C. Berthon¹, <u>V. Michel-Dansac</u>¹

¹Laboratoire de Mathématiques Jean Leray, Université de Nantes

Wednesday, December 10th, 2014

Contents

1 Introduction

2 Steady states for the shallow-water model with friction

3 A fully well-balanced scheme

- Brief introduction to Godunov's method
- Structure and properties of our scheme
- The full scheme
- **4** Numerical experiments
- 5 Conclusion and perspectives

1 Introduction

2 Steady states for the shallow-water model with friction

3 A fully well-balanced scheme

- Brief introduction to Godunov's method
- Structure and properties of our scheme
- The full scheme
- 4 Numerical experiments
- 5 Conclusion and perspectives

A fully well-balanced scheme for the shallow-water model with topography and bottom friction

The Saint-Venant equations and their source terms

$$\begin{cases} \partial_t h + \partial_x \left(hu \right) &= 0\\ \partial_t \left(hu \right) + \partial_x \left(hu^2 + \frac{1}{2}gh^2 \right) &= -gh\partial_x Z - \frac{kq|q|}{h^{\eta}} \end{cases}$$

where:

- h(x,t) > 0 is the water height
- u(x,t) is the water velocity
- q(x,t) is the water discharge, equal to hu
- Z(x) is the shape of the water bed
- $\eta = 7/3$ and g is the gravitational constant
- k is the so-called Manning coefficient: a higher k leads to a stronger bottom friction

Steady states

rewrite the shallow-water equations as

$$\partial_t W + \partial_x F(W) = S(W) \text{, with:}$$
$$W = \begin{pmatrix} h\\ hu \end{pmatrix}, F(W) = \begin{pmatrix} hu\\ hu^2 + \frac{1}{2}gh^2 \end{pmatrix}, S(W) = \begin{pmatrix} 0\\ -gh\partial_x Z - \frac{kq|q|}{h^{\eta}} \end{pmatrix}$$

Definition: Steady states

W is a steady state iff $\partial_t W = 0$, i.e. $\partial_x F(W) = S(W)$

Steady states

taking $\partial_t W = 0$ in the shallow-water equations leads to

$$\begin{cases} \partial_x q &= 0\\ \partial_x \left(\frac{q^2}{h} + \frac{1}{2}gh^2\right) &= -gh\partial_x Z - \frac{kq|q|}{h^{\eta}} \end{cases}$$

the steady states are therefore given by

$$q = \operatorname{cst} = q_0 \quad \text{and} \quad \partial_x \left(\frac{q_0^2}{h} + \frac{1}{2}gh^2 \right) = -gh\partial_x Z - \frac{kq_0|q_0|}{h^{\eta}}$$
(1)

Introduction

Objectives

$$\partial_x \left(\frac{q_0^2}{h} + \frac{1}{2}gh^2 \right) = -gh\partial_x Z - \frac{kq_0|q_0|}{h^\eta}$$

derive a fully well-balanced scheme for the shallow-water equations with friction and topography, i.e.:

- preservation of all steady states with friction and Z = cst
- preservation of the lake at rest steady state (q = 0)
- preservation of all steady states with k = 0 and $q \neq 0$
- preservation of some steady states with $k \neq 0$ and $Z \neq \text{cst}$ (not presented here)

A fully well-balanced scheme for the shallow-water model with topography and bottom friction — Steady states for the shallow-water model with friction

1 Introduction

2 Steady states for the shallow-water model with friction

3 A fully well-balanced scheme

- Brief introduction to Godunov's method
- Structure and properties of our scheme
- The full scheme
- 4 Numerical experiments
- 5 Conclusion and perspectives

Obtaining the equations

taking a flat bottom in (1), i.e. Z = cst, yields

$$\partial_x \left(\frac{q_0^2}{h} + \frac{1}{2}gh^2\right) = -\frac{kq_0|q_0|}{h^\eta},$$

which we rewrite as:

$$-q_0^2 \partial_x \frac{1}{h} + \frac{g}{2} \partial_x h^2 = -\frac{kq_0|q_0|}{h^{\eta}}$$
(2)

for smooth solutions, we have

$$-\frac{q_0^2}{\eta - 1}\partial_x h^{\eta - 1} + \frac{g}{\eta + 2}\partial_x h^{\eta + 2} = -kq_0|q_0|$$
(3)

Finding solutions

integrating (3) between some x_0 and x yields

$$-\frac{q_0^2}{\eta-1}\left(h^{\eta-1}-h_0^{\eta-1}\right) + \frac{g}{\eta+2}\left(h^{\eta+2}-h_0^{\eta+2}\right) + kq_0|q_0|\left(x-x_0\right) = 0$$
(4)
with $h = h(x)$ and $h_0 = h(x_0)$

(4) is a nonlinear equation with unknown h for given x; use Newton's method to find h for any x, assuming $q_0 < 0$

Steady states for the shallow-water model with friction

Finding solutions

- zones and variations: analytical study
- solution shape: Newton's method needed to solve (4)

Other solutions?

use Rankine-Hugoniot relations to find admissible discontinuities linking two different increasing solutions, thus filling \mathbb{R} by waves problem: we cannot fill $] - \infty, x_0[$

2 find admissible discontinuities linking any two different solutions, thus filling \mathbb{R} same problem: we cannot fill $] - \infty, x_0[$

A fully well-balanced scheme for the shallow-water model with topography and bottom friction — Steady states for the shallow-water model with friction

Other solutions?

3 find admissible discontinuities linking any two solutions, without filling \mathbb{R}

works well on paper but appears to yield an unstable equilibrium (confirmed by numerics)

1 Introduction

2 Steady states for the shallow-water model with friction

3 A fully well-balanced scheme

- Brief introduction to Godunov's method
- Structure and properties of our scheme
- The full scheme
- 4 Numerical experiments
- 5 Conclusion and perspectives

- A fully well-balanced scheme
 - -Brief introduction to Godunov's method

1 Introduction

2 Steady states for the shallow-water model with friction

3 A fully well-balanced scheme Brief introduction to Godunov's method Structure and properties of our scheme The full scheme

- 4 Numerical experiments
- 5 Conclusion and perspectives

- A fully well-balanced scheme
 - -Brief introduction to Godunov's method

Setting

objective: approximate the solution W(x,t) of the general one-dimensional system $\partial_t W + \partial_x F(W) = 0$, with suitable initial and boundary conditions

we assume:

- $\partial_t W + \partial_x F(W) = 0$ is a hyperbolic system of conservation laws, with "known" eigenvalues
- $(x,t) \mapsto W(x,t)$ is defined from $[a,b] \times [0,T]$ to \mathbb{R}^d

- A fully well-balanced scheme
 - -Brief introduction to Godunov's method

Riemann problems

a Riemann problem is a Cauchy problem with a piecewise constant initial condition, with one discontinuity at some $x_0 \in \mathbb{R}$:

$$\begin{cases} \partial_t W + \partial_x F(W) = 0\\ W(x,0) = \begin{cases} W_L \text{ if } x < x_0\\ W_R \text{ if } x > x_0 \end{cases} \end{cases}$$

- we know the solution to a Riemann problem for some systems
- usually, it is not analytically known or too complicated ~→ use of an approximate Riemann solver in numerics

A fully well-balanced scheme

-Brief introduction to Godunov's method

Space and time discretization

we partition [a, b] in *cells*, of volume Δx and of evenly spaced centers x_i , and define:

x_{i-1/2} and x_{i+1/2} the boundaries of the cell i
Wⁿ_i an approximation of W(x,t), constant in the cell i and at time tⁿ, and defined as Wⁿ_i = W(x_i, tⁿ)

A fully well-balanced scheme

-Brief introduction to Godunov's method

Using an approximate Riemann solver

at time t^n , we have a succession of (potentially analytically unsolvable) Riemann problems at the interfaces between cells:

A fully well-balanced scheme

-Brief introduction to Godunov's method

Using an approximate Riemann solver

we choose to use an approximate Riemann solver, for instance the following one-state solver:

W_{i+1/2} is an approximation of the interaction between W_i and W_{i+1} (i.e. of the solution to the Riemann problem)
 λ^L_{i+1/2} and λ^R_{i+1/2} are approximations of the wave speeds

- A fully well-balanced scheme
 - -Brief introduction to Godunov's method

The full Godunov-type scheme

$$\forall x \in \left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right], \widetilde{W}(x, t^{n+1}) = \begin{cases} \forall i-\frac{1}{2} & \text{if } x < x_{i-\frac{1}{2}} + \lambda_{i-\frac{1}{2}} \Delta t \\ W_{i+\frac{1}{2}} & \text{if } x > x_{i+\frac{1}{2}} + \lambda_{i+\frac{1}{2}}^L \Delta t \\ W_i^n & \text{otherwise} \end{cases}$$

A fully well-balanced scheme

-Brief introduction to Godunov's method

The full Godunov-type scheme

$$\begin{split} \text{define } W_i^{n+1} &= \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \widetilde{W}(x, t^{n+1}) dx : \text{ then} \\ W_i^{n+1} &= \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i-\frac{1}{2}} + \lambda_{i-\frac{1}{2}}^R \Delta t} W_{i-\frac{1}{2}} dx + \frac{1}{\Delta x} \int_{x_{i+\frac{1}{2}} + \lambda_{i+\frac{1}{2}}^L \Delta t}^{x_{i+\frac{1}{2}} + \lambda_{i+\frac{1}{2}}^L \Delta t} W_{i+\frac{1}{2}} dx \\ &+ \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}} + \lambda_{i-\frac{1}{2}}^R \Delta t}^{x_{i+\frac{1}{2}} + \lambda_{i-\frac{1}{2}}^L \Delta t} W_i^n dx \end{split}$$

$$W_{i}^{n+1} = W_{i}^{n} - \frac{\Delta t}{\Delta x} \left[\lambda_{i+\frac{1}{2}}^{L} \left(W_{i+\frac{1}{2}} - W_{i}^{n} \right) - \lambda_{i-\frac{1}{2}}^{R} \left(W_{i-\frac{1}{2}} - W_{i}^{n} \right) \right]$$

- A fully well-balanced scheme
 - -Structure and properties of our scheme

1 Introduction

2 Steady states for the shallow-water model with friction

3 A fully well-balanced scheme Brief introduction to Godunov's method Structure and properties of our scheme The full scheme

- 4 Numerical experiments
- 5 Conclusion and perspectives

- A fully well-balanced scheme
 - -Structure and properties of our scheme

The HLL scheme

our scheme is based on the HLL scheme (Harten, Lax, van Leer (1983)), which uses the following approximate Riemann solver:

- A fully well-balanced scheme
 - -Structure and properties of our scheme

Modification of the HLL scheme

to include the source term contribution, we use the following approximate Riemann solver (assuming $\lambda_L < 0 < \lambda_R$):

A fully well-balanced scheme

-Structure and properties of our scheme

Properties to be verified

we want our scheme to be:

- **1** consistent with the shallow-water equations, and
- **2** well-balanced for the friction steady states

consistency is done thanks to a theorem from Harten and Lax (1983), which ensures that consistency holds if

$$\frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} W_{\mathcal{R}}\left(\frac{x}{\Delta t}; W_L, W_R\right) dx = \frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} \widetilde{W}(x, \Delta t) dx,$$

i.e. the mean of the approximation by the Riemann solver is equal to the mean of the exact solution to the Riemann problem

A fully well-balanced scheme

-Structure and properties of our scheme

Properties to be verified

ensuring the well-balance dness means enforcing that, if W^n is a steady state, then $\forall i, W_i^{n+1} = W_i^n$

we need $W_L^* = W_L$ and $W_R^* = W_R$ at the equilibrium

A fully well-balanced scheme

-Structure and properties of our scheme

Properties to be verified

we therefore have the following relations between the unknowns:

• consistency gives us

$$\lambda_R h_R^* - \lambda_L h_L^* = (\lambda_R - \lambda_L) h_{HLL}$$
$$q^* = q_{HLL} - \frac{\bar{S}\Delta t}{\lambda_R - \lambda_L}$$

with h_{HLL} and q_{HLL} defined earlier

• if equilibrium is reached, i.e. we have $q_L = q_R = q_0$ and (4), then for well-balancedness, we need:

•
$$q^* = q_0$$

• $h_L^* = h_L$ and $h_R^* = h_R$

- A fully well-balanced scheme
 - -Structure and properties of our scheme

What is left to do?

we have 3 unknowns \rightsquigarrow we need 3 equations

- \blacksquare we have 2 from consistency, provided we find a suitable expression for \bar{S}
- we need a third relation, between h_L^* and h_R^* , that will ensure the well-balancedness

- A fully well-balanced scheme
 - -The full scheme

1 Introduction

2 Steady states for the shallow-water model with friction

3 A fully well-balanced scheme

- Brief introduction to Godunov's method
- Structure and properties of our scheme
- The full scheme

4 Numerical experiments

5 Conclusion and perspectives

A fully well-balanced scheme

-The full scheme

Determination of q^*

recall
$$q^* = q_{HLL} - \frac{S\Delta t}{\lambda_R - \lambda_L}$$

we have to find a suitable expression of \bar{S} that:

- is consistent with the source term
- ensures that $q^* = q_0$ when the equilibrium is reached

we use
$$\bar{S} = -k\bar{q}|\bar{q}|\overline{h^{-\eta}}$$
, with

- \bar{q} the harmonic mean of q_L and q_R (note that $\bar{q} = q_0$ at equilibrium), and
- $\overline{h^{-\eta}}$ a well-chosen representation of $h^{-\eta}$, depending on h_L and h_R , and ensuring the well-balancedness

A fully well-balanced scheme

The full scheme

Determination of q^*

to determine $\overline{h^{-\eta}}$, we assume equilibrium and use the discrete equivalents of (2) and (3):

$$-q_0^2 \left[\frac{1}{h}\right] + g \frac{\left[h^2\right]}{2} = -k\Delta x q_0 |q_0| \overline{h^{-\eta}}$$
(5)
$$-q_0^2 \frac{\left[h^{\eta-1}\right]}{\eta-1} + g \frac{\left[h^{\eta+2}\right]}{\eta+2} = -k\Delta x q_0 |q_0|$$
(6)

where [X] denotes the jump of a quantity X, i.e.

$$[X] = X_R - X_L$$

A fully well-balanced scheme

The full scheme

Determination of q^*

replacing $q_0|q_0|$ with $\delta_0 q_0^2$ in (6), where $\delta_0 = \operatorname{sgn}(q_0)$, yields

$$q_0^2 \frac{[h^{\eta-1}]}{\eta-1} + g \frac{[h^{\eta+2}]}{\eta+2} + k\Delta x \delta_0 q_0^2 = 0$$

therefore, when equilibrium is reached, we have an expression of q_0 depending on h_L and h_R :

$$q_0^2 = \frac{g\frac{\left[h^{\eta+2}\right]}{\eta+2}}{\frac{\left[h^{\eta-1}\right]}{\eta-1} - k\delta_0\Delta x}$$

A fully well-balanced scheme

The full scheme

Determination of q^*

injecting the new expression of q_0 in (5) ultimately yields:

$$\overline{h^{-\eta}} = \frac{-\delta_0}{k\Delta x} \left(\left[\frac{1}{h} \right] + \frac{\left[h^2 \right]}{2} \frac{\eta + 2}{\left[h^{\eta + 2} \right]} \left(\frac{\left[h^{\eta - 1} \right]}{\eta - 1} - k\delta_0 \Delta x \right) \right),$$

which we can inject into $\bar{S} = -k\bar{q}|\bar{q}|\overline{h^{-\eta}}$, and then into

$$q^* = q_{HLL} - \frac{\bar{S}\Delta t}{\lambda_R - \lambda_L}$$

A fully well-balanced scheme

-The full scheme

Determination of h_L^* and h_R^*

two unknowns left \rightsquigarrow we need two equations

 we have λ_Rh^{*}_R - λ_Lh^{*}_L = (λ_R - λ_L)h_{HLL} from consistency
 we choose α_Rh^{*}_R + α_Lh^{*}_L = S
 Δx; α_L and α_R to be determined to ensure well-balancedness

we determine α_L and α_R such that:

- if $\bar{S} = 0$, we have $h_L^* = h_{HLL} = h_R^*$ (for stability)
- if equilibrium is reached, i.e. $\bar{S}\Delta x = -q_0^2 \left[\frac{1}{h}\right] + g \frac{[h^2]}{2}$ (5), we have $h_L^* = h_L$ and $h_R^* = h_R$ (to preserve steady states)

A fully well-balanced scheme

-The full scheme

Determination of h_L^* and h_R^*

computing such α_L and α_R easily leads us to

$$\xi (h_R^* - h_L^*) = \bar{S}\Delta x, \quad \text{with } \xi = \frac{-\bar{q}^2}{h_L h_R} + \frac{g}{2} (h_L + h_R)$$

using the consistency relation, we eventually obtain

$$\begin{cases} h_L^* = h_{HLL} - \frac{\lambda_R \bar{S} \Delta x}{\xi (\lambda_R - \lambda_L)} \\ h_R^* = h_{HLL} - \frac{\lambda_L \bar{S} \Delta x}{\xi (\lambda_R - \lambda_L)} \end{cases}$$

- A fully well-balanced scheme
 - The full scheme

Summary

we have presented an approximate Riemann solver leading to a scheme that:

- is consistent with the shallow-water equations with friction
- is fully well-balanced for friction steady states

└─Numerical experiments

1 Introduction

2 Steady states for the shallow-water model with friction

3 A fully well-balanced scheme Brief introduction to Godunov's method Structure and properties of our scheme The full scheme

- 4 Numerical experiments
- 5 Conclusion and perspectives

A fully well-balanced scheme for the shallow-water model with topography and bottom friction

-Numerical experiments

Well-defined Riemann problems

left: k = 0 right: k = 10

both Riemann problems have initial data $W_L = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$ and

 $W_R = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, on [0, 5], with 200 points, and final time 0.2s

A fully well-balanced scheme for the shallow-water model with topography and bottom friction

-Numerical experiments

Riemann problems with a dry/wet transition

left: k = 0 right: k = 10

both Riemann problems have initial data $W_L = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$ and

 $W_R = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, on [0, 5], with 200 points, and final time 0.15s

-Numerical experiments

Verification of the well-balancedness

small perturbation of a steady state solution left: height; right: errors to the equilibrium

└─Numerical experiments

A more complex test case, with topography

$$k = 0.1, W_L = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$$
 and $W_R = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, final time 3.5s

└─Numerical experiments

Two-dimensional extension

$$k = 0.1, W_L = \begin{pmatrix} 6\\0\\0 \end{pmatrix}$$
 and $W_R = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$, final time 3.5s

34/36

Conclusion and perspectives

1 Introduction

2 Steady states for the shallow-water model with friction

3 A fully well-balanced scheme

- Brief introduction to Godunov's method
- Structure and properties of our scheme
- The full scheme

4 Numerical experiments

5 Conclusion and perspectives

A fully well-balanced scheme for the shallow-water model with topography and bottom friction — Conclusion and perspectives

Conclusion

- well-balanced scheme for the shallow-water equations with friction
- well-balancedness for friction and topography as well (not presented here)
- Cartesian two-dimensional extension
- MUSCL extension with a MOOD technique

Perspectives

- higher order extension, using MOOD-like techniques to stay well-balanced
- extend to general 2D meshes

Thank you for your attention!