Victor Michel-Dansac

Laboratoire de Mathématiques Jean Leray, Université de Nantes

Tuesday, February 23rd, 2016

Contents

1 Introduction

- 2 Reminder of Florian's talk
- 3 Towards a high-order scheme: the polynomial reconstruction
- 4 High-order accurate finite volume scheme
 - High-order space accuracy
 - High-order time accuracy
- 5 Numerical experiments
- 6 Conclusion and possible improvements

- 2 Reminder of Florian's talk
- 3 Towards a high-order scheme: the polynomial reconstruction
- 4 High-order accurate finite volume scheme
 - High-order space accuracy
 - High-order time accuracy
- 5 Numerical experiments
- 6 Conclusion and possible improvements

The equations

2D conservation law with a source term

$$\partial_t W + \operatorname{div}(F(W)) = S(W)$$
, where:

• $W \in \mathbb{R}^n$ is the vector of conserved variables

•
$$F: \mathbb{R}^n \to \mathcal{M}_{n,2}(\mathbb{R})$$
 is the physical flux

 $\blacksquare \ S: \mathbb{R}^n \to \mathbb{R}^n$ is the source term

assume that the homogeneous system $\partial_t W + \operatorname{div}(F(W)) = 0$ is hyperbolic

An example: the shallow-water equations

- $h(x,t) \ge 0$: water height
- u(x,t): water velocity
- Z(x): topography (shape of the channel bottom)

An example: the shallow-water equations

2D shallow-water equations with topography

$$\begin{cases} \partial_t h + \partial_x (hu) + \partial_y (hv) &= 0\\ \partial_t (hu) + \partial_x \left(hu^2 + \frac{1}{2}gh^2 \right) + \partial_y (huv) &= -gh\partial_x Z\\ \partial_t (hv) + \partial_x (huv) + \partial_y \left(hv^2 + \frac{1}{2}gh^2 \right) &= -gh\partial_y Z \end{cases}$$

$$W = \begin{pmatrix} h\\ hu\\ hv \end{pmatrix}, F(W) = \begin{pmatrix} hu & hv\\ hu^2 + \frac{1}{2}gh^2 & huv\\ huv & hv^2 + \frac{1}{2}gh^2 \end{pmatrix}, S(W) = \begin{pmatrix} 0\\ -gh\partial_x Z\\ -gh\partial_y Z \end{pmatrix}$$

Objectives and interrogations

Purpose of high-order accuracy

order p: mesh size divided by $2 \Rightarrow$ error divided by 2^p

- have a better solution without refining the mesh
- \blacksquare decrease computational cost

Questions arise!

- how to achieve high-order accuracy?
- what does "better solution" mean?
- what about discontinuous solutions?

First-order vs. High-order

Figure: Partial dam-break, 40000 cells. Left: first-order scheme. Right: sixth-order scheme. Reminder of Florian's talk

1 Introduction

2 Reminder of Florian's talk

3 Towards a high-order scheme: the polynomial reconstruction

4 High-order accurate finite volume scheme

- High-order space accuracy
- High-order time accuracy
- 5 Numerical experiments
- 6 Conclusion and possible improvements

Reminder of Florian's talk

Finite volume schemes

2D conservation law with a source term

 $\partial_t W + \operatorname{div}(F(W)) = S(W)$

- $W(x,t) \rightsquigarrow W_i^n$ at time t^n , constant within cell c_i
- $F(W(x,t)) \rightsquigarrow \mathcal{F}_{ij}^n$ at time t^n on the interface between cells c_i and c_j , with $j \in \nu_i$ such that c_j is a direct neighbor of c_i
- $S(W(x,t)) \rightsquigarrow S(W_i^n) =: S_i^n$ (very naive treatment)

A first-order numerical scheme

$$\frac{W_i^{n+1} - W_i^n}{\Delta t} + \sum_{j \in \nu_i} \frac{|e_{ij}|}{|c_i|} \mathcal{F}_{ij}^n = \mathcal{S}_i^n$$

Reminder of Florian's talk

Second-order extension: 1D illustration

 W_i^n constant in cell $c_i \rightsquigarrow W_i^n(x)$ linear in cell c_i

Reminder of Florian's talk

High-order extension: 1D illustration

 W_i^n constant in cell $c_i \rightsquigarrow W_i^n(x)$ polynomial in cell c_i

Towards a high-order scheme: the polynomial reconstruction

1 Introduction

2 Reminder of Florian's talk

3 Towards a high-order scheme: the polynomial reconstruction

4 High-order accurate finite volume scheme

- High-order space accuracy
- High-order time accuracy
- 5 Numerical experiments
- 6 Conclusion and possible improvements

Towards a high-order scheme: the polynomial reconstruction

Goal of the polynomial reconstruction

given φ a component of W and a cell c_i of center x_i , we know:

- the uniform approximate solution φ_i^n at time t^n
- the degree d of the polynomial reconstruction
- the stencil S_i^d , made of N_d cells

within the cell c_i , we need:

- a polynomial reconstruction $\hat{\varphi}_i^n(x)$ at time t^n : $\hat{\varphi}_i^n(x)$ is a degree d polynomial
- the conservation property: $\frac{1}{|c_i|} \int_{c_i} \hat{\varphi}_i^n(x) dx = \varphi_i^n$

Towards a high-order scheme: the polynomial reconstruction

Construction of the polynomial in 1D

set
$$\hat{\varphi}_i^n(x) = \sum_{k=0}^d \left[\alpha_i^k (x - x_i)^k + \beta_i^k \right]$$
, recall $\frac{1}{|c_i|} \int_{c_i} \hat{\varphi}_i^n(x) dx = \varphi_i^n$

 \blacksquare valid reconstruction for $d=0 \rightsquigarrow \alpha_i^0 + \beta_i^0 = \varphi_i^n$

$$d > 0 \rightsquigarrow \forall k \in [[1,d]], \ \beta_i^k = -\frac{\alpha_i^k}{|c_i|} \int_{c_i} (x-x_i)^k dx$$

therefore
$$\hat{\varphi}_i^n(x) = \varphi_i^n + \sum_{k=1}^d \alpha_i^k \left[(x - x_i)^k - \frac{1}{|c_i|} \int_{c_i} (x - x_i)^k dx \right]$$

what is left to do: determine the polynomial coefficients α_i^k using the stencil S_i^d

Towards a high-order scheme: the polynomial reconstruction

Construction of the polynomial in 2D

from the 1D formula and
$$M_i^k = \frac{1}{|c_i|} \int_{c_i} (x - x_i)^k dx$$
, we get:
 $\hat{\varphi}_i^n(x) = \varphi_i^n + \sum_{|k|=1}^d \alpha_i^k \left[(x - x_i)^k - M_i^k \right]$

the α_i^k are chosen to minimize the least squares error E_i between the reconstruction and φ_j^n , for all j in the stencil S_i^d :

$$E_i(\alpha_i) = \frac{1}{2} \sum_{j \in S_i^d} \left[\frac{1}{|c_j|} \int_{c_j} \hat{\varphi}_i^n(x) - \varphi_j^n \right]^2$$

Towards a high-order scheme: the polynomial reconstruction

Construction of the polynomial in 2D

$$E_i(\alpha_i) = \frac{1}{2} \sum_{j \in S_i^d} \left[\frac{1}{|c_j|} \int_{c_j} \hat{\varphi}_i^n(x) - \varphi_j^n \right]^2$$
$$= \frac{1}{2} \|X_i \alpha_i - \Phi_i\|^2$$

overdetermined system $\Leftarrow \#S_i^d \ge \frac{(d+1)(d+2)}{2} - 1$

 α_i minimizes $E_i(\alpha_i) \iff {}^t X_i X_i \alpha_i = {}^t X_i \Phi_i$ (normal equation)

if ${}^{t}X_{i}X_{i}$ is invertible (depends on the choice of the stencil), then α_{i} minimizes $E_{i}(\alpha_{i}) \iff \alpha_{i} = ({}^{t}X_{i}X_{i})^{-1} {}^{t}X_{i}\Phi_{i}$

Towards a high-order scheme: the polynomial reconstruction

Summary

$$\hat{\varphi}_i^n(x) = \varphi_i^n + \sum_{|k|=1}^d \alpha_i^k \left[(x - x_i)^k - M_i^k \right]$$

with $\alpha_i = ({}^tX_iX_i)^{-1} {}^tX_i\Phi_i$, and where we have defined:

$$M_{i}^{k} = \frac{1}{|c_{i}|} \int_{c_{i}} (x - x_{i})^{k} dx$$

$$\Phi_{i} = (\varphi_{j}^{n} - \varphi_{i}^{n})_{j \in S_{i}^{d}}$$

$$X_{i} = \left[\frac{1}{|c_{j}|} \int_{c_{j}} (x - x_{i})^{k} dx - \frac{1}{|c_{i}|} \int_{c_{i}} (x - x_{i})^{k} dx\right]_{k \in [\![1,d]\!], j \in S_{i}^{d}}$$

High-order accurate finite volume scheme

I Introduction

2 Reminder of Florian's talk

3 Towards a high-order scheme: the polynomial reconstruction

4 High-order accurate finite volume scheme

- High-order space accuracy
- High-order time accuracy
- 5 Numerical experiments
- 6 Conclusion and possible improvements

- High-order accurate finite volume scheme
 - -High-order space accuracy

- 2 Reminder of Florian's talk
- 3 Towards a high-order scheme: the polynomial reconstruction
- 4 High-order accurate finite volume schemea High-order space accuracy
 - High-order time accuracy
- 5 Numerical experiments
- 6 Conclusion and possible improvements

- High-order accurate finite volume scheme
 - High-order space accuracy

Mesh notations

High-order accurate finite volume scheme

-High-order space accuracy

Resources at our disposal

Build a high-order scheme for $\partial_t W + \operatorname{div}(F(W)) = S(W)$, using:

1 the polynomial reconstruction $\widehat{W}_i^n(x)$;

2
$$F(W) \cdot n_{ij} \simeq \mathcal{F}\left(\widehat{W}_i^n(x), \widehat{W}_j^n(x); n_{ij}\right)$$
, with \mathcal{F} numerical flux;

$$(\xi_r, x_r), \text{ a quadrature on } e_{ij}: \frac{1}{|e_{ij}|} \int_{e_{ij}} f(x) dx \simeq \sum_{r=0}^{R} \xi_r f(x_r);$$

$$W(x,t) \simeq \widehat{W}_i^n(x), \text{ for } (x,t) \in c_i \times [t^n, t^{n+1});$$

5 (η_q, x_q) , a quadrature on c_i : $\frac{1}{|c_i|} \int_{c_i} f(x) dx \simeq \sum_{q=0}^Q \eta_q f(x_q)$; **6** the conservation property $W_i^n = \frac{1}{|c_i|} \int_{c_i} \widehat{W}_i^n(x) dx$.

D

- High-order accurate finite volume scheme
 - High-order space accuracy

The high-order scheme

First-order numerical scheme

$$W_i^{n+1} = W_i^n - \Delta t \sum_{j \in \nu_i} \frac{|e_{ij}|}{|c_i|} \mathcal{F}_{ij}^n + \Delta t \, \mathcal{S}_i^n$$

High-order numerical scheme

$$W_i^{n+1} = W_i^n - \Delta t \sum_{j \in \nu_i} \frac{|e_{ij}|}{|c_i|} \sum_{r=0}^R \xi_r \mathcal{F}_{ij,r}^n + \Delta t \sum_{q=0}^Q \eta_q \mathcal{S}_{i,q}^n$$

- High-order accurate finite volume scheme
 - -High-order time accuracy

1 Introduction

- 2 Reminder of Florian's talk
- 3 Towards a high-order scheme: the polynomial reconstruction
- 4 High-order accurate finite volume scheme
 - High-order space accuracy
 - High-order time accuracy
- 5 Numerical experiments
- 6 Conclusion and possible improvements

- High-order accurate finite volume scheme
 - -High-order time accuracy

Runge-Kutta methods

rewrite the high-order numerical scheme as $W^{n+1} = \mathcal{H}(W^n)$

Goal of the Runge-Kutta method

Obtain high-order time accuracy from a scheme that is first-order accurate in time.

A second-order example: Heun's method

$$W^{n+\frac{1}{2}} = \mathcal{H}(W^n)$$
$$W^{n+1} = \frac{1}{2} \left[W^n + \mathcal{H} \left(W^{n+\frac{1}{2}} \right) \right]$$

- High-order accurate finite volume scheme
 - -High-order time accuracy

Strong-Stability Preserving Runge-Kutta methods

goal of a SSPRK method: if \mathcal{H} is robust in some sense, then the high-order time discretization SSPRK is also robust

Robustness examples

1D definition: total variation $TV(W^n) = \sum_i (W_{i+1}^n - W_i^n)$

- non-negativity preservation: $\phi_i^n \ge 0 \Rightarrow \phi_i^{n+1} \ge 0$
- total variation diminishing: $TV(W^{n+1}) \leq TV(W^n)$
- total variation bounded: $\mathrm{TV}(W^n) \leq M \Rightarrow \mathrm{TV}(W^{n+1}) \leq M$
- entropy preservation

- High-order accurate finite volume scheme
 - -High-order time accuracy

Strong-Stability Preserving Runge-Kutta methods

SSPRK3 method

$$W^{n+\frac{1}{3}} = \mathcal{H}(W^{n})$$
$$W^{n+\frac{2}{3}} = \mathcal{H}(W^{n+\frac{1}{3}})$$
$$W^{n+1} = \frac{1}{3} \left[W^{n} + 2\mathcal{H} \left(\frac{3W^{n} + W^{n+\frac{2}{3}}}{4} \right) \right]$$

SSPRK3 is third-order accurate in time: to get time accuracy of order p, we set, instead of Δt ,

$$\Delta t = \Delta t^{\frac{\max(p,3)}{3}}$$

I Introduction

- 2 Reminder of Florian's talk
- 3 Towards a high-order scheme: the polynomial reconstruction

4 High-order accurate finite volume scheme

- High-order space accuracy
- High-order time accuracy
- 5 Numerical experiments
- 6 Conclusion and possible improvements

The 2D shallow-water equations with topography and friction

$$\partial_t h + \partial_x (hu) + \partial_y (hv) = 0$$

$$\partial_t (hu) + \partial_x \left(hu^2 + \frac{1}{2}gh^2 \right) + \partial_y (huv) = -gh\partial_x Z - ku\sqrt{u^2 + v^2}h^{-1/3}$$

$$\partial_t (hv) + \partial_x (huv) + \partial_y \left(hv^2 + \frac{1}{2}gh^2 \right) = -gh\partial_y Z - kv\sqrt{u^2 + v^2}h^{-1/3}$$

 \blacksquare robustness: we must have $h \ge 0$

• steady state solutions: $\partial_t h = \partial_t (hu) = \partial_t (hv) = 0$

Order of accuracy assessment

 $e_{\delta} = C\delta^p$, with p the order, e_{δ} the error and δ the mesh size $\rightsquigarrow \ln(e_{\delta}) = \ln C + p \ln \delta$, line of slope p

The steady vortex

steady state without friction, where W depends only on $x^2 + y^2$

Figure: Left panel: free surface. Right panel: velocity norm (the vortex flows clockwise). Space domain: $[-3,3]^2$.

Order of accuracy assessment: steady vortex

Ν	L^1		L^2		L^{∞}	
$ 1024 \\ 4096 \\ 16384 $	6.37e-03 4.31e-03 2.58e-03	$0.56 \\ 0.74$	1.61e-02 1.08e-02 6.43e-03	$0.58 \\ 0.75$	1.19e-01 7.88e-02 4.58e-02	$\begin{array}{c}\\ 0.59\\ 0.78 \end{array}$

Table: First-order scheme, height error.

Ν	L^1		L^2		L^{∞}	
900	2.04E-05		5.22E-05		7.84E-04	
3600	3.07 E-07	6.05	6.88E-07	6.25	9.94E-06	6.30
14400	3.93E-09	6.29	5.82E-09	6.88	5.53E-08	7.49

Table: Sixth-order scheme, height error.

Radial friction experiment

steady state with friction, with a singularity at the origin

Figure: Left panel: discharge in the x-direction. Right panel: discharge in the y-direction. Space domain: $[-0.3, 0.3] \times [0.4, 1]$.

Order of accuracy assessment: radial friction experiment

Ν	h		q_x		q_y	
900	2.37e-08		8.00e-08		1.12e-07	
3600	3.77e-10	5.98	1.28e-09	5.96	1.82e-09	5.94
14400	5.89e-12	6.00	1.99e-11	6.01	2.91e-11	5.96
57600	1.24e-14	8.89	2.06e-13	6.60	1.20e-13	7.92

Table: L^1 errors, sixth-order scheme.

Ν	$\mid h$	q_x		q_y		
900	1.04e-07		5.20e-07		5.57e-07	
3600	1.80e-09	5.86	8.15e-09	6.00	1.02e-08	5.77
14400	3.38e-11	5.73	1.25e-10	6.02	1.71e-10	5.89
57600	8.33e-13	5.34	2.26e-12	5.79	2.59e-12	6.05

Table: L^{∞} errors, sixth-order scheme.

1D dam-break

Figure: Free surface for the dam-break over a dry sinusoidal bottom: reference solution and results of first-order and sixth-order schemes. The gray area represents the topography. 100 cells were used.

____Numerical experiments

2D partial dam-break

Simulation of the 2011 Japan tsunami

Conclusion and possible improvements

1 Introduction

- 2 Reminder of Florian's talk
- 3 Towards a high-order scheme: the polynomial reconstruction
- 4 High-order accurate finite volume scheme
 - High-order space accuracy
 - High-order time accuracy
- 5 Numerical experiments
- 6 Conclusion and possible improvements

Conclusion and possible improvements

Conclusion

- \blacksquare polynomial reconstruction of order d using a relevant stencil
- high-order space accuracy: integration of the equations
- high-order time accuracy: SSPRK methods

Going further

- the polynomial reconstruction may produce oscillations or non-physical values (for instance h < 0): use the MOOD method to lower the reconstruction degree
- a steady state is modified by the reconstruction: a first-order well-balanced scheme will not stay well-balanced when the high-order strategy is applied

- Thanks!

Thank you for your attention!