss.org/.
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Motivating examples - Imaging under turbulence (2D)

Variations of refractive indices due to air heat variability.
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Motivating examples - Computer vision (2D)

A real camera shake. How to remove blur?
(by courtesy of M. Hirsch, ICCV 2011)
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Motivating examples - Microscopy (3D)

Fluorescence microscopy. Micro-beads are inserted in the sample.
(Biological images we are working with).
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Other examples - thanks to the organizers

Other potential applications

ODFM (orthogonal frequency-division multiplexing) systems (see Hans
Feichtinger).

Geophysics and seismic data analysis (see Caroline Chaux).

Solutions of PDE’s div(c∇u) = f (see Philipp Grohs).

...

Pierre Weiss & Paul Escande Numerical approximation of blurring operators



A number of challenges...

A standard inverse problem?

In all the imaging examples, we observe:

u0 = Hu + b

where H is a blur operator, b is some noise and u is a clean image.

What makes it more difficult?

1 Few studies for such operators (compared to the huge amount
dedicated to convolutions).

2 Images are large vectors. How to store an operator?

3 How to numerically evaluate products Hu and H T u?

4 In practice, H is partially or completely unknown. How to retrieve the
operator H ?
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Preliminaries

Notation

We work on Ω = [0, 1]d , d ∈ N is the space dimension.

A grayscale image u : Ω→ R is viewed as an element of L2(Ω).
Operators are in capital letters (e.g. H), functions in lower-case (e.g.
u), bold is used for matrices (e.g. H).

Spatially varying blur operators

In this talk, we model the spatially varying blur operator H as a linear
integral operator:

Hu(x) =
∫

Ω
K (x , y)u(y) dy

The function K : Ω× Ω→ R is called kernel.

Important note

By the Schwartz (Laurent) kernel theorem, H can be any linear operator if
K is a generalized function.
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Spatially varying blur and integral operators

Definition of the PSF

The point spread function or impulse response at point y ∈ Ω is defined by

H δy = K (·, y), (if K is continuous)

where δy denotes the Dirac at y ∈ Ω.

An example

Assume that K (x , y) = k(x − y).
Then H is a convolution operator.
The PSF at y is the function k(· − y).
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Some PSF examples - Synthetic (2D)

Examples of 2D PSF fields (H applied to the dirac comb).
Left: convolution operator (stationary). Right: spatially varying

operator (unstationary).
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What is specific to blurring operators?

Properties of blurring operators

Boundedness of the operator:

H : L2(Ω)→ L2(Ω)

is a bounded operator (the energy stays finite).

Spatial decay: In most systems, PSFs satisfy:

|K (x , y)| ≤ C

‖x − y‖α2
for a certain α > 0.
Examples: Motion blurs, Gaussian blurs, Airy patterns.

The Airy pattern

The most “standard” PSF is the Airy pattern (diffraction of light in a
circular pinhole):

k(x) ' I0

(
2J1(‖x‖2)
‖x‖2

)2

,

where J1 is the Bessel function of the first kind.
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What is specific to blurring operators?

Axial and longitudinal views of an Airy pattern.
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Some PSF examples - Real life microscopy (3D)

3D rendering of microbeads.
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Motivating examples - Microscopy (3D)

3D rendering of microbeads.
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What is specific to blurring operators?

More properties of blurring operators

PSF smoothness: ∀y ∈ Ω, x 7→ K (x , y) is C M and

|∂m
x K (x , y)| ≤ C

‖x − y‖β2
, ∀m ≤ M .

for some β > 0.

PSF varies smoothly:
∀x ∈ Ω, y 7→ K (x , y) is C M and

|∂m
x K (x , y)| ≤ C

‖x − y‖γ2
, ∀m ≤ M .

for some γ > 0.

Other potential hypotheses (not assumed in this talk)

Positivity: K (x , y) ≥ 0, ∀x , y (not necessarily true, e.g. echography).

Mass conservation: ∀y ∈ Ω,
∫

Ω K (x , y) dx = 1 (not necessarily true
when attenuation occurs, e.g. microscopy).
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The naive numerical approach

Discretization

Let Ω = {k/N }d1≤k≤N denote a Euclidean discretization of Ω.
We can define a discretized operator H by:

H(i , j ) = 1

N d
K (xi , yj )

where (xi , yj ) ∈ Ω2. By the rectange rule ∀xi ∈ Ω:

Hu(xi) ≈ (Hu)(i).

Typical sizes

For an image of size 1000× 1000, H contains 106 × 106 = 8 TeraBytes.
For an image of size 1000×1000×1000, H contains 109×109 = 8 ExaBytes.
The total amount of data of Google is estimated at 10 ExaBytes in 2013.

H can be viewed either as a N d ×N d matrix, or as a
N ×N × . . .×N︸ ︷︷ ︸

d times

×N ×N × . . .×N︸ ︷︷ ︸
d times

array.
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The naive numerical approach

Complexity of a matrix vector product

A matrix-vector multiplication is an O(N 2d) algorithm.
With a 1GHz computer (if the matrix was storable in RAM), a
matrix-vector product would take:

5 18 minutes for a 1000× 1000 image.

5 33 years for a 1000× 1000× 1000 image.

Bounded supports of PSFs help?

4 Might work for very specific applications (astronomy).

4 0.4 seconds 20× 20 PSF and 1000× 1000 images.

5 2 hours for 20× 20× 20 PSFs and 1000× 1000× 1000 images.

5 If the diameter of the largest PSF is κ ∈ (0, 1], matrix H contains
O(κdN 2d) non-zero elements.

5 Whenever super-resolution is targeted, this approach is doomed.
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Piecewise convolutions

The mainstream approach: piecewise convolutions

Main idea: approximate H by an operator Hm defined by the following
process:

1 Partition Ω in squares ω1, . . . , ωm .

2 On each subdomain ωk , approximate the blur by a spatially invariant
operator.
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Piecewise convolutions

Theorem (A complexity result (1D) Escande and Weiss 2014)

Let K denote a Lipschitz kernel that is not a convolution. Then:

The complexity of an evaluation Hmu using FFTs is

(N + κNm) log (N /m + κN ) .

For 1� m < N , there exists constants 0 < c1 ≤ c2 s.t.

‖H−Hm‖2→2 ≤
c2
m

‖H−Hm‖2→2 ≥
c1
m

For sufficiently large N and sufficiently small ε > 0 the number of
operations necessary to obtain ‖H−Hm‖2→2 ≤ ε is proportional to

LκN log(κN )
ε

.

Definition of the spectral norm ‖H‖2→2 := sup
‖u‖2≤1

‖Hu‖2.
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Piecewise convolutions

Pros and cons

4 Very simple conceptually.

4 Simple to implement with FFTs.

4 More than 100 papers using this technique (or slightly modified).

5 The method is insensitive to higher degrees of regularity of the kernel.

5 The dependency in ε is not appealing.
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Part II: Sparse representations in wavelets bases.
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Preliminaries

Notation (1D)

We work on the interval Ω = [0, 1].
The Sobolev space W M ,p(Ω) is defined by

W M ,p(Ω) = {f (m) ∈ Lp(Ω), ∀ 0 ≤ m ≤ M }.

We define the semi-norm |f |W M ,p = ‖f (M )‖Lp .
Let φ and ψ denote the scaling function and mother wavelet.
We assume that ψ ∈W M ,∞ has M vanishing moments:

∀0 ≤ m ≤ M ,

∫
[0,1]

tmψ(t) dt = 0.

Every u ∈ L2(Ω) can be decomposed as

u =
∑
j≥0

∑
0≤m<2j

〈u, ψj ,m〉ψj ,m + 〈u, φ〉φ.

where (apart from the boundaries of [0, 1])

ψj ,m = 2j/2ψ(2j · −m).
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Preliminaries

Shorthand notation

u =
∑
λ

〈u, ψλ〉ψλ.

with λ = (j ,m), j ≥ 0, 0 ≤ m < 2j and |λ| = j . The scalar product with φ
is included in the sum.

Decomposition/Reconstruction operators

We let Ψ : `2 → L2([0, 1]) and Ψ∗ : L2([0, 1])→ `2 denote the
reconstruction/decomposition transforms:
Given a sequence in α ∈ `2,

Ψu =
∑
λ

αλψλ

Given a function u ∈ L2([0, 1]),

Ψ∗u = (uλ)λ

with
uλ = 〈u, ψλ〉.
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Preliminaries

Decomposition of the operator on a wavelet basis

Let u ∈ L2(Ω) and v = Hu.

v =
∑
λ

〈Hu, ψλ〉ψλ

=
∑
λ

〈
H

(∑
λ′

〈u, ψλ′〉ψλ′

)
, ψλ

〉
ψλ

=
∑
λ

∑
λ′

〈u, ψλ′〉〈Hψλ′ , ψλ〉ψλ.

The action of H is completely described by the (infinite) matrix

Θ = (θλ,λ′)λ,λ′ = (〈Hψλ′ , ψλ〉)λ,λ′ .

With these notation
H = ΨΘΨ∗.
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Calderón-Zygmund operators Coifman and Meyer 1997

Definition - (Nonsingular) Calderón-Zygmund operators

An integral operator H : L2(Ω)→ L2(Ω) with a kernel K ∈W M ,∞(Ω× Ω)
is a Calderón-Zygmund operator of regularity M ≥ 1 if

|K (x , y)| ≤ C

‖x − y‖d2
and

|∂m
x K (x , y)|+ |∂m

y K (x , y)| ≤ C

‖x − y‖d+m
2

, ∀m ≤ M .

Important notes

The above definition is simplified.
Calderón-Zygmund operators may be singular on the diagonal x = y .
For instance, the Hilbert transform corresponds to K (x , y) = 1

x−y
.

Take home message

Our blurring operators are simple Calderón-Zygmund operators.
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A key upper-bound Coifman and Meyer 1997

Theorem (Decrease of θλ,λ′ in 1D)

Assume that H belongs to the Calderón-Zygmund class and that the
mother wavelet ψ is compactly supported with M vanishing moments. Set
λ = (j ,m) and λ′ = (k ,n). Then

|θλ,λ′ | ≤ CM 2−(M+1/2)|j−k|
(

2−k + 2−j

2−k + 2−j + |2−j m − 2−k n|

)M+1

where CM is a constant independent of j , k ,n,m.

Take home message

4 The coefficients decrease exponentialy with scales differences
2−(M+1/2)|j−k|.

4 The coefficients decrease polynomialy with shift differences(
2−k +2−j

2−k +2−j +|2−j m−2−k n|

)M+1

.

4 The kernel regularity M plays a key role.
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A key upper-bound - Elements of proof

Polynomial approximation - Annales de l’institut Fourier, Deny-Lions 1954

Let f ∈W M ,p([0, 1]). For 1 ≤ p ≤ +∞, M ∈ N∗ and Ih ⊂ [0, 1] an interval
of length h:

inf
g∈ΠM−1

‖f − g‖Lp(Ih ) ≤ ChM |f |W M ,p(Ih ), (1)

where C is a constant that depends on M and p only.

Let Ij ,m = supp(ψj ,m) = [2−j (m − 1), 2−j (m + 1)]. Assume that j ≤ k :

|〈Hψj ,m , ψk,n〉|

=

∣∣∣∣∣
∫

Ik,n

∫
Ij ,m

K (x , y)ψj ,m(y)ψk,n(x) dy dx

∣∣∣∣∣
=

∣∣∣∣∣
∫

Ij ,m

∫
Ik,n

K (x , y)ψj ,m(y)ψk,n(x) dx dy

∣∣∣∣∣ (Fubini)

=

∣∣∣∣∣
∫

Ij ,m

inf
g∈ΠM−1

∫
Ik,n

(K (x , y)− g(x))ψj ,m(y)ψk,n(x) dx dy

∣∣∣∣∣ (Vanishing moments)

≤
∫

Ij ,m

inf
g∈ΠM−1

‖K (·, y)− g‖L∞(Ik,n )‖ψk,n‖L1(Ik,n )|ψj ,m(y)| dy (Hölder)
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A key upper-bound - Elements of proof (continued)

Therefore:

|〈Hψj ,m , ψk,n〉|

. 2−kM‖ψk,n‖L1(Ik,n )‖ψj ,m‖L1(Ij ,m ) esssup
y∈Ij ,m

|K (·, y)|W M ,∞(Ik,n ) (Hölder again)

. 2−kM 2−
j
2 2−

k
2 esssup

y∈Ij ,m

|K (·, y)|W M ,∞(Ik,n ) .

Controlling esssupy∈Ij ,m
|K (·, y)|W M ,∞(Ik,n ) can be achieved using the fact

that derivatives of Calderón-Zygmund operator decay polynomially away
from the diagonal. We obtain (not direct):

esssup
y∈Ij ,m

|K (·, y)|W M ,∞(Ik,n ) .

(
1 + 2j−k

2−j + 2−k + |2−j m − 2−k n|

)M+1

2

Pierre Weiss & Paul Escande Numerical approximation of blurring operators



A key upper-bound Coifman and Meyer 1997

Theorem (Decrease of θλ,λ′ in d-dimensions)

Assume that H belongs to the Calderón-Zygmund class and that the
mother wavelet ψ is compactly supported with M vanishing moments. Set
λ = (j ,m) and λ′ = (k ,n). Then

|θλ,λ′ | ≤ CM 2−(M+d/2)|j−k|
(

2−k + 2−j

2−k + 2−j + |2−j m − 2−k n|

)M+d

where CM is a constant independent of j , k ,n,m.
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Geometrical intuition

A practical example (1D)

We set:

K (x , y) = 1

σ(y)
√

2π
exp

(
− (x − y)2

2σ(y)2

)
with

σ(y) = 4 + 10y .

A field of PSFs and the discretized matrix H with N = 256.
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Compression of Caderón-Zygmund operators

The matrix Θ (usual scale).
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Compression of Caderón-Zygmund operators

The matrix Θ (log10-scale).
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Compression of Caderón-Zygmund operators

Summary

Calderón-Zygmund operators are compressible in the wavelet domain !

Question

Can these results be used for fast computations?
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The consequences for numerical analysis

A word on Galerkin approximations

Numerically, it is impossible to use infinite dimensional matrices.
We can therefore truncate the matrix Θ by setting a maximum scale J :

Θ = (θλ,λ′)0≤λ,λ′≤J

Let

ΨJ :
{

R2J+1

→ L2(Ω)
α 7→

∑
|λ|≤J

αλψλ

Ψ∗J :
{

L2(Ω) → R2J+1

u 7→ (〈u, ψλ〉)|λ|≤J

We obtain an approximation HJ of H defined by:

HJ = ΨJ ΘΨ∗J = ΠJ H ΠJ ,

where the operator ΠJ = ΨJ Ψ∗J is a projector on span({ψλ, |λ| ≤ J}).
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The consequences for numerical analysis

A word on Galerkin approximation

Standard results in approximation theory state that if u belong to some
Banach space B

‖u −ΠJ (u)‖2 = O(N−α), (2)

where α depends on B and N = 2J+1.
If we assume that H is regularizing, meaning that for any u satisfying (2)

‖Hu −ΠJ (Hu)‖2 = O(N−β), with β ≥ α.

Then:

‖Hu −HJ u‖2 = ‖Hu −ΠJ H (u −ΠJ u − u)‖2
≤ ‖Hu −ΠJ Hu‖2 + ‖ΠJ H (ΠJ u − u)‖2 = O(N−α).

Examples

For u ∈ H 1([0, 1]), α = 2.

For u ∈W 1,1([0, 1]) or u ∈ BV ([0, 1]), α = 1.

For u ∈W 1,1([0, 1]2) or u ∈ BV ([0, 1]2), α = 1/2.
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The consequences for numerical analysis

The main idea

Most coefficients in Θ are small.

One can “threshold” it to obtain a sparse approximation ΘP , where P
denotes the number of nonzero coefficients.

We get an approximation HP = ΨΘPΨ∗.

Numerical complexity

A product HPu costs:

2 wavelet transforms of complexity O(N ).
A matrix-vector product with ΘP of complexity O(P).

The overall complexity for is O(max(P ,N )).

This is to be compared to the usual O(N 2) complexity.
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The consequences for numerical analysis

Theorem (theoretical foundations Beylkin, Coifman, and Rokhlin 1991)

Let Θη be the matrix obtained by zeroing all coefficients in Θ such that(
2−j + 2−k

2−j + 2−k + |2−j m − 2−k n|

)M+1

≤ η.

Let Hη = ΨΘηΨ∗ denote the resulting operator. Then:

i) The number of non zero coefficients in Θη is bounded above by

C ′M N log2(N ) η−
1

M +1 .

ii) The approximation Hη satisfies ‖H−Hη‖2→2 . η
M

M +1 .

iii) The complexity to obtain an ε-approximation ‖H−Hη‖2→2 ≤ ε is

bounded above by C ′′M N log2(N ) ε− 1
M .
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The consequences for numerical analysis

Proof outline

1 Since Ψ is orthogonal,

‖Hη −H‖2→2 = ‖Θ−Θη‖2→2.

2 Let ∆η = Θ−Θη. Use the Schur test

‖∆η‖22→2 ≤ ‖∆η‖1→1‖∆η‖∞→∞.

3 Majorize ‖∆η‖1→1 using Meyer’s upper-bound.
Note : the 1-norm has a simple explicit expression contrarily to the
2-norm.
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The consequences for numerical analysis

Piecewise convolutions VS wavelet sparsity

Piecewise convolutions Wavelet sparsity

Simple theory Yes No

Simple implementation Yes No

Complexity O
(
N log2(N ) ε−1

)
O
(

N log2(N ) ε− 1
M

)
Adaptivity/universality No Yes
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Geometrical intuition of the method

Link with the SVD

Let Ψ = (ψ1, . . . ,ψN ) ∈ RN×N denote a discrete wavelet transform.
The change of basis H = ΨΘΨ∗ can be rewritten as:

H =
∑
λ,λ′

θλ,λ′ψλψ
T
λ′ .

The N ×N matrix ψλψ
T
λ′ is rank-1.

Matrix H is therefore decomposed as the sum of N 2 rank-1 matrices.

By “thresholding” Θ one can obtain an ε-approximation with

O(N log2(N )ε− 1
M ) rank-1 matrices.

The SVD is a sum of N rank-1 matrices (which can also be compressed for
compact operators).

Take home message

Tensor products of wavelets can be used to produce approximations of
regularizing operators by sums of rank-1 matrices.
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Geometrical intuition of the method

Illustration of the space decomposition with a naive thresholding.
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How to choose the sparsity patterns?

First reflex - Hard thresholding

Construct ΘP by keeping the P largest coefficients of Θ.

This choice is optimal in the sense that it minimizes

min
ΘP∈SP

‖Θ−ΘP‖2F = ‖H−HP‖2F

where SP is the set of N ×N matrices with at most P nonzero coefficients.

Problem: the Frobenius norm is not an operator norm.

Second reflex - Optimizing the ‖ · ‖2→2-norm

In most (if not all) publications on wavelet compression of operators:

min
ΘP∈SP

‖Θ−ΘP‖2→2.

This problem has no easily computable solution.

Approximate solutions lead to unsatisfactory approximation results.
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How to choose the sparsity patterns?

A (much) better strategy Escande and Weiss 2014

Main idea: minimize an operator norm adapted to images.

Most signals/images are in BV (Ω) (or B1,1
1 (Ω)), therefore (in 1D)

Cohen et al. 2003: ∑
j≥0

2j−1∑
m=0

2j |〈u, ψj ,m〉| < +∞.

This motivates to define a norm ‖ · ‖X on vectors:

‖u‖X = ‖ΣΨ∗u‖1

where Σ = diag(σ1, . . . , σN ) and σi = 2j(i) where j (i) is the scale of the i-th
wavelet.

It leads to the following variational problem:

min
SP∈SP

sup
‖u‖X≤1

‖(H−HP )u‖2 = ‖H−HP‖X→2.

Pierre Weiss & Paul Escande Numerical approximation of blurring operators



How to choose the sparsity patterns?

Optimization algorithm

Main trick : use the fact that signals and operators are sparse in the same
wavelet basis. Let ∆P = Θ−ΘP . Then

max
‖u‖X≤1

‖(H−HP )u‖2 = max
‖u‖X≤1

‖(Ψ(Θ−ΘP )Ψ∗)u‖2

= max
‖Σz‖1≤1

‖∆Pz‖2

= max
‖z‖1≤1

‖∆PΣ−1z‖2

= max
1≤i≤N

1

σi
‖∆(i)

P ‖2.

This problem can be solved exactly using a greedy algorithm with quicksort.

Complexity

If Θ is known: O(N 2 log(N )).
If only Meyer’s bound is known: O(N log(N )).
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Geometrical intuition of the method

Optimal space decomposition minimizing ‖H−HP‖X→2.
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Geometrical intuition of the method

Optimal space decomposition minimizing ‖H−HP‖X→2 when only an
upper-bound on Θ is known.
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Experimental validation

Test case image Rotational blur
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Experimental validation

Piece. Conv. Difference Algorithm Difference l =
4× 4 38.49 dB 45.87 dB 30

0.17 s 0.040s

8× 8 44.51 dB 50.26 dB 50

0.36 s 0.048s

Blurred images using approximating operators and differences with the
exact blurred image. We set the sparsity P = lN 2.
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Deblurring results

TV-L2 based deblurring

Degraded Image
Exact Operator
28.97dB – 2 hours

Wavelet
28.02dB – 8 seconds

Piece. Conv.
27.12dB – 35 seconds
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Conclusion of the 2nd part

4 Calderón-Zygmund operators are highly compressible in the wavelet
domain.

4 Evaluation of Calderón-Zygmund operators can be handled efficiently
numerically in the wavelet domain.

4 Wavelet compression outperforms piecewise convolution both
theoretically and experimentally.

The devil was hidden!

Until now, we assumed that Θ was known.
In 1D, the change of basis Θ = Ψ∗HΨ has complexity O(N 3)!
We had to use 12 cores and 8 hours to compute Θ and obtain the previous
2D results.

A dead end?
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Part III: Operator reconstruction (ongoing work).
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A specific inverse problem

The setting

Assume we only know a few PSFs at points (yi)1≤i≤n ∈ Ωn .

The “inverse problem” we want to solve is:

Reconstruct K knowing ki = K (·, yi) + ηi , where ηi is noise.

Severely ill-posed!

A variational formulation:

inf
K∈K

1

2

n∑
i=1

‖ki −K (·, yi)‖22 + λR(K ).

How can we choose the regularization functional R and the space K?
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Examples

Problem illustration: some known PSFs and the associated matrix.
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Main features of spatially varying blurs

The first regularizer

From the first part of the talk, we know that blur operators can be
approximated by matrices of type:

HP = ΨΘPΨ (3)

where ΘP is a P sparse matrix with a known sparsity pattern P.
We let H denote the space of matrices of type (3).
This is a first natural regularizer.

4 Reduces the number of degrees of freedom.

4 Compresses the matrix.

4 Allow fast matrix-vector multiplication.

5 Not sufficient to regularize the problem: we still have to find
O(N log(N )) coefficients.
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Main features of spatially varying blurs

Assumption: two neighboring PSFs are similar

From a formal point of view:

K (·, y) ≈ τ−hK (·, y + h),

for sufficiently small h, where τ−h denotes the translation operator.

Alternative formulation: the mappings

y 7→ K (x + y , y)

should be smooth for all x ∈ Ω.

Interpolation/approximation of scattered data

Some known PSFs and the associated matrix.
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A variational formulation in 1D

Spline-based approximation of functions Ω = [0, 1]
Let f : [0, 1]→ R denote a function such that f (yi) = γi + ηi , 1 ≤ i ≤ n.
A variational formulation to obtain piecewise linear approximations:

inf
g∈H1([0,1])

1

2

n∑
i=1

‖g(yi)− γi‖22 + λ

2

∫
[0,1]

(g ′(x))2 dx .

From functions to operators Ω = [0, 1]
This motivates us to consider the problem

inf
K∈K

1

2

n∑
i=1

‖ki −K (·, yi)‖22 + λ

2

∫
Ω

∫
Ω
〈∇K (x , y), (1; 1)〉2 dy dx︸ ︷︷ ︸

R(K)
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A variational formulation on the space of operators

Discretization

Let ki ∈ RN denote the discretization of K (·, yi). The discretized
variational problem can be rewritten:

inf
H∈H

1

2

n∑
i=1

‖ki −H(·, yi)‖22 + λ

2

N∑
i=1

N∑
j=1

(H(i + 1, j + 1)−H(i , j ))2.

The devil is still there!

This is an optimization problem over the space of N ×N matrices!
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From space to wavelet domain

Bad news...

We are now working with HUGE operators:

A matrix H ∈ RN×N can be thought of as a vector of size N 2.

We need the translation operator T1,1 : RN×N → RN×N that maps
H(i , j ) to H(i + 1, j + 1).
This way

R(H) =
N∑

i=1

N∑
j=1

(H(i + 1, j + 1)−H(i , j ))2

=
∥∥∥(T1,1 − I

)
(H)
∥∥∥2

F
.
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From space to wavelet domain

A first trick

Main observation: the shift operator T1,1 = T1,0 ◦T0,1.

the shift in the vertical direction can be encoded by an N ×N matrix:

T1,0(H) = T1 ·H

where T1 ∈ RN×N is N -sparse.

Similarly:

T0,1(H) = (T1 ·HT )T = H ·T−1.

Note that T1 is orthogonal, therefore TT
1 = T−1

1 = T−1.

Overall T1,1(H) = T1 ·H ·T−1.
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From space to wavelet domain

Theorem Beylkin 1992

The shift matrix S1 = Ψ∗T1Ψ contains O(N log N ) non-zero coefficients.
Moreover, S1 can be computed efficiently with an O(N log N ) algorithm.

Consequences for numerical analysis

The regularization term can be computed efficiently in the wavelet domain:

R(H) = ‖T1HT−1 −H‖2F
= ‖ΨS1Ψ∗HΨS−1Ψ∗ −H‖2F
= ‖S1ΘS−1 −Θ‖2F .

The overall problem is now formulated only in the wonderful sparse world:

min
ΘP∈Ξ

1

2

n∑
i=1

‖ki −ΨΘPΨ∗δyi ‖
2
2 + λ

2
‖S1ΘPS−1 −ΘP‖2F .

where Ξ is the space of N ×N matrices with fixed sparsity pattern P.

Can be solved using a projected conjugate gradient descent.
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Examples

Left: known matrix. Right: reconstructed matrix.

Pierre Weiss & Paul Escande Numerical approximation of blurring operators



Examples

Approximated PSF field at known locations.
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Examples

Approximated PSF field at shifted known locations.
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Extension to higher dimensions - approximation of scattered data

Spline approximation in higher dimensions

Scattered data in Rd can be interpolated or approximated using
higher-order variational problems.
For instance one can use biharmonic splines:

inf
g∈H2([0,1]2)

1

2

n∑
i=1

‖g(yi)− γi‖22 + λ

2

∫
[0,1]2

(∆g(y))2 dx .

A basic reference: Wahba 1990.
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A word on the interpolation of scattered data

Why use higher orders?

Let B = {(x , y) ∈ R2, x2 + y2 ≤ 1}. The function

u(x , y) = log(| log(
√

x2 + y2)|)

belongs to H 1(B) = W 1,2(B) and is unbounded at 0.

Illustration

Left: know surface (x , y) 7→ x2 + y2. Right: know values.
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A word on the interpolation of scattered data

Illustration

Left: H1 reconstruction. Right: biharmonic reconstruction.
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Variational problems in higher dimension

The case Ω = [0, 1]2

In 2D, one can solve the following variational problem:

inf
K∈H1(Ω×Ω)

1

2

n∑
i=1

‖ki −K (·, yi)‖22 + λ

2

∫
Ω

∫
Ω

∆y(L)2(x , y) dy dx︸ ︷︷ ︸
R(K)

where L(x , y) := R(x + y , y).

Using similar tricks as in the previous part, this problem can be entirely
reformulated in the space of sparse matrices.
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A complete deconvolution example

Reconstruction of an operator

True operator (applied to the Dirac comb).
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A complete deconvolution example

Reconstruction of an operator

Operator reconstruction.
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Examples

A complete deconvolution example

Original image.
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Examples

A complete deconvolution example

Blurry and noisy image (with the exact operator).
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Examples

A complete deconvolution example

Restored image (with the reconstructed operator). Operator
reconstruction = 40 minutes. Image reconstruction = 3 seconds (100

iterations of a descent algorithm).
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Overall conclusion

Main facts

4 Operators are highly compressible in wavelet domain.

4 Operators can be computed efficiently in the wavelet domain.

4 Possibility to formulate inverse problems on operator spaces.

4 Regarding spatially varying deblurring:
4 numerical results are promising.
4 versatile method allowing to handle PSFs on non cartesian grids.

5 Results are preliminary. Operator reconstruction takes too long.

A nice research topic

4 Not much has been done.

4 Plenty of work in theory.

4 Plenty of work in implementation.

4 Plenty of potential applications.
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